
Dynamic Rescaling for Training GNNs

Nimrah Mustafa
CISPA

66123 Saarbrücken, Germany
nimrah.mustafa@cispa.de

Rebekka Burkholz
CISPA

66123 Saarbrücken, Germany
burkholz@cispa.de

Abstract

Graph neural networks (GNNs) with a rescale invariance, such as GATs, can
be re-parameterized during optimization through dynamic rescaling of network
parameters and gradients while keeping the loss invariant. In this work, we explore
dynamic rescaling as a tool to influence GNN training dynamics in two key ways: i)
balancing the network with respect to various criteria, and ii) controlling the relative
learning speeds of different layers. We gain novel insights, unique to GNNs, that
reveal distinct training modes for different tasks. For heterophilic graphs, achieving
balance based on relative gradients leads to faster training and better generalization.
In contrast, homophilic graphs benefit from delaying the learning of later layers.
Additionally, we show that training in balance supports larger learning rates, which
can improve generalization. Moreover, controlling layer-wise training speeds is
linked to grokking-like phenomena, which may be of independent interest.

Deep neural networks (DNNs) with positively homogeneous non-linear activation functions such as
ReLU exhibit the rescale invariance property [31], i.e. scaling down incoming weights to a neuron
and scaling up the outgoing weights from the neuron by the same factor does not alter the function
represented by the network.

Under gradient flow that assumes an infinitesimally small learning rate, this rescale symmetry induces
the conservation of a relationship between network parameters and gradients, determined by the initial
state [8]. More specifically, it is known that for traditional DNNs and convolutional neural networks
(CNNs) with homogenous activation functions such as ReLUs, the difference between the squared
L2-norms of incoming and outgoing parameters to a neuron stays constant (and is thus conserved).
When this conserved quantity is (nearly) zero, the network is said to be in a balanced state. Training
DNNs is generally considered well-conditioned by a balanced state of this conservation law.

In the context of Graph Neural Networks (GNNs), the first work presenting insights regarding norm
balance derives the conservation law for GATs [2] and demonstrates how a balanced initialization
enhances the trainability of GATs, particularly deeper networks [28]. This balanced state that would
hold under gradient flow could potentially be beneficial throughout training. However, in practice,
factors that drive optimization such as finite learning rates, momentum, weight decay, and batch
stochasticity break the rescale (and other) symmetries [15] and consequent conserved quantities,
causing the network to topple out of balance due to which training conditions may deteriorate.

Motivated by the positive outcomes of training a model balanced at initialization, we utilize the
identified rescale invariance of GATs [28] to further investigate the effects of maintaining this balance
throughout training rather than only at initialization, by dynamic rescaling, i.e. scaling network
parameters at the neuron level during training in a loss-invariant manner. To this end, we derive a
general procedure to balance a GAT network, not necessarily only w.r.t. parameter weight norms, but
any criterion that is a function of network parameters and gradients. More specifically, we propose a
novel criterion based on relative gradients of network parameters and demonstrate that this criterion,
or a combination of both criteria, often offers practical gains in terms of training speedup or better
generalization.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



The implications of the core concept of dynamic rescaling extends beyond training in balance. For
example, it enables arbitrary control of the order in which network layers learn during training. This
can be viewed as inducing an imbalanced state in the network that may be desirable in some cases [16].
Based on the experimental exploration of our methodological ideas, we draw various novel insights
into how dynamic rescaling can potentially be leveraged. Firstly, specifically regarding graph learning,
we discover potential trends of optimal learning dynamics for homophily and heterophily. We observe
that, in terms of training speed and generalization, training all network layers in balance tends to be
more beneficial for heterophilic than homophilic graphs. On the contrary, homophilic graphs tend to
benefit from more focused learning in the first (earlier) layers. Secondly, we hypothesize that larger
learning rates that tend to increasingly disrupt network balance can be better supported by dynamic
rebalancing of the network in improving generalization. Thirdly, we encounter other interesting
phenomena similar to grokking [33] that we relate to our insight on layer learning order.

This work is also motivated by earlier studies on deep feedforward non-linear neural networks
that exploit rescale invariance, using transformations respecting loss-invariant symmetry to teleport
parameters to another point in the loss landscape with steeper gradients to improve optimization [46]
and/or convergence rate guarantees [47]. To the best of our knowledge, we are the first to conduct an
initial exploration of these ideas on GNNs, where identifying and exploiting the rescale invariance
is not as straightforward, due to their peculiar architectural design elements such as node-wise
neighborhood aggregation that make identifying the corresponding rescale invariances challenging.
Thus, this largely remains unexplored territory for GNNs and our understanding of the underlying
gradient dynamics in GNNs lags in comparison to DNNs. Rather than proposing a one-size-fits-all
solution or achieving state-of-the-art performance, this paper aims to contribute insights into GNN
learning dynamics.

In summary, our contributions are as follows:

1. We prove that, given a GNN exhibits a rescale invariance (like GCNs or GATs), we can
manipulate gradient norms while leaving the GNN and the loss invariant and thus influence
the learning dynamics during optimization.

2. We derive the procedure to balance a GAT network w.r.t. any criterion that is a function of
network parameters and gradients by dynamic rescaling.

3. We suggest a novel criterion for balancing based on relative gradients and find it to be
promising for improving generalization and training speed in practical settings.

4. We explore our conceptual ideas empirically and find promising directions to utilize dynamic
rescaling for more practical benefits, by training in balance or controlling order of learning
among network layers.

5. We discuss novel insights regarding i) trends in training dynamics for homophilic and
heterophilic graphs ii) larger learning rates and iii) interesting grokking-like phenomena.

1 Related work

There has recently been an increased interest in studying training dynamics[43] and generalization
[39]. Approaches to address trainability issues in GNNs include initialization [20, 28, 13, 12],
normalization [3, 5, 50, 48], skip-connections[13], regularization[34, 44], their combinations[25, 4],
architectural variations[29], and insights from graph signal processing based on spectral properties
[45]. While our approach of dynamic rescaling allows us to use gradients in the network to control
the rate at which GNN layers (and potentially neurons) learn non-linear transformations of their
features,[35] draws an interesting parallel by modulating message passing updates based on gradients
to control the rate at which nodes learn. The closest work to ours is [28] which proposes using
balanced norms at initialization. Our work differs in mainly three ways as we: i) derive how a
balanced state can be achieved not only at initialization but also during training by dynamic rescaling,
ii) propose a different criterion for balance based on relative gradients, and iii) present insights on
training in and out of balance in light of input graph homophily and heterophily.

For traditional DNNs, there is a deeper understanding of loss invariant symmetries and their im-
pact on gradient dynamics[8, 17, 40]. Several studies exploit rescale symmetry and corresponding
conservation laws in (feed-forward and convolutional) neural networks in various ways to aid opti-
mization [31, 26, 46], regularization [37], and compression[38]. [47] introduce a set of nonlinear,

2



data-dependent symmetries, relate conserved quantities to the convergence rate and sharpness of the
optima, and provide insights into how initialization impacts convergence and generalizability. Gradi-
ent flow equations for neural networks have also been extended to account for realistic optimization
elements such as finite learning rates, momentum, weight decay, etc. [15].

2 Dynamic rescaling

Preliminaries Consider a L layer GAT network f with positively homogeneous activation ϕ
(i.e ϕ(x) = xϕ′(x)) and consequently, ϕ(ax) = aϕ(x) for positive scalars a) such as ReLU
ϕ(x) = max{x, 0} or LeakyReLU ϕ(x) = max{x, 0}+−αmax{−x, 0}. Then, as shown by [28],
the parameters Wl[i, :],Wl+1[:, i], and al[i] associated with a hidden unit i in the network layer l ,
may be respectively scaled to W̃l[i, :] = λWl[i, :], W̃l+1[:, i] = λ−1Wl+1[:, i] and ãl[i] = λ−1al[i]

where λ > 0 such that f = f̃ , i.e. the rescaling respects the network symmetry.

Note that Wl[i, :] and Wl+1[:, i] denote weights incoming to and outgoing from neuron i ∈ [dl],
respectively, where dl is the width of layer l. Given a network parameter θ and its gradient ∇θL w.r.t.
the network loss L, the relative gradient ∆θ of parameter θ is defined as:

∆θ = ∇θL/θ for θ ̸= 0 or ∆θ = 0 for θ = 0. (1)

This rescale property is more powerful than it might appear at first, as it provides us the means to
significantly influence the training dynamics. It suggests that we have a high number of degrees of
freedom to pick a parameterization without changing the function of a GAT. Concretely, we can
use any scaling factors λ

(l)
i > 0 that are associated with features in the middle layers and define

another parameterization W̃l[i, j] = λ
(l)
i /λ

(l−1)
j Wl[i, j] and ãl[i] = al[i]/λ

(l−1)
i that will induce

the same function. Yet, according to the following lemma, the gradients of the parameters depend on
the rescale factors and can therefore be controlled correspondingly.
Lemma 2.1 (Gradient scaling). Under the rescale invariance of GATs, if a parameter is scaled by
θ̃ = λθ, then its gradient is scaled as ∇θ̃L = λ−1∇θL.

We defer the proof to the appendix A.1. It generally implies that we have the freedom to pick any
positively homogeneous constants so that our resulting gradients ∇W̃l[i,j]L = λ

(l−1)
j /λ

(l)
i ∇Wl[i,j]L

and ∇ãl[i]L = λ
(l−1)
i ∇al[i]L induce favorable learning dynamics. Considering the flexibility, in

which gradient direction we can move during gradient descent, the choice likely has a significant
influence on our learning success. We aim to exploit this fact in this work and discover conceptual
insights into what criteria could constitute choices. Thus, we follow the following procedure.

Balancing criteria and procedure The rescale invariance property allows us to rescale parameters
to fulfill the desired criterion not only at initialization but also during training without changing the
network output while potentially improving the training dynamics.

We could indeed choose a relatively general criterion g :Rm → Rm that depends on our rescaled
parameters and gradients and determines our choice of scaling factors. As long as we can solve

g
(
λ
(l)
i Wl[i, :], λ

(l)−1
i Wl+1[:, i], λ

(l)−1
i al[i], λ

(l)−1
i ∇Wl[i,:]L, λ

(l)
i ∇Wl+1[:,i]L, λ

(l)
i ∇al[i]L

)
= 0.

(2)
, For unique nonzero scaling parameters, g can act as our guide during gradient descent. Importantly,
not all reasonable criteria determine the scaling factors.

As has been derived recently for GATs [28], the rescale invariance also induces a conservation law
that holds throughout training and is characterized by the fact that the scaling factors cancel out. In
fact, any such law that remains invariant under specific parameter transformations is also linked to an
invariance like the rescale invariance. according to Noether’s theorem. Specifically, in the case of
GATs, the following equations

⟨W l[i, :],∇W l[i,:]L⟩ − ⟨al[i],∇al[i]L⟩ − ⟨W l+1[:, i],∇W l+1[:,i]L⟩ = 0. (3)
hold regardless of the scaling factors. This law implies that a specific sum of L2-norms of the
corresponding parameters stays conserved throughout gradient descent if the learning rates are
sufficiently small.

3



Recently, it has been shown that balancing these squared parameter l2−norms at initialization such
that

∥∥Wl[i, :]
∥∥2−∥∥al[i]∥∥2−∥∥Wl+1[: i]

∥∥2 = 0, ∀i ∈ dl, l ∈ [L−1], induces good initial trainability
in GATs [28]. For larger learning rates, this balance might get disturbed during training. Yet, we
could use our rescaling degrees of freedom to bring the parameters back in balance. To induce even
better trainability, we propose another criterion to rescale a GAT network, which balances the norms
of gradients relative to the corresponding parameters, i.e., ∆θ = ∇θL/θ. Intuitively, this should
allow the parameters in different layers to move at similar speeds and ensure good trainability in all
parts of the network. ∥∥∆Wl[i, :]

∥∥2 − ∥∥∆al[i]
∥∥2 − ∥∥∆Wl+1[: i]

∥∥2 = 0. (4)

Yet, as this criterion is not naturally preserved during gradient descent or gradient flow like the weight
norms, fulfilling the equation above requires frequent rescaling during training. Thus, based on
Eq.(2), balancing a neuron i in layer l w.r.t. relative gradients requires fulfilling:∥∥∥∥∥λ

(l)−1
i ∇Wl[i,:]L
λ
(l)
i Wl[i, :]

∥∥∥∥∥
2

−

∥∥∥∥∥ λ
(l)
i ∇Wl+1[:,i]L

λ
(l)−1
i Wl+1[:, i]

∥∥∥∥∥
2

−

∥∥∥∥∥λ
(l)
i ∇al[i]L
λ
(l)−1
i al[i]

∥∥∥∥∥
2

= 0. (5)

Balancing the entire network requires fulfilling Eq.(5) ∀i ∈ [dl], l ∈ [L− 1]. In this case, note that
every weight Wl[i, j] is eventually scaled by λ

(l)
i /λ

(l)
j . Thus, balancing the entire network requires

iterative rescaling until convergence of all rescaling factors to 1.

For each iteration t ∈ [1, T ] and given λ
(l)
i

(0)
= 1, ∀i ∈ [dl], l ∈ [L− 1], the scaling factor λ(l)

i

(t)
is

given by:

λ
(l)
i

(t)
=


∥∥∥∆Wl[i, :]

(t−1)
∥∥∥2∥∥∥∆al[i]

(t−1)
∥∥∥2 + ∥∥∥∆Wl+1[: i]

(t−1)
∥∥∥2


1
8

; where (6)

∆θ(t) =


λ
(l)
i

(t)−1
∇θL

λ
(l)
i

(t)
θ

if θ ∈ Wl[i, :]
(t−1) ; t > 0

λ
(l)
i

(t)
∇θL

λ
(l)
i

(t)−1
θ

if θ ∈ {Wl+1[:, i]
(t−1)

,al[i]
(t−1)} ; t > 0.

(7)

Ideally, this process is repeated to convergence until λ(l)
i

(T )
= 1, ∀i ∈ [dl], l ∈ [L− 1]. The number

of required iterations depends on the frequency of rebalancing during training as well as the network
parameters and gradients. In practice, we find that this is not a too computationally expensive process
and a few iterations (< 10) are sufficient to (mostly if not completely) balance the network. In
terms of time complexity, this only affects the training time linearly depending on the frequency of
rebalancing, which is a controllable hyperparameter.

Implications Dynamic rescaling opens up the opportunity to control training dynamics in several
ways for which we lay out two key ideas as follows.

Firstly, dynamic rescaling can be used to train networks in balance w.r.t. certain criteria. We
propose that balancing based on relative gradients may be one such good candidate. Our intuition
is that balanced relative gradients allow all layers (and neurons) in the network a relatively equal
opportunity to learn by propagating gradients to drive parameter change throughout the network,
thereby enhancing trainability. We observe that this novel insight shows the promising potential
of being translated into practical gains such as faster or better generalization on real-world data,
particularly for heterophilic tasks.

Secondly, dynamic rescaling allows us to control of relative training speed at the level or neuron
level. In principle, by rescaling layers, we can configure the relative order in which they learn
arbitrarily, at any time during training. This is a direct consequence of the conservation law that
parameters and their gradients in the network adhere to. The underlying insight is that by controlling
the parameter weight or relative gradient norms, the gradients that drive parameter change can be
influenced. As a result, a layer receiving relatively larger gradients (due to relatively scaled-down

4



Table 1: Results of training a 5-layer GAT network with various dynamic rescaling (DR) settings.
The mean ±95% CI test metric at the epoch of the best validation metric across 10 splits is re-
ported using the best learning rate from {0.01, 0.001, 0.005}. The evaluation metric is accuracy for
roman-empire and amazon-ratings, and ROC AUC for the remaining three datasets.

roman-empire amazon-ratings tolokers questions minesweeper

w/o DR .4978± .0209 .4545± .0043 .6493± .008 .5829± .0172 .5057± .0058

DRW .3307± .0670 .4547± .0041 .6451± .0135 .5791± .0145 .5058± .0051

DRRG .5422± .0234 .4540± .0029 .6637± .0088 .5869± .0145 .5065± .0076

DRC .6731± .0149∗ .4526± .0042 .6642± .0064 .5696± .0132 .5080± .0053

weight norms) thus learns ‘more’ or ‘faster’ than other layers. While the possibilities are numerous,
in this work, we limit our investigation to a simple but core case: allowing the network to (initially)
focus learning on a specific layer by scaling down its weight norm at initialization. We observe
that initially allowing more focused learning in the earlier layers of the network can improve the
convergence time substantially while retaining or even improving the generalization for homophilic
tasks.

Our findings suggest that the order in which layers learn influences convergence time and generaliza-
tion. This building block may be leveraged to devise more sophisticated learning sequences such
as training layers cyclically or in a task-dependent manner rather than in a predefined order. We
elaborate on the current limitations of dynamic rescaling in the appendix.

While these concepts apply to any GNN, provided its rescale invariance has been identified, we focus
our investigation on the GAT architecture in this work as they are a generalization of the more basic
GCN architecture that is the building block of more complex GNNs. Furthermore, GAT serves as a
strong basis for graph learning with an attention mechanism, in which there has been an increased
interest recently [18, 9].

3 Experiments

We divide our exploration of the ideas discussed in §2 into three parts: 1) practical gains on
real-world data of training in balance by dynamic rescaling, 2) empirical insights into the layer-
level order of learning, and 3) observation of a grokking-like phenomenon, which is related to
2). Hereafter, we use the notation DRW , and DRRG to denote dynamic rescaling w.r.t. weight
norms and relative gradients, respectively, every 10th epoch. DRC denotes a combination of the
two by rescaling w.r.t. weight norms every 10th epoch and w.r.t. relative gradients in all other
epochs. A maximum of 10 iterations for the rebalancing procedure outlined in Eq. (6) and (7)
were used. All experiments use the Adam optimizer and networks are randomly initialized with
looks-linear orthogonal structure [36, 1] unless specified otherwise. Experiments were run on
an NVIDIA RTX A6000 GPU with 50GB RAM. Our experimental code is available at https:
//github.com/RelationalML/Dynamic_Rescaling_GAT.

3.1 Training in balance

We primarily study the effect of training GAT in a balanced state based on the relative gradients
criterion (see Eq.(4)), by dynamic rescaling on five real-world heterophilic benchmark datasets [32].

We find that rebalancing the network w.r.t. relative gradient norms is more effective than the criterion
based on parameter weight norms, as shown in Table 1. This aligns with observations on CNNs
where rebalancing w.r.t. parameter norms was also not effective [37]. Therefore, our insight on the
impact of rebalancing w.r.t. relative gradients may also be of independent interest outside the context
of GNNs.

In addition to improved generalization in most cases, dynamic rescaling may also provide the benefit
of fewer training epochs to attain comparable or even slightly better generalization, as shown in Fig. 1.
We make an interesting observation that a balanced state during training together with larger learning
rates results in better generalization than when either of the two components is individually employed.

5

https://github.com/RelationalML/Dynamic_Rescaling_GAT
https://github.com/RelationalML/Dynamic_Rescaling_GAT


(a) Higher is better. (b) Lower is better.

Figure 1: Performance of a 5-layer GAT with various dynamic rescaling (DR) settings using learning
rates (lr) 0.001 and 0.01. Across 10 splits, the mean accuracy is reported for roman-empire and
amazon-ratings while ROC AUC is reported for minesweeper, questions and tolokers. The
case annotated by ∗ indicates training for more than 10k epochs.

Figure 2: The degree of imbalance, i.e. the R.H.S.
quantity of Eq. (5), before and after rebalancing
every 10 epochs when training roman-empire
on GAT. A value of 0 indicates complete balance.

Figure 3: A narrow range of larger learn-
ing rates results in better generalization for
roman-empire dataset on GAT, with further im-
provement brought by dynamic rescaling (DR) to
balance relative gradients.

This synergetic effect can be attributed to two factors. Firstly, several works report empirical evidence
that larger learning rates are usually associated with flatter minima that have been linked to better
generalization [49, 7, 19]. On the contrary, larger learning rates push the network out of its balanced
state faster and more severely (see Fig. 2), which may impede trainability. However, this can now be
addressed by rebalancing the network during training to facilitate trainability. Thus, balancing by
dynamic rescaling supports higher learning rates in improving generalization. However, for a given
task, only a narrow range of these ‘large enough’ learning rates can produce optimal results [24]. We
show in Fig. 3 that training in balance can further improve the performance for this range of larger
learning rates.

We use gradient clipping in combination with dynamic rescaling to accommodate exploding or
vanishing gradients as a result of training with a larger learning rate and any numerical instabilities
that may arise due to direct manipulation of parameter weights and gradients. We defer the ablation
study of gradient clipping to the appendix.

3.2 Learning layers in order

As discussed in §2, one potential opportunity with dynamic rescaling to improve training dynamics
is to control the order in which layers (or even neurons) in the network learn. We investigate this
experimentally on both synthetic and real-world data, gaining novel insights into potential trends of
optimal training dynamics for different tasks based on their homophily and heterophily. We defer the
description of the synthetic data generation to the appendix.

The training curves and generalization performance achieved on the synthetic task for various train
settings are summarized in Fig. 4. For this task, allowing the network to initially concentrate learning
on the first layer results in faster training, lower minimum test loss, and better generalization than
training the network in the standard setting or with dynamic rescaling. Interestingly, as more initial

6



Figure 4: Performance of a five-layer GAT network on synthetic data under varying settings. Standard
implies regular training with no constant or dynamic rescaling. L = l for l ∈ [5] denotes scaling
down the parameters of l by a constant (λ = 0.002) at initialization followed by regular training. DR
denotes dynamic rescaling to balance relative gradients during training with the specified learning
rate (lr). Note that the train and test accuracy axis have been zoomed in for clarity and the initial
(train or test) accuracy is lower than 0.9 (but rises sharply in the first few epochs). The best strategy
(among considered cases) for this task is to (initially) focus the learning more on the first layer.

(a) The parameters W1 of the first layer are initially scaled by λ in a
loss invariant manner (i.e., W2 second layer is scaled by λ−1). λ = 1
implies standard training. BRG and BC denote training in balance by
DRRG and DRC , respectively. Entries annotated with ∗ indicate the
best (highest) test metric and (lowest) convergence epoch. Models
were trained for a maximum of 5000 epochs.

(b) λ∗ indicates the best case from (a).
F1 and F2 denote the case where the
first and second layers of the model
are frozen, respectively, during training
whereas +c indicates the presence of an
additional linear classifier layer.

Figure 5: Impact of training layers of a two-layer GAT network in and out balance for different
tasks. The tasks {amazon-ratings, questions, roman-empire, tolokers, minesweeper}
are heterophilic and the remaining are homophilic. Homophilic tasks tend to perform better and
converge much faster with learning concentrated in the first layer initially (lower weight norms imply
larger relative gradients), whereas heterophilic tasks perform better when layers are trained in balance.
Interestingly, even freezing the initial values of parameters in the second layer (i.e. only allowing
the second layer to learn) does not significantly reduce the performance for homophilic tasks, even
without an additional classifier layer. On the contrary, freezing the first layer results in a severe drop
in performance for all tasks.

focus is placed on each subsequent layer, the training slows down and generalization worsens, with
l = 5 being (marginally) the lowest. Dynamic rescaling with a learning rate of 0.001, as used in all
cases, is not as effective. However, using a larger learning rate of 0.01 allows the fastest training with
the second-best generalization. We expand on this as we analyze the evolution of relative gradients
for interesting cases in Fig. 8 in the appendix.

Note that this synthetic task, which benefits most from concentrated learning in the first layer, is
designed to be homophilic and thus differs from the heterophilic tasks that benefit more from training
in balance. Prompted by this observation, we next study the impact of ordered learning of layers for
real-world homophilic and heterophilic graphs.

As shown in Fig. 5, we find that real-world graphs indeed exhibit different trends regarding generaliza-
tion and convergence time when trained in balance (w.r.t. relative gradients) and when trained out of
balance (by controlling learning order of layers) depending on their homophilic or heterophilic nature.
Training layers in balance is generally more effective for heterophilic tasks whereas allowing learning

7



(a) Initial focus placed on second layer

(b) Initial focus placed on third (middle) layer

Figure 6: Evolution of gradient norms in a five-layer GCN network trained on synthetic data and
evaluated on two validation sets from the same input distribution as the train set (left and right) with
initial learning focused on the second and third layers in (a) and (b), respectively. The plot design is
similar to that described in Fig. 8 except that in this case, the heatmap represents gradient norms.

to focus on the first layer tends to benefit homophilic tasks, particularly in terms of convergence time.
We discuss this interesting observation more broadly in light of GNN training dynamics.

Generally, the optimal performance achieved by a model is, to a large extent, dependent on how well
the inductive bias of the model architecture aligns with the task and its underlying graph structure. For
example, it is widely known that general GNNs, without specially-introduced architectural elements,
such as GCN perform better on homophilic than on heterophilic tasks. Intuitively, we hypothesize
that homophilic tasks rely more on the neighborhood aggregation functionality of GNNs rather than
feature learning. In this case, an aggregation over a random transformation of similar features may
still be sufficient for good generalization.

Our insight is in line with a recent analysis of training dynamics [43] which shows that the NTK
that controls the evolution of the learned GNN function tends to align with the message passing
matrix (i.e. the adjacency matrix in most cases). Furthermore, for homophilic graphs, the adjacency
matrix also aligns well with the optimal kernel matrix that represents nodes with the same label. As
a result, on homophilic graphs, the alignment of the underlying structure with the optimal kernel
matrix allows parameter-free methods similar to label propagation to perform at par with GNNs.
However, the generalization of GNNs on heterophilic tasks, where the graph structure does not
align with the optimal kernel, is mostly adversely impacted by the NTK aligning with the adjacency
matrix. In other words, the structural information in the graph is not very relevant for a node’s label
in heterophilic settings and thus the node relies more on learning in the feature space rather than
neighborhood aggregation. This is also supported by results showing that embedding additional
MLP layers in the network significantly improves the performance of basic GNNs such as GATs on
these heterophilic tasks [32]. Thus, we conclude that training in balance to potentially learn better
feature transformations in all layers (and potentially neighbors farther away in deeper models) is
more effective in heterophilic cases.

3.3 Grokking-like phenomena

Grokking [33] is defined as a phenomenon where the validation loss reduces, long after a near-zero
train loss has been achieved, towards perfect generalization. It has been observed primarily in the
context of algorithmic and synthetic datasets [30, 6, 41, 42, 22, 21, 11]. Yet, it is still regarded as a
problem of fundamental interest, not only because the phenomenon appears to be puzzling at first,

8



Figure 7: Left: Layer-wise relative gradient norm (log10 scale) and loss curves similar to Figure 3
in the paper. Right: Corresponding accuracy of the same run. Grokking-like phenomenon can be
induced On a 5-layer GAT using real-world roman-empire dataset by placing initial training focus on
layers 4 (top) and 5 (bottom) by scaling down initial parameter norms, followed by rebalancing w.r.t.
relative gradients every 10 epochs staring only at epoch 1000. Note the sharp drop in validation/test
loss immediately after rebalancing which also translates to more rapid improvement in test accuracy.

but also because it gives rise to nuanced insights into how neural networks learn, as it accentuates
different training phases.

Grokking also touches upon our study in which order network layers learn best, as it has been
attributed to network layers getting out of balance due to weight decay and weight norm decrease
[22, 42]. More precisely, [14] argues that it is the result of delayed feature learning. According to
their theory and observations for a 3-layer neural network, primarily the last layer learns first a linear
combination of random features, as the parameter norms are scaled in such a way that it renders
the first layer effectively untrainable, still reaching nearly zero training loss. With an increase of
the last layer norm, however, feature learning by the first layer begins and starts to drive down the
generalization error.

We conjecture that, depending on the learning task, grokking might be induced also by delayed
learning of other layers, not only the last one. Our insights into rescaling based on relative gradients
give us the means to test this hypothesis.

A synthetic node classification task is constructed, similarly as for the experiments in §3.2, except
with N = 100, p = 0.01, and using a GCN instead of GAT as the target network. Using 50 nodes as
the train set, we train a five-layer GCN and evaluate it on the remaining nodes as two disjoint test sets
each of size 25.

Under the condition that the network is allowed to focus learning on the second or third hidden layer
by scaling the weight parameters of the respective layer by λ = 0.02 at initialization, the resulting
training curves in Fig. 6 exhibit a trend similar to grokking.

While one test set eventually achieves zero validation loss, the other’s loss is reduced only to a certain
extent before increasing again to give rise to a U-shaped curve that is more common. The latter is also
similar to the only other case of grokking case detected in GNNs [23], to the best of our knowledge.
Note that, in the former case, learning focused on the middle (third) layer of the network achieves
perfect generalization much faster than when learning is focused on the second layer. This indicates
that layer-level control of learning may be leveraged to facilitate faster generalization in grokking
scenarios.

9



We also induce grokking-related behavior on a real-world dataset roman-empire (see Fig. 7) in
two steps. Firstly, we allow only the last (or second to last) layer to learn which allows the training
accuracy to increase continually while the test accuracy saturates or begins to drop. At this point, we
rescale the network to bring all layers in balance w.r.t. relative gradients, following which, the test
accuracy immediately begins to improve more rapidly accompanied by a drop in training accuracy.
This can be interpreted as the network ‘learning’ more effectively when trained in balance rather than
overfitting to the training data. While this is different from grokking where the training accuracy
would generally not drop, it is independently an interesting observation on a real-world dataset.

Our key takeaway is that, as opposed to the general perception that grokking is induced by learning
only the last layer, we observe a similar pattern by focusing learning on other (hidden) layers.
Strikingly, grokking as a phenomenon can also support learning. While this possibility is a novel
insight, we acknowledge that it is a potentially noisy phenomenon that materializes only in specific
settings. We would like to highlight that understanding grokking is a separate area on its own and
recent efforts are also limited to synthetic data [27]. Our induction of a similar phenomenon in
real-world data by influencing learning dynamics can be of independent interest to develop a deeper
theoretical understanding of such observations. Further investigation for more conclusive insights
related to grokking is an interesting direction for future work.

4 Discussion

We have proposed to exploit the rescale invariance of GNNs such as GATs to control their training
dynamics for improved training speed and generalization. To that end, we propose to rescale the
parameters in such a way that the function, which is defined by a GNN that is trained, remains
unperturbed, while the gradients are rescaled. The partial control of the learning dynamics, which is
thus available, offers us the opportunity to teleport in the parameter space.

While the guiding principle of this teleportation is flexible, we propose to balance relative gradient
norms such that all layers of the GNN are equally involved in the learning process. Our experiments
highlight the potential of this rescaling to support larger learning rates and to balance relative gradients
in search of flatter optima generally associated with better generalization. To our knowledge, we are
the first to tap into the potential that the rescaling flexibility of GNNs has to offer.

While the goal of balancing relative gradients is to involve all network layers equally in learning, we
have also analyzed the other end of the spectrum and discussed how we can influence the order in
which GNN layers are learned. In doing so, we find that while training in balance is effective for
heterophilic graphs, homophilic graphs tend to benefit more from training layers out of balance, with
initially more focus on learning in the first layers. This novel insight into trends regarding training
modes for different tasks contributes to understanding GNN learning dynamics under homophily and
heterophily.

Furthermore, the ordered learning of layers also has implications for grokking-like phenomena, which
provide insights into the inner mechanics of learning and are therefore also of fundamental interest.
With our novel set of experiments, we could show that grokking does not necessarily result from a
delay in feature learning, in which primarily the last layer learns in the first training phase. We could
also induce a similar phenomenon by giving the middle layer a headstart in learning. Interestingly,
this case provides also an example of a scenario in which a grokking-like phenomenon improves the
overall generalization performance of the resulting model. We conjecture that unbalanced learning
can also act as regularization that fights over-fitting.

Thus, our explorations and insights serve as the first stepping stone to developing a more compre-
hensive theory or set of guidelines to leverage dynamic rescaling for training not only GNNs, but
various other deep learning architectures, to improve training speed, generalization, and, potentially,
robustness.

Acknowledgements

We gratefully acknowledge funding from the European Research Council (ERC) under the Horizon
Europe Framework Programme (HORIZON) for proposal number 101116395 SPARSE-ML.

10



References
[1] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian

McWilliams. The shattered gradients problem: If resnets are the answer, then what is the
question? In International Conference on Machine Learning, 2018.

[2] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In
International Conference on Learning Representations, 2022.

[3] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. Graphnorm: A
principled approach to accelerating graph neural network training. In International Conference
on Machine Learning, 2021.

[4] Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and
Zhangyang Wang. Bag of tricks for training deeper graph neural networks: A comprehensive
benchmark study. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[5] George Dasoulas, Kevin Scaman, and Aladin Virmaux. Lipschitz normalization for self-attention
layers with application to graph neural networks.

[6] Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent.
arXiv preprint arXiv:2303.06173, 2023.

[7] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets, 2017.

[8] S. S. Du, W. Hu, and J. D. Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. In Advances in Neural Information Processing
Systems, 2018.

[9] Kimon Fountoulakis, Amit Levi, Shenghao Yang, Aseem Baranwal, and Aukosh Jagannath.
Graph attention retrospective. In Journal of Machine Learning Research, 2023.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In International Conference on Artificial Intelligence and Statistics, volume 9,
pages 249–256, May 2010.

[11] Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

[12] Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. Orthogonal graph neural
networks. In AAAI Conference on Artificial Intelligence, 2022.

[13] Ajay Jaiswal, Peihao Wang, Tianlong Chen, Justin F. Rousseau, Ying Ding, and Zhangyang
Wang. Old can be gold: Better gradient flow can make vanilla-gcns great again. In Advances in
Neural Information Processing Systems, 2022.

[14] Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. In The Twelfth International Conference on
Learning Representations, 2024.

[15] D. Kunin, J. Sagastuy-Brena, S. Ganguli, D.L.K. Yamins, and H. Tanaka. Neural mechanics:
Symmetry and broken conservation laws in deep learning dynamics. In International Conference
on Learning Representations, 2021.

[16] Daniel Kunin, Allan Raventós, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe,
and Surya Ganguli. Get rich quick: exact solutions reveal how unbalanced initializations
promote rapid feature learning, 2024.

[17] Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond
linear networks, 2022.

[18] Soo Yong Lee, Fanchen Bu, Jaemin Yoo, and Kijung Shin. Towards deep attention in graph
neural networks: Problems and remedies. In International Conference on Machine Learning,
2023.

11



[19] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The
large learning rate phase of deep learning: the catapult mechanism. 2020.

[20] Jiahang Li, Yakun Song, Xiang Song, and David Paul Wipf. On the initialization of graph
neural networks, 2023.

[21] Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022.

[22] Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022.

[23] Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
In International Conference on Learning Representations, 2023.

[24] Ekaterina Lobacheva, Eduard Pockonechnyy, Maxim Kodryan, and Dmitry Vetrov. Large
learning rates improve generalization: But how large are we talking about? In Mathematics of
Modern Machine Learning Workshop at NeurIPS, 2023.

[25] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Training matters: Unlocking
potentials of deeper graph convolutional neural networks, 2023.

[26] Qi Meng, Shuxin Zheng, Huishuai Zhang, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. G-sgd:
Optimizing relu neural networks in its positively scale-invariant space.

[27] Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J. Sutherland. Why do you grok?
a theoretical analysis of grokking modular addition. In International Conference on Machine
Learning, 2024.

[28] Nimrah Mustafa and Rebekka Burkholz. Are GATS out of balance? In Advances in Neural
Information Processing Systems, 2023.

[29] Nimrah Mustafa and Rebekka Burkholz. Gate: How to keep out intrusive neighbors. In
International Conference on Machine Learning, 2024.

[30] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International Conference
on Learning Representations, 2023.

[31] Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd: Path-normalized
optimization in deep neural networks. In Advances in Neural Information Processing Systems,
2015.

[32] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of gnns under heterophily: are we really
making progress? In International Conference on Learning Representations, 2023.

[33] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets, 2022.

[34] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020.

[35] T. Konstantin Rusch, Benjamin P. Chamberlain, Michael W. Mahoney, Michael M. Bronstein,
and Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs, 2023.

[36] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and im-
proving convolutional neural networks via concatenated rectified linear units. In International
Conference on Machine Learning, 2016.

[37] Pierre Stock, Benjamin Graham, Rémi Gribonval, and Hervé Jégou. Equi-normalization of
neural networks. In International Conference on Learning Representations, 2019.

12



[38] Hidenori Tanaka, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Advances in Neural Information
Processing Systems, 2020.

[39] Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks,
2023.

[40] Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding
the dynamics of gradient flow in overparameterized linear models. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 10153–10161, 2021.

[41] Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

[42] Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv:2309.02390, 2023.

[43] Chenxiao Yang, Qitian Wu, David Wipf, Ruoyu Sun, and Junchi Yan. How graph neural
networks learn: Lessons from training dynamics. In International Conference on Machine
Learning, 2024.

[44] Han Yang, Kaili Ma, and James Cheng. Rethinking graph regularization for graph neural
networks. In Advances in Neural Information Processing Systems, 202.

[45] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal
Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph
neural networks, 2021.

[46] Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry teleportation for accelerated
optimization, 2022.

[47] Bo Zhao, Iordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. Symmetries, flat minima,
and the conserved quantities of gradient flow, 2023.

[48] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020.

[49] Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
generalization in deep learning, 2022.

[50] Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi
Feng. Understanding and resolving performance degradation in graph convolutional networks.
In Conference on Information and Knowledge Management, 2021.

13



A Proofs

A.1 Proof of Lemma 2.1

Lemma 2.1 states that, under the rescale invariance of GATs, if a parameter is scaled by θ̃ = λθ, then
its gradient is scaled as ∇θ̃L = λ−1∇θL.

Proof. We prove this by deriving the gradients of GAT network parameters.

Firstly, given input representations from layer l− 1 and homogeneous activation functions ϕ1 and ϕ2,
a GAT layer l is defined as :

hl
v = ϕ(

∑
u∈N (v)

αl
uv · Wlhl−1

u ), where (8)

αl
uv =

exp(eluv)∑
u′∈N (v) exp(eluv)

, and (9)

eluv = (al)⊤ · ϕ2(Wl(hl−1
u + hl−1

v )). (10)

Given the following layer l + 1

hl+1
v [k] = ϕ1

 ∑
u∈N (v)

αl+1
uv

nl∑
i

Wl+1[k, i]hl
u[i]

 ,

we derive the gradient of parameter Wl+1[k, j] w.r.t. to network loss L using the product rule:

∂L
∂Wl+1[k, j]

=
∂L

∂hl+1
v [k]

∂hl+1
v [k]

∂Wl+1[k, j]

=
∂L

∂hl+1
v [k]

∑
u∈N(v)

(
αl+1
uv hl

u[j] +

nl∑
i

Wl+1[k, i]hl
u[i]

∂αl+1
uv

∂Wl+1[k, j]

)

Now, if W̃
l+1

[k, j] = λ−1Wl+1[k, j], then in order to keep L unchanged, W̃
l
[j, i] = λWl[j, i]

and ãl[i] = λ−1al[i] which implies that h̃
l

u[j] = λhl
u[j] (as derived in [28]) must hold so that

h̃
l+1

v [k] = hl+1
v [k] remains unchanged, as:

h̃
l+1

v [k] = ϕ1

 ∑
u∈N (v)

αl+1
uv

nl∑
i

λ−1Wl+1[k, i]λhl
u[i]


= ϕ1

 ∑
u∈N (v)

αl+1
uv

nl∑
i

λ−1Wl+1[k, i]λhl
u[i]

 = hl+1
v [k].

Consequently,
∂L

∂hl+1
v [k]

=
∂L

∂h̃
l+1

v [k]
.

We first show that:
∂αl+1

uv

∂W̃
l+1

[k, j]
= λ

∂αl+1
uv

∂Wl+1[k, j]

14



For this, note that

el+1
uv = al+1[k]ϕ2

(
nl∑
i

W̃
l+1

[k, i]
(

h̃
l

v[i] + h̃
l

u[i]
))

+

nl∑
m̸=i

al+1[m]ϕ2

(
nl∑
i

Wl+1[m, i]
(

h̃
l

v[i] + h̃
l

u[i]
))

= al+1[k]ϕ2

(
nl∑
i

λ−1Wl+1[k, i]
(
λhl

v[i] + λhl
u[i]
))

+

nl∑
m ̸=i

al+1[m]ϕ2

(
nl∑
i

Wl+1[m, i]
(
λhl

v[i] + λhl
u[i]
))

= λal+1[k]ϕ2

(
nl∑
i

λ−1Wl+1[k, i]
(

hl
v[i] + hl

u[i]
))

+ λ

nl∑
m̸=i

al+1[m]ϕ2

(
nl∑
i

Wl+1[m, i]
(

hl
v[i] + hl

u[i]
))

.

and,

∂αl+1
uv

∂Wl+1[k, j]
=

∂αl+1
uv

∂el+1
uv

∂el+1
uv

∂Wl+1[k, j]

=
∂αl+1

uv

∂el+1
uv

al+1[k]
(
hl
v[j] + hl

u[j]
)
+

nl∑
m ̸=i

al+1[m]ϕ2

(
nl∑
i

Wl+1[m, i]
(

hl
v[i] + hl

u[i]
)) .

Then,

∂αl+1
uv

∂W̃
l+1

[k, j]
=

∂αl+1
uv

∂el+1
uv

∂el+1
uv

∂W̃
l+1

[k, j]

=
∂αl+1

uv

∂ẽl+1
uv

λ

al+1[k]
(
hl
v[j] + hl

u[j]
)
+

nl∑
m̸=i

al+1[m]ϕ2

(
nl∑
i

Wl+1[m, i]
(

hl
v[i] + hl

u[i]
))

= λ
∂αl+1

uv

∂Wl+1[k, i]
.

Also note that:

∂L

∂h̃
l+1

v [k]
=

∂L
∂hl+1

v [k]
since h̃

l+1

v [k] = hl+1
v [k].

Then, using all the above facts,

∂L

∂W̃
l+1

[k, j]
=

∂L

∂h̃
l+1

v [k]

∂h̃
l+1

v [k]

∂W̃
l+1

[k, j]

=
∂L

∂hl+1
v [k]

∑
u∈N(v)

(
αl+1
uv λhl

u[j] +

nl∑
i

Wl+1[k, i]hl
u[i]

∂αl+1
uv

∂W̃
l+1

[k, j]

)

= λ

 ∂L
∂hl+1

v [k]

∑
u∈N(v)

(
αl+1
uv hl

u[j] +

nl∑
i

Wl+1[k, i]hl
u[i]

∂αl+1
uv

∂Wl+1[k, j]

)
= λ

∂L
∂Wl+1[k, j]

.

Therefore, scaling the parameter Wl+1[k, i] by λ−1 scales its gradient by λ = (λ−1)
−1.

Next, we derive the gradients for parameter al[i].

15



∂L
∂al[i]

=
∂L

∂hl
u[i]

∂hl
u[i]

∂al[i]

We note that under the rescaling, α̃l
uv = αl

uv . If ãl[i] = λ−1al[i], the rescale invariance implies that

have also W̃
l
[i, k] = λWl[i, k] then:

∂L
∂ãl[i]

=
∑
uv

∂L
∂ẽluv[i]

∂ẽluv[i]

∂ãl[i]

=
∑
uv

∂L
∂ẽluv[i]

ϕ2(W̃
l
[i, :](hl−1

u + hl−1
v ))

= λ
∑
uv

∂L
∂ẽluv[i]

ϕ2(Wl[i, :](hl−1
u + hl−1

v ))

= λ
∂L
∂a

l

[i]

Therefore, scaling the parameter al[i] by λ−1 scales its gradient by λ = (λ−1)
−1 .

This concludes the proof of Lemma 2.1.

B Additional Details

Synthetic task generation We construct a synthetic node classification task where we can examine
the effects of allowing a layer to learn faster relative to others in a controlled environment. The
input graph G with N = 5000 is generated by the Erdős–Rényi (ER) model with edge probability
p = 0.001. Input node features h0

v ∈ Rd are sampled from a standard normal distribution. This input
graph G with no self-loops on nodes (i.e. v /∈ N(v)) is fed to a random Xavier [10] initialized GAT
network Mk of k− 1 layers each of width d and a final layer of width C, the number of classes of the
classification task. This serves as the task’s target network since its output embeddings are used to
generate node labels in G. More precisely, for each node v, the node embedding output by Mk, hMk

v
is effectively a function f of nodes in the k-hop neighborhood Nk(v) of node v. f is represented by a
random GAT network as a series of non-linear transformations. Finally, we run K-means clustering
on the neighborhood aggregated representation of nodes hMk

v to divide nodes into C clusters. This
clustering assigns node labels for our node classification task such that yv = argc∈[C](v ∈ c). We set
d = 10, C = 2 and k = 5. This synthetic data generation ensures that the ground truth model can be
represented by a GAT.

Synthetic task training Given the input graph G with a .75/.25/.25 train/validation/test split, we
train a L = k layer GAT network with the same architecture as Mk but initialized with a looks-linear
orthogonal structure which ensures that the network must learn the non-linear transformations of the
target network. Furthermore, as noted in [28], the LL-orthogonal initialization facilitates trainability.

Synthetic task results discussion We analyze the relative gradients of some interesting cases of
training a five layer GAT on the synthetic task under various settings. As also observed in Fig. 4, the
network generalizes best on the given task when the first layer (initially) learns faster than the other
layers in Fig.8(c). This implies that the task demands more focus on the first layer, and thus enforcing
all layers to learn (relatively) at the same rate in Fig.8(a) is not ideal. However, interestingly, a larger
learning rate in Fig.8(b) enhances the network’s ability to break free from its balanced state during
training to have greater relative gradients in the first layer and decrease relative gradients in the latter
layers with the last layer receiving the lowest. This also aligns with the pattern observed in Fig.
4. However, due to the dynamic rebalancing every 10 epochs, the network’s favorable dynamic is
still disrupted. This results in a smaller increase in test accuracy from Fig.8(a) as compared to the

16



(a) DR of rel. gradients; lr=0.001, (94.08@1847) (b) DR of rel. gradients; lr=0.01, (95.28@173)

(c) Init. scaling to focus on first layer; (97.04@367) (d) Init. scaling to focus on last layer; (94.0@1260)

Figure 8: Evolution of relative gradients norms in a five-layer GAT network trained on synthetic data
under varying settings. Test accuracy (%) @ epoch of maximum validation accuracy is reported in
parentheses. The colored heatmap in the background displays log10 of relative gradient l2−norm for
each layer (left axis) during training. Darker regions correspond to higher relative gradients. The
training curves in the foreground show the train and test loss (right axis) for the epoch.

most favorable dynamics in Fig.8(c) for the task. Nevertheless, this supports our hypothesis that
larger learning with dynamic rescaling potentially enables better generalization, as shown in Fig. 1
for real-world data. In comparison, initially restricting learning to only the last layer in Fig.8(d) is
the worst case and comparable to enforcing all layers (including the last) to learn simultaneously.
Although the test accuracy is high (> 90%) in all cases, we focus on the relative difference in test
accuracy under varying conditions, which are small, yet, significant as the goal of the task is to make
the effects of different training conditions easily observable in isolation.

Ablation of gradient clipping As evident from Table 2, employing gradient clipping alone does
not improve the performance in the absence of dynamic rescaling.

Table 2: Results of training a 5-layer GAT network with and without gradient clipping (GC) in the case
of no dynamic rescaling. The mean ±95% CI test metric at the epoch of the best validation metric
across 10 splits is reported using the best learning rate from {0.01, 0.001, 0.005}. The evaluation
metric is accuracy for roman-empire and amazon-ratings, and ROC AUC for the remaining
datasets.

roman-empire amazon-ratings tolokers questions minesweeper

w/o DR
w/o GC

0.4978±
0.0209

0.4545±
0.0043

0.6493±
0.008

0.5829±
0.0172

0.5057±
0.0058

w/o DR
w/ GC

0.3711±
0.0357

0.4535±
0.0025

0.6441±
0.0116

0.5745±
0.0135

0.5019 pm
0.0092

Limitations We elaborate on the current limitations of this work as follows:

• The primary limitation of dynamically rescaling a model is that we require the rescale
invariance of the model architecture (if it exhibits one), which may vary widely across
different GNN architectures. The dynamic rescaling proposed in the paper applies to
GCNs and GATs, two standard baseline GNN models commonly used to study and develop

17



insights into the training dynamics of GNNs. While in theory, this is a prerequisite to
dynamically rescale the network during training without altering its function to potentially
improve training dynamics, we conduct an experiment where this prerequisite is not fulfilled
by simply replacing the ReLU activation with the Tanh activation that is not positively
homogeneous. Consequently, the network no longer exhibits rescale invariance. However,
we find that in practice, the advantages of dynamic rescaling to train in balance can still
be observed in terms of better generalization. For example, on the roman-empire dataset,
using Tanh activation in a 5 layer GAT trained on roman-empire achieves an average test
accuracy (over 3 runs) of 58.14± 4.64% and 30.98± 2.32% with and without rebalancing,
respectively. While this trend aligns with that observed using ReLU, the training may be
more noisy as each rescaling during training is not loss invariant.

• From an implementation perspective, directly manipulating model parameter values and
gradients during rescaling can result in numerical instability issues that we currently regulate
using gradient clipping, a commonly used practice in machine learning. Nevertheless, a
more principled approach to tackle this problem could be beneficial.

• Rebalancing repeatedly and frequently during training may incur computational overhead in
practice. However, it may be offset by the increased training speed, requiring fewer epochs
overall. From a time complexity perspective, rebalancing only adds a constant factor of
operations in each epoch determined by the number of iterations in one rebalancing step.
In practice, we find that only a few iterations (< 10) are necessary to balance the network
approximately enough to gain better generalization and/or training speed.

18



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes]
Justification: The contributions listed in the introduction can be mapped the section ad
subsection headings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention that we do not experimentally explore all the conceptual ideas
discussed in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19



Answer: [Yes]
Justification: The paper has one theoretical result, for which the complete proof with
references is provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We report the setup of all our experiments, reference benchmark datasets used,
and outline the method of synthetic data generation in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code setup for all the experiments is provided as supplementary material and
will be made publicly available once anonymity restrictions are lifted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: All details are included in the Experiments section and complete executable
code is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The 95% confidence interval over 10 runs is reported for the main experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details provided in experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Reference to the paper that introduced the real-world datasets used in our
experiments provided.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24


	Related work
	Dynamic rescaling
	Experiments
	Training in balance
	Learning layers in order
	Grokking-like phenomena

	Discussion
	Proofs
	Proof of Lemma 2.1

	Additional Details

