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Abstract

Scene text retrieval has made significant progress with the assistance of accurate
text localization. However, existing approaches typically require costly bounding
box annotations for training. Besides, they mostly adopt a customized retrieval
strategy but struggle to unify various types of queries to meet diverse retrieval
needs. To address these issues, we introduce Multi-query Scene Text retrieval
with Attention Recycling (MSTAR), a box-free approach for scene text retrieval.
It incorporates progressive vision embedding to dynamically capture the multi-
grained representation of texts and harmonizes free-style text queries with style-
aware instructions. Additionally, a multi-instance matching module is integrated
to enhance vision-language alignment. Furthermore, we build the Multi-Query
Text Retrieval (MQTR) dataset, the first benchmark designed to evaluate the multi-
query scene text retrieval capability of models, comprising four query types and
16k images. Extensive experiments demonstrate the superiority of our method
across seven public datasets and the MQTR dataset. Notably, MSTAR marginally
surpasses the previous state-of-the-art model by 6.4% in MAP on Total-Text while
eliminating box annotation costs. Moreover, on the MQTR benchmark, MSTAR
significantly outperforms the previous models by an average of 8.5%. The code
and datasets are available at https://github.com/yingift/MSTAR.

1 Introduction

Scene text appears almost everywhere in daily life and is an essential ingredient for image-text
searching [6]. Traditional scene text retrieval [9] typically aims to search images based on word or
phrase queries and could benefit applications such as handwritten signature retrieval [54, 53] and
key frame extraction [35]. However, real-life retrieval needs could be diverse. For instance, people
often search for an article with several key words, which cannot be fulfilled with a single word.
Additionally, non-ocr visual semantics is also vital for scene text searching. In this work, we study the
multi-query scene text retrieval that aims to handle queries of various types within a unified model.
This could facilitate applications such as searching disambiguation [31, 16] and visual document
indexing [48, 4].

Off-the-shelf scene text retrieval methods [9, 38, 39] achieve text retrieval by explicitly localizing
the text and matching the query with scene text instances, as shown in Fig. 1 (a). A straightforward
solution is the text spotting methods [22, 20, 49]. They first spot the text in images and match it using
edit distance. However, the two divided stages could cause error accumulation between text spotting
and query matching. To mitigate this, detection-based methods [38, 41, 39] represent detected ROIs
in dense embedding, integrating text detection and similarity learning into an end-to-end framework.
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Figure 1: (a) MSTAR achieves scene text retrieval without the aid of box annotations. (b) Image-text matching
experiments with VLM [19]. Detailed text instances like “welcome to beautiful” and “old florida” in the image
receive lower matching scores. While manually covering salient text regions which receive the higher scores, the
model can adaptively recognize the detailed text.

Recently, FDP [51] leverages bounding boxes to guide CLIP [30] in focusing on text regions to
achieve accurate retrieval. Despite these advancements, they require expensive box annotations for
training. As different retrieval tasks require varying labels, it is very costly to obtain multiple types of
bounding boxes, i.e., word-level, text-line, and common object bounding boxes.

Recently, the large-scale box-free pre-training of Vision-Language Models (VLMs) [18, 52] has
shown impressive capability on various tasks [1, 55, 50]. To apply box-free methods for scene text
retrieval, we conduct image-text matching experiments, as shown in Fig. 1 (b). The observations
reveal that box-free models tend to overlook detailed text instances. Moreover, manually masking
salient text regions mitigates this issue by enabling the model to adaptively capture image details.
More observations are supplemented in the appendix. Inspired by these, we introduce a box-free
model termed Multi-query Scene Text retrieval with Attention Recycling (MSTAR). It starts with
leveraging pre-trained VLMs for scene text retrieval. To better capture detailed scene text features,
the progressive vision embedding is designed to shift attention from salient regions to insalient
areas with less attention iteratively. To support diverse retrieval queries, text queries are encoded by
the multi-modal encoder with style-aware instructions. A multi-instance matching module is then
designed to establish the cross-modal alignment. In this way, MSTAR seamlessly unifies diverse text
queries and aligns image-query embeddings without the need of any positional supervision.

To evaluate the performance of multi-query retrieval, we have carefully built a Multi-Query Text
Retrieval (MQTR) benchmark. Beyond traditional word and phrase queries, this dataset introduces
two additional, valuable retrieval settings: combined query and semantic query. The combined
query comprises several discontinuous key texts (words or phrases) to enable more precise retrieval.
Semantic queries, on the other hand, are image descriptions that require understanding both scene
text and its non-ocr visual context [45]. In total, the MQTR dataset includes four styles of queries
(word, phrase, combined, and semantic) and 16000 images.

Experiments reveal that existing models struggle to simultaneously handle four types of query on the
challenging MQTR dataset. In contrast, our proposed MSTAR performs well in multi-query retrieval.
Notably, MSTAR impressively surpasses previous work by an average of 8.5% in MAP. Additionally,
on seven public retrieval datasets, MSTAR demonstrates competitive performance compared to state-
of-the-art box-based methods while significantly reducing annotation costs. Specifically, MSTAR
outperforms FDP [51] by 6.4% in MAP on the widely used Total-Text dataset.

We summarize the main contributions as follows: (1) We propose MSTAR, the first box-free method
designed for scene text retrieval, which eliminates box annotations and achieves multi-query retrieval.
(2) We collect MQTR, a comprehensive benchmark with four types of queries and 16,000 images for
evaluating multi-query scene text retrieval. (3) Experiments on seven public datasets and the MQTR
benchmark demonstrate the advantages of MSTAR.
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2 Related Work

Scene Text Retrieval Datasets. Existing scene text retrieval datasets primarily focus on single-type
retrieval such as word and phrase. The IIIT Scene Text Retrieval dataset [27] is a large-scale dataset
dedicated to word retrieval comprising 10k images. The COCOText Retrieval dataset is derived from
7k natural images in the COCOText dataset [37]. In addition, several smaller but well-annotated
datasets [40, 7] are commonly utilized for evaluating word retrieval performance. The Chinese Street
View Text Retrieval dataset [38] contains 23 Chinese queries and 1,667 scene text images from
Chinese street views. Besides these word retrieval datasets, the Phrase-level Scene Text Retrieval [51]
dataset includes 36 frequently used phrase queries and 1,080 images. The CSVTRv2 [39] dataset
supports partial and text-line queries. However, these datasets do not comprehensively support the
evaluation of tasks such as combined retrieval and semantic retrieval. In constrast, our MQTR dataset
can support four types of query to satisfy diverse needs in real-world applications.

Scene Text Retrieval Methods. Existing methods generally adopt a paradigm that first localize text
regions and then match with the query. In the early attempts, Mishra et al.[27] proposed identifying
approximate character locations and indexing words using spatial constraints. More recent approaches
try to integrate the two process into an end-to-end trainable framework. Gomez et al.[9] proposed to
combine the detected proposals with the Pyramidal Histogram of Characters [2]. Wang et al.[38]
unified the text detector with a cross-modal similarity model into an end-to-end framework. Its
updated version [39] proposed the RankMIL and DPMA algorithms to address the partial scene
text retrieval problem. Wen et al.[41] transformed cross-modal similarity into uni-modal similarity
using image templates. Zeng et al.[51] utilized CLIP [30] for scene text retrieval and incorporated
box supervision to localize text regions. However, these methods require expensive bounding box
annotations for training.

In addition to the specifically designed retrieval methods, text spotters can also be applied to retrieval
tasks. They first spot text instances from images and then rank with edit distance. Traditional
text spotters with boundary supervision [22, 20, 44] can achieve accurate results. There are also
point-supervised [29, 23] and transcription-only supervised methods [36, 42, 43], which yield limited
performance. Above all, the separation of text spotting and query matching often leads to error
accumulation, and text spotters struggle to handle multi-query retrieval.

Unlike above methods, our MSTAR achieves text retrieval without the bounding-box supervision and
harmonize various data labels for multi-query scene text retrieval.

3 Method

3.1 Overview

The overall architecture of MSTAR is depicted in Fig. 2. Given a scene text image, the vision encoder
extracts image features f0, and the Progressive Vision Embedding module progressively captures
the scene text features as vision embeddings EV. Simultaneously, text queries are encoded as text
embeddings ET by the multi-modal encoder from BLIP-2 [19] with style-aware instructions. The EV
and ET are then fed into the Multi-Instance Matching module to align the cross-modal embeddings
optimized with contrastive loss. Additionally, a re-ranking process is incorporated by inputting both
image features and text queries into the multi-modal encoder to compute one-to-one matching scores.
During training, MSTAR is optimized using both contrastive loss and image-text matching loss. For
inference, image-text pairs are initially ranked by the cosine similarity, and the top K images are
further matched with re-ranking process.

3.2 Progressive Vision Embedding

Vision-Language Models (VLMs) pre-trained on image-caption pairs often focus more on salient
visual concepts such as a red circle [33, 47]. However, the detailed and subtle scene text instances
typically appear in various insalient regions of natural scenes. As depicted in Fig. 1 (b), the “old
florida” and “welcome to beautiful” are overlooked as the model focus on more salient regions. This
problem leads to a high miss rate for small text scenarios in scene text retrieval tasks. To mitigate
this, we propose a Progressive Vision Embedding (PVE) approach to extract visual embeddings.
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Figure 2: Overview of MSTAR. MSTAR is built upon four key components: a vision encoder ϕ, the Progressive
Vision Embedding (PVE), the multi-modal encoder ψ, and the multi-instance matching module (MIM). PVE
incorporates image features ft and the mask Mt derived from cross-attention map Ct, progressively shifting
attention from salient features to fine-grained regions.

Given a scene text image I ∈ RH×W×3, the vision encoder ϕ encodes I into initial image features,
denoted as f0 ∈ RL×D. Then a two-layer MLP is used to align the hidden dimensions of ϕ and the
multi-modal encoder ψ stacked with transformer blocks. Subsequently, ψ is leveraged to capture
the scene text vision embeddings from f0 with learnable queries Ql ∈ RQ×d. The initial vision
embeddings are denoted as E0

V ∈ RQ×d.

Since the model tends to focus on salient image features (visualized in Fig. 2), E0
V struggles to fully

capture the detailed text instance representation. To force the model to focus on less salient features,
we propose the Salient Attention Shift (SAS) module. Motivated by observations in Sec. 1, the SAS
uses a mask-attention layer to automatically shift image attention. Unlike previous methods [5] that
use ground truth as supervision, the mask in our approach is derived from the cross-attention layers of
the multi-modal encoder ψ. Concretely, we first calculate the mean of the cross-attention weights of
ψ as the cross-attention map Ct-1. Then Ct-1 is binarized with a binarization algorithm σ and inverted
to obtain a binary mask Mt-1. This is formulated in Eq. 1.

Mt-1 = 1− σ(Ct-1), (1)

where the σ consists of a thresholding with low threshold for coarse filtering, a marker-based
watershed algorithm for precise binarization, and a connected components algorithm to avoid over-
segmentation. In the t-th step, the SAS refines image features as follows:

ft = S(ft-1,mask =Mt-1)), (2)

where S denotes multi-head self-attention, ft-1 is image features and Mt-1 is the binary mask. For
each pixel M i,j

t-1, a value of 0 indicates that the corresponding image features of the previous iteration
received high attention, while a value of 1 indicates lower attention. With Mt-1, the SAS learns to
adaptively reduce the weight of salient features and focus more on the neglected features.

In each iteration, the SAS dynamically renews the image features, as illustrated in Fig. 2. Then the
multi-modal encoder ψ embeds the ft to Et

V. Then the vision embeddings {E0
V, E

1
V, . . . E

T
V} are

concatenated to EV ∈ R(T+1)Q×d, where T is the maximum recurrent steps.

3.3 Instruction Aware Text Representation

In unified training of multi-query scene text retrieval, the difference of query styles (e.g., format and
characteristics) could cause semantic discrepancy. For example, the phrase query contains several
continuous words with linguistic semantics, but the combined query contains several discrete key
words. To harmonize the representation of these text queries, a short style-aware text instruction is
introduced to guide the embedding for each type of query. The process is formulated as follows:

ET = ψ(Concate[Ti, TQ]), (3)
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where ψ denotes the multi-modal encoder, Ti represents instructions and TQ denotes text queries.
The instructions prompt the ψ to distinguish query types. As shown in Fig. 2, queries of each
style are encoded into different representation space during training. To speed up training, all of
the text queries (words, phrases, combined, and semantic queries) paired to the image are encoded
altogether. The ψ encodes the queries into text embeddings ET ∈ RN×d which consist of single-word
embeddings Ew ∈ RNw×d and multi-word embeddings Em ∈ RNm×d. The N is the total number of
text queries paired to the image. The Nw and Nm denote the number of single-word queries and
multi-word queries, respectively.

3.4 Multi-Instance Matching

After obtaining the vision embeddingsEV ∈ R(T+1)Q×d and text embeddingsET ∈ RN×d, the problem
is to build the one-to-one alignment for the multi-type and multi-instance embeddings. The previous
study either aggregate the multiple vision embeddings into one embedding [19] or adopts the late
interaction [15, 8]. However, due to the implicit matching mechanism, these strategies need massive
training for vision-language alignment.

To mitigate these, we propose the Multi-Instance Matching (MIM) module to explicitly assign the
one-to-one matching relations for vision-language embeddings. MIM comprises two parallel branches
for processing single-word and multi-word queries, respectively. In the single-word branch, the
Hungarian matching algorithm [17] is exploited to explicitly assign the one-to-one matching relation
between Ew ∈ RNw×d and EV ∈ R(T+1)Q×d. Specifically, we first construct a cosine similarity matrix
of sizeNw×(T+1)Q. SinceNw is typically unequal to (T+1)Q, we pad the matrix with zeros to create
a square matrix. Finally, the first Nw rows of the results are used for one-to-one correspondences.

In the multi-word branch, since the multi-word queries contain abundant semantic information, a
light-weight cross-attention layer is used to aggregate the vision features under text constraint in the
second branch. This process is formulated as Eq. 4.

Evt = F((C(Q = Ew,K,V = EV))), (4)

where F denotes a feed-forward network and C denotes multi-head cross-attention. The two branches
adaptively shift to cope with different types of queries, i.e., word retrieval relies solely on the first
branch, while multi-word queries with the second. Thanks to this flexible alignment approach, mixed
training data labels can be effectively leveraged for training multi-query retrieval models.

3.5 Optimization

MSTAR is optimized with both contrastive learning and image-text matching task. Contrastive
learning enables the model to separately encode vision embeddings and text embeddings. A dual
contrastive loss Lc aligns the vision and text embeddings.

Lc = αLt2v + Lv2t, (5)

where α is a hyperparameter to maintain the numerical approximation equivalence of the two losses.
Since the number of queries is usually greater than the number of images, α is set to 1.5 in our
implementation. The image-text matching process simultaneously feeds image features and text
queries into the multi-modal encoder ψ. An image-text matching score is then computed using a
linear layer with a two-cell output. This score is optimized using a cross-entropy matching loss Lm.
The overall loss is the sum of Lc and Lm.

4 Experiments

4.1 Multi-Query Text Retrieval Dataset

To comprehensively evaluate the performance of models on multi-query scene text retrieval, we
carefully build the Multi-Query Text Retrieval (MQTR) dataset. The MQTR dataset includes four
sub-tasks: word, phrase, combined, and semantic retrieval. The construction of this dataset leverages
well-annotated public datasets [37, 21, 13, 14, 7, 34, 24, 51], along with images obtained from Google
Image Search. The word, phrase, and combined subsets each contain 5,000 images and the 200 most
frequently occurring queries. The semantic subset consists of 1,000 images and 25 queries collected
from the web. The semantic subset was manually collected with 10-15 positive images and an equal
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Dataset Venue Word Phrase Combined Semantic Q. Num Images

Total-Text [7] IJDAR’20 ✓ ✗ ✗ ✗ 60 300
CTW [21] PR’19 ✓ ✗ ✗ ✗ 100 500
IC15 [14] ICDAR’15 ✓ ✗ ✗ ✗ 100 500
CTR [37] Arxiv’16 ✓ ✗ ✗ ✗ 500 7196
STR [9] ECCV’18 ✓ ✗ ✗ ✗ 50 10k
CSVTR [38] CVPR’21 ✗ ✓ ✗ ✗ 23 1667
PSTR [51] ACM MM’24 ✗ ✓ ✗ ✗ 36 1080
MQTR - ✓ ✓ ✓ ✓ 625 16k

Table 1: Statistics of public scene text retrieval datasets and our MQTR dataset in terms of query
types, number of queries, and number of images.

Method Venue AVG. Word Phrase Combined Semantic

Box Based
ABCNet [22] TPAMI’21 24.13 26.14 15.15 36.47 18.74
MaskTextSpotter [20] ECCV’20 32.43 46.72 27.53 29.08 26.37
TDSL [38] CVPR’21 58.25 69.11 40.83 72.71 50.36
Deepsolo [49] CVPR’23 52.04 67.54 25.68 72.14 42.79
TG-Bridge [11] CVPR’24 54.09 69.89 30.21 75.53 40.73

Box Free
SPTSv2 [23] TPAMI’23 35.18 33.56 21.24 50.76 35.16
BLIP-2 [19] PMLR’23 36.13 17.31 32.76 25.80 68.63
SigLIP [52] CVPR’23 36.06 17.81 32.88 21.81 72.23
BLIP-2 (FT) [19] PMLR’23 58.11 58.09 42.23 60.84 71.24
MSTAR - 66.78 73.27 44.22 74.48 75.14

Table 2: Evaluations of MAP% on MQTR. FT denotes fine-tune. The best results are shown in bold.

number of hard negative samples for each query. The hard negatives samples refer to images that
contain three types of objects: (1) visual elements with semantics similar to the query (e.g., an apple
and the word “apple”), (2) text instances with similar shapes, and (3) text instances with similar
meanings. The inclusion of hard negatives poses additional challenges by introducing visually and
textually confounding samples, thus assessing the capacity of retrieval models to distinguish visual
semantics from OCR-based semantics. As demonstrated in Tab. 1, our MQTR dataset is the first
comprehensive benchmark to support four types of query in scene text retrieval. You can refer to the
appendix for more construction details and images samples from the datasets.

4.2 Implementation details

The visual encoder ϕ is initialized from ViT-Base-512 of SigLIP [52]. The multi-modal encoder ψ is
initialized from BLIP-2 [19]. The number of query tokens Ql is set to 64 with interpolation, which
is consistent with the setting of the vanilla BLIP-2 in our comparison experiments. The weights
of the MLP, SAS, and MIM modules are randomly initialized. The MSTAR model was trained on
four NVIDIA A800 GPUs and evaluated on a single GPU, using the AdamW optimizer [25]. A
multi-stage training is adopted with progressive resolution increasing from 512×512, 640×640, to
800×800. For re-ranking, the top 2% of images are selected from the initial retrieval results. For
instance, in a dataset containing 10k images, only the top 200 images are used for re-ranking.

4.3 Multi-Query Scene Text Retrieval

BLIP-2
[19] TDSL [38]SigLIP [52]FDP [51] MSTAR

85.49 89.40 89.56 92.28 95.71

Table 3: Comparisons on Phrase-level Scene Text
Retrieval dataset [51].

To enable multi-query retrieval, we collect a
training dataset consisting of 95k images. First,
50k synthetic images with word transcriptions
are leveraged from SynthText-900k [9]. Then
20k real images containing captions are col-
lected from TextCap [34]. We use labels with
both image captions and text transcriptions ac-
quired with Rosetta [3]. In addition, we have
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Method Venue SVT STR CTR Total-Text CTW IC15 Avg. FPS
Box Based

Mishra et al. [27] ICCV’13 42.70 56.24 - - - - - 0.1
Jaderberg et al. [12] IJCV’16 86.30 66.50 - - - - - 0.3
Gomez et al. [9] ECCV’18 83.74 69.83 41.05 - - - - 43.5
Mafla et al. [26] PR’21 85.74 71.67 - - - - - 42.2
TDSL [38] CVPR’21 89.38 77.09 66.45 74.75 59.34 77.67 74.16 12.0
Wang et al. [39] TPAMI’24 - 81.02 72.95 - - - - 9.3
Wen et al. [41] WSDM’23 90.95 77.40 - 80.09 - - - 11.0
FDP-RN50×16 [51] ACM MM’24 89.63 89.46 - 79.18 - - - 11.8

Box Free
BLIP-2 (FT) [19] PMLR’23 88.73 85.40 45.75 77.20 82.33 55.13 72.42 37.2
MSTAR - 91.31 86.25 60.13 85.55 90.87 81.21 82.56 14.2
MSTAR (+re-rank) - 91.11 86.14 65.25 86.96 92.95 82.69 84.18 6.9

Table 4: Comparisons with scene text retrieval methods of MAP% on 6 public word retrieval datasets.
The best results are shown in bold, and the second results are underlined.

Method Venue SVT STR CTR Total-Text CTW IC15 Avg. FPS
Box Based

ABCNet [22] TPAMI’21 82.43 67.25 41.25 73.23 74.82 69.28 68.04 17.5
MaskTextspotterV3 [20] ECCV’20 83.14 74.48 55.54 83.29 80.03 77.00 75.58 2.4
Deepsolo [49] CVPR’23 87.15 76.58 67.22 83.19* 87.67* 82.80* 80.77 10.0
TG-Bridge [11] CVPR’24 87.23 81.30 70.08 87.11* 88.39* 83.55 * 82.94 6.7

Box Free
SPTSv2 [23] TPAMI’23 78.08 62.11 48.39 73.61* 83.30 * 66.27* 68.63 7.6
MSTAR - 91.31 86.25 60.13 85.55 90.87 81.21 82.56 14.2
MSTAR (+re-rank) - 91.11 86.14 65.25 86.96 92.95 82.69 84.18 6.9

Table 5: Comparisons with mainstream scene text spotting methods. * indicates that the model has
been fine-tuned on the corresponding training set. The best results are highlighted in bold, and the
second results are underlined.

synthesized 25k images with phrase transcrip-
tions using the synthesis engine [10]. Additionally, word or phrase annotations are utilized to form
nonrepeated combined queries for images containing over one text instance. More training details
can be found in the appendix.

On the MQTR dataset, we perform evaluation with both the representative box-based models and
box-free models for multi-query scene text retrieval. For text spotting methods, we use the normalized
edit distance to measure query-image matching scores following [38]. To evaluate the models that
can only handle word queries, we calculate the mean similarity of each word as the image-text scores
for multi-word queries. The codes and weights are acquired from their official repositories.

Evaluation on multi-query scene text retrieval. As the results reported in Tab. 2, box-based
methods [38, 49, 11] typically perform better on word queries and combined queries, which demand
fine-grained scene text perception. However, these box-based models cannot leverage the rich
linguistic semantics for phrase and semantic retrieval. Compared to box-based methods, MSTAR
outperforms TG-Bridge[11] by 3.38% and Deepsolo[49] by 5.73% in word retrieval. On the other
hand, VLMs such as BLIP-2 (ViT-L) [19] and SigLIP (ViT-B-512) [52] perform better on phrase
and semantic queries but struggle in word and combined retrieval. Compared to them, MSTAR
outperforms SigLIP by 11.34% on phrase retrieval and 2.91% on semantic retrieval. In terms ofms
of overall results, our MSTAR obtains an improvement of 8.53% over previous works on average.
These comparison results show the great advantages of our MSTAR on multi-query retrieval.

Additionally, MSTAR is also evaluated on the phrase-level scene text retrieval dataset [51]. As
shown in the Tab. 3, our MSTAR achieves 95.71% of MAP on the benchmark.
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Ins MIM PVE CTR SVT STR Total-Text CTW IC15 MQTR
✗ ✗ ✗ 52.87 90.07 81.57 82.32 87.28 76.71 65.79
✓ ✗ ✗ 54.65 90.70 82.81 83.19 88.96 77.15 66.15
✓ ✓ ✗ 55.77 91.02 85.00 84.01 90.31 79.23 65.69
✓ ✓ ✓ 60.13 91.31 86.25 85.55 90.87 81.21 66.78

Table 6: Ablation studies on instruction, multi-instance matching, progressive vision embedding,
denoted as Ins, MIM, PVE, respectively.

4.4 Word-level Scene Text Retrieval

In this part, we present comparison experiments on word-level retrieval. The model is trained on 100k
images randomly sampled from SynthText-900k [9] and 5k images from MLT-5K [28] dataset. The
evaluation setting keeps the same as the previous method [38]. Note that Deepsolo [49], TG-Bridge
[11], and SPTSv2 [23] are well fine-tuned on the training set of Total-Text, CTW and IC15 dataset.

Comparisons with text retrieval methods. We conduct comprehensive evaluations on the test
sets of six public datasets, the results are presented in Tab. 4. Compared to FDP-RN50×16 [51],
our MSTAR achieves an improvement of 1.68% on SVT and 6.37% on Total-Text. While MSTAR
demonstrates a slightly lower performance on the STR dataset, it eliminates the cost of expensive
bounding-box for training. Compared to TDSL [38], our method significantly outperforms the
method across five datasets. Notably, our MSTAR surpasses TDSL by 9.16% on STR, 10.80% on
TotalText, and 31.53% on CTW. These results verify the robust capabilities of our model. However,
on the CTR dataset that contains extreme small text, our method underperforms TDSL. This is due
to the absence of precise box supervision of our method, which is a common problem for box-free
methods. Overall, MSTAR outperforms TDSL by an average 8.40% in MAP across six datasets. To
further enhance performance, we re-rank the top 2% of retrieved images by jointly feeding the text
queries and images into the model. This re-ranking strategy improves performance by an additional
1.56% in MAP.

Comparisons with text spotting methods. Tab. 5 shows the comparison results with scene text
spotting methods. Compared to box-free method, our model significantly outperforms SPTSv2
with an average improvement of 13.93% in MAP. To further verify the advantages of MSTAR, we
compare it with state-of-the-art box-based text spotting methods. The results in Tab. 5 indicate that
MSTAR achieves competitive performance with the advanced TG-Bridge on average. Moreover,
MSTAR offers over twice the inference speed compared to TG-Bridge (14.2 FPS vs. 6.7 FPS) due to
the absence of the text detection module. These results show that our model achieves competitive
performance with leading fully supervised models while eliminating the bounding box for training.

4.5 Ablation Study

To validate the effectiveness of each component, comprehensive ablation studies were conducted.

Ablation study on three core components. The overall results are reported in Tab. 6. We begin by
directly training the vision encoder, MLP and multi-modal encoder with standard contrastive learning.
The results suggest that this baseline performs poorly on the fine-grained recognition capability,
especially on the CTR and IC15 datasets which features small text. Then instructions are adopted
to prompt the model to encode queries which leads to improvement. Subsequently, the MIM is
added, which leads to a significant improvement of 2.19% on STR and 1.35% on CTW. However, a
slight performance drop of 0.46% is observed on the MQTR dataset. This may be because of the
use of Hungarian matching, which is effective for word-level queries and instance-level alignment,
introduces confusion when handling more complex queries.

Lastly, we incorporate PVE which is designed to improve the retrieval performance of the insalient
objects such as small and detailed text instances. The results show a substantial improvement on
CTR (4.36%) and IC15 (1.98%), validating the effectiveness of PVE in small text scenarios.

Ablation study on the binary σ algorithm. We investigate three variants of σ, as the results reported
in Tab. 7. 1) Zero Padding: A binary mask with all zero values is used, which means the mask does
not constrain the image attention. The results show only a slight improvement on CTR (0.91%),
which is probably due to the effectiveness of the progressive representation strategy. 2) The second
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σ CTR Total-Text IC15
No PVE 55.76 84.01 79.23
Zero Pad 56.67 83.79 79.27
TH+CC 59.66 85.17 80.17

TH+WS+CC 60.13 85.55 81.21
Table 7: Ablation studies on σ algorithm. TH denotes ThresHolding, CC denotes Connected
Components, and WS denotes WaterShed algorithm.

choice of σ is composed of thresholding and connected components. This variant can produce a
mask to guide the SAS module to refine attention focus. However, it requires repeated tuning of the
thresholds. 3) The third choice is to first apply coarse filtering to the background with a low threshold
and then obtain precise binarization results using the watershed algorithm. This approach eliminates
the need for complex hyperparameter tuning and achieves substantial improvements, including 4.37%
on CTR, 1.54% on Total-Text dataset, and 1.98% on the IC15 dataset. We adopt the third variant for
our model.

T CTR Total-Text CTW FPS
0 55.76 84.01 90.31 16.5
1 60.13 85.55 90.87 14.2
2 60.47 86.68 90.95 12.9
3 60.87 87.66 91.24 11.2

Table 8: The impact of the recurrent steps T.

Ablation study on the number of iteration
steps T in PVE. We investigate the impact of the
number of recurrent steps T in PVE. As the re-
sults presented in Tab. 8, performance improves
significantly as T increases from 0 to 1. As
T increases from 1 to 3, we can also observe
noticeable improvement on the three datasets.
Since the inference speed decreases with the re-
current steps increases, we adopt T=1 for the
final model to balance efficiency and effectiveness.

5 Discussion

(a) 'dream big' tshirt (b) 'lighthouse' (d) 'restaurant'(c) '1888', 'celtic' (e) 'copyright'

Figure 3: Visualization of the text localization of our MSTAR. The image shows the localization of
(a) semantic, (b) phrase, and (c) combined query, as well as (d) curved and (e) dense word instances.

Application of MSTAR for text localization. To further validate the effectiveness of MSTAR, we
use it for text localization using Grad-CAM [32]. As illustrated in Fig. 3, MSTAR can localize
different types of queries. For example, MSTAR accurately identifies the target text instance “dream
big” on a t-shirt, distinguishing it from the “dream big” of the shorts in Fig. 3 (a). In addition,
MSTAR can also accurately localize curved and dense text instances. As Fig. 3 (e) shows, MSTAR
successfully identifies the word “copyright” within a document page image. These results demonstrate
that MSTAR can accurately localize text instances without box supervision.

Discussion about the pre-trained model. We discuss how the pre-trained model affects performance
on the scale of parameters and data. We tested different variants of CLIP [46], BLIP [18], BLIP-2
[19], and SigLIP [52] on the CTR dataset. The results show that despite the massive pre-training, the
models struggle to achieve retrieval on small text instances. Details are provided in the appendix.

Limitations Although our method shows evident improvements in fine-grained scene text retrieval, it
still faces challenges in handling extremely small and dense text instances. In particular, retrieval
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performance decreases substantially as the text size becomes smaller. However, this is a common
limitation to box-free approaches.

6 Conclusion

In this paper, we introduce MSTAR, a new box-free method for multi-query scene text retrieval.
It incorporates PVE to shift image attention to fine-grained scene text. Our model demonstrates
competitive retrieval performance with state-of-the-art box-based methods while significantly reduc-
ing annotation cost. Moreover, for the first time, we study the multi-query scene text retrieval and
establish the MQTR benchmark for evaluation. Experiments show that neither box-based methods
nor general cross-modal retrievers can handle such a challenging task, while our MSTAR can serve
as a strong baseline model for this task. For future work, our aim is to investigate model acceleration
and document retrieval tasks.
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(a) BLIP-ViT-Large-384
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Images Matching scores

Figure 4: Qualitive analysis of VLMs to process in-salient text instances , which is introduced in Sec.
1, (a) BLIP-ViT-Large-384, (b) SigLIP-ViT-Base-512, and (c) SigLIP-ViT-Large-384.

A Further Analysis of Vision Language Models

In this section, we first provide further analysis of Vision Language Models (VLM) in processing
in-salient text instances introduced in Sec. A.1. Second, we present a quantitative evaluation of
VLMs on the small-text dataset in Sec. A.2.

A.1 Further Observations on VLMs

To validate the observations that VLMs tend to overlook detailed and insalient text instances, we
conducted additional experiments with more models. For the BLIP, we calculate the ITM score which
calculates the one-to-one matching probability between the image and the query. For the SigLIP
models, we calculate the dot products between the vision and text embeddings without normalization
following the official code. As illustrated in Fig. 4 (a), the BLIP can easily capture the salient text
like “dead lakes park” but cannot find the text “old florida”. However, it can capture the “old florida”
when the salient regions are covered. Similar observations are presented in Fig. 4 (b) (c).

A.2 Performance of VLMs on Small Text Dataset

To test the pretrained ability of VLMs on finegrained perception, we evaluate representative VLMs
(CLIP [46], BLIP [18], BLIP2 [19], SigLIP [52]) on the CTR [37] dataset. The CTR dataset is
collected from the COCO dataset and features small scene text instances. As the results in Tab. 9, all
of the tested VLMs struggle to retrieve images accurately. For instance, the CLIP variants obtain
MAP of 8.1% while the BLIP gets 6.9% of MAP. Moreover, increasing model parameters and seen
data does not lead to significant performance gains. Among these models, BLIP2 has the highest
MAP of 13.3% of the tested models, indicating limited capacity of VLMs for small text retrieval.

B MQTR dataset

In this section, we first supplement more construction details and annotation procedures for each
subset of MQTR dataset in Sec. B.1. We then present representative samples from the MQTR dataset
in Sec. B.2.
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Model Parameters Pretraining Data MAP%

CLIP-RN50 97M 400M images 6.6
CLIP-ViT-Base 143M 400M Images 6.8
CLIP-ViT-Large 408M 400M Images 8.1
BLIP-ViT-Large 426M 129M Images 6.9
BLIP2-ViT-Large 452M 129M images 13.3
SigLIP-ViT-Base-512 194M 9B Samples 12.8
SigLIP-ViT-Large-384 622M 9B Samples 11.7
MSTAR-ViT-Base 270M - 60.13

Table 9: Evaluation of the CLIP-style models on the CoCoText dataset. Parameters denotes the
parameters of the model.

Figure 5: Statistical analysis of the MQTR benchmark.

B.1 Construction details of the MQTR dataset

Word Subset. The word subset includes 5000 images and 200 word queries. The images were
sourced from the test set of SVT, CTW, IC15, Total-Text and the CTR. We extracted the word-level
annotations from the datasets and filtered out the words with less than 3 characters (e.g. “st”). After
that, 200 word queries were selected according to the word frequency.

Phrase Subset. The images of phrase subset include 1k images from PSTR [51], 1k images manually
collected from the Web. Then we used images from HierText [24]. The line-level annotations were
used and the lines with only one word were filtered out. Lastly, 200 phrase queries were selected
according to frequency.

Combined Subset We first use all images collected from the CTR and HierText dataset. Given the
word and line annotations of an image, we first filtered out the queries less than 3 characters. Then
we implement an algorithm to compute all the combinations that contain 2-4 words. Top 200 text
combinations on the dataset were selected according to frequency and repeat ratios. Then images
paired to these queries were first selected as positive samples. Then images containing words similar
to the 200 combined queries are also selected as negative samples according to the edit distance.
Lastly, there are 5000 images for the positive samples and negative samplesin total.

Semantic Subset The semantic subset is manually collected from the web. we first brainstorm
common used scene text queries and then search for candidate images from the web. In total, the
subset consists of 25 queries and 1000 images.

During the selection of multi-word queries (i.e., phrase and combined types), we manually filtered
out redundant entries. Specifically, queries that were overly repeated or semantically similar were
removed to enhance diversity in the final set.
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B.2 Visualization of the MQTR dataset

To clarify the characteristics of the MQTR dataset, we show some examples collected from the google
image search engine, as presented in Tab. 10. Since scene text typically appears as fine-grained
information but the search engine often recommends the most salient images, we collect more images
containing queries in fine-grained concepts. For example, “global weekly” is shown as a section
name of “china daily” newspaper, adding more challenges for models. For example, for the query
“dream big”, the model may have difficulty distinguishing between “bream big” written on the t-shirt
and “dream big” written on the shorts.

B.3 Statistics of the MQTR dataset

In total, our dataset contains 625 unique queries comprising 1,326 words. As shown in Fig. 5, we
report statistics including part-of-speech (POS) tag distribution, query length distribution, and the
most frequent words, which collectively demonstrate the diversity of our query set across linguistic
and structural dimensions.

Query Examples

newspaper
of “global
weekly”

Positive

Negative

“dream
big” tshirt

Positive

Negative

“i’m ok”

Positive

Negative

“pizza
hut”

Positive

Negative

Table 10: Examples from the MQTR dataset. The Positive represents the GT images. The Negative
denotes hard negative sample described in Sec. 4.
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C Experiment Details and Visualization Analysis

C.1 Computational Efficiency Analysis.

Thanks to the design of the PVE module, image features are fed into the ViT only once. Subsequent
iterations involve merely the SAS module and the Multi-modal Encoder, both of which are lightweight
and thus enable a good trade-off between accuracy and efficiency. We analyze the computational cost
and latency on a single A800 GPU, where the Baseline removes the PVE module from MSTAR.

Method GFLOPs Latency (s) FPS CTR
Baseline 248 0.0606 16.5 55.76
MSTAR 310 0.0704 14.2 60.13

Table 11: Computation and efficiency comparison on a single A800 GPU.

As shown in Table 11, MSTAR improves accuracy by 4.37% on the challenging CTR dataset, while
achieving an inference speed of 14.2 FPS, over twice as fast as TG-Bridge (6.7 FPS), and maintaining
comparable performance across all six benchmarks.

C.2 Text Region Localization Analysis.

We further evaluate the localization accuracy of the predicted text regions. Binary ground-truth (GT)
masks are constructed by extracting the polygon coordinates of all text regions from the CTW dataset.
For comparison, we also derive binary masks from the cross-attention maps of BLIP-2 using the
same processing pipeline as ours. As reported in Tab. 12, we compute the Intersection over Union
(IoU) between each predicted mask and its corresponding GT mask, and report both the mean IoU
and the number of high-quality masks with IoU ≥ 0.5 across 500 images.

Method Mean IoU High-Quality Masks (IoU ≥ 0.5)
BLIP-2 21.78 129 (25.8%)
MSTAR 50.82 304 (60.8%)

Table 12: Quantitative comparison of text region localization on the CTW dataset. MSTAR produces
substantially more accurate and higher-quality text masks than BLIP-2.

C.3 Scale-wise Evaluation on ICDAR2015.

We further evaluate MSTAR on the ICDAR2015 dataset by analyzing performance across different
text scales. For each text instance, we compute the ratio between its bounding-box area and the image
area using dataset annotations, and group instances into scale intervals as shown in Tab 6.

For each interval, we calculate the AP score for queries whose corresponding text instances fall
within the specified scale range. For instance, given the query “apple” and a target scale range ((a, b]],
we exclude all images where “apple” appears but its area ratio is not within that range. The AP score
is then computed using the remaining valid images.

C.4 Training Details

To ensure the reproducibility of our model, we provide the training process and the training parameters,
which are reported in Tab. 13. We adopt a progressive training recipe. In the first state, the model is
trained on both synthetic dataDsyn and real dataDreal at an image resolution of 512. We use a learning
rate of 1e-5 and linear cosine schedule with 100 warmming-up steps. In this stage, we use a two-layer
MLP to align the visual encoder and multi-modal encoder. In the second stage, our model is finetuned
at the resolution of 640 only on the real data Dreal. For simplicity, the hyperparameters keep the same
with the first stage. In the third stage, we finetune the model at a higher resolution of 800 on the real
data Dreal. In the forth stage, the visual encoder is freezed and only the MLP, multi-modal encoder,
MIM, and SAS module are optimized at a resolution of 800. For the word retrieval experiment, the
synthetic data Dsyn refers to 100K images randomly sampled from SynthText-900k, and the real
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Figure 6: Scale-wise performance comparison on ICDAR2015.

Phase 1 Phase 2 Phase 3 Phrase 4

Image Resolution 512 640 800 800
Learning Rate 1e-5 1e-5 5e-6 5e-6
WarmUp steps 100 100 0 0
Freeze ViT False False False True
Precision of ViT Float
Query of ψ 64
RandomCrop True
Dataset {Dsyn, Dreal} Dreal Dreal Dreal

Table 13: Training details of our model.

data Dreal is MLT-5K. For the multi-query experiment, Dsyn includes 50K images randomly sampled
from SynthText-900k and 25k images with phrase transcriptions with the synthesis engine. Dreal is
the training set from the TextCap dataset. The labels are the image captions and text transcriptions
acquired with Rosetta.

C.5 Experimental Visualization Analysis

We present a qualitative analysis of the retrieval results. As illustrated in Tab. 14, our method can
not only effectively leverage linguistic priors for phrase and semantic queries, but also perceive
fine-grained scene text instances to achieve word and combined retrieval. For example, MSTAR
successfully retrieves the combined query like “reserved” and “some” even when they appear as
subtle watermarks in pictures, as depicted in the last row.
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Query Retrieval results

“speed limit 25”

Bridge [11]

MSTAR

“hydrate or diedrate”
is written on a water
bottle

Bridge [11]

MSTAR

“may”

BLIP2 (FT)
[19]

MSTAR

“reserved” , “some”

BLIP2 (FT)
[19]

MSTAR

Table 14: Qualitive analysis of the retrieval results. The green boxes mean correct samples and the
red boxes denote false images. The queries and images are sampled from the MQTR dataset and
CTW [21] dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction are presented based on the core contribution and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The theoretical result are clearly clarified.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly describe the method in Sec. 3, and include the implementation
details in Sec. 4.2, evaluation details in Sec. 4.3 and Sec. 4.4. Moreover, we supplement
more training details in the appendix. Lastly, we also offer our code and data to ensure
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide the code, weights and data in the supplementary files.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include the implementation details in Sec. 4.2, evaluation details in Sec.
4.3 and Sec. 4.4. Moreover, we supplement more training details in the appendix. C.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Sure. The evaluation criteria keeps the same with previous studies, which is
mentioned in Sec. 4. We conducted extensive experiments on seven widely-used public
datasets. These experimental results are of statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include this in Sec. 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is fully conformed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have claimed the impact of scene text retrieval in Sec. 1, while this research
is a step forward to bring a new box-free paradigm to address the task.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The model and dataset is commonly used for OCR tasks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the papers and will respect the licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Do not involve.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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