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Responsible Diffusion Models via Constraining Text Embeddings
within Safe Regions

Anonymous Author(s)

ABSTRACT
The remarkable ability of diffusion models to generate high-fidelity
images has led to their widespread adoption. However, concerns
have also arisen regarding their potential to produce Not Safe for
Work (NSFW) content and exhibit social biases, impeding their
practical use and progress in real-world applications. In response
to this challenge, prior work has primarily focused on employing
security filters to identify and subsequently exclude toxic text, or
alternatively, fine-tuning pre-trained diffusion models to erase sen-
sitive concepts. Unfortunately, existing methods struggle to achieve
satisfactory performance in the sense that they can have a sig-
nificant impact on the normal model output while still failing to
prevent the generation of harmful content in some cases. In this
paper, we propose a novel self-discovery approach to identifying a
semantic direction vector in the embedding space to restrict text
embedding within a safe region. Our method circumvents the need
for correcting individual words within the input text and steers the
entire text prompt towards a safe region in the embedding space,
thereby enhancing model robustness against all possibly unsafe
prompts. In addition, we employ a Low-Rank Adaptation (LoRA)
for semantic direction vector initialization to reduce the impact
on the model performance for other semantics. Furthermore, our
method can also be integrated with existing methods to improve
their socially responsible performance. Extensive experiments on
benchmark datasets demonstrate that our method can effectively re-
duce NSFW content and mitigate social bias generated by diffusion
models compared to several state-of-the-art baselines.

WARNING: This paper contains model-generated images that may
be offensive in nature.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of se-
curity and privacy; • Computing methodologies→ Artificial
intelligence.
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1 INTRODUCTION
Recently, large-scale text-to-image diffusion models [27, 34] have
attracted much attention due to their ability to generate photo-
realistic images based on textual descriptions. However, consider-
able concerns about these models also arise because their generated
content has been found to be possibly unsafe and biased, containing
pornographic and violent content, gender discrimination, or racial
prejudice [4, 36].

There have been two common types of approaches employed to
address such concerns. One class of methods involves integrating
some external safety validation mechanisms [24, 32, 33], which
harness classifiers to detect toxic input from users and reject them,
with diffusion models. However, these mechanisms might be un-
reliable, as some prompt texts that do not explicitly contain Not
Safe for Work (NSFW) content can still result in images with such
content. Taking the Stable Diffusion (SD) model as an example, the
prompt “a beautiful woman” may lead to the generation of an image
of a nude woman [36].

The other class of approaches seeks to construct more respon-
sible diffusion models by training data cleaning, parameter fine-
tuning, model editing, or intervention in the inference process. A
naive method [34] is to filter out inappropriate content from the
training data of diffusion models to prevent them from internalizing
such content. Although effective, retraining models on new datasets
can be computationally intensive and often leads to performance
degradation [28]. Therefore, more efforts have been made to fine-
tune parameters so that models can ‘forget’ undesirable concepts
[9, 11, 19, 38]. However, the catastrophic forgetting problem can
potentially arise when fine-tuning parameters. Meanwhile, another
line of studies [10, 29] seeks to selectively edit certain parameters
of pre-trained models to construct a responsible image genera-
tion model. But these methods typically tailor the projection matrix
within the cross-attention layers to specific target words, thus yield-
ing suboptimal outcomes for other related but non-targeted words.
Finally, a few methods [3, 36] leverage the principle of classifier-
free guidance. They directly modify the denoising process of the
original model to steer away from inappropriate content. Although
these methods refrain from updating the model parameters, they
may still impact the semantics of the original image and introduce
additional overhead during the inference process. In summary, de-
spite the fact that the above methods are effective to some extent,
there are still considerable gaps in ensuring the responsibility of
diffusion models.

In this paper, we endeavor to address the problem of responsible
text-to-image generation using diffusion models from a different
perspective. Generally, our approach focuses on manipulating the
input text embedding to avoid generating inappropriate content.
As the encoded text prompt is fed into the U-Net as a condition and
plays a critical role in the image generation process, it can be used
to identify the global semantic direction related to a certain concept
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Figure 1: Intuitive illustration of our method that utilizes
the disparities in diffusion noise distribution to identify se-
mantic directions in the CLIP embedding space to guide the
generation process and avoid inappropriate content.

in the embedding space. Accordingly, this direction can restrict the
text embedding to a specific “safe region”, reducing the generation
of harmful content in various contexts beyond the token level.

We note that previous prompt-tuning methods [8, 16, 35] have
also attempted to train one or more pseudo-tokens in the CLIP em-
bedding space in a supervised manner. Nevertheless, these pseudo-
tokens are designed to symbolize specific concepts and are discon-
tinuous in nature. The pseudo-tokens, along with the other words
in the text prompt, are jointly encoded by the CLIP model before
input into the U-Net for image generation. These approaches still
operate at the token level to instruct the model in generating cor-
responding images. However, each token in the text prompt will
contain information from other tokens. Therefore, attempting to en-
capsulate a concept such as “safety” within a single token typically
fails to produce desirable outcomes. In the computational linguistics
domain, some methods such as prefix-tuning [22] consider gener-
ating continuous pseudo-tokens for specific tasks. Although these
tokens are continuous, they are only used as a prefix added to the
beginning of the input sentence to guide the language model in the
autoregressive process. This differs from our goal of directing the
embedding of the entire input text to a specific region. At the same
time, the performance of the trained pseudo-tokens largely depends
on the quality of the training data or the accuracy of the classifier. In
general, existing prompt-tuning methods cannot be easily applied
to prevent the generation of unsafe content and mitigate social
biases within diffusion models.

Toward this end, as shown in Figure 1, we propose a novel self-
discovery approach to identify the semantic direction in the embed-
ding space, thus constraining the text prompt embedding within
the safe region. Specifically, we utilize the classifier-free guidance
technique that leverages internal knowledge of the diffusion model
to learn a semantic direction vector. Then, we use a low-rank direc-
tion vector to strengthen the semantic representation. In this way,
the semantic direction vector can guide the original text prompt to
move to a specific region in the embedding space. This movement
is confined solely to the specific semantic dimension, ensuring that
semantics in other dimensions remain unaffected. In simple terms,
we leverage the diffusion model as an implicit classifier to get the
noise estimate that is close to or far away from a concept during the
denoising process. The direction vector learns the corresponding
semantic information by minimizing the 𝑙2-loss of the predicted
noise and the noise estimate of this implicit classifier. To achieve

responsible generation, we learn semantic direction vectors related
to unsafe concepts and social bias. For safe generation, we learn a
safe vector that can guide the text prompt away from inappropriate
content to eliminate the generation of unsafe images. For fair gen-
eration, we learn a concept-related direction vector that can guide
the input text prompt to a certain concept (e.g., gender and race).
Extensive experiments on the widely used benchmark datasets
demonstrate that our approach substantially reduces NSFW con-
tent generation and mitigates the social bias inherent in the stable
diffusion model. Our contributions are summarized as follows:

• We propose a novel self-discovery approach to identify the
specific semantic direction vector in the embedding space.
Our approach effectively guides unsafe text prompts to a
safe region within the embedding space, whether or not
these texts contain explicit toxic content. In addition, our
approach is effective in reducing multiple types of inap-
propriate concepts simultaneously, including pornography,
violence, societal bias, etc.

• We employ a low-rank direction vector to learn a more pre-
cise semantic direction while reducing the impact on model
performance regarding other semantics. Furthermore, we
show that multiple semantic vectors can be linearly com-
bined to exert influence, and our approach can seamlessly
integrate with existing methods to enhance their responsi-
bility in image generation.

• We conduct extensive experiments on benchmark datasets
to demonstrate that our approach is capable of effectively
suppressing the generation of inappropriate content and
mitigating potential societal biases in diffusion models com-
pared to several state-of-the-art baselines.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the background of diffusionmodels and
discuss existing methods to improve the responsibility of diffusion
models for image generation.
Diffusion Models: Currently, most text-to-image generative mod-
els are Latent Diffusion Models (LDMs) [34]. They utilize pre-
trained variational autoencoders [18] to encode images into a latent
space, where noise addition and removal processes are conducted.
Specifically, the forward process takes each clean image x as input,
encodes it as a latent image z0, and then adds Gaussian noise of
varying intensities to z0. At each time step 𝑡 ∈ [0,𝑇 ], the latent
noisy image z𝑡 is indicated by

√
𝛼𝑡 z0 +

√
1 − 𝛼𝑡𝜖 , where 𝛼𝑡 signifies

the strength of Gaussian noise 𝜖 , gradually decreasing with time
steps. The final latent noisy image is denoted as z𝑇 ∼ N(0, 𝐼 ). Then,
the reverse process trains the model to predict and remove the noise
from the latent image, thereby restoring the original image. At each
time step 𝑡 , the LDM predicts the noise added to the noisy latent
image z𝑡 under the text condition 𝑐 , represented as 𝜖𝜃 (z𝑡 , 𝑐, 𝑡). The
loss function is expressed as:

L = Ez𝑡 ∈E (x0 ),𝑡,𝑐,𝜖∼N(0,𝐼 )
[
∥𝜖 − 𝜖𝜃 (z𝑡 , 𝑐, 𝑡)∥22

]
, (1)

where E(·) is an image encoder.
In the inference stage, an LDM typically employs the classifier-

free guidance technique [14], which utilizes an implicit classifier
to guide the process, thereby avoiding the explicit use of classifier

2
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gradients. To obtain the final noise for inference, an LDM adjusts
towards conditional scores while moving away from unconditional
scores by utilizing a guidance scale 𝛼 as follows:

𝜖𝜃 (z𝑡 , 𝑐, 𝑡) = 𝜖𝜃 (z𝑡 , 𝑡) + 𝛼 (𝜖𝜃 (z𝑡 , 𝑐, 𝑡) − 𝜖𝜃 (z𝑡 , 𝑡)) . (2)

Responsible DiffusionModels:Different methods have been pro-
posed to address social biases within diffusion models and mitigate
the generation of unsafe content. A straightforward approach is to
construct a fair and clean dataset by filtering out unsafe content
and retrain a diffusion model using the new dataset [34]. However,
the training datasets and the parameters of diffusion models can
be very large. As such, data filtering and model retraining often
incur high overheads. Moreover, some studies [36] also indicated
that this may lead to significant performance degradation. To avoid
retraining from scratch, fine-tuning approaches [11, 17, 26, 41] were
proposed to address safety and fairness issues in diffusion models.
Shen et al. [38] treated fairness enhancement as a distribution align-
ment problem and proposed a biased direct approach to fine-tuning
the diffusion model. Fan et al. [7] identified key model parameters
using a gradient-based weight saliency method and fine-tuned them
to make the model forget sensitive concepts. Gandikota et al. [9]
used a distillation method to fine-tune the parameters of the cross-
attention layer in the diffusion model to remove a certain concept.
Lyu et al. [23] used a one-dimensional adapter to learn the erasure
of a specific concept rather than fine-tuning all the model parame-
ters. In addition, they used the similarity between the input prompt
and the erased concept as a coefficient to determine the extent of
erasure. As a result, the effectiveness of the method is reduced when
the input prompt does not include the concept intended for erasure.
Although fine-tuning methods can make the model safer and fairer
with small training costs, they may cause catastrophic forgetting
problems, leading to unpredictable consequences [10, 11].

To further overcome the problems caused by fine-tuning, sev-
eral recent studies aimed to achieve responsible generation using
model editing. As non-training methods, they attempt to edit spe-
cific knowledge embeddings in the model according to user needs
to adapt to new rules or produce new visual effects. Arad et al.
[1] and Orgad et al. [29] changed the internal knowledge of a dif-
fusion model by editing the cross-attention layer or the weight
matrix in the text encoder. Gandikota et al. [10] mapped sensitive
concept words onto appropriate concept features by modifying
the projection matrix of the cross-attention layer. Other methods
[4, 5, 9, 25] focused mainly on modifying the input text to avoid
generating inappropriate images. They generally suppress certain
unsafe words in the input prompt or modify the embedding after
prompt encoding. However, text-based model editing approaches
are very limited because secure prompts may still generate unsafe
images [36]. Moreover, listing all possible unsafe and biased words
is infeasible. Note that our method in this paper also operates in
the prompt embedding space. However, our method does not target
specific words, thus circumventing such limitations.

Finally, another line of methods suppresses the generation of
inappropriate content by intervening in the diffusion denoising
process. Schramowski et al. [36] used classifier-free guided tech-
niques to modify the noise space during the denoising process to
remove harmful content. This kind of methods does not require
training and is based merely on the model, but directly interfering

original SD

+ (‘a male person’ - ‘a person’)

original SD

- (‘a nude person’ - ‘a person’)

+ (‘a person wearing clothes’ - ‘a person’)

- (‘a female person’ - ‘a person’)

Figure 2: Examples of using two contrasting prompts to iden-
tify specific semantic directions. The images in each column
are generated with the same prompt and seed.

with the diffusion process is not controllable. In this paper, we use
a conditional reflex strategy similar to that of [36] to find semantic
vectors. We find the semantic vector in the CLIP embedding space
through the noise difference in the diffusion process and directly
apply it to the prompt embedding during inference. A recent study
[21] used similar ideas as ours, which adopt a negative prompting
method to generate images that are far away from unsafe content
and use these images to train a safe semantic vector in the U-Net
bottleneck layer. This method changes the image output by per-
turbing the semantic space found in diffusion [20, 30]. However, it
requires a large number of images for training and, additionally,
uses the pixel reconstruction loss that may introduce background
noise in the image, resulting in lower generation quality.

3 METHOD
In this section, we describe our proposed method in detail. We
first introduce how to utilize optimization techniques within the
denoising process of the diffusion model to identify the required
semantic vectors in the prompt embedding space. Then, we show
the low-rank adaptation (LoRA) based semantic vector initialization
method we employ. Finally, we explain how the identified semantic
vectors are used for safe and fair generation tasks.

3.1 Latent Region Anchoring
We observe that the feature representations in the CLIP embedding
space can often be regarded as linear. Intuitively, there are many se-
mantic directions in the embedding space, where moving a sample’s
features in one direction can yield another feature representation
with the same class label but different semantics. Our method aims
to identify a semantic direction that translates the original text
embedding into a feature with safe semantics. However, finding
such a semantic direction is not trivial and may require collecting
a significant amount of labeled data. We first propose an intuitive

3
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Figure 3: Illustration of the optimization process to find a direction vector associated with the target concept in the CLIP
embedding space. The noise distribution close to or far away from the target concept is obtained through the frozen pre-trained
diffusion model. The 𝑙2-loss between 𝜖𝜃 (z𝑡 , 𝑐 + 𝑑, 𝑡) and𝜓 (z𝑡 , c𝑜 , 𝑡) in Eq. 8 at each step 𝑡 makes the noise predicted by the base
prompt with the direction vector added close to the noise distribution. The updated direction vector 𝑑′ are used in the next step
of denoising, and the precise direction is learned in the iterative denoising process.

approach whereby the semantic direction of relevant attributes is
discerned through the disparity in the embeddings derived from
two contrasting prompts (such as “a person wearing clothes” vs. “a
person” for the “pornographic” attribute). Therefore, the direction
vector 𝑑 can be obtained as follows:

𝑑 = ECLIP (prompt+) − ECLIP (prompt−), (3)

where ECLIP is the CLIP text encoder and prompt+ denotes a text
prompt containing relevant attributes, whereas prompt− does not.
Once the direction vector 𝑑 is acquired, we can constrain the input
text embedding within a region by either adding or subtracting
this direction vector. This process serves to guide images towards
or away from the respective attribute. Figure 2 illustrates that the
direction vector discovered through this approach indeed affects the
relevant attributes such as nudity and gender but also affects other
attributes, leading to significant disparities from the original images.
This naive approach makes it difficult to obtain highly precise
semantic directions. Next, we will introduce an optimization-based
approach to learn a more precise direction vector.

Inspired by recent studies [9, 36], we employ a reflexive strategy
similar to moving away from or towards certain concepts to find the
direction vector. Specifically, we focus on the stable diffusion model
with parameters 𝜃 . In our goal of identifying a particular direction
vector 𝑑 , we first need the base prompt c used for training. Then, we
use a target concept c𝑜 that we aim to move toward or move away
from. For example, if we want to find a direction vector toward
“male”, we can set c = “a person” and c𝑜 = “a male person”. Our
goal is to generate an image related to the target concept by adding
the direction vector to the base prompt. Consider the following
implicit classifier:

𝑝𝜃 (c𝑜 |z𝑡 ) =
𝑝𝜃 (z𝑡 |c𝑜 )𝑝𝜃 (c𝑜 )

𝑝𝜃 (z𝑡 )
, (4)

where 𝑝𝜃 (c𝑜 ) is a categorical distribution, with the assumption that
this is a uniform distribution by default. Therefore, we can derive
the following equation:

𝑝𝜃 (c𝑜 |z𝑡 ) ∝
𝑝𝜃 (z𝑡 |c𝑜 )
𝑝𝜃 (z𝑡 )

, (5)

where 𝑝𝜃 represents the data distribution generated by the diffusion
model and z𝑡 is the latent noise image at time step 𝑡 . According to
classifier-free guidance [14], the gradient of this classifier can be
written as:

∇ log𝑝𝜃 (c𝑜 |z𝑡 ) = ∇ log 𝑝𝜃 (z𝑡 |c𝑜 ) − ∇ log 𝑝𝜃 (z𝑡 )

= − 1
√
1 − 𝛼𝑡

(𝝐𝜃 (z𝑡 , c𝑜 , 𝑡) − 𝝐𝜃 (z𝑡 , 𝑡)).
(6)

Using the gradient of this implicit classifier for guidance [6], we
obtain the noise estimate 𝜖+

𝜃
(z𝑡 , c𝑜 , 𝑡) = 𝜖𝜃 (z𝑡 ) +𝑤 (𝜖𝜃 (z𝑡 , c𝑜 , 𝑡) −

𝜖𝜃 (z𝑡 , 𝑡)), where 𝑤 represents the coefficient of guiding strength.
Similarly, we also get the noise estimate 𝜖−

𝜃
(z𝑡 , c𝑜 , 𝑡) = 𝜖𝜃 (z𝑡 ) −

𝑤 (𝜖𝜃 (z𝑡 , c𝑜 , 𝑡) − 𝜖𝜃 (z𝑡 , 𝑡)) if we want to steer the image away from
the target concept. Note that during training, the text condition used
for iterative denoising is 𝑐+𝑑 , so the predicted noise is 𝜖𝜃 (z𝑡 , 𝑐+𝑑, 𝑡).
By minimizing the distance between 𝜖𝜃 (z𝑡 , 𝑐 +𝑑, 𝑡) and 𝜖𝜃 (z𝑡 , c𝑜 , 𝑡),
we can find a direction vector that steers the image towards or away
from the target concept. Formally, the optimal direction vector 𝑑∗
for the given concepts is:

𝑑∗ = argmin
𝑑

∑︁
𝑐∼D

∑︁
𝑡∼[0,𝑇 ]

∥𝜖𝜃 (z𝑡 , 𝑐 + 𝑑, 𝑡) −𝜓 (z𝑡 , c𝑜 , 𝑡)∥2 , (7)

where D is a set of base prompts that includes𝑚 same concepts
such as “a person”,𝜓 depends on whether to move towards or away
from the target concepts:

𝜓 (z𝑡 , c𝑜 , 𝑡) =
{
𝜖+
𝜃
(z𝑡 , c𝑜 , 𝑡) if towards

𝜖−
𝜃
(z𝑡 , c𝑜 , 𝑡) if away from

. (8)

Figure 3 illustrates the optimization process of our method. Un-
like common methods that sample discrete time steps for training,
the optimization process occurs during the iterative denoising pro-
cess, where the optimization at time step 𝑡 will affect the result at
time step 𝑡 − 1. We optimize the same direction vector for each time
step. This choice is motivated by the fact that the text condition is
applied at every diffusion step during image generation. Further-
more, this method of dynamically adjusting while simultaneously
inspecting during generation aligns with intuition.
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initialization. The images on the top and bottom are gener-
ated using two different vectors; the images in the middle
are generated without direction vectors.

3.2 LoRA-based Direction Vector Initialization
The text prompt is encoded into a prompt embedding 𝑃𝑐 ∈ R𝐿×𝐷

through a CLIP text encoder, where 𝐿 is the number of tokens and
𝐷 is the dimension of the model for token embedding. In the stable
diffusion model, we always have 𝐿 = 77 and 𝐷 = 768. Typically, it
is recommended to initialize the direction vector 𝑑 ∈ R𝐿×𝐷 with
the same shape as the prompt embedding. However, we find that
this approach often results in distorted and warped images. We
speculate that this is due to the sensitivity of the embedding space,
where even subtle perturbations can have significant impacts on
the final results. To address this issue, we adopt Low-Rank Adapta-
tion (LoRA) [15], which uses low-rank decomposition to represent
parameter updates, for direction vector initialization. During train-
ing, the LoRA matrix can selectively amplify features relevant to
downstream tasks, rather than the primary features present in the
pre-trained model. The search for a direction vector in the embed-
ding space can also be viewed as fine-tuning for downstream tasks.
As such, using a low-rank direction vector can help us identify
a more precise direction. Specifically, to amplify the features of
the target direction, we initialize the direction vector as 𝑑 = 𝐵𝐴,
where 𝐵 ∈ R𝐿×1 with all 0’s and 𝐴 ∈ R1×𝐷 drawn randomly from
a normal distribution. We illustrate the two methods for initializing
direction vectors in Figure 4. More results for the comparison of
the two methods can be found in Appendix C.1.

3.3 Responsible Generation
Safe Generation. We perform safe generation by guiding text
prompts that contain explicit or implicit unsafe content to prevent
inappropriate content. Specifically, we learn the opposite direction
of an unsafe concept, using our training method to move away
from a specific concept. Our method does not pay attention to the
intermediate images generated during training, only to the noise
distribution in the intermediate process, so when we set the base
prompt, there is no need to guarantee that this prompt will generate
reasonable images. For example, in safe generation, the base prompt
should contain unsafe content. The base prompt 𝑐 can be “an image
of nudity”, and the target concept 𝑐𝑜 “nude”, so we can learn a
direction vector that guides the input text prompt away from the
concept of “nude”, regardless of whether the input text prompt

contains the word “nude”. The reason for adopting this strategy is
that it is difficult to list all the opposites of “nude”, such as “dressed”,
“wearing clothes”, and others.

After the training process, we keep the inference process un-
changed and only add the direction vector we learned to the embed-
ding 𝑃𝑐 after the text prompt encoding, i.e., 𝑃𝑐 ← 𝑃𝑐 + 𝛽𝑑 , where
𝑑 refers to the direction away from unsafe concepts, such as the
opposite of “nude”, and 𝛽 is a guidance strength coefficient.

Fair Generation. We perform fair generation by learning a direc-
tion vector close to a specific attribute to debias the text prompt. A
text prompt contains specific words that may unintentionally cre-
ate biased associations. We should generate images with uniformly
distributed attributes for a given text prompt. For example, for the
prompt “doctor”, we want to generate a male doctor or a female
doctor with equal probability. Therefore, we learn a direction vector
close to each sensitive attribute in order to generate an image that
contains a person with the attribute.

At the beginning of the inference phase, we select a vector with
the same probability and add it to the prompt embedding. For
example, the “male” and “female” direction vectors are chosen with
equal probability, denoted as 𝑃𝑐 ← 𝑃𝑐 + 𝑑 , where 𝐷 = {𝑑1, . . . , 𝑑𝑘 }
is the set of direction vectors, each for a distinct attribute, and 𝑑 is
drawn from a uniform distribution on 𝐷 . In this way, the number
of generated images with different attributes should be equal by
expectation, e.g., an equal number of male and female doctors.

4 EXPERIMENTS
In this section, we conduct extensive experiments on benchmark
datasets to demonstrate the effectiveness of our method for safe
and fair generation tasks using the stable diffusion model. We also
perform transferability, ablation, and case studies for our method.
Our code is published anonymously at https://anonymous.4open.
science/r/Responsible-Diffusion-21C2/.

4.1 Safe Generation
Setup. For safe generation, our aim is to learn a direction vector in
the embedding space and add it to the text prompt embedding to
suppress the generation of inappropriate content. We used Stable
Diffusion (SD) v1.4 as the base model and set the denoise steps to
50. Following a series of unsafe concepts defined in [36], we set the
target concept 𝑐𝑜 as “hate, harassment, violence, suffering, humili-
ation, harm, suicide, sexual, nudity, bodily fluids, blood, obscene
gestures, illegal activity, drug use, theft, vandalism, weapons, child
abuse, brutality, cruelty” and the base prompt 𝑐 as “an image of hate,
harassment, violence, . . . ”. Some prior work such as [21] needs to
collect related images for training but abstract concepts like ‘hate’
pose difficulties in finding their opposite images. In contrast, our
method directly obtains a safe direction vector away from multiple
dangerous concepts.

Baselines. We use ESD [9], SLD [36], SPM [23] and IntDiff [21] as
baselines in our experiments. We also compare with the original
SD and the Negative Prompt technique in the SD. The same tar-
get concept 𝑐𝑜 is used for these methods. More details about the
implementation of our method and these baselines are included in
Appendix A.1.
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Figure 5: Illustration of our method and baselines for reducing inappropriate content in image generation. Each column
contains the images generated by different methods with the same prompt (from the I2P benchmark) and random seed.

Table 1: Results on the I2P benchmark dataset. Here, each number represents the ratio of images that are detected as containing
inappropriate content by NudeNet and Q16. The lower the ratio, the better the performance of the method. Each column
indicates the performance of each method in suppressing inappropriate content generation on a certain category of unsafe
prompts. The best and second-best results in each category are highlighted in bold and underline fonts, respectively.

Method Harassment Hate Illegal Self-harm Sexual Shocking Violence Overall

Original SD 0.32 0.45 0.35 0.42 0.37 0.50 0.42 0.40
Negative Prompt 0.17 0.17 0.15 0.17 0.14 0.31 0.23 0.19

SLD [36] 0.21 0.19 0.16 0.16 0.17 0.28 0.21 0.19
ESD [9] 0.14 0.13 0.16 0.19 0.14 0.25 0.24 0.18

IntDiff [21] 0.25 0.38 0.27 0.30 0.19 0.42 0.33 0.29
SPM [23] 0.25 0.31 0.29 0.38 0.32 0.41 0.37 0.34

Ours (*) 0.14 (+0.00) 0.17 (+0.04) 0.11 (-0.04) 0.09 (-0.07) 0.08 (-0.06) 0.18 (-0.07) 0.15 (-0.06) 0.12 (-0.06)

Datasets and Evaluation Metrics. We use the I2P benchmark
[36] for evaluation. I2P has been widely used to evaluate the safety
of text-to-image generative models. It contains 4,703 inappropriate
prompts from real-world user input. We also used the red teaming
tool, Ring-A-Bell [39], to generate two sets of adversarial prompts
related to ‘nudity’ and ‘violence’, consisting of 95 and 250 prompts,
respectively. This method utilizes a pre-trained text encoder to
generate adversarial prompts by leveraging relative text semantics
and a genetic algorithm. We use NudeNet [2] and Q16 [37] as
inappropriate image classifiers. Following previous studies [21, 36],
an image is considered inappropriate if either of the two classifiers
reports a positive prediction. We generate one image per prompt,
and all the methods use the same seed for each prompt.

Results. Figure 5 illustrates that the “safe” direction vector by our
method effectively guides the generation of safe images across var-
ious prompt categories, including sexual, horror, hate, and others.
Meanwhile, the overall harmony of the image is still maintained,
indicating that our method effectively constrains the image within
a safe region in the latent space rather than forcefully altering its
semantics. Table 1 shows that the safe direction vectors our method
learns effectively suppress the generation of inappropriate content.
Compared with baselines, our method achieves the best results on
all categories of unsafe prompts except the category ‘hate’, where
our method is second-best. Table 2 shows the results of various
methods on adversarial prompts. In contrast to other methods, our
approach demonstrates superior performance against adversarial
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Table 2: Results on the adversarial prompts produced byRing-
A-Bell. Here, each value represents the ratio of images classi-
fied as inappropriate out of all generated images.

Concept SD Neg. Prompt SLD ESD IntDiff SPM Ours (*)

nudity 0.947 0.947 0.968 0.537 0.968 0.653 0.316
violence 0.976 0.812 0.828 0.740 0.924 0.720 0.116

“Doctor” generated by original SD “Doctor” generated by ours

Figure 6: Comparison of SD and our method for gender fair-
ness when generating eight “photos of a doctor”.

attacks. This is because other methods typically isolate a specific
concept or simply filter out certain words, but adversarial prompts
often contain uncommon characters while embedding implicit asso-
ciations with unsafe concepts, leading to poor performance in such
methods. Our method, however, constrains the adversarial prompt
within a relatively safe region through a safe semantic direction.
Additional examples can be found in Appendix C.4.

4.2 Fair Generation
Setup. For fair generation, we learned a direction vector for each
sensitive attribute: ‘male’ and ‘female’ in gender and ‘black’, ‘white’,
and ‘Asian’ in race. We set the base prompt 𝑐 as “a person” and
the target concept 𝑐𝑜 as “a [mask] person”, where [mask] is filled
with the corresponding attribute, such as ‘male’ and ‘black’. In the
inference stage, we used the process in Section 3.3 to sample a
direction vector.
Baselines.We used UCE [10] and IntDiff [21] as baselines in the
experiments. Since DebiasVL [5] and Concept Algebra [40] can
only debias binary attributes, we exclude them from the evaluation.
More details about the implementation of our method and these
baselines are included in Appendix A.2.
Datasets and Evaluation Metrics. We used the Winobias [42]
benchmark for fairness evaluation. Winobias contains 36 profes-
sions known to have social biases. Following IntDiff, we set up
two sets of templates to generate images, such as “a photo of a
[profession]” and “a photo of a successful [profession]”. The latter
set of templates is more challenging for debiasing methods, as “suc-
cessful” is known to incur greater biases. For each set of templates,
150 images are generated for each profession. Then, we used the
pre-trained CLIP classifier to predict the attributes of an image.
Finally, we measured the balance of different attributes in the gen-
erated images using the deviation ratio Δ = max𝑐∈𝐶

|𝑁𝑐/𝑁−1/𝐶 |
1−1/𝐶 ,

where𝐶 is the number of attributes of a social group, 𝑁 is the num-
ber of generated images, and 𝑁𝑐 represents the number of images
predicted to have an attribute 𝑐 .
Results. Figure 6 compares the original SD with our method for
gender fairness. We find that our direction vector can guide the
model to generate images with a balanced gender distribution, but

original SD +black +male +asian +male +white +male

original SD +black +female +asian +female +white +female

original SD +safe +safe +male +safe +male +white

Figure 7: Illustration of the linear combination of multiple
direction vectors.

the original SD model cannot. As shown in Table 3, our method
greatly alleviates the social bias manifested by the original SD and
shows better performance than baselines. We randomly select 6
professions from 36 professions in the Winobias benchmark in
Table 3, where our method performs the best or the second best in
most cases. The average deviation ratio of our method is always
the lowest, indicating that its generated images are closer to a
uniform distribution in sensitive attributes. Since our direction
vector acts directly on the CLIP embedding space without targeting
specificwords, it can achieve good results onmost prompt templates
without performance degradation. In contrast, as UCE debiases
different profession nouns individually, it lacks generalizability in
terms of templates and shows significant performance decreases.

4.3 Transferability
Next, we verify whether our direction vectors are transferable. The
I2P benchmark is still used to evaluate whether the direction vec-
tor we learned in the original SD can be used directly in other
approaches to improve their effectiveness. Table 4 shows that our
direction vectors can significantly enhance the performance of ex-
isting methods. We transfer the direction vectors to ESD and SLD
in a training-free manner. For other diffusion models, such as SDXL
[31], which utilizes two text encoders and concatenates their out-
puts to form the final result, directly applying the direction vector
obtained from the original SD is difficult. Therefore, we adjusted
the shape of the low-rank direction vector and retrained it to fit the
SDXL setup. The results still indicate that our method is effective
in models like SDXL that use multiple encoders, successfully iden-
tifying specific safe regions within a more complex latent space. In
summary, our method demonstrates strong transferability for both
existing fine-tuning approaches based on the original SD and for
models with different architectures.

4.4 Combination of Direction Vectors
Experiments on safe generation have shown that our method can
learn multiple concepts simultaneously. We further show that it
can also combine multiple single-concept vectors. After learning
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Table 3: Results for fair generation measured by the deviation ratio Δ ∈ [0, 1], where a lower value indicates fairer results. Here,
“Gender/Race” uses a normal template to generate images, and “Gender+/Race+” uses an extended template to generate images.
Each column represents the deviation ratios of different methods for each profession and “Winobias” presents the average
results for all professions. The best and second-best results in each setting are also highlighted in bold and underline fonts.

Dataset Method Designer Farmer Cook Hairdresser Librarian Writer Winobias [42]

Gender

SD 0.46 0.97 0.13 0.77 0.84 0.60 0.68
UCE 0.40 0.32 0.24 0.49 0.50 0.13 0.26
IntDiff 0.05 0.28 0.25 0.65 0.21 0.14 0.22
Ours (*) 0.18 (+0.13) 0.12 (-0.16) 0.11 (-0.02) 0.32 (-0.17) 0.12 (-0.09) 0.18 (+0.05) 0.19 (-0.03)

Gender+

SD 0.40 0.96 0.28 0.79 0.84 0.32 0.71
UCE 0.56 0.52 0.19 0.57 0.54 0.11 0.46
IntDiff 0.13 0.02 0.04 0.84 0.08 0.08 0.23
Ours (*) 0.08 (-0.05) 0.07 (+0.05) 0.11 (+0.07) 0.37 (-0.20) 0.09 (+0.01) 0 (-0.08) 0.16 (-0.07)

Race

SD 0.42 0.58 0.35 0.63 0.78 0.82 0.55
UCE 0.11 0.49 0.19 0.49 0.60 0.64 0.30
IntDiff 0.36 0.27 0.41 0.43 0.33 0.41 0.31
Ours (*) 0.23 (+0.12) 0.05 (-0.22) 0.03 (-0.16) 0.22 (-0.21) 0.07 (-0.26) 0.05 (-0.36) 0.13 (-0.18)

Race+

SD 0.38 0.34 0.29 0.49 0.86 0.74 0.54
UCE 0.16 0.46 0.30 0.68 0.67 0.83 0.38
IntDiff 0.36 0.26 0.08 0.37 0.32 0.24 0.29
Ours (*) 0.10 (-0.06) 0.18 (-0.08) 0.09 (+0.01) 0.14 (-0.23) 0.13 (-0.19) 0.04 (-0.20) 0.14 (-0.15)

Table 4: Transferability results on the I2P benchmark dataset,
where “SLD+/ESD+/SDXL+” represents the integration of our
method with SLD/ESD/SDXL, respectively.

Category SLD SLD+ ESD ESD+ SDXL SDXL+

Harassment 0.21 0.07 0.14 0.04 0.37 0.14
Hate 0.19 0.08 0.13 0.02 0.45 0.15
Illegal 0.16 0.05 0.16 0.03 0.37 0.11

Self-harm 0.16 0.03 0.19 0.01 0.47 0.15
Sexual 0.17 0.04 0.14 0.02 0.40 0.17

Shocking 0.28 0.09 0.25 0.05 0.53 0.24
Violence 0.21 0.07 0.24 0.06 0.41 0.13

Overall 0.19 0.06 0.18 0.03 0.42 0.16

the direction vectors for different single concepts, such as “male”
and “black”, these vectors can be linearly combined and added to
the text prompt embedding as 𝑃𝑐 ← 𝑃𝑐 +

∑𝑘
𝑖=1 𝛽𝑖𝑑𝑖 . The results

of linear combinations are shown in Figure 7. Using the linear
combination method, the model can be guided to generate images
with multiple attributes simultaneously. As seen from the last line,
the superposition of multiple direction vectors may weaken the
effect of each vector. For example, the impact of the “safe” vector
on the original text prompt becomes weaker as the number of
superimposed vectors increases.

4.5 Image Fidelity and Text Alignment
Finally, we evaluate the impact of our method on the quality of
the generated images and the fidelity to the original text prompt.
The FID score [13] is used to evaluate the fidelity of the generated
images by comparing them to real images. The CLIP score [12]
measures the semantic alignment between images and input text.

Table 5: Results of FID and CLIP scores on the COCO-30K
dataset.

Method SD SLD ESD IntDiff SPM Ours (*)

FID (↓) 14.30 18.22 17.34 15.87 14.77 15.13
CLIP (↑) 0.2626 0.2543 0.2381 0.2632 0.2581 0.2588

The COCO-30K dataset is used for evaluation, with one image
generated per prompt. As shown in Table 5, the quality and text
alignment of the images generated using our method on COCO-
30k are at the same level as the original SD. This also shows from
another aspect that the semantic direction we learn is accurate and
less relevant to other semantics.

5 CONCLUSION
In this paper, we approach the problem of responsible generation
using diffusion models from a new perspective and propose a novel
self-discovery approach to find the specific semantic direction vec-
tor in the embedding space. Unlike previous methods that train
pseudo-tokens to represent a certain concept, our method learns a
direction vector in the embedding space for concept representation.
This direction vector can perform fine-grained continuous control
of text embedding on specific semantics, thereby constraining the
text embeddings within a safe region. Since our method only guides
the text embedding along specific directions, it will not affect other
semantics, thus hardly impacting the quality of the generated im-
ages. Our method can be applied to the responsible generation of
diffusion models, including safe and fair generation tasks. Extensive
experiments have demonstrated the effectiveness and superiority
of our method, which greatly reduces the generation of harmful
content and mitigates social bias in diffusion models.
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A IMPLEMENTATION DETAILS
A.1 Safe Generation
Implementation of Our Method. We configured the shape of the
low-rank direction vector according to the text encoder settings of
the original SD v1.4, specifically setting it to 77× 1 and 1× 768. For
SDXL, the final feature dimension output by its two encoders is
2,048, so the shape of the low-rank direction vector is set to 77×1 and
1 × 2048. During training, we used stochastic gradient descent for
optimization, with the Adam optimizer and a learning rate of 0.05.
The training dataset contains 60 base prompts: “An image of hate,
harassment, violence, suffering, humiliation, harm, suicide, sexual,
nudity, bodily fluids, blood, obscene gestures, illegal activity, drug
use, theft, vandalism, weapons, child abuse, brutality, cruelty” with
target concepts “hate, harassment, violence, suffering, humiliation,
harm, suicide, sexual, nudity, bodily fluids, blood, obscene gestures,
illegal activity, drug use, theft, vandalism, weapons, child abuse,
brutality, cruelty”.
Baselines. We benchmark our method against the following state-
of-the-art baselines.

• The Negative Prompt technique replaces the uncondi-
tional estimate in the classifier-free guidance with a condi-
tional estimate based on an unsafe concept, thus reducing
the generation of inappropriate content.

• Similarly, SLD [36] leverages classifier-free guidance by us-
ing three noise predictions, which shifts the unconditional
estimate towards the prompt condition estimate while steer-
ing it away from the unsafe concept condition estimate.

• ESD [9] employs a frozen diffusion model as a teacher
model to align the probability distribution of the target con-
cept in the student model with the probability distribution
of an empty string, thereby achieving concept forgetting
within the student model.
• IntDiff [21] identifies a directional vector corresponding

to a specific attribute in the latent space of the diffusion
model using a self-discovery method on images with the
corresponding attribute.

• SPM [23] trains an adapter to replace the fine-tuning of
all model parameters to forget a target concept, with the
training objective being the alignment of the target concept
with an anchor concept in the latent space.

For ESD, we utilized the open-source code and parameters in the
original paper to remove NSFW concept during training. The con-
cepts to be erased were set as “hate, harassment, violence, suffering,
humiliation, harm, suicide, sexual, nudity, bodily fluids, blood, ob-
scene gestures, illegal activity, drug use, theft, vandalism, weapons,
child abuse, brutality, cruelty”. During training, we only updated
the parameters of the cross-attention layers in the UNet. For SLD
and IntDiff, we use the parameters of SLD-Medium to generate im-
ages in SLD and use the code and weights published by the original
paper [21]. For SPM, we trained a separate adapter for each of the
aforementioned unsafe concepts and then injected all of them into
the diffusion model.
Evaluation Setting. The prompts in the I2P may not contain ex-
plicit toxic words, but they can guide the model to generate images

of inappropriate content, including seven categories such as self-
harm, illegal activity, sexual content, harassment, and violence. We
used Ring-A-Bell to generate two adversarial prompt sets from the
I2P dataset. For nudity, we selected 95 nudity-related prompts, all of
which had a probability of generating nudity greater than 50%. For
the concept of violence, we selected 250 prompts where the proba-
bility of generating nudity was below 50%, but the probability of
generating inappropriate images exceeded 50%. These promptswere
then used to generate adversarial prompts on Ring-A-Bell. Based on
the best results reported in the paper, for nudity, we set Ring-A-Bell
with 𝐾 = 16 and 𝜂 = 3. For violence, we chose 𝐾 = 77 and 𝜂 = 5.5
In the NudeNet evaluation, the image is considered a nude image
only if it detects nudity in specific sensitive body parts, includ-
ing “BUTTOCKS_EXPOSED”, “FEMALE_BREAST_EXPOSED”, “FE-
MALE_GENITALIA_EXPOSED”, “MALE_GENITALIA_EXPOSED”,
and “ANUS_EXPOSED”.

A.2 Fair Generation
Implementation of Our Method. In the fair generation task, we
use an objective function close to a concept to learn the direction
vectors and learn a concept separately. The training dataset only
contains 10 base prompts such as “an image of a person”. We use
different sensitive attributes as the target concept, such as “a male
person”. These direction vectors can guide the model to generate
the image of the corresponding attribute. Similarly to IntDiff [21],
the direction vector we get here is a global direction vector and
does not target a particular profession alone. Note that UCE [10]
needs to edit the parameters for each profession.
Baselines. UCE [10] is an additional baseline for fair generation.
UCE proposes a model editing method tailored for linear projection
layers, which identifies new model weights to map the original
concept to a new target value in a training-free manner. For IntDiff,
we used their released pre-trained weights for each attribute to
generate images. For UCE, we updated the parameters of the cross-
attention layers in the UNet for 36 different professions according
to the debias settings outlined in the paper.
Evaluation Setting. The prompt templates for generating images
were as follows: “a photo of a [profession]”, “an image of a [profes-
sion]”, “a headshot of a [profession]”, “a portrait of a [profession]”,
“a picture of a [profession]”, “a photo of a successful [profession]”,
“an image of a successful [profession]”, “a headshot of a successful
[profession]”, “a portrait of a successful [profession]”, and “a pic-
ture of a successful [profession]”. The pre-trained CLIP classifier
predicts the attributes by comparing the similarity between the
text embedding and the image embedding. We set up some text
templates such as “a photo of [label]” to complete the classification.
The “label” is an attribute to be predicted, such as “male person”
and “black person”.

A.3 Computational Costs
Our approach consists of two stages: training and inference. During
the training stage, we optimize only a small subset of parameters
within the LoRA matrix. For example, in the SD v1.4 model, the
number of parameters in the direction vector is 77 + 768 = 845.
During training, we freeze the gradients of the text encoder and
use the gradient information from the UNet to update the direction
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Figure 8: Visual results for the two direction vector initialization methods on the I2P and COCO-3K datasets. We observe that
using the standard direction vector can also reduce the generation of inappropriate content to some extent; however, the overall
harmony of the images is compromised, resulting in less refined visuals.

vector. Taking the training of a “safe” vector as an example, our
training dataset contains 60 prompts. We perform optimization at
every diffusion step, resulting in a total of 3000 steps. Using our
experimental setup, the training process on an NVIDIA A100 80G
GPU took about 15 minutes. This time cost is a fraction—sometimes
even as little as 10% or less—of the time required by fine-tuning
methods.

Once we identify a suitable direction vector, it can be directly
embedded in the model. During inference, we simply add the direc-
tion vector to the encoded prompt embedding without introducing
any additional computational cost. In other words, our method fa-
cilitates responsible diffusion generation with marginal additional
costs, requiring only about ten to fifteen minutes of training.

B HYPER-PARAMETER SETTING
Warm-up Step. The text condition dynamically interacts with
the image through cross-attention layers in the U-Net, guiding
the generation of images that align with the input text. Based on
our observations, during the denoising process, the initial outputs
typically consist of the outlines of the image, gradually evolving to
incorporate finer details of shape and color.

Taking a common example of 50 steps of generation, we rec-
ommend adding a guiding direction vector at 𝑡 = 15 to start the
guide. This approach maximally preserves the primary structure of
the original image, while guiding the overall image details toward
specific semantic directions. In addition, this approach minimizes
the impact of prompts that are not related to the intended direction
of the guiding. For example, the movement of “an apple” along
the “safe dimension ” will not affect the generation of the image. It
should be noted that although we recommend adding a direction
vector when 𝑡 = 15, as we mentioned earlier, we optimize the same
direction vector for each time step, so we can choose to add it at
any time step. However, we do not recommend guiding after more

than 2/3 of the total diffusion steps because by that time the image
has been formed, and further guidance will not work anymore.
Guidance Scale 𝛽 . The value of 𝛽 determines the extent to which
the direction vector influences the original text embedding. The
larger the value, the more the original text embedding is shifted
towards a specific region in the latent space. In our experiments,
we consistently use 𝛽 = 1.

C ADDITIONAL EXPERIMENTS
C.1 Effect of Direction Vector Initialization

Method
In this subsection, we investigate the generative performance be-
tween low-rank direction vectors and standard direction vectors.
We trained a standard direction vector using the same settings as
those in the safe generation experiment and evaluated it on the
I2P benchmark. Additionally, we selected 3,000 images from the
COCO-30k dataset to test the FID and CLIP scores.

Table 6 quantitatively shows that the performance of the stan-
dard direction vector in reducing unsafe content is inferior to that
of the low-rank direction. In addition, there is a noticeable decrease
in image fidelity. Figure 4 visually illustrates that images generated
without the low-rank direction vector exhibit a certain degree of
distortion, although the overall semantics of the images are pre-
served. This indicates that the semantic direction identified using
the standard direction vector is not precise and significantly impacts
the quality of the generated images.

C.2 Effect of Warm-up Step
As mentioned above, the earlier the guidance is applied, the greater
the influence of the direction vector on the generated images. How-
ever, starting too early can significantly impact the semantics of
the generated images and may also affect the image quality. Con-
versely, if the guidance is applied too late, it becomes ineffective as
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Figure 9: Visual results for different warm-up steps. The results show that when the warm-up step is less than 10, the semantic
content of the images is compromised; when the warm-up step exceeds 25, the guidance has little to no effect. Furthermore, the
sensitivity of different prompts varies.

Table 6: Results for the ablation studies on using the stan-
dard and the low-rank direction vectors. The I2P ratios rep-
resent the average value across all categories, while the FID
and CLIP scores are calculated using a subset of COCO-30K,
which contains 3,000 images. The low-rank direction vector
outperforms the standard one across all three metrics.

Method I2P ratio (↓) FID (↓) CLIP (↑)

Standard 0.14 35.67 0.2487
LoRA-based 0.12 33.18 0.2545

the primary details of the image would already have been gener-
ated. Figure 9 illustrates the impact of starting the guide at different
steps on the generated images. In the experiments, a total of 50
diffusion steps were used, using the direction vector obtained from

the safe generation task. We observe that when the total number of
diffusion steps is set to 50, initiating the guidance at the 15th step
yields the best overall results. When the warm-up step is too small,
the semantic content of the generated images undergoes signifi-
cant changes. Furthermore, we find that different prompts exhibit
varying degrees of sensitivity to the warm-up step. This variability
arises because, in high-dimensional feature space, the distances
between some prompt embeddings and specific safe regions differ.
Therefore, it is necessary to make trade-offs based on the actual
circumstances.

C.3 Fine-grained Control
Unlike methods that fine-tune the model parameters, the direction
vectors we learn are flexible. It can also achieve fine-grained con-
trol over the impact of the original text prompt by adjusting the
strength coefficient. Figure 10 shows that as the strength coefficient
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Figure 10: Fine-grained control of image semantics by adjust-
ing the strength coefficient from 0 to 1.

increases, the impact on the generated images gradually increases.
This further demonstrates that the learned direction vector is indeed
precise. This linearity aligns with the inherent linearity observed
in the deep feature space of neural networks.

C.4 More Visual Examples for Adversarial
Prompts by Ring-A-Bell

Figure 11 presents the visual results of images generated using the
adversarial prompts from Ring-A-Bell by our method and other

approaches. When dealing with such highly aggressive prompts,
most other methods struggle to work effectively. However, our
method remains robust, preserving the overall semantics of the
generated images. In contrast, methods like ESD and SPM, though
removing some explicit content, often produce incoherent or even
blurred scenes. When confronted with prompts containing violent
semantics, our method effectively guides the model to reduce the
generation of violent and gory content. By comparing the images
generated by the original Stable Diffusion (SD) model with those
produced after applying our guidance, it is evident that our ap-
proach reduces violent elements in the original images. In other
words, it still identifies a safer region in a higher-dimensional space.

C.5 Examples of Using Our Method for SDXL
Figure 12 presents some visualization results of applying ourmethod
to the SDXL model. The training setup for our “safe” direction vec-
tor is the same as that used with the SD v1.4 model, with the only
adjustment being the dimensionality of the direction vector to ac-
commodate the text encoder of SDXL. The examples shown were
generated using the “violence” prompts produced by Ring-A-Bell.
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Figure 11: Visualization of images generated by our method and baselines for adversarial prompts produced by Ring-A-Bell.
The first row shows the prompts used to generate the images. Unsafe images have been censored with mosaics and blurring.
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Figure 12: Visualization results of applying our method to SDXL. The first row shows the prompts used to generate the images.
Our method effectively reduces the generation of violent and gory content while preserving the semantics of generated images.
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