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Abstract

Hit identification is a critical yet resource-intensive step in the drug discovery
pipeline, traditionally relying on high-throughput screening of large compound
libraries. Despite advancements in virtual screening, these methods remain time-
consuming and costly. Recent progress in deep learning has enabled the develop-
ment of generative models capable of learning complex molecular representations
and generating novel compounds de novo. However, using ML to replace the entire
drug-discovery pipeline is highly challenging. In this work, we rather investigate
whether generative models can replace one step of the pipeline: hit-like molecule
generation. To the best of our knowledge, this is the first study to directly test this
idea. Specifically, we investigate if such models can be trained to generate hit-like
molecules, enabling direct incorporation into, or even substitution of, traditional
hit identification workflows. We propose an evaluation framework tailored to this
task, integrating physicochemical, structural, and bioactivity-related criteria within
a multi-stage filtering pipeline that defines the hit-like chemical space. Two au-
toregressive and one diffusion-based generative models were benchmarked across
various datasets and training settings, with outputs assessed using standard metrics
and target-specific docking scores. Our results show that these models can generate
valid, diverse, and biologically relevant compounds across multiple targets, with
a few selected GSK-37 hits synthesized and confirmed active in vitro. We also
identify key limitations in current evaluation metrics and available training data.

1 Introduction

Traditionally, drug discovery begins with target validation, followed by hit identification which is
the first stage introducing chemical matter and novelty. A hit is a small molecule with reproducible
activity, acceptable synthetic accessibility, and physicochemical properties [Goodnow}, 2006]. Identi-
fying high-quality hits is critical, as it initiates the hit-to-lead process to improve potency, selectivity,
and pharmacokinetic properties. To guide this process, medicinal chemists often rely on heuristics
such as Lipinski’s Rule of Five, which defines drug-likeness based on molecular weight, lipophilicity,
hydrogen-bonding capacity, and related efficiency metrics that balance potency with physicochemical
properties. Despite its importance, hit identification remains a resource-intensive task. Various
experimental strategies have been developed, including high-throughput screening (HTS) of libraries
of commercially available compounds, in-house collections, or natural products, aimed at identifying
biologically active hits. However, the main bottleneck lies in the fact that these approaches are
both time-consuming (months to years) [Paul et al.,[2010]] and financially demanding [Hughes et al.,
2011]]. To partially overcome these limitations, computational methods such as structure-based virtual
screening have been adopted to efficiently prioritize promising molecules. Nevertheless, even with
these tools, identifying high-quality hits from vast chemical libraries continues to represent a major
bottleneck in drug discovery, as these methods also entail considerable time and resource demands.
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In recent years, deep learning (DL) has gained interest in molecular design due to its potential to learn
complex structures and property relationships from large chemical datasets. To address persistent
challenges in early drug discovery for de novo molecule generation, research has increasingly explored
generative models that are trained either to replicate the distribution of known compounds or to
optimize specific constraints, such as molecular properties or binding affinity. Common strategies
include one-shot generation [De Cao and Kipfl 2018| [Vignac et al.,[2023| Zang and Wang| [2020]],
sequential atom- or bond-level construction [[Gebauer et al., 2022} [Segler et al.| [2018| [Zhou et al.,
2019]], and fragment-based assembly [Podda et al.| 2020, |Seo et al.l [2021] Jin et al.| 2020, |Gupta
et al.,|2018|]. However, prior research on generative models has predominantly focused on generating
molecules in general, without considering how such models perform when applied to a specific
step in the drug discovery process. This work investigates their applicability to a more specific
and demanding task: generating hit molecules. It reframes the scientific question from the general
inquiry: Can generative models produce valid, drug-like molecules? to a more targeted one: Can
generative models accelerate the hit identification process by directly generating compounds with hit-
like characteristics? Accordingly, our focus shifts from evaluating generative models based solely on
chemical validity to assessing their ability to produce molecules suitable for entry into physics-based
screening workflows. The ultimate goal is to identify biologically viable hits that can progress into
hit-to-lead and lead optimization stages, either via specialized ML models or through conventional
medicinal chemistry carried out by pharmaceutical experts. As the drug discovery process remains
largely sequential and devoid of true shortcuts, we ask whether generative models can effectively
replace one of its early steps, hit identification. If successful, this approach could substantially reduce
the time and cost associated with early-stage drug discovery, potentially compressing a multi-year
process into just a few months [Zhavoronkov et al.|[2019, |Xu et al., 2025].

To this aim, our contributions are the following:

* We define an evaluation framework tailored to the hit-generation task by combining struc-
tural, physicochemical, and bioactivity metrics with a new multi-stage filtering pipeline;

* We construct a comprehensive filtering pipeline by integrating established drug-likeness and
medicinal chemistry constraints to define and evaluate the hit-like chemical space;

* We benchmark representative models from autoregressive and diffusion-based paradigms
across diverse datasets and training settings, and evaluate their outputs using standard and
task-specific criteria, such as docking scores across a panel of biological targets;

* To the best of our knowledge, we demonstrate for the first time that generative models can
produce not only chemically valid but also biologically meaningful hit candidates, including
compounds that have been experimentally validated through in vitro assays against GSK-33;

* We identify key limitations in current generative models and publicly available datasets that
lack training data that are explicitly tailored to early-stage hit identification.

Our results demonstrate that deep generative models, when trained and fine-tuned appropriately, can
generate hit-like molecules suitable for early-stage screening, including compounds with confirmed
in vitro activity. These findings highlight both the potential and current limitations of generative
models in practical hit discovery.

2 Method: Benchmarks, Training, and Evaluation Pipelines

We evaluate three graph-based generative models, two autoregressive and one diffusion-based, that
have shown strong performance in general molecule generation but have not been assessed for the
specific task of hit generation. This section outlines the models, datasets, training settings, evaluation
pipelines, and in vitro validation of GSK-30 hits.

2.1 Studied Models

The three graph-based models considered are MolRNN [Li et al.,[2018]], GraphINVENT [Mercado
et al.} [2020], and DiGress [[Vignac et al., 2023]]. MolRNN and GraphINVENT are autoregressive,
sequentially building molecular graphs step by step. They differ in their graph encoders: MoIRNN
uses a gated recurrent unit (GRU), whereas GraphINVENT employs a message-passing neural
network (MPNN). DiGress, in contrast, uses a diffusion-based, one-shot generation approach with a
graph transformer. This selection was based on the models’ performance in preliminary evaluations
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and allows comparison of sequential versus non-sequential generation strategies, and the impact of
different encoder architectures (GRU, MPNN, transformer) on scalability, and chemical validity.

MOoIRNN MolRNN |Li et al., | 2018] is a sequential generative model that constructs molecular
graphs by leveraging graph neural networks (GNNs) and recurrent neural networks (RNNs). It starts
with an empty graph and iteratively guides the generation process using a probabilistic decoding
policy to apply one of three actions: adding atoms, connecting atoms, or terminating the process.
Each step involves computing atom-level embeddings through stacked GNN layers and refining
graph-level representations with a GRU unit. A multi-layer perceptron is then used to predict action
probabilities. The model is trained via maximum likelihood estimation using importance sampling.
Full technical details are available in [Li et al., 2018|].

GraphINVENT GraphINVENT [Mercado et al., 2020] is a graph-based generative model that con-
structs molecules by autoregressively adding atoms and bonds. GraphINVENT’s model architecture
is similar to that of MolRNN; however, it employs MPNNs, which offer improved scalability and
more fine-grained edge handling compared to GRUs. Molecular generation is guided by an Action
Probability Distribution (APD) that restricts to chemically valid actions. The architecture features an
MPNN encoder and a readout block to produce APD logits, trained by minimizing KL divergence
against ground-truth actions derived from BFS-based preprocessing. See [Mercado et al., 2020] for a
comprehensive description.

DiGress DiGress [Vignac et al.l 2023] is a discrete denoising diffusion model for graph generation.
Instead of continuous noise, it introduces categorical perturbations to node and edge features via
discrete Markov transitions to ensure discreteness of its representation. For the denoising phase, a
graph transformer network is employed that learns to reverse the noise process, using cross-entropy
loss over node and edge predictions. The model incorporates structural and spectral features, such as
cycle counts and Laplacian eigenvalues, to enhance its generative capabilities. Full methodology and
results are detailed in [[Vignac et al., [2023]].

2.2 Datasets

To train our models, we utilize three types of datasets in this work: a general-purpose dataset
(REINVENT [Blaschke et al., 2020]), a filtered subset we term the hit-like dataset, and a target-
specific ligand dataset.

REINVENT Dataset The REINVENT dataset [Olivecrona et al., [2017]] is a widely used subset
of ChEMBL [Mendez et al., [2019], originally introduced by Olivecrona et al. It contains 1,086,248
unique compounds after filtering for molecules with 10-50 heavy atoms and restricting elements to
H,B,C, N, O,F Si, P, S, Cl, Br, and I. Duplicate compounds were removed to ensure uniqueness.

Hit-like Dataset The hit-like dataset, constructed for this study, is derived from the same ChEMBL
source but filtered using the hit-like criteria such as molecular weight, synthetic accessibility score,
ring constraints, and others described in Sec. [2.4.3] This process yielded 58,837 molecules, approxi-
mately 2.68% of the original database, representing structures with desirable drug-like properties.

Target-Specific Ligand Sets While our main focus is unconditional generation, target-specific
ligand sets were also constructed to explore whether such models could be refined toward activity
against defined biological targets, providing a complementary perspective on their downstream
applicability. To construct these datasets, we retrieved ligands from ChEMBL annotated with activity
against a panel of seven protein targets: dopamine D3 receptor (D3R, class A GPCR), adenosine A2A
receptor (ADORAZ2A, class A GPCR), heat shock protein HSP90« (HSP90«, molecular chaperone),
glycogen synthase kinase-3/5 (GSK-34, serine/threonine kinase), proto-oncogene tyrosine-protein
kinase Src (SRC, tyrosine kinase), coagulation factor II (thrombin, protease), and peroxisome
proliferator-activated receptor o (PPAR«, nuclear receptor). Ligands were selected based on two
criteria: (i) pChEMBL value > 5, and (ii) assay confidence score = 9.
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Figure 1: Integrated Training and Evaluation Framework. Left: Dataset construction and model
training pipeline, showing the filtering strategies applied to ChEMBL to obtain general-purpose,
hit-like, and target-specific datasets, their use in training MolRNN, GraphINVENT, and DiGress
models, and subsequent fine-tuning in hit-like and target-specific settings. Right: Evaluation pipeline
for generated molecules, outlining the multi-stage workflow from VUN and hit-like filtering through
distributional, structural, and docking-based metrics, visual inspection, and final selection of top
GSK-3/ candidates for synthesis and in vitro testing.
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2.3 Training Pipeline

As shown in the left hand side of Figure[I] each model was trained under three settings: (1) using
the full REINVENT dataset, (2) using the hit-like dataset, and (3) fine-tuning a REINVENT-trained
model with the hit-like dataset. Additionally, MoIRNN and DiGress models that were initially trained
on the REINVENT dataset were further fine-tuned in a fourth setting on seven target-specific ligand
sets (see[2.2]for details). This choice was made to enable comparison between one autoregressive
and one diffusion-based model. MoIRNN was selected over GraphINVENT for this step due to its
superior performance in preliminary benchmarks.

All models followed their original training objectives, with early stopping on validation loss. For
fine-tuning experiments, models were initialized from pretrained REINVENT weights and continued
training for up to 20 epochs, using smaller batch sizes to avoid overfitting. For generation, the
best-performing checkpoint for each trained model (lowest validation loss) was selected. To ensure
fair comparison across models during downstream analysis, we continued generation until each model
produced the same number of VUN and hit-like filtered molecules. This controlled sampling allowed
consistent evaluation on docking and drug-likeness metrics. After training and sampling, each model
was passed to the evaluation pipeline described in Sec.[2.4]

2.4 Evaluation Pipeline

To assess model performance, we adopt a three-layer evaluation framework of increasing drug
relevance. Our goal is to construct a realistic evaluation pipeline (Figure[I] right), aiming to determine
whether generative models can replace hand-crafted hit-like molecule design.

2.4.1 Basic Structural Validity Metrics

The first layer of evaluation focuses on foundational checks to ensure that generated molecules are
structurally and chemically sound. Validity measures the percentage of generated molecules that obey
valence rules and contain no structural errors. Uniqueness assesses the proportion of valid molecules
that are structurally distinct within the generated set. Novelty quantifies the fraction of valid and
unique molecules that are not present in the training dataset. These three metrics (VUN) serve as the
minimal baseline for generative model performance and are standard across the field.
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2.4.2 Distributional and Structural Similarity Metrics

The second evaluation layer measures how closely generated molecules resemble the training chem-
ical space. We employ a set of metrics that assess both molecular properties and structural pat-
terns that align with standard benchmarking protocols such as GuacaMol [Brown et al.,[2019]] and
MOSES [Polykovskiy et al.,[2018]]. We use Fréchet ChemNet Distance (FCD) |Preuer et al.|[2018]] for
overall distributional similarity based on chemical and biological features of generated and reference
molecules, BRICS fragments [Degen et al., [2008]] and Bemis—Murcko scaffolds [Bemis and Murcko,
1996] similarities for structural patterns, Similarity to Nearest Neighbor (SNN) for proximity to
known compounds based on Tanimoto similarity, and Jaccard-based internal diversity on Morgan
fingerprints [Morgan, [1965] for variation within the generated set.

2.4.3 Drug-likeness and Bioactivity-Relevant Metrics

This final evaluation tier assesses whether generative models produce molecules with realistic hit-like
properties and potential biological activity. This aspect is one of the key contributions of our work
where we emphasize evaluation by drug-likeness and biological relevance which are critical factors
in determining the practical value of generated compounds.

Hit-like Filters To align with early-stage discovery goals, we applied a multi-stage filtering pipeline
integrating established drug-likeness and medicinal chemistry criteria. Each molecule was required
to satisfy: (1) a Novartis-inspired [Schuffenhauer et al.| [2020]] severity score (Sev.) < 10, which
penalizes structural liabilities such as PAINS motifs [Baell and Hollowayl 2010], reactive groups,
toxicophores, and unstable chemotypes; (2) molecular weight (MW) between 150-350 Da; (3) logP
between 1-3 as a proxy for solubility; (4) a minimum pChEMBL value of 5 at any known target to
ensure meaningful bioactivity; (5) a synthetic accessibility score (SAS) < 5; (6) between one (NoR)
and four rings (< 4R), with no ring exceeding eight atoms (< 8t), a maximum of two rings larger
than six atoms (< 2R6t), and exclusion of fused (FusedR) or small aromatic (AromR) ring systems;
and (7) elemental composition restricted to C, N, O, F, P, S, Cl, Br, and 1. This integrated approach
provides a consistent and stringent definition of hit-likeness across datasets and generative outputs.

Docking Calculation To evaluate the biological relevance of the generated molecules, we computed
docking scores estimating their binding affinity to the seven protein targets described in Sec.[2.2]
Docking simulations were performed only on molecules that satisfied both the VUN criteria and the
complete set of hit-like filters, ensuring that only the most plausible candidates were assessed for
target binding. Docking scores, with lower values indicating stronger predicted interactions, serve as
an approximate measure of bioactivity and complement chemical and structural evaluations. Details
of protein and ligand preparation, docking settings, and software are provided in Appendix [A]

Biological Evaluation To assess biological relevance of generated molecules, we performed hit
selection for GSK-3/3, a target where our models showed low KL divergence and many compounds
outperforming the median docking score of known ligands. Candidate molecules had to meet two
criteria: (1) structural novelty (Tanimoto distance > 0.5 from known binders), and (2) strong predicted
binding (docking scores < mean —2 SD). This process led to the selection of three top compounds
subjected to further experimental testing in vitro to validate their potency.

3 Experimental Results and Discussions

This section presents our experimental results, including general-purpose molecule generation,
docking score calculations, and the biological evaluation of selected hits against the GSK-3/3 target.

3.1 Molecular Generation Performance and Filter Compliance

The first step is to evaluate whether the models could reliably generate chemically valid, unique,
and novel (VUN) molecules. As shown in Table |I} MoIRNN and GraphINVENT achieved near-
perfect validity (> 99.9%) across all settings, while DiGress reached only 70-76%. Uniqueness
was uniformly high, but novelty varied: GraphINVENT consistently exceeded 93%, MolRNN was
sensitive to training data (dropping to 64.6% in the Hit-like regime), and DiGress remained moderate
(~ T70-75%) across all cases. We next assessed how many VUN molecules passed the hit-like property
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Table 1: Molecular generation performance metrics for MoIRNN, GraphINVENT, and DiGress
across training settings.

Model Valid (%) VUN (%) Filters (%) FCD Frag. Scaff. SNN Div.
MoIRNN (Hit-like) 99.98 64.60 76.87 1.74 093 0.87 0.61 0.87
MoIRNN (REINVENT) 99.98 96.74 11.46 205 092 079 050 0.87
MOoIRNN (Hit fine-tune) 99.91 94.64 67.57 191 092 084 052 0.87
GraphINVENT (Hit-like) 100.00 96.42 58.73 210 099 077 047 0.88
GraphINVENT (REINVENT)  100.00 96.98 12.85 .70 099 0.78 048 0.88
GraphINVENT (Hit fine-tune)  100.00 93.06 50.80 113 099 0.86 0.53 0.88
DiGress (Hit-like) 70.00 69.15 65.59 301 099 068 044 0.88
DiGress (REINVENT) 75.81 75.26 10.27 263 099 065 045 0.88
DiGress (Hit fine-tune) 71.62 71.51 14.11 291 098 063 045 0.88

Table 2: Percentage of generated molecules failing each filtering criterion.

Model Sev. SAS MW logP NoR <4R <8t <2R6t AromR FusedR All

MOoIRNN (Hit-like) 0.80 030 997 1439 0.16 027 037 0.03 0.03 0.02 23.13
MoIRNN (REINVENT) 729 260 77.69 66.01 047 1435 1.14 0.17 0.10 041  88.54
MOoIRNN (Hit fine-tune) 196 037 1514 19.63 025 040 0206 0.01 0.02 0.06 3243
GraphINVENT (Hit-like) 751 659 1126 2190 1.85 149 845 1.75 1.69 .12 4127

GraphINVENT (REINVENT) 9.06 859 7325 63.59 143 1630 898  3.28 1.23 1.80  87.15
GraphINVENT (Hit fine-tune) 5.00 3.49 2294 3132 1.04 186 424 0.96 0.65 0.68  49.20

DiGress (Hit-like) 458 3.19 457 1636 033 222 1030 144 2.56 086  34.41
DiGress (REINVENT) 7.15 10.18 78.03 6239 0.24 22.09 13.70 3.62 0.87 231  89.73
DiGress (Hit fine-tune) 479 1042 7480 5440 0.04 2529 1525 4.05 0.71 1.96  85.89

filters. Direct training on the Hit-like dataset yielded the highest compliance (MoIRNN: 76.9%),
while REINVENT-trained models passed at < 12%, underscoring the mismatch between broad
chemical priors and focused hit-like requirements. Fine-tuning substantially improved MolRNN
and GraphINVENT compliance, but DiGress saw only modest gains. Distributional metrics in
Table [T) highlight trade-offs between novelty and hit-like resemblance. GraphINVENT (Hit fine-tune)
achieved the lowest FCD (1.13), indicating the closest match to the reference, while MolRNN showed
the highest scaffold similarity, and DiGress exhibited generally higher FCD and scaffold deviation.

To pinpoint limiting factors, Table [2] reports per-filter failure rates. MoIRNN (Hit-like) showed
minimal violations across all criteria, while REINVENT-trained MolRNN and DiGress frequently
exceeded MW and logP thresholds. GraphINVENT tended toward higher ring-complexity and logP
failures, partially mitigated by fine-tuning. DiGress, while rarely producing ringless molecules,
overrepresented large and fused ring systems, with high MW violations persisting even after fine-
tuning. Overall, autoregressive models, when trained or fine-tuned on hit-like data, achieve the best
balance between generative breadth and property compliance, whereas diffusion-based generation
shows lower baseline validity and weaker adaptation to narrow physicochemical constraints.

3.2 Docking Analysis

Docking performance was evaluated across seven targets (Sec. using KL divergence, quantifying
the similarity between docking score distributions of generated and training ligands. As shown in
Table models trained directly on the Hit-like set achieved the lowest divergences (all < 0.01),
reflecting strong physicochemical alignment with the reference ligands. Unfiltered REINVENT-
trained models exhibited higher divergence (0.083—-0.100), consistent with the broader and less
constrained chemical space. Fine-tuned models achieved intermediate values, indicating partial
adaptation toward the hit-like profile.

When averaged across targets, MolRNN achieved lowest KL divergence (0.061 £ 0.062), with
GraphINVENT and DiGress performing similarly (Table [3b). Per-target analysis in Appendix [C]
revealed highest divergences for SRC and PPARq, reflecting their higher MW and logP of their
known ligands compared to the generated set. In contrast, GSK-33 and ADORA2A showed the
closest alignment with the hit-like constraints.
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Table 3: Average KL divergence (mean = standard deviation) between the docking score distributions
of generated molecules and the reference ligand sets across all targets: (a) grouped by combination of
algorithm and training set; (b) grouped by algorithm.

Model KL divergence

DiGress (REINVENT) 0.099 £ 0.061

DiGress (Hit-like) 0.009 £+ 0.012 ] ;

DiGress (Hit fine-tune) 0.089 + 0.056 Algorithm KL divergence
GraphINVENT (REINVENT)  0.100 + 0.067 DiGress 0.066 4 0.062
GraphINVENT (Hit-like) 0.003 £ 0.002 GraphINVENT  0.064 4+ 0.067
GraphINVENT (Hit fine-tune)  0.087 4= 0.062 MoIRNN 0.061 £+ 0.062
MOoIRNN (REINVENT) 0.083 £ 0.056

MOoIRNN (Hit-like) 0.004 £ 0.003 (b) By algorithm
MOoIRNN (Hit fine-tune) 0.095 + 0.064

(a) By model and training set

Table 4: Median docking score values of the ligand sets for PPAR«, HSP90«, and GSK-34, and
the percentage of generated molecules achieving a lower (better) docking score than the respective
median ligand score, grouped by generative model.

Model Target  Median % Better Model Target  Median % Better Model Target  Median % Better

Hit-like PPARa  —9.15 0.38 Hit-like PPARa  —9.15 0.38 Hit-like PPARa  —9.15 0.38
HSP90a —6.03 39.97 HSP90a —6.03 42.07 HSP90a —6.03 38.35
GSK-33 —7.27 10.13 GSK-33 —7.27 15.58 GSK-33 —7.27 14.00

REINVENT PPARa —9.15 0.35 REINVENT PPARa —9.15 0.46 REINVENT PPARa  —9.15 0.28
HSP90a —6.03 42.69 HSP90a —6.03 43.05 HSP90a —6.03 39.78
GSK-33 —7.27 12.18 GSK-33 —7.27 15.60 GSK-33 —7.27 13.38

Hit fine-tune PPARa  —9.15 0.54 Hit fine-tune PPARa —9.15 0.52 Hit fine-tune PPARa  —9.15 0.34
HSP90a —6.03 40.22 HSP90a —6.03 51.82 HSP90a —6.03 39.07
GSK-33 —7.27 11.60 GSK-33 —7.27 20.59 GSK-33 —7.27 14.86
(a) DiGress (b) MoIRNN (c) GraphINVENT

While KL divergence captures distributional similarity, it does not assess binding efficacy. We
therefore compared docking scores of generated compounds to known ligands for each target,
calculating the fraction outperforming (lower) the ligand median (Table ). Across 63 model-training
combinations, HSP90« showed the highest success rates (38—-52%), PPAR« the lowest (< 1%), and
GSK-33 (moderate 10-16%), with similar trends for D3R and SRC. Given that many ChEMBL
ligands are optimized molecules occupying broader chemical space, we repeated the analysis using
only ligands passing hit-like filters (see full table details in Table[7)in Appendix [C] This raised success
rates for five targets, most notably for Thrombin (< 2% to 35-45%), while GSK-3/3 and HSP90«
observed modest drops. MoIRNN (Hit fine-tune) achieved the highest success in 6 of 7 targets, with
DiGress (Hit fine-tune) narrowly leading for PPAR«. The weakest performances came from DiGress
(Hit-like) in four targets, GraphINVENT (REINVENT) in two, and GraphINVENT (Hit-like) for
HSP90a. Overall, fine-tuned models on hit-like data generated a substantial fraction of compounds
with docking scores comparable to or better than known ligands, though performance varied by target.

3.3 Hit Selection and Biological Evaluation

Given its strong generative performance, GSK-35 was chosen for hit prioritization, yielding three
candidate molecules that were synthetized and tested in vitro. All showed high structural similarity
(TD > 0.5) to known kinase inhibitors, consistent with the conserved nature of kinase binding
pockets. Compound 1 displayed strong GSK-3/ inhibition (IC5o = 314 + 15.3 nM; Table [5] in
Appendix B} Figure[2JA), while compounds 2 and 3 showed weaker activity. Such low-nanomolar
activity, as in compound 1, is highly promising at the hit stage, particularly for a small, structurally
novel scaffold. Notably, the training dataset contained few ligands of comparable potency and size,
making compound 1 a clear example of successful extrapolation by the generative model. Docking
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Figure 2: (A) Structures of selected compounds (1-3), their most similar known GSK-34 inhibitors
(4-6), and closest kinase inhibitors (7-9) by TD. (B) Dose-response curve for GSK-34 inhibition by
compound 1, shown as mean 4 SD of three replicates, representative of three experiments. (C) t-SNE
projection of compound 1 (red star) within the chemical space of known GSK-3 ligands (gold dots).
(D) Comparison of pPChEMBL value of compound 1 with known inhibitors, shown as a violin plot
(all inhibitors, light blue) and subset with hit-like properties (blue dots).

analysis confirmed the hinge-binding of compound 1 through two key hydrogen bonds (Asp133,
Vall35) and a Lys85 interaction, explaining its high potency despite the rarity of its scaffold (< 1.1%
among kinase binders present in ChEMBL).

As shown in Figure 2] chemical space analysis further supported its relevance: t-SNE projections
revealed that compound 1 clusters with known GSK-3/ inhibitors, while activity benchmarking
demonstrated that it outperforms both the full ligand set and the subset of hit-like inhibitors (-
log(activity) = 6.50 vs. median values of 6.39 and 5.89, respectively). These results highlight that
generative models can design chemically novel yet biologically potent compounds, even without
explicit fine-tuning on a specific target, by leveraging kinase features embedded in the training data.

4 Conclusion

To the best of our knowledge, this work is the first systematic evaluation of generative models for
producing hit-like molecules, with assessment spanning physicochemical filtering, distributional
analysis, and in vitro validation. Our results demonstrate that such models can generate chemically
novel compounds meeting hit-like criteria and displaying measurable biological activity, confirming
their potential to accelerate early-stage drug discovery. Nonetheless, limitations remain. Diffusion-
based models, despite strong performance in distribution learning, struggled with target-specific
fine-tuning, due to their higher data demands and sensitivity to dataset size. Performance on targets
such as PPAR« and SRC was constrained by the scarce high-quality hit-like data highlighting the
broader issue of limited availability even for well-studied proteins. Moreover, widely used evaluation
metrics such as VUN, FCD, and scaffold similarity did not consistently correlate with predicted
bioactivity, underscoring the need for benchmarks that better capture biological relevance.

Future progress will require richer, better-curated hit-like datasets to support both general and target-
specific training, as shown by constrained performance on PPAR« and SRC due to scarce ligands with
suitable physicochemical properties. In parallel, evaluation frameworks must integrate bioactivity-
relevant endpoints alongside distributional and structural metrics. Advances in architectures that learn
effectively from limited target-specific data through improved transfer learning or data augmentation
strategies will also be key. Incorporating these improvements into a modular Al-driven pipeline,
where generative models focus on high-quality hit generation followed by ML-based or traditional
hit-to-lead optimization, offers a promising path to accelerate early-stage drug discovery while
addressing current gaps in predictive power and applicability.
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A Docking Studies Details

Ligand docking calculations were carried out using Glide [Halgren et al., 2004} Friesner et al., 2004]]
as implemented in Schrodinger 2023-04 (Schrodinger LLC, New York, USA). All ligands were
prepared using the LigPrep tool. For each compound, stereoisomers were generated for all chiral
centers, up to a maximum of 32. Ionization states were generated using Epik Classic, considering a
pH range of 7.4 4 1.0. All other parameters were kept at their default settings. All receptors were
prepared using the Protein Preparation tool implemented in Schrodinger 2023-04. Default settings
were used. Water molecules, ions, and other non-protein atoms were removed from protein structures.

The position and size of the binding boxes of GSK-33 (PDB code: 1Q41 [Bertrand et al., [2003],
chain A), thrombin (PDB code: 2FZZ [Pinto et al.l 2006|, chain H), and SRC (PDB code:
70TE [Cuesta-Hernandez et al.} 2023, chain A) systems were defined by the coordinates of their co-
crystallized ligand. To account for receptor flexibility, the van der Waals radii for atoms with a partial
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charge < 0.25 were scaled to 0.9 for each system. For the HSP90« system (PDB code: 2VCI [Brough
et al., |2008]], chain A), the binding box was defined in the same manner as described above, except
that three water molecules near the key residue Asp93—reported to form a hydrogen-bond network
between the ligand and the receptor—were retained.

The binding boxes of the PPAR« system (PDB code: 6KB4 [Kamata et al., 2020, chain A), D3R
(PDB code: 3PBL [Chien et al., [2010], chain A), and ADORA2A (PDB code: 3EML [Jaakola
et al.;, 2008|], chain A) systems were created following the same procedure described above, with the
additional inclusion of the following atomic constraints during docking:

1. PPARa: three out of four hydrogen-bond constraints between the R groups of Ser280,
Tyr314, His440, and Tyr464 and the hydrogen-bond acceptor groups of the compounds to
be docked must be satisfied,

2. ADORA2A: one hydrogen-bond constraint between the R group of Asn253 and the
hydrogen-bond acceptor groups of the ligands,

3. D3R: one hydrogen-bond constraint between the R group of Asp110 and the hydrogen-bond
donor group of a protonated nitrogen in the ligand.

The pattern was defined using the SMARTS string: " [#1] [#7+]".

The Glide Standard Precision (SP) [[Friesner et al., 2006| protocol was used for docking calculations.
Each ligand was docked with the van der Waals radii of atoms having partial charges < 0.15 scaled
by a factor of 0.9. For each ligand, only the best-scoring pose was retained. All calculations were
carried out using the OPLS4 force field.

B Biological Evaluation

B.1 GSK-37 kinase assay

The GSK-34 kinase assay was performed as described in [[Di Martino et al., 2025|]. Briefly, the
inhibitory potency against human recombinant GSK-3/ (Carna Biosciences) was evaluated us-
ing the LANCE® Ultra time-resolved fluorescence resonance energy transfer (TR-FRET) assay
(PerkinElmer), by measuring phosphorylation of the specific substrate human muscle glycogen
synthase (ULight-GS (Ser641/pSer657)), according to the manufacturer’s instructions. Test com-
pounds, staurosporine (reference compound), or DMSO (control) were mixed with the enzyme
(2 nM) in a buffer containing 50 mM HEPES (pH 7.5), 1 mM EGTA, 10 mM MgCl,, 2 mM
DTT, and 0.01% Tween-20. The reaction was initiated by adding 50 nM of the substrate ULight-
PASVPPSPSLSRHSSPHQ(pS)ED and 3 M ATP, followed by incubation for 1 hour at 23 °C.

Following incubation, the reaction was stopped by adding 8 mM EDTA. After 5 min, the anti-phospho-
GS antibody labeled with europium chelate was added. After 1 more hour, the kinase reaction was
monitored by irradiation at 320 nm, and fluorescence was measured at 615 nm and 665 nm using
the EnVision 2014 Multilabel Reader (PerkinElmer). The calculated signal ratio at 665/615 nm was
proportional to the extent of ULight-GS phosphorylation.

Compounds were screened at three concentrations (1, 10, and 50 uM). The most potent compound
was further tested in a dose-response format at 11 concentrations ranging from 300 pM to 100 M in
technical triplicates. Results were expressed as percent inhibition of control enzyme activity.

B.2 Analysis of the Biological Data

Three-concentration screening and dose-response curves were run in at least three independent
experiments, each performed in technical triplicates. 1Cs5y values were determined by non-linear
regression analysis of log[concentration]-response curves, generated from mean replicate values
using a four-parameter Hill equation curve fit in GraphPad Prism 8 (GraphPad Software Inc., CA,
USA).

Compounds 1, 2, and 3 present high TD values of 0.64 to ChEMBL3652544 (4), 0.61 to
ChEMBL250386 (5), and 0.65 to ChEMBL359554 (6), respectively. In addition, we extended
the chemical similarity analysis to all kinase inhibitors present in the ChEMBL database (see Sup-
plemental Materials & Methods section for details). This step was motivated by the conserved
nature of kinase binding pockets, where chemically similar scaffolds can often exhibit non-selective
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interactions. Remarkably, all selected compounds show a minimum TD value above 0.5, even when
compared against the full kinase inhibitor set. Specifically, compound 1 presents a minimum TD of
0.51 to ChEMBL3663033 (7), compound 2 to ChEMBL326596 (TD = 0.58, 8), and compound 3 to
ChEMBL578061 (TD = 0.63, 9). Representative structures of the most similar GSK-35 and kinase
inhibitors to our selected compounds are shown in Figure [JA.

To evaluate the ability of the selected compounds to modulate GSK-3 3 kinase activity, their inhibitory
effects were assessed at three concentrations (1, 10, and 50 M) using the LANCE?® Ultra time-
resolved fluorescence resonance energy transfer (TR-FRET) assay, as described in the Biological
Evaluation section. Compounds 3 and 2 exhibited weak (5 & 0.7%) to moderate (49.6 &= 0.9%) inhi-
bition of GSK-34 at the highest tested concentration (50 M), respectively. In contrast, compound 1
showed strong inhibition already at 1 M and was therefore selected for ICs determination (Table [3).
The IC5 of compound 1 was calculated to be 314 + 15.3 nM (Figure[2B).

Table 5: Percentage of inhibition of the selected compounds at three different concentrations per-
formed through a TR-FRET assay.

1 uM 10 uM 50 uM
1 713+1.7 882+0.1 899402

2 1+3.6 124 4+0.8 49.6 +0.9
3 n.i. n.i. 5+0.7

The 1H-pyrazolo[3,4-b]pyridine moiety of the potent hit compound 1 anchors the molecule to the
hinge region of GSK-3/3 through two key hydrogen bonds with the backbone of Asp133 and Vall35.
Notably, this scaffold is rare among GSK-3/ inhibitors, with only 19 instances out of 1734 (1.1%),
and similarly underrepresented among all kinase inhibitors in ChEMBL (727 out of 100365, 0.72%).
The high potency of compound 1 may also be explained by an additional hydrogen bond between the
nitrogen atom of its 2-methylpyridine ring and the side-chain amino group of Lys85, a conserved
residue known to enhance inhibitor affinity. These findings highlight the model’s ability to generate
chemically novel yet functionally relevant hits. Despite not being explicitly fine-tuned on GSK-34
ligands, MolRNN successfully designed a potent hit by leveraging general kinase features embedded
in the REINVENT training dataset. This is further supported by the t-SNE analysis (Figure 2[C),
where compound 1 (red star), although structurally novel, clusters within the dense chemical space of
known GSK-34 binders (gold dots).

In light of its strong inhibitory activity, we benchmarked compound 1 against known GSK-30
inhibitors to better assess its relative potency. Specifically, we compared its activity value, expressed
as —log(activity), with those of known GSK-3/3 inhibitors. As shown in the violin plot (Figure[2D),
compound 1 (red star) outperforms both the full ligand set (light blue shape) and the subset of hit-like
GSK-3/ inhibitors (blue dots), with a —log(activity) value of 6.50 compared to median values of 6.39
and 5.89, respectively.
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Figure 3: Predicted binding conformations of compounds 1 (carbon atoms in gold, A), 2 (carbon
atoms in purple, B), and 3 (carbon atoms in yellow, C) at the binding site of GSK-3/. In panels A-C,
the protein structure is shown as a thin grey ribbon. Residues interacting with the docked compound
are displayed in stick representation with light grey carbons and explicitly labelled. Hydrogen bonds
are depicted as yellow dashed lines, while a grey mesh highlights the boundaries of the binding
pocket within 5 A of each ligand. The chemical structures of compounds 1, 2, and 3 are shown in
panels D-F, respectively.

C Per-target Docking Results and Analysis and Physicochemical Profiles

Table 6: KL divergence between the docking score distributions of generated molecules and target
ligand sets for each of the seven investigated targets. Lower values indicate higher similarity between
generated and reference distributions.

Target KL divergence
ADORA2A  0.027 £0.015
D3R 0.055 £ 0.040

GSK-34 0.019 +0.012
HSP90« 0.039 £ 0.030
PPAR« 0.098 +£0.074
SRC 0.122 £ 0.089
Thrombin 0.084 4+ 0.063
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Table 7: For each target, the median docking scores of the full and Hit-like ligand sets, along with the
percentage of generated molecules (across all trained models) scoring better than each respective
median.

Experiment Target Median (Full) Median (Hit-like) % Better (Full) % Better (Hit-like)
DiGress (Hit-like) ADORA2A —8.89 —8.86 1.63 1.79
PPAR« —9.15 —6.92 0.38 23.28
HSP90« —6.03 —6.55 39.97 17.78
GSK-38 —7.27 —7.83 10.13 3.26
Thrombin —7.59 —6.10 0.98 35.38
SRC —7.71 —7.55 5.23 7.34
D3R —6.81 —6.46 13.34 23.61
DiGress (REINVENT) ADORA2A —8.89 —8.86 2.12 2.29
PPAR« —9.15 —6.92 0.35 2142
HSP90« —6.03 —6.55 42.69 19.74
GSK-38 —7.27 —7.83 12.18 4.38
Thrombin —7.59 —6.10 1.22 40.20
SRC —7.71 —7.55 6.74 9.32
D3R —6.81 —6.46 12.45 21.72
DiGress (Hit fine-tune) ADORA2A —8.89 —8.86 223 247
PPAR« —9.15 —6.92 0.54 25.34
HSP90« —6.03 —6.55 40.22 17.57
GSK-38 —7.27 —7.83 11.60 3.94
Thrombin —7.59 —6.10 1.31 41.16
SRC —-7.71 —17.55 6.44 8.96
D3R —6.81 —6.46 14.12 24.44
MoIRNN (Hit-like) ADORA2A —8.89 —8.86 2.07 227
PPAR« —9.15 —6.92 0.38 22.86
HSP90« —6.03 —6.55 42.07 19.50
GSK-33 —7.27 —7.83 15.58 6.35
Thrombin —7.59 —6.10 1.16 36.95
SRC —-7.71 —7.55 7.01 9.71
D3R —6.81 —6.46 13.05 22.53
MOoIRNN (REINVENT) ADORA2A —8.89 —8.86 2.64 2.86
PPAR« —9.15 —6.92 0.46 22.40
HSP90« —6.03 —6.55 43.05 20.32
GSK-33 —7.27 —7.83 15.60 6.39
Thrombin —7.59 —6.10 1.52 41.89
SRC —7.71 —7.55 7.75 10.62
D3R —6.81 —6.46 13.48 22.81
MOoIRNN (Hit fine-tune) ADORA2A —8.89 —8.86 2.90 3.17
PPAR« —9.15 —6.92 0.52 2491
HSP90« —6.03 —6.55 51.82 25.16
GSK-38 —7.27 —7.83 20.59 8.83
Thrombin —7.59 —6.10 1.55 45.29
SRC —7.71 —7.55 9.46 12.89
D3R —6.81 —6.46 15.89 27.28
GraphINVENT (Hit-like) ADORA2A —8.89 —8.86 2.15 2.35
PPAR« —9.15 —6.92 0.38 2247
HSP90« —6.03 —6.55 38.35 17.13
GSK-38 —7.27 —7.83 14.00 5.44
Thrombin —17.59 —6.10 1.36 39.10
SRC —-7.71 —17.55 6.67 9.33
D3R —6.81 —6.46 12.45 22.25
GraphINVENT (REINVENT) ADORA2A —8.89 —8.86 1.95 2.13
PPAR« —9.15 —6.92 0.28 19.37
HSP90« —6.03 —6.55 39.78 17.95
GSK-33 —7.27 —17.83 13.38 5.38
Thrombin —7.59 —6.10 1.19 37.98
SRC —-7.71 —7.55 6.43 8.90
D3R —6.81 —6.46 11.08 20.15
GraphINVENT (Hit fine-tune) ADORA2A —8.89 —8.86 2.34 2.54
PPAR« —9.15 —6.92 0.34 21.21
HSP90« —6.03 —6.55 39.07 17.55
GSK-38 —7.27 —7.83 14.86 6.04
Thrombin —7.59 —6.10 1.42 39.79
SRC —-7.71 —7.55 7.18 9.93
D3R —6.81 —6.46 11.92 20.97
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Figure 4: Comparison of MW (upper panel) and logP (lower panel) of the generated molecules with
respect to each target ligand set.
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