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Abstract

Hit identification is a critical yet resource-intensive step in the drug discovery1

pipeline, traditionally relying on high-throughput screening of large compound2

libraries. Despite advancements in virtual screening, these methods remain time-3

consuming and costly. Recent progress in deep learning has enabled the develop-4

ment of generative models capable of learning complex molecular representations5

and generating novel compounds de novo. However, using ML to replace the entire6

drug-discovery pipeline is highly challenging. In this work, we rather investigate7

whether generative models can replace one step of the pipeline: hit-like molecule8

generation. To the best of our knowledge, this is the first study to directly test this9

idea. Specifically, we investigate if such models can be trained to generate hit-like10

molecules, enabling direct incorporation into, or even substitution of, traditional11

hit identification workflows. We propose an evaluation framework tailored to this12

task, integrating physicochemical, structural, and bioactivity-related criteria within13

a multi-stage filtering pipeline that defines the hit-like chemical space. Two au-14

toregressive and one diffusion-based generative models were benchmarked across15

various datasets and training settings, with outputs assessed using standard metrics16

and target-specific docking scores. Our results show that these models can generate17

valid, diverse, and biologically relevant compounds across multiple targets, with18

a few selected GSK-3β hits synthesized and confirmed active in vitro. We also19

identify key limitations in current evaluation metrics and available training data.20

1 Introduction21

Traditionally, drug discovery begins with target validation, followed by hit identification which is22

the first stage introducing chemical matter and novelty. A hit is a small molecule with reproducible23

activity, acceptable synthetic accessibility, and physicochemical properties [Goodnow, 2006]. Identi-24

fying high-quality hits is critical, as it initiates the hit-to-lead process to improve potency, selectivity,25

and pharmacokinetic properties. To guide this process, medicinal chemists often rely on heuristics26

such as Lipinski’s Rule of Five, which defines drug-likeness based on molecular weight, lipophilicity,27

hydrogen-bonding capacity, and related efficiency metrics that balance potency with physicochemical28

properties. Despite its importance, hit identification remains a resource-intensive task. Various29

experimental strategies have been developed, including high-throughput screening (HTS) of libraries30

of commercially available compounds, in-house collections, or natural products, aimed at identifying31

biologically active hits. However, the main bottleneck lies in the fact that these approaches are32

both time-consuming (months to years) [Paul et al., 2010] and financially demanding [Hughes et al.,33

2011]. To partially overcome these limitations, computational methods such as structure-based virtual34

screening have been adopted to efficiently prioritize promising molecules. Nevertheless, even with35

these tools, identifying high-quality hits from vast chemical libraries continues to represent a major36

bottleneck in drug discovery, as these methods also entail considerable time and resource demands.37
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In recent years, deep learning (DL) has gained interest in molecular design due to its potential to learn38

complex structures and property relationships from large chemical datasets. To address persistent39

challenges in early drug discovery for de novo molecule generation, research has increasingly explored40

generative models that are trained either to replicate the distribution of known compounds or to41

optimize specific constraints, such as molecular properties or binding affinity. Common strategies42

include one-shot generation [De Cao and Kipf, 2018, Vignac et al., 2023, Zang and Wang, 2020],43

sequential atom- or bond-level construction [Gebauer et al., 2022, Segler et al., 2018, Zhou et al.,44

2019], and fragment-based assembly [Podda et al., 2020, Seo et al., 2021, Jin et al., 2020, Gupta45

et al., 2018]. However, prior research on generative models has predominantly focused on generating46

molecules in general, without considering how such models perform when applied to a specific47

step in the drug discovery process. This work investigates their applicability to a more specific48

and demanding task: generating hit molecules. It reframes the scientific question from the general49

inquiry: Can generative models produce valid, drug-like molecules? to a more targeted one: Can50

generative models accelerate the hit identification process by directly generating compounds with hit-51

like characteristics? Accordingly, our focus shifts from evaluating generative models based solely on52

chemical validity to assessing their ability to produce molecules suitable for entry into physics-based53

screening workflows. The ultimate goal is to identify biologically viable hits that can progress into54

hit-to-lead and lead optimization stages, either via specialized ML models or through conventional55

medicinal chemistry carried out by pharmaceutical experts. As the drug discovery process remains56

largely sequential and devoid of true shortcuts, we ask whether generative models can effectively57

replace one of its early steps, hit identification. If successful, this approach could substantially reduce58

the time and cost associated with early-stage drug discovery, potentially compressing a multi-year59

process into just a few months [Zhavoronkov et al., 2019, Xu et al., 2025].60

To this aim, our contributions are the following:61

• We define an evaluation framework tailored to the hit-generation task by combining struc-62

tural, physicochemical, and bioactivity metrics with a new multi-stage filtering pipeline;63

• We construct a comprehensive filtering pipeline by integrating established drug-likeness and64

medicinal chemistry constraints to define and evaluate the hit-like chemical space;65

• We benchmark representative models from autoregressive and diffusion-based paradigms66

across diverse datasets and training settings, and evaluate their outputs using standard and67

task-specific criteria, such as docking scores across a panel of biological targets;68

• To the best of our knowledge, we demonstrate for the first time that generative models can69

produce not only chemically valid but also biologically meaningful hit candidates, including70

compounds that have been experimentally validated through in vitro assays against GSK-3β;71

• We identify key limitations in current generative models and publicly available datasets that72

lack training data that are explicitly tailored to early-stage hit identification.73

Our results demonstrate that deep generative models, when trained and fine-tuned appropriately, can74

generate hit-like molecules suitable for early-stage screening, including compounds with confirmed75

in vitro activity. These findings highlight both the potential and current limitations of generative76

models in practical hit discovery.77

2 Method: Benchmarks, Training, and Evaluation Pipelines78

We evaluate three graph-based generative models, two autoregressive and one diffusion-based, that79

have shown strong performance in general molecule generation but have not been assessed for the80

specific task of hit generation. This section outlines the models, datasets, training settings, evaluation81

pipelines, and in vitro validation of GSK-3β hits.82

2.1 Studied Models83

The three graph-based models considered are MolRNN [Li et al., 2018], GraphINVENT [Mercado84

et al., 2020], and DiGress [Vignac et al., 2023]. MolRNN and GraphINVENT are autoregressive,85

sequentially building molecular graphs step by step. They differ in their graph encoders: MolRNN86

uses a gated recurrent unit (GRU), whereas GraphINVENT employs a message-passing neural87

network (MPNN). DiGress, in contrast, uses a diffusion-based, one-shot generation approach with a88

graph transformer. This selection was based on the models’ performance in preliminary evaluations89
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and allows comparison of sequential versus non-sequential generation strategies, and the impact of90

different encoder architectures (GRU, MPNN, transformer) on scalability, and chemical validity.91

MolRNN MolRNN [Li et al., 2018] is a sequential generative model that constructs molecular92

graphs by leveraging graph neural networks (GNNs) and recurrent neural networks (RNNs). It starts93

with an empty graph and iteratively guides the generation process using a probabilistic decoding94

policy to apply one of three actions: adding atoms, connecting atoms, or terminating the process.95

Each step involves computing atom-level embeddings through stacked GNN layers and refining96

graph-level representations with a GRU unit. A multi-layer perceptron is then used to predict action97

probabilities. The model is trained via maximum likelihood estimation using importance sampling.98

Full technical details are available in [Li et al., 2018].99

GraphINVENT GraphINVENT [Mercado et al., 2020] is a graph-based generative model that con-100

structs molecules by autoregressively adding atoms and bonds. GraphINVENT’s model architecture101

is similar to that of MolRNN; however, it employs MPNNs, which offer improved scalability and102

more fine-grained edge handling compared to GRUs. Molecular generation is guided by an Action103

Probability Distribution (APD) that restricts to chemically valid actions. The architecture features an104

MPNN encoder and a readout block to produce APD logits, trained by minimizing KL divergence105

against ground-truth actions derived from BFS-based preprocessing. See [Mercado et al., 2020] for a106

comprehensive description.107

DiGress DiGress [Vignac et al., 2023] is a discrete denoising diffusion model for graph generation.108

Instead of continuous noise, it introduces categorical perturbations to node and edge features via109

discrete Markov transitions to ensure discreteness of its representation. For the denoising phase, a110

graph transformer network is employed that learns to reverse the noise process, using cross-entropy111

loss over node and edge predictions. The model incorporates structural and spectral features, such as112

cycle counts and Laplacian eigenvalues, to enhance its generative capabilities. Full methodology and113

results are detailed in [Vignac et al., 2023].114

2.2 Datasets115

To train our models, we utilize three types of datasets in this work: a general-purpose dataset116

(REINVENT [Blaschke et al., 2020]), a filtered subset we term the hit-like dataset, and a target-117

specific ligand dataset.118

REINVENT Dataset The REINVENT dataset [Olivecrona et al., 2017] is a widely used subset119

of ChEMBL [Mendez et al., 2019], originally introduced by Olivecrona et al. It contains 1,086,248120

unique compounds after filtering for molecules with 10–50 heavy atoms and restricting elements to121

H, B, C, N, O, F, Si, P, S, Cl, Br, and I. Duplicate compounds were removed to ensure uniqueness.122

Hit-like Dataset The hit-like dataset, constructed for this study, is derived from the same ChEMBL123

source but filtered using the hit-like criteria such as molecular weight, synthetic accessibility score,124

ring constraints, and others described in Sec. 2.4.3. This process yielded 58,837 molecules, approxi-125

mately 2.68% of the original database, representing structures with desirable drug-like properties.126

Target-Specific Ligand Sets While our main focus is unconditional generation, target-specific127

ligand sets were also constructed to explore whether such models could be refined toward activity128

against defined biological targets, providing a complementary perspective on their downstream129

applicability. To construct these datasets, we retrieved ligands from ChEMBL annotated with activity130

against a panel of seven protein targets: dopamine D3 receptor (D3R, class A GPCR), adenosine A2A131

receptor (ADORA2A, class A GPCR), heat shock protein HSP90α (HSP90α, molecular chaperone),132

glycogen synthase kinase-3β (GSK-3β, serine/threonine kinase), proto-oncogene tyrosine-protein133

kinase Src (SRC, tyrosine kinase), coagulation factor II (thrombin, protease), and peroxisome134

proliferator-activated receptor α (PPARα, nuclear receptor). Ligands were selected based on two135

criteria: (i) pChEMBL value ≥ 5, and (ii) assay confidence score = 9.136
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Figure 1: Integrated Training and Evaluation Framework. Left: Dataset construction and model
training pipeline, showing the filtering strategies applied to ChEMBL to obtain general-purpose,
hit-like, and target-specific datasets, their use in training MolRNN, GraphINVENT, and DiGress
models, and subsequent fine-tuning in hit-like and target-specific settings. Right: Evaluation pipeline
for generated molecules, outlining the multi-stage workflow from VUN and hit-like filtering through
distributional, structural, and docking-based metrics, visual inspection, and final selection of top
GSK-3β candidates for synthesis and in vitro testing.

2.3 Training Pipeline137

As shown in the left hand side of Figure 1, each model was trained under three settings: (1) using138

the full REINVENT dataset, (2) using the hit-like dataset, and (3) fine-tuning a REINVENT-trained139

model with the hit-like dataset. Additionally, MolRNN and DiGress models that were initially trained140

on the REINVENT dataset were further fine-tuned in a fourth setting on seven target-specific ligand141

sets (see 2.2 for details). This choice was made to enable comparison between one autoregressive142

and one diffusion-based model. MolRNN was selected over GraphINVENT for this step due to its143

superior performance in preliminary benchmarks.144

All models followed their original training objectives, with early stopping on validation loss. For145

fine-tuning experiments, models were initialized from pretrained REINVENT weights and continued146

training for up to 20 epochs, using smaller batch sizes to avoid overfitting. For generation, the147

best-performing checkpoint for each trained model (lowest validation loss) was selected. To ensure148

fair comparison across models during downstream analysis, we continued generation until each model149

produced the same number of VUN and hit-like filtered molecules. This controlled sampling allowed150

consistent evaluation on docking and drug-likeness metrics. After training and sampling, each model151

was passed to the evaluation pipeline described in Sec. 2.4.152

2.4 Evaluation Pipeline153

To assess model performance, we adopt a three-layer evaluation framework of increasing drug154

relevance. Our goal is to construct a realistic evaluation pipeline (Figure 1, right), aiming to determine155

whether generative models can replace hand-crafted hit-like molecule design.156

2.4.1 Basic Structural Validity Metrics157

The first layer of evaluation focuses on foundational checks to ensure that generated molecules are158

structurally and chemically sound. Validity measures the percentage of generated molecules that obey159

valence rules and contain no structural errors. Uniqueness assesses the proportion of valid molecules160

that are structurally distinct within the generated set. Novelty quantifies the fraction of valid and161

unique molecules that are not present in the training dataset. These three metrics (VUN) serve as the162

minimal baseline for generative model performance and are standard across the field.163
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2.4.2 Distributional and Structural Similarity Metrics164

The second evaluation layer measures how closely generated molecules resemble the training chem-165

ical space. We employ a set of metrics that assess both molecular properties and structural pat-166

terns that align with standard benchmarking protocols such as GuacaMol [Brown et al., 2019] and167

MOSES [Polykovskiy et al., 2018]. We use Fréchet ChemNet Distance (FCD) Preuer et al. [2018] for168

overall distributional similarity based on chemical and biological features of generated and reference169

molecules, BRICS fragments [Degen et al., 2008] and Bemis–Murcko scaffolds [Bemis and Murcko,170

1996] similarities for structural patterns, Similarity to Nearest Neighbor (SNN) for proximity to171

known compounds based on Tanimoto similarity, and Jaccard-based internal diversity on Morgan172

fingerprints [Morgan, 1965] for variation within the generated set.173

2.4.3 Drug-likeness and Bioactivity-Relevant Metrics174

This final evaluation tier assesses whether generative models produce molecules with realistic hit-like175

properties and potential biological activity. This aspect is one of the key contributions of our work176

where we emphasize evaluation by drug-likeness and biological relevance which are critical factors177

in determining the practical value of generated compounds.178

Hit-like Filters To align with early-stage discovery goals, we applied a multi-stage filtering pipeline179

integrating established drug-likeness and medicinal chemistry criteria. Each molecule was required180

to satisfy: (1) a Novartis-inspired [Schuffenhauer et al., 2020] severity score (Sev.) ≤ 10, which181

penalizes structural liabilities such as PAINS motifs [Baell and Holloway, 2010], reactive groups,182

toxicophores, and unstable chemotypes; (2) molecular weight (MW) between 150–350 Da; (3) logP183

between 1–3 as a proxy for solubility; (4) a minimum pChEMBL value of 5 at any known target to184

ensure meaningful bioactivity; (5) a synthetic accessibility score (SAS) ≤ 5; (6) between one (NoR)185

and four rings (< 4R), with no ring exceeding eight atoms (< 8t), a maximum of two rings larger186

than six atoms (< 2R6t), and exclusion of fused (FusedR) or small aromatic (AromR) ring systems;187

and (7) elemental composition restricted to C, N, O, F, P, S, Cl, Br, and I. This integrated approach188

provides a consistent and stringent definition of hit-likeness across datasets and generative outputs.189

Docking Calculation To evaluate the biological relevance of the generated molecules, we computed190

docking scores estimating their binding affinity to the seven protein targets described in Sec. 2.2.191

Docking simulations were performed only on molecules that satisfied both the VUN criteria and the192

complete set of hit-like filters, ensuring that only the most plausible candidates were assessed for193

target binding. Docking scores, with lower values indicating stronger predicted interactions, serve as194

an approximate measure of bioactivity and complement chemical and structural evaluations. Details195

of protein and ligand preparation, docking settings, and software are provided in Appendix A.196

Biological Evaluation To assess biological relevance of generated molecules, we performed hit197

selection for GSK-3β, a target where our models showed low KL divergence and many compounds198

outperforming the median docking score of known ligands. Candidate molecules had to meet two199

criteria: (1) structural novelty (Tanimoto distance ≥ 0.5 from known binders), and (2) strong predicted200

binding (docking scores < mean −2 SD). This process led to the selection of three top compounds201

subjected to further experimental testing in vitro to validate their potency.202

3 Experimental Results and Discussions203

This section presents our experimental results, including general-purpose molecule generation,204

docking score calculations, and the biological evaluation of selected hits against the GSK-3β target.205

3.1 Molecular Generation Performance and Filter Compliance206

The first step is to evaluate whether the models could reliably generate chemically valid, unique,207

and novel (VUN) molecules. As shown in Table 1, MolRNN and GraphINVENT achieved near-208

perfect validity (> 99.9%) across all settings, while DiGress reached only 70–76%. Uniqueness209

was uniformly high, but novelty varied: GraphINVENT consistently exceeded 93%, MolRNN was210

sensitive to training data (dropping to 64.6% in the Hit-like regime), and DiGress remained moderate211

(∼ 70–75%) across all cases. We next assessed how many VUN molecules passed the hit-like property212
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Table 1: Molecular generation performance metrics for MolRNN, GraphINVENT, and DiGress
across training settings.

Model Valid (%) VUN (%) Filters (%) FCD Frag. Scaff. SNN Div.

MolRNN (Hit-like) 99.98 64.60 76.87 1.74 0.93 0.87 0.61 0.87
MolRNN (REINVENT) 99.98 96.74 11.46 2.05 0.92 0.79 0.50 0.87
MolRNN (Hit fine-tune) 99.91 94.64 67.57 1.91 0.92 0.84 0.52 0.87
GraphINVENT (Hit-like) 100.00 96.42 58.73 2.10 0.99 0.77 0.47 0.88
GraphINVENT (REINVENT) 100.00 96.98 12.85 1.70 0.99 0.78 0.48 0.88
GraphINVENT (Hit fine-tune) 100.00 93.06 50.80 1.13 0.99 0.86 0.53 0.88
DiGress (Hit-like) 70.00 69.15 65.59 3.01 0.99 0.68 0.44 0.88
DiGress (REINVENT) 75.81 75.26 10.27 2.63 0.99 0.65 0.45 0.88
DiGress (Hit fine-tune) 71.62 71.51 14.11 2.91 0.98 0.63 0.45 0.88

Table 2: Percentage of generated molecules failing each filtering criterion.
Model Sev. SAS MW logP NoR <4R <8t <2R6t AromR FusedR All

MolRNN (Hit-like) 0.80 0.30 9.97 14.39 0.16 0.27 0.37 0.03 0.03 0.02 23.13
MolRNN (REINVENT) 7.29 2.60 77.69 66.01 0.47 14.35 1.14 0.17 0.10 0.41 88.54
MolRNN (Hit fine-tune) 1.96 0.37 15.14 19.63 0.25 0.40 0.26 0.01 0.02 0.06 32.43
GraphINVENT (Hit-like) 7.51 6.59 11.26 21.90 1.85 1.49 8.45 1.75 1.69 1.12 41.27
GraphINVENT (REINVENT) 9.06 8.59 73.25 63.59 1.43 16.30 8.98 3.28 1.23 1.80 87.15
GraphINVENT (Hit fine-tune) 5.00 3.49 22.94 31.32 1.04 1.86 4.24 0.96 0.65 0.68 49.20
DiGress (Hit-like) 4.58 3.19 4.57 16.36 0.33 2.22 10.30 1.44 2.56 0.86 34.41
DiGress (REINVENT) 7.15 10.18 78.03 62.39 0.24 22.09 13.70 3.62 0.87 2.31 89.73
DiGress (Hit fine-tune) 4.79 10.42 74.80 54.40 0.04 25.29 15.25 4.05 0.71 1.96 85.89

filters. Direct training on the Hit-like dataset yielded the highest compliance (MolRNN: 76.9%),213

while REINVENT-trained models passed at < 12%, underscoring the mismatch between broad214

chemical priors and focused hit-like requirements. Fine-tuning substantially improved MolRNN215

and GraphINVENT compliance, but DiGress saw only modest gains. Distributional metrics in216

Table 1 highlight trade-offs between novelty and hit-like resemblance. GraphINVENT (Hit fine-tune)217

achieved the lowest FCD (1.13), indicating the closest match to the reference, while MolRNN showed218

the highest scaffold similarity, and DiGress exhibited generally higher FCD and scaffold deviation.219

To pinpoint limiting factors, Table 2 reports per-filter failure rates. MolRNN (Hit-like) showed220

minimal violations across all criteria, while REINVENT-trained MolRNN and DiGress frequently221

exceeded MW and logP thresholds. GraphINVENT tended toward higher ring-complexity and logP222

failures, partially mitigated by fine-tuning. DiGress, while rarely producing ringless molecules,223

overrepresented large and fused ring systems, with high MW violations persisting even after fine-224

tuning. Overall, autoregressive models, when trained or fine-tuned on hit-like data, achieve the best225

balance between generative breadth and property compliance, whereas diffusion-based generation226

shows lower baseline validity and weaker adaptation to narrow physicochemical constraints.227

3.2 Docking Analysis228

Docking performance was evaluated across seven targets (Sec. 2.2) using KL divergence, quantifying229

the similarity between docking score distributions of generated and training ligands. As shown in230

Table 3a, models trained directly on the Hit-like set achieved the lowest divergences (all < 0.01),231

reflecting strong physicochemical alignment with the reference ligands. Unfiltered REINVENT-232

trained models exhibited higher divergence (0.083–0.100), consistent with the broader and less233

constrained chemical space. Fine-tuned models achieved intermediate values, indicating partial234

adaptation toward the hit-like profile.235

When averaged across targets, MolRNN achieved lowest KL divergence (0.061 ± 0.062), with236

GraphINVENT and DiGress performing similarly (Table 3b). Per-target analysis in Appendix C237

revealed highest divergences for SRC and PPARα, reflecting their higher MW and logP of their238

known ligands compared to the generated set. In contrast, GSK-3β and ADORA2A showed the239

closest alignment with the hit-like constraints.240
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Table 3: Average KL divergence (mean ± standard deviation) between the docking score distributions
of generated molecules and the reference ligand sets across all targets: (a) grouped by combination of
algorithm and training set; (b) grouped by algorithm.

Model KL divergence

DiGress (REINVENT) 0.099± 0.061
DiGress (Hit-like) 0.009± 0.012
DiGress (Hit fine-tune) 0.089± 0.056
GraphINVENT (REINVENT) 0.100± 0.067
GraphINVENT (Hit-like) 0.003± 0.002
GraphINVENT (Hit fine-tune) 0.087± 0.062
MolRNN (REINVENT) 0.083± 0.056
MolRNN (Hit-like) 0.004± 0.003
MolRNN (Hit fine-tune) 0.095± 0.064

(a) By model and training set

Algorithm KL divergence

DiGress 0.066± 0.062
GraphINVENT 0.064± 0.067
MolRNN 0.061± 0.062

(b) By algorithm

Table 4: Median docking score values of the ligand sets for PPARα, HSP90α, and GSK-3β, and
the percentage of generated molecules achieving a lower (better) docking score than the respective
median ligand score, grouped by generative model.

Model Target Median % Better

Hit-like PPARα −9.15 0.38
HSP90α −6.03 39.97
GSK-3β −7.27 10.13

REINVENT PPARα −9.15 0.35
HSP90α −6.03 42.69
GSK-3β −7.27 12.18

Hit fine-tune PPARα −9.15 0.54
HSP90α −6.03 40.22
GSK-3β −7.27 11.60

(a) DiGress

Model Target Median % Better

Hit-like PPARα −9.15 0.38
HSP90α −6.03 42.07
GSK-3β −7.27 15.58

REINVENT PPARα −9.15 0.46
HSP90α −6.03 43.05
GSK-3β −7.27 15.60

Hit fine-tune PPARα −9.15 0.52
HSP90α −6.03 51.82
GSK-3β −7.27 20.59

(b) MolRNN

Model Target Median % Better

Hit-like PPARα −9.15 0.38
HSP90α −6.03 38.35
GSK-3β −7.27 14.00

REINVENT PPARα −9.15 0.28
HSP90α −6.03 39.78
GSK-3β −7.27 13.38

Hit fine-tune PPARα −9.15 0.34
HSP90α −6.03 39.07
GSK-3β −7.27 14.86

(c) GraphINVENT

While KL divergence captures distributional similarity, it does not assess binding efficacy. We241

therefore compared docking scores of generated compounds to known ligands for each target,242

calculating the fraction outperforming (lower) the ligand median (Table 4). Across 63 model–training243

combinations, HSP90α showed the highest success rates (38–52%), PPARα the lowest (< 1%), and244

GSK-3β (moderate 10–16%), with similar trends for D3R and SRC. Given that many ChEMBL245

ligands are optimized molecules occupying broader chemical space, we repeated the analysis using246

only ligands passing hit-like filters (see full table details in Table 7 in Appendix C. This raised success247

rates for five targets, most notably for Thrombin (< 2% to 35–45%), while GSK-3β and HSP90α248

observed modest drops. MolRNN (Hit fine-tune) achieved the highest success in 6 of 7 targets, with249

DiGress (Hit fine-tune) narrowly leading for PPARα. The weakest performances came from DiGress250

(Hit-like) in four targets, GraphINVENT (REINVENT) in two, and GraphINVENT (Hit-like) for251

HSP90α. Overall, fine-tuned models on hit-like data generated a substantial fraction of compounds252

with docking scores comparable to or better than known ligands, though performance varied by target.253

3.3 Hit Selection and Biological Evaluation254

Given its strong generative performance, GSK-3β was chosen for hit prioritization, yielding three255

candidate molecules that were synthetized and tested in vitro. All showed high structural similarity256

(TD > 0.5) to known kinase inhibitors, consistent with the conserved nature of kinase binding257

pockets. Compound 1 displayed strong GSK-3β inhibition (IC50 = 314 ± 15.3 nM; Table 5 in258

Appendix B; Figure 2A), while compounds 2 and 3 showed weaker activity. Such low-nanomolar259

activity, as in compound 1, is highly promising at the hit stage, particularly for a small, structurally260

novel scaffold. Notably, the training dataset contained few ligands of comparable potency and size,261

making compound 1 a clear example of successful extrapolation by the generative model. Docking262
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Figure 2: (A) Structures of selected compounds (1–3), their most similar known GSK-3β inhibitors
(4–6), and closest kinase inhibitors (7–9) by TD. (B) Dose–response curve for GSK-3β inhibition by
compound 1, shown as mean ± SD of three replicates, representative of three experiments. (C) t-SNE
projection of compound 1 (red star) within the chemical space of known GSK-3β ligands (gold dots).
(D) Comparison of pChEMBL value of compound 1 with known inhibitors, shown as a violin plot
(all inhibitors, light blue) and subset with hit-like properties (blue dots).

analysis confirmed the hinge-binding of compound 1 through two key hydrogen bonds (Asp133,263

Val135) and a Lys85 interaction, explaining its high potency despite the rarity of its scaffold (< 1.1%264

among kinase binders present in ChEMBL).265

As shown in Figure 2, chemical space analysis further supported its relevance: t-SNE projections266

revealed that compound 1 clusters with known GSK-3β inhibitors, while activity benchmarking267

demonstrated that it outperforms both the full ligand set and the subset of hit-like inhibitors (–268

log(activity) = 6.50 vs. median values of 6.39 and 5.89, respectively). These results highlight that269

generative models can design chemically novel yet biologically potent compounds, even without270

explicit fine-tuning on a specific target, by leveraging kinase features embedded in the training data.271

4 Conclusion272

To the best of our knowledge, this work is the first systematic evaluation of generative models for273

producing hit-like molecules, with assessment spanning physicochemical filtering, distributional274

analysis, and in vitro validation. Our results demonstrate that such models can generate chemically275

novel compounds meeting hit-like criteria and displaying measurable biological activity, confirming276

their potential to accelerate early-stage drug discovery. Nonetheless, limitations remain. Diffusion-277

based models, despite strong performance in distribution learning, struggled with target-specific278

fine-tuning, due to their higher data demands and sensitivity to dataset size. Performance on targets279

such as PPARα and SRC was constrained by the scarce high-quality hit-like data highlighting the280

broader issue of limited availability even for well-studied proteins. Moreover, widely used evaluation281

metrics such as VUN, FCD, and scaffold similarity did not consistently correlate with predicted282

bioactivity, underscoring the need for benchmarks that better capture biological relevance.283

Future progress will require richer, better-curated hit-like datasets to support both general and target-284

specific training, as shown by constrained performance on PPARα and SRC due to scarce ligands with285

suitable physicochemical properties. In parallel, evaluation frameworks must integrate bioactivity-286

relevant endpoints alongside distributional and structural metrics. Advances in architectures that learn287

effectively from limited target-specific data through improved transfer learning or data augmentation288

strategies will also be key. Incorporating these improvements into a modular AI-driven pipeline,289

where generative models focus on high-quality hit generation followed by ML-based or traditional290

hit-to-lead optimization, offers a promising path to accelerate early-stage drug discovery while291

addressing current gaps in predictive power and applicability.292
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A Docking Studies Details427

Ligand docking calculations were carried out using Glide [Halgren et al., 2004, Friesner et al., 2004]428

as implemented in Schrödinger 2023–04 (Schrödinger LLC, New York, USA). All ligands were429

prepared using the LigPrep tool. For each compound, stereoisomers were generated for all chiral430

centers, up to a maximum of 32. Ionization states were generated using Epik Classic, considering a431

pH range of 7.4± 1.0. All other parameters were kept at their default settings. All receptors were432

prepared using the Protein Preparation tool implemented in Schrödinger 2023–04. Default settings433

were used. Water molecules, ions, and other non-protein atoms were removed from protein structures.434

The position and size of the binding boxes of GSK-3β (PDB code: 1Q41 [Bertrand et al., 2003],435

chain A), thrombin (PDB code: 2FZZ [Pinto et al., 2006], chain H), and SRC (PDB code:436

7OTE [Cuesta-Hernández et al., 2023], chain A) systems were defined by the coordinates of their co-437

crystallized ligand. To account for receptor flexibility, the van der Waals radii for atoms with a partial438
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charge ≤ 0.25 were scaled to 0.9 for each system. For the HSP90α system (PDB code: 2VCI [Brough439

et al., 2008], chain A), the binding box was defined in the same manner as described above, except440

that three water molecules near the key residue Asp93—reported to form a hydrogen-bond network441

between the ligand and the receptor—were retained.442

The binding boxes of the PPARα system (PDB code: 6KB4 [Kamata et al., 2020], chain A), D3R443

(PDB code: 3PBL [Chien et al., 2010], chain A), and ADORA2A (PDB code: 3EML [Jaakola444

et al., 2008], chain A) systems were created following the same procedure described above, with the445

additional inclusion of the following atomic constraints during docking:446

1. PPARα: three out of four hydrogen-bond constraints between the R groups of Ser280,447

Tyr314, His440, and Tyr464 and the hydrogen-bond acceptor groups of the compounds to448

be docked must be satisfied,449

2. ADORA2A: one hydrogen-bond constraint between the R group of Asn253 and the450

hydrogen-bond acceptor groups of the ligands,451

3. D3R: one hydrogen-bond constraint between the R group of Asp110 and the hydrogen-bond452

donor group of a protonated nitrogen in the ligand.453

The pattern was defined using the SMARTS string: "[#1][#7+]".454

The Glide Standard Precision (SP) [Friesner et al., 2006] protocol was used for docking calculations.455

Each ligand was docked with the van der Waals radii of atoms having partial charges ≤ 0.15 scaled456

by a factor of 0.9. For each ligand, only the best-scoring pose was retained. All calculations were457

carried out using the OPLS4 force field.458

B Biological Evaluation459

B.1 GSK-3β kinase assay460

The GSK-3β kinase assay was performed as described in [Di Martino et al., 2025]. Briefly, the461

inhibitory potency against human recombinant GSK-3β (Carna Biosciences) was evaluated us-462

ing the LANCE® Ultra time-resolved fluorescence resonance energy transfer (TR-FRET) assay463

(PerkinElmer), by measuring phosphorylation of the specific substrate human muscle glycogen464

synthase (ULight-GS (Ser641/pSer657)), according to the manufacturer’s instructions. Test com-465

pounds, staurosporine (reference compound), or DMSO (control) were mixed with the enzyme466

(2 nM) in a buffer containing 50 mM HEPES (pH 7.5), 1 mM EGTA, 10 mM MgCl2, 2 mM467

DTT, and 0.01% Tween-20. The reaction was initiated by adding 50 nM of the substrate ULight-468

PASVPPSPSLSRHSSPHQ(pS)ED and 3 µM ATP, followed by incubation for 1 hour at 23 ◦C.469

Following incubation, the reaction was stopped by adding 8 mM EDTA. After 5 min, the anti-phospho-470

GS antibody labeled with europium chelate was added. After 1 more hour, the kinase reaction was471

monitored by irradiation at 320 nm, and fluorescence was measured at 615 nm and 665 nm using472

the EnVision 2014 Multilabel Reader (PerkinElmer). The calculated signal ratio at 665/615 nm was473

proportional to the extent of ULight-GS phosphorylation.474

Compounds were screened at three concentrations (1, 10, and 50 µM). The most potent compound475

was further tested in a dose-response format at 11 concentrations ranging from 300 pM to 100 µM in476

technical triplicates. Results were expressed as percent inhibition of control enzyme activity.477

B.2 Analysis of the Biological Data478

Three-concentration screening and dose-response curves were run in at least three independent479

experiments, each performed in technical triplicates. IC50 values were determined by non-linear480

regression analysis of log[concentration]–response curves, generated from mean replicate values481

using a four-parameter Hill equation curve fit in GraphPad Prism 8 (GraphPad Software Inc., CA,482

USA).483

Compounds 1, 2, and 3 present high TD values of 0.64 to ChEMBL3652544 (4), 0.61 to484

ChEMBL250386 (5), and 0.65 to ChEMBL359554 (6), respectively. In addition, we extended485

the chemical similarity analysis to all kinase inhibitors present in the ChEMBL database (see Sup-486

plemental Materials & Methods section for details). This step was motivated by the conserved487

nature of kinase binding pockets, where chemically similar scaffolds can often exhibit non-selective488
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interactions. Remarkably, all selected compounds show a minimum TD value above 0.5, even when489

compared against the full kinase inhibitor set. Specifically, compound 1 presents a minimum TD of490

0.51 to ChEMBL3663033 (7), compound 2 to ChEMBL326596 (TD = 0.58, 8), and compound 3 to491

ChEMBL578061 (TD = 0.63, 9). Representative structures of the most similar GSK-3β and kinase492

inhibitors to our selected compounds are shown in Figure 2A.493

To evaluate the ability of the selected compounds to modulate GSK-3β kinase activity, their inhibitory494

effects were assessed at three concentrations (1, 10, and 50 µM) using the LANCE® Ultra time-495

resolved fluorescence resonance energy transfer (TR-FRET) assay, as described in the Biological496

Evaluation section. Compounds 3 and 2 exhibited weak (5 ± 0.7%) to moderate (49.6 ± 0.9%) inhi-497

bition of GSK-3β at the highest tested concentration (50 µM), respectively. In contrast, compound 1498

showed strong inhibition already at 1 µM and was therefore selected for IC50 determination (Table 5).499

The IC50 of compound 1 was calculated to be 314 ± 15.3 nM (Figure 2B).500

Table 5: Percentage of inhibition of the selected compounds at three different concentrations per-
formed through a TR-FRET assay.

1 µM 10 µM 50 µM

1 71.3 ± 1.7 88.2 ± 0.1 89.9 ± 0.2
2 1 ± 3.6 12.4 ± 0.8 49.6 ± 0.9
3 n.i. n.i. 5 ± 0.7

The 1H-pyrazolo[3,4-b]pyridine moiety of the potent hit compound 1 anchors the molecule to the501

hinge region of GSK-3β through two key hydrogen bonds with the backbone of Asp133 and Val135.502

Notably, this scaffold is rare among GSK-3β inhibitors, with only 19 instances out of 1734 (1.1%),503

and similarly underrepresented among all kinase inhibitors in ChEMBL (727 out of 100365, 0.72%).504

The high potency of compound 1 may also be explained by an additional hydrogen bond between the505

nitrogen atom of its 2-methylpyridine ring and the side-chain amino group of Lys85, a conserved506

residue known to enhance inhibitor affinity. These findings highlight the model’s ability to generate507

chemically novel yet functionally relevant hits. Despite not being explicitly fine-tuned on GSK-3β508

ligands, MolRNN successfully designed a potent hit by leveraging general kinase features embedded509

in the REINVENT training dataset. This is further supported by the t-SNE analysis (Figure 2C),510

where compound 1 (red star), although structurally novel, clusters within the dense chemical space of511

known GSK-3β binders (gold dots).512

In light of its strong inhibitory activity, we benchmarked compound 1 against known GSK-3β513

inhibitors to better assess its relative potency. Specifically, we compared its activity value, expressed514

as –log(activity), with those of known GSK-3β inhibitors. As shown in the violin plot (Figure 2D),515

compound 1 (red star) outperforms both the full ligand set (light blue shape) and the subset of hit-like516

GSK-3β inhibitors (blue dots), with a –log(activity) value of 6.50 compared to median values of 6.39517

and 5.89, respectively.518
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Figure 3: Predicted binding conformations of compounds 1 (carbon atoms in gold, A), 2 (carbon
atoms in purple, B), and 3 (carbon atoms in yellow, C) at the binding site of GSK-3β. In panels A–C,
the protein structure is shown as a thin grey ribbon. Residues interacting with the docked compound
are displayed in stick representation with light grey carbons and explicitly labelled. Hydrogen bonds
are depicted as yellow dashed lines, while a grey mesh highlights the boundaries of the binding
pocket within 5 Å of each ligand. The chemical structures of compounds 1, 2, and 3 are shown in
panels D–F, respectively.

C Per-target Docking Results and Analysis and Physicochemical Profiles519

Table 6: KL divergence between the docking score distributions of generated molecules and target
ligand sets for each of the seven investigated targets. Lower values indicate higher similarity between
generated and reference distributions.

Target KL divergence

ADORA2A 0.027± 0.015
D3R 0.055± 0.040
GSK-3β 0.019± 0.012
HSP90α 0.039± 0.030
PPARα 0.098± 0.074
SRC 0.122± 0.089
Thrombin 0.084± 0.063
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Table 7: For each target, the median docking scores of the full and Hit-like ligand sets, along with the
percentage of generated molecules (across all trained models) scoring better than each respective
median.

Experiment Target Median (Full) Median (Hit-like) % Better (Full) % Better (Hit-like)

DiGress (Hit-like) ADORA2A −8.89 −8.86 1.63 1.79
PPARα −9.15 −6.92 0.38 23.28
HSP90α −6.03 −6.55 39.97 17.78
GSK-3β −7.27 −7.83 10.13 3.26
Thrombin −7.59 −6.10 0.98 35.38
SRC −7.71 −7.55 5.23 7.34
D3R −6.81 −6.46 13.34 23.61

DiGress (REINVENT) ADORA2A −8.89 −8.86 2.12 2.29
PPARα −9.15 −6.92 0.35 21.42
HSP90α −6.03 −6.55 42.69 19.74
GSK-3β −7.27 −7.83 12.18 4.38
Thrombin −7.59 −6.10 1.22 40.20
SRC −7.71 −7.55 6.74 9.32
D3R −6.81 −6.46 12.45 21.72

DiGress (Hit fine-tune) ADORA2A −8.89 −8.86 2.23 2.47
PPARα −9.15 −6.92 0.54 25.34
HSP90α −6.03 −6.55 40.22 17.57
GSK-3β −7.27 −7.83 11.60 3.94
Thrombin −7.59 −6.10 1.31 41.16
SRC −7.71 −7.55 6.44 8.96
D3R −6.81 −6.46 14.12 24.44

MolRNN (Hit-like) ADORA2A −8.89 −8.86 2.07 2.27
PPARα −9.15 −6.92 0.38 22.86
HSP90α −6.03 −6.55 42.07 19.50
GSK-3β −7.27 −7.83 15.58 6.35
Thrombin −7.59 −6.10 1.16 36.95
SRC −7.71 −7.55 7.01 9.71
D3R −6.81 −6.46 13.05 22.53

MolRNN (REINVENT) ADORA2A −8.89 −8.86 2.64 2.86
PPARα −9.15 −6.92 0.46 22.40
HSP90α −6.03 −6.55 43.05 20.32
GSK-3β −7.27 −7.83 15.60 6.39
Thrombin −7.59 −6.10 1.52 41.89
SRC −7.71 −7.55 7.75 10.62
D3R −6.81 −6.46 13.48 22.81

MolRNN (Hit fine-tune) ADORA2A −8.89 −8.86 2.90 3.17
PPARα −9.15 −6.92 0.52 24.91
HSP90α −6.03 −6.55 51.82 25.16
GSK-3β −7.27 −7.83 20.59 8.83
Thrombin −7.59 −6.10 1.55 45.29
SRC −7.71 −7.55 9.46 12.89
D3R −6.81 −6.46 15.89 27.28

GraphINVENT (Hit-like) ADORA2A −8.89 −8.86 2.15 2.35
PPARα −9.15 −6.92 0.38 22.47
HSP90α −6.03 −6.55 38.35 17.13
GSK-3β −7.27 −7.83 14.00 5.44
Thrombin −7.59 −6.10 1.36 39.10
SRC −7.71 −7.55 6.67 9.33
D3R −6.81 −6.46 12.45 22.25

GraphINVENT (REINVENT) ADORA2A −8.89 −8.86 1.95 2.13
PPARα −9.15 −6.92 0.28 19.37
HSP90α −6.03 −6.55 39.78 17.95
GSK-3β −7.27 −7.83 13.38 5.38
Thrombin −7.59 −6.10 1.19 37.98
SRC −7.71 −7.55 6.43 8.90
D3R −6.81 −6.46 11.08 20.15

GraphINVENT (Hit fine-tune) ADORA2A −8.89 −8.86 2.34 2.54
PPARα −9.15 −6.92 0.34 21.21
HSP90α −6.03 −6.55 39.07 17.55
GSK-3β −7.27 −7.83 14.86 6.04
Thrombin −7.59 −6.10 1.42 39.79
SRC −7.71 −7.55 7.18 9.93
D3R −6.81 −6.46 11.92 20.97
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Figure 4: Comparison of MW (upper panel) and logP (lower panel) of the generated molecules with
respect to each target ligand set.
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