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Abstract

Training Mixture of Experts (MoEs) from scratch
in a large-scale regime is expensive. Previous
work addresses this challenge by independently
training multiple dense expert models and using
them to initialize an MoE. In particular, initializ-
ing MoE layers using experts’ feed-forward pa-
rameters while merging all other parameters. This
limits the advantages of the specialized dense
models when “upcycling” them as MoEs. We
propose BAM (Branch-Attend-Mix), a simple yet
effective improvement to MoE training. BAM
makes full use of specialized dense models by not
only using their feed-forward network (FFN) to
initialize the MoE layers but also leveraging ex-
perts’ attention weights fully by initializing them
as Mixture of Attention (MoA) layers. Our ex-
periments using seed models ranging from 590
million to 2 billion parameters show that our ap-
proach outperforms state-of-the-art approaches
under the same data and compute budget in both
perplexity and downstream tasks evaluations.

1. Introduction
Mixture of Experts (MoE) (Fedus et al., 2022; Zoph et al.,
2022; Shazeer et al., 2017; DeepSeek-AI, 2024; Jiang et al.,
2024; Gale et al., 2023) have emerged as a popular alter-
native architecture to dense models. During training and
inference, each input activates only a subset of the MoE
model parameters (often referred to as experts), thereby de-
coupling computation cost from the total parameter count,
allowing the total number of parameters to grow without
additional computation. Consequently, MoEs empirically
outperform dense models with equivalent computational
requirements (Fedus et al., 2022; Krajewski et al., 2024).
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However, training MoEs (i.e. starting from randomly initial-
ized weights) is expensive (Gale et al., 2023; Fedus et al.,
2022) and hard (Zoph et al., 2022). To address this, recent
works have explored more efficient alternatives by initial-
izing MoEs using pre-trained dense models (Komatsuzaki
et al., 2022; Sukhbaatar et al., 2024), followed by a small
number of MoE fine-tuning steps. In particular, Branch-
Train-MiX (BTX) (Sukhbaatar et al., 2024) initializes an
MoE with N FFN experts through a three-step upcycling
process. Initially, N copies of a pre-trained seed model are
created. Each copy is then further pre-trained on domain-
specific data for specialization. The MoE’s FFN expert
parameters are subsequently initialized from these special-
ized dense models by directly copying their FFN parameters.
It’s important to note that the MoE’s non-FFN parameters,
such as attention layers, are not converted to MoE layers.
Since there are N dense models, each with its own set of at-
tention parameters, BTX uses the uniform average of the N
attention parameters to initialize the MoE’s attention module
while the router parameters are initialized randomly.

However, this approach fails to take full advantage of the
specialized dense models: 1) If we are already training
N specialized dense models with N specialized attention
modules, we should also leverage the expert knowledge
from these attention modules of specialized dense models;
2) uniformly averaging model parameters from different
models, even when branched from the same seed model, is
known to degrade performance (Li et al., 2022).

Motivated by this, we propose Branch-Attend-Mix (BAM),
a simple yet effective improvement to BTX that upcycles
both feed-forward and attention parameters into expert lay-
ers. See 1 for an illustration of BAM. In order to fully
leverage the specialized attention experts and improve train-
ing stability, BAM uses a variant of Mixture of Attention
(MoA; Zhang et al., 2022) with soft routing where each
token is assigned to every attention expert. To account for
the increased computations from soft routing MoA, BAM
employs a parallel-attention transformer architecture (Wang
and Komatsuzaki, 2021; Chowdhery et al., 2023) that allows
the attention experts and FFN experts to be computed in
parallel for better throughput.

We conduct experiments using seed models ranging from
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Figure 1. BAM operates in three phases: branching continued pre-training, mixture model training phase †.

590 million to 2 billion parameters and show that our ap-
proach outperforms BTX under the same data and compute
budget in both perplexity and downstream evaluations on
various domains, confirming the effectiveness of our pro-
posed method.

2. Background
2.1. Parallel-Attention Transformers

The default architecture for LLMs is based on stacking mul-
tiple blocks of the transformers (Vaswani et al., 2017). The
original transformer architecture consists of a multi-headed
attention (MHA), often referred to as the attention layer, a
residual connection, followed by a feed-forward neural net-
work (FFN). Recent works (Wang and Komatsuzaki, 2021;
Chowdhery et al., 2023) introduced the parallel-attention
transformer, a variant of the original architecture, which
computes the output of the attention and the FFN layers in
parallel using the same input. The final transformer output
is the projected concatenation of the attention output and
the FFN output with its residual connection (See Figure 1).
Processing the two layers in parallel increases the computa-
tional throughput without degrading the performance.

2.2. Multi-Headed Attention

In an attention layer with h heads, the input is first linearly
projected to generate the query, key, and value matrices
through learned projections. For each head, the outputs
are calculated using the projected matrices. The resulting
outputs from different heads are concatenated and then pro-
jected back to the original model dimension size:

Headi = softmax

(
QW q

i (KW k
i )

T

√
dk

)
VW v

i

MHA(Q,K, V ) = concatenate (head1, . . . , headh)W o,
(1)

where W q
i ,W

k
i ∈ Rdmodel×dk , W v

i ∈ Rdmodel×dv and W o ∈
Rhdv×dmodel , dk is the key dimension.

2.3. Mixture of Experts

The Mixture of Experts (MoE; Shazeer et al., 2017) model
differs from the vanilla transformer by replacing the FFN
with an MoE Layer. An MoE Layer consists of a linear
router parameterized by WFFN router ∈ Rdmodel×N and a col-
lection of N FFN experts {FFNi(x)}Ni=1. The normalized
router logits are defined as p(x) = softmax (WFFN router · x),
where each element pi(x) represents the gate value for the
i-th expert, FFNi. The router assigns each input token rep-
resentation x to the k experts with the highest gate values.
Denoting the set of selected top-k indices as T , the final out-
put of the MoE layer is the gate-value weighted combination
of each selected expert’s computation, given by:

FFNMoE =
∑
i∈T

pi(x)FFNi(x).

2.4. Mixture of Attention

In addition to replacing FFNs in the dense architecture
with MoE layers, Mixture of Attention (MoA; Zhang et al.,
2022; Shen et al., 2024) also replaces the attention layer in
the dense architecture with MoA layers. An MoA layer
consists of a linear router parameterized by the router
weight Wattn router ∈ Rdmodel×N and a set of N attention ex-
perts, {MHAj(x)}Nj=1. The normalized router logits are
defined as g(x) = softmax (Wattn router · x), where each el-
ement gj(x) represents the gate value for the j-th expert,
MHAj . Each attention expert is made up of Q-projection ex-
perts

{
W q

j

}N

j=1
and the attention output projection experts{

W o
j

}N

j=1
. The KV-projections W k and W v are shared

among all experts for computation efficiency. Denoting the
set of selected top-k indices as M, the final output of the
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MoA layer is given by:

MHAMoA =
∑
i∈M

gi(x)MHAi(x).

3. BAM: Branch-Attend-Mix
BAM operates in three phases. We describe them in more
detail below:

1) Branching: we create N copies of the model from a pre-
trained dense model. Specifically for BAM, we propose to
use a pre-trained seed model with a parallel-attention trans-
former architecture. This choice is motivated by two rea-
sons: 1) Compared to vanilla transformers, parallel-attention
transformers offer better throughput with minor degradation
in performance at small scales but no degradation at larger
scales. This has been demonstrated empirically in works
like PALM (Chowdhery et al., 2023) and GPT-J (Wang and
Komatsuzaki, 2021). 2) A seed model with parallel atten-
tion blocks allows us to have a parallel-attention mixture
model. This enables parallel computation of attention and
FFN experts, which improves throughput of BAM during
training and inference.

2) Continued Pre-training: we continue pre-training each
copy of the seed model independently on its own data mix-
ture covering different specialized domains, namely, law,
math, and coding. This phase yields specialized dense ex-
pert models.

3) Mixture Model Training: we initialize the experts in
the mixture model using the specialized dense models from
above. In addition, we also keep a copy of the original
pre-trained seed model to the mixture (similar to BTX) so
that the seed model’s general knowledge learned in the pre-
training stage is transferred to the mixture model. What
sets BAM apart is the initialization of the mixture model,
which takes full advantage of the dense specialized mod-
els by leveraging both the FFN and attention experts. We
directly use the expert parameters from each dense model
to initialize the corresponding mixture parameters. Layer
normalization, input embedding layer, and output embed-
ding layer parameters of the mixture model are initialized
by uniformly averaging the corresponding parameters in
each of the dense models. The router layers are initialized
randomly. Upcycling attention experts is beneficial for two
reasons: 1) It allows us to take full advantage of the spe-
cialized dense models; and 2) it avoids uniformly averaging
attention parameters, which has shown to degrade model
performance (Li et al., 2022). In the following, we discuss
in more detail how attention experts and FFN experts are
trained.

3.1. Mixture Model Training: Attention Experts

The MoA architecture (Zhang et al., 2022) uses only the
query projection (W q) and the attention output as MoA ex-
perts, while sharing the KV projections among all experts
for efficiency. In this work, we employ a soft version of
MoA where the attention router assigns each token to all
attention experts. We also propose a variant that also uses
the key-value projections (W k,W v) as MoA experts. These
decisions are based on three reasons: 1) to fully leverage spe-
cialized attention experts, 2) since FFNs already dominate
transformer computations (Zhang et al., 2023; Karpathy,
2023), we can afford a more expensive attention operation
using parallel transformers, 3) soft-routing allows for more
stable training since it is no longer a discrete optimization
problem and is not subjected to common MoE training prob-
lems such as imbalanced router load (Fedus et al., 2022;
Zoph et al., 2022) .

These choices involve a trade-off between efficiency and
performance, which we discuss in Section B.4 on how to
evaluate fairly. From here on, we refer to upcycling into
soft-MoA with all attention parameters as BAM with KV
experts, and soft-MoA with KV projections shared among
experts as simply BAM with KV sharing.

4. Experiment Details
We validate BAM empirically through two sets of experi-
ments, varying in scale. The first set uses seed model with
590 million parameters and the second set with 2 billion
parameters. For both set of experiments, we train a mixture
model with 4 experts: a general pre-training expert (seed
model), a code expert, a math expert, and a law expert. See
the Appendix for model architecture and experiment details.

4.1. Evaluation

We compare BAM to BTX as well as the dense models
which they are upcycled from (see the Appendix for more
evaluation details). We evaluate BAM in two settings. 1)
Data-Matching (DM): We use exactly the same training
data as our BTX baseline. 2) Compute-Matching (CM):
We train BAM and BTX with the same amount of TPU-
core-days.

5. Results
We evaluate BAM against baselines on both perplexity and
benchmark tasks. For the case of sharing KV projections
among MoA experts, we refer to it as BAM (shared KV)
in the results tables. For the case of using all attention
parameters as MoA experts, we refer to it as BAM (Expert
KV).

We show perplexity evaluation on small-scale experiments
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Pretrain Code Law Math Average

Base Model 23.98 8.62 8.92 14.12 13.91

Specialized Models
Code Dense Expert 39.50 3.71 10.83 8.77 15.70
Law Dense Expert 87.82 23.45 7.53 30.79 37.40
Math Dense Expert 57.61 6.78 10.43 5.67 20.12

Generalist Models
BTX (Baseline) 26.72 3.78 6.63 5.77 10.72
BAM DM (Expert KV), ours 24.02 3.45 6.04 5.31 9.70
BAM CM (Expert KV), our 24.84 3.53 6.21 5.43 10.00
BAM DM (Shared KV), ours 25.67 3.64 6.39 5.57 10.32
BAM CM (Shared KV), ours 26.00 3.72 6.50 5.63 10.46

Table 1. Perplexity evaluation (↓) of BAM versus BTX for small scale experiments.

Pretrain Code Law Math Average

Base Model 9.83 2.41 3.86 3.71 3.33

Specialized Models
Code Dense Expert 15.39 2.18 5.22 4.34 3.91
Law Dense Expert 32.69 6.84 3.09 8.61 6.18
Math Dense Expert 20.32 3.20 5.11 3.20 3.84

Generalist Models
BTX (Baseline) 10.35 2.40 3.76 3.64 3.27
BAM DM (Expert KV), ours 10.11 2.36 3.66 3.55 3.19
BAM CM (Expert KV), our 10.19 2.37 3.69 3.57 3.21
BAM DM (Shared KV), ours 10.20 2.37 3.69 3.59 3.22
BAM CM (Shared KV), ours 10.28 2.38 3.72 3.61 3.24

Table 2. Perplexity evaluation (↓) of BAM versus BTX for large-scale experiments.

in Table 1. BAM outperforms BTX under both the com-
pute and token-matching regimes. Even though the dense
seed model achieves the best perplexity on the general pre-
training dataset, it lags far behind all generalist models in
all other data domains. All BAM models achieve the best
average perplexity out of all models.

See Table 2 for perplexity results on large-scale experiments.
BAM again outperforms the BTX baseline under both the
compute-matching and token-matching regimes. The dense
models are better than generalist models only when evaluat-
ing the corresponding expert domain. However, the dense
models still lag far behind all generalist models in all other
data domains. All BAM models achieve a lower average
perplexity than the BTX baseline.

Finally, we also show BAM outperforms BTX in most down-
stream tasks evaluation domains, and results are shown in
Table 3 in the Appendix.

6. Conclusion
In this work, we propose BAM (Branch-Attend-Mix), a sim-
ple yet effective improvement for upcycling dense models
into mixture models. In addition to upcycling just the FFN
parameters, we also upcycle the dense model’s attention pa-
rameters into Mixture of Attention (MoA). In order to fully
leverage the specialized attention experts and improve train-
ing stability, BAM uses a variant of MoA with soft-routing,
where each token is assigned to every attention expert. To
account for the increased computations from soft-routing
MoA, BAM employs a parallel-attention transformer archi-
tecture that allows the attention experts and FFN experts to
be computed in parallel for better throughput. We evaluate
BAM empirically against baselines on seed models ranging
from 590 million to 2 billion parameters. We show that our
approach outperforms the baseline BTX under the same data
and compute budget in both perplexity and downstream task
evaluations, confirming the effectiveness of our proposed
method.
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BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts

A. Related Work
Efficient initialization for MoEs Two recent works have studied how to use pre-trained dense models to initialize MoEs
(Komatsuzaki et al., 2022; Sukhbaatar et al., 2024). Sparse Upcycling (Komatsuzaki et al., 2022) upcycles a single dense
model by simply copying over dense model parameters as MoE parameters. It replicates FFN parameters N times into each
FFN expert in sparse MoE layers. BTX (Sukhbaatar et al., 2024) improves on this approach by upcycling not just a single
dense seed model but also multiple specialized dense models branched from the seed model. This is advantageous because
not only can the dense models be trained in parallel, but also they are specialized in particular domains. However, unlike our
method, both approaches only upcycle the FFN part of the dense (seed or specialized) models.

Alternative architecture for MoEs Alternative to the standard MoE architectures where only feed-forward blocks (FFNs)
are used as MoE layers, recent work (Zhang et al., 2022; Peng et al., 2020; Csordás et al., 2023; Shen et al., 2024) investigates
the mixture-of-attention framework, which uses attention experts in addition to FFN experts. This approach has not gained
widespread popularity because it only achieves modest performance improvements while requiring additional engineering
tricks for optimization (Csordás et al., 2023). However, in the setting of upcycling specialized dense experts into an MoE,
the usage of attention experts is much more appropriate as the attention parameters contain specialized domain knowledge
that would otherwise not be accessible in the final MoE.

Alternatives Methods for Model Merging Recent work has tried to combine many openly available, dense models to
create an improved model, via layerwise merging or stitching of pre-trained model weights (Akiba et al., 2024). However,
this approach creates a new dense model, not a sparse one. Other work has looked into dynamically adding new blocks to
MoA whenever the model is trained on a new domain, but uses random initialization for the new experts instead of utilizing
existing models (Shen et al., 2023).

B. Experiment Details
B.1. Mixture Model Training Phase: FFN Experts

We use top-1 routing of FFN experts for all experiments unless otherwise stated. For training stability, we use a load
balancing loss LLB (Fedus et al., 2022) and a router z-loss (Zoph et al., 2022), where the latter is noted to be important in
(Zhang et al., 2022; Shen et al., 2024). Let B be the number of tokens in the batch, fi be the fraction of tokens assigned to
FFN expert i, and Pi be the fraction of the expert i’s gate value, then the two auxiliary losses are as follows:

LLB = N

N∑
i=1

fiPi

Lz =
1

B

B∑
i=1

(
LogSumExpj=1:N

(
xi
j

))2 (2)

The model’s final loss function L is a weighted sum, where LNLL is the negative log-likelihood loss, and α and β are
hyperparameters.

L = LNLL +
∑

∀ MoE Layers

(αLLB + βLz) (3)

B.2. Experiments

Small-Scale Experiments Our first set of experiments involves a dense seed model with 590 million parameters, pre-
trained on 400 billion tokens. We create three copies of this seed model, each of which is then further trained on a specialized
data domain for 100 billion tokens. For all experiments, we use the AdamW optimizer with a weight decay of 0.1. The
batch size is set to 1 million tokens. During the pre-training and mixture model training phases, we employ a learning rate
schedule that warms up from 0 to 1.2e− 4 over 1500 steps, then decays to a tenth of the peak value using a cosine schedule.
For the continued training phase, we use a learning rate of half the pre-training peak to ensure training stability.
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BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts

Math Code Law Know. Reason. MMLU Average

Seed Model 3.68% 9.41% 73.34% 21.33% 47.73% 34.13% 31.60%

Specialized Models
Math Dense Expert 4.92% 12.39% 68.21% 13.32% 46.11% 34.29% 29.87%
Code Dense Expert 3.19% 18.80% 21.49% 12.18% 44.29% 31.50% 21.91%
Law Dense Expert 3.05% 0.20% 88.80% 10.41% 44.08% 32.18% 29.79%

Generalist Models
BTX (Baseline) 3.86% 10.05% 81.85% 19.07% 47.36% 34.07% 32.71%
BAM DM
(Expert KV), ours 4.44% 12.83% 85.47% 19.89% 47.11% 34.42% 34.02%

BAM CM
(Expert KV), ours 4.34% 12.48% 82.79% 19.51% 47.43% 34.43% 33.50%

BAM DM
(Shared KV), ours 4.10% 11.76% 86.73% 19.48% 47.27% 34.55% 33.98%

BAM DM
(Shared KV), ours 3.65% 11.77% 80.98% 19.22% 47.56% 34.16% 32.89%

Table 3. Benchmark evaluations (↑) for BAM versus BTX. Table shows large-scale experiments (using a seed model of 2B parameters).
Highlighted entries indicate models outperform the BTX baseline. All BAM variants outperform BTX on average across all domains.

Large-Scale Experiments The second set of experiments utilizes a dense seed model with 2 billion parameters, pre-trained
on 750 billion tokens. Similarly, we create three copies of this seed model, each continuing pre-training on its own data
domain for an additional 100 billion tokens. We use the AdamW optimizer with a weight decay of 0.1. The batch size is
set to 4 million tokens. During the pre-training phase, we employ a learning rate schedule that warms up from 0 to 1e− 2
over 2000 steps, then cosine-decays to 3e− 4. For the continued training phase, we use a learning rate that is half of the
pre-training peak to ensure training stability. For the mixture model training phase, we encountered gradient spikes when
using the same learning rate schedule as in the pre-training phase. To address this, we adopted a lower peak learning rate of
1e− 4, which decays to 1e− 5 with 1000 warmup steps, following the same schedule as BTX.

B.3. Data Details

In the continued pre-training phase, each dense expert is trained on its data domain for 100 billion tokens. The data
domains contain the following data:

• Math: the MathGLM (Yang et al., 2023), GSM8K (Cobbe et al., 2021), proof-pile-2 (Azerbayev et al., 2023), and
MathPile (Wang et al., 2023) datasets. Note that there is no overlap between the GSM8K train and evaluation split.

• Code: the Starcoder dataset (Li et al., 2023).

• Law: the pile-of-law (Henderson et al., 2022) and HUPD (Suzgun et al., 2024) datasets.

Additionally, we incorporate 10% text data from Common Crawl into each domain .

In the mixture model training phase, we use a data mixture composed of 25% of each expert domain, plus 25% of
pre-training data used for training the seed model. The data mixture weights for the validation set are the same as for the
training set.

B.4. Evaluation

We compare BAM to BTX trained in the same setting as well as the original dense seed model and the dense expert models.
We evaluate BAM in two settings:

• Data-Matching (DM): We use exactly the same training data as our BTX baseline.
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BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts

• Compute-Matching (CM): We train BAM and BTX with the same amount of TPU-core-days. In the small-scale
experiments, all MoE training phases take 25 TPU-core-days. In the large-scale experiments, all MoE training phases
take 305 TPU-core-days.

In addition to perplexity, we also evaluate large-scale experiments’ model performances on a variety of domains with
zero-shot and few-shot downstream tasks. For each domain, we report the average of scores of tasks in that domain.‡ We
evaluate on the following general and domain-specific downstream tasks:

• Math: we report the average performance on GSM8K (8-shot) (Cobbe et al., 2021) and MATH (4-shot) (Hendrycks
et al., 2021a) for mathematical reasoning.

• Code: we report the average performance on HumanEval (0-shot) (Chen et al., 2021) and MBPP (3-shot) (Austin et al.,
2021) for code generation.

• Law: we report the performance on the International Citizenship Questions sub-task in LegalBench (Guha et al., 2024).

• World Knowledge: we report the average performance on Natural Questions (0-shot) (Kwiatkowski et al., 2019) and
TriviaQA (0-shot) (Joshi et al., 2017) for fact knowledge.

• Reasoning: we report the average performance on ARC-Easy, ARC-Challenge (Clark et al., 2018), SIQA (Sap et al.,
2019), PIQA (Bisk et al., 2019), WinoGrande (Sakaguchi et al., 2019), and QUAC (Choi et al., 2018) (all 0-shot) for
reasoning abilities.

• General Knowledge: we report the performance on MMLU (5-shot) (Hendrycks et al., 2021b) for general language
understanding.

C. Model Architecture Details

Large Scale Small Scale
Embedding dimension 2304 1024
FFN dimension 18432 4096
# Heads 18 8
# KV heads 6 8
Vocabulary Size 256000 256000
Activation Function swiglu swiglu
# layers 18 6
Positional Embedding rope rope
Share Input & Output Embedding Yes No

Seed Model Parameters 2 Billion 590 Million

Table 4. Model architecture details for large and small scale experiments
.

C.1. Benchmark Evaluations

See Table 3 for benchmark evaluations on large scale experiments, BAM models alaway outperforms BTX on the average
benchmark scores.

D. Ablations
We ablate the importance of upcylcling attention experts in BAM by comparing BTX with matching total parameters and /
or active parameters. All ablation experiment use the same number of 100B tokens in the mixture model training phase. See
Table 5 in the Appendix for a detailed walk-through on calculating the number of total and active parameters of each model.

‡For each experiment setting, we only include a benchmark if the maximum score achieved by any model is above random guessing.
For LegalBench, we chose International Citizenship QA because models scored above random among the few sub-task implemented in
our code-base.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts

Dense BAM BAM (KV sharing) BTX top-1 BTX top-3
layernorm / Block 1024 1024 1024 1024 1024
attn out / Block 1,048,576 4,194,304 4,194,304 1,048,576 1,048,576
qkv proj / Block 3,145,728 1,258,2912 4,194,304 3,145,728 3,145,728
ffn exp / Block 4,194,304 4,194,304 4,194,304 4,194,304 12,582,912
ffn red / Block 2,097,152 2,097,152 2,097,152 2,097,152 6,291,456
router / Block 0 4096 4096 4096 4096
input embedding 262,144,000 262,144,000 262,144,000 262,144,000 262,144,000
output embedding 262,144,000 262,144,000 262,144,000 262,144,000 262,144,000
layernorm 1024 1024 1024 1024 1024

Active Params 587,209,728 662,731,776 612,400,128 587,234,304 662731776
Total Params 587,209,728 776,002,560 738,253,824 700,480,512 700,480,512

Table 5. Parameter counting for small scale ablation experiments. Transformer parameters are reported as per parameters per transformer
block.

Matching the Number of Total Parameters with BTX To match the number of total parameters in BTX with BAM, we
simply increase the number of FFN experts. All newly added FFN experts are initialized from the seed model’s FFN. In
Table 6, we see that BTX matches BAM’s total parameters when BTX uses 6 FFN experts. Even when increasing BTX’s
total parameter count to 851M, BAM still outperforms BTX.

Total Params Active Params Code Law Math Pre-train
BAM, ours 776M 663M 3.44 6.04 5.31 24.06
BTX 4 Experts 700M 587M 3.78 6.63 5.77 26.72
BTX 5 Experts 738M 587M 4.11 7.19 6.25 29.08
BTX 6 Experts 776M 587M 3.99 7.03 6.10 28.50
BTX 7 Experts 813M 587M 3.90 6.84 6.00 27.36
BTX 8 Experts 851M 587M 3.94 6.92 6.05 27.79

Table 6. Perplexity ablation (↓) of BAM total parameter matching with BTX on small scale experiments. To match BTX’s total parameters
to BAM, we increase BTX from having 4 to a maximum of 8 experts. The additional added experts are upcycled from the same copy of
the FNN in the dense seed model.

Matching the Number of Total & Active Parameters with BTX To match the number of active parameters with BAM,
we simply increase the number of top-k from the usual top-1 to top-3 in every MoE layer of BTX. We see that BTX matches
total parameters and active parameters with BAM when using top-3 routing with a total of 6 experts in Table 7. Despite
matching parameters, BTX does not outperform BAM.

Total Params Active Params Code Law Math Pre-train
BAM, ours 776M 662M 3.44 6.04 5.31 24.06
BTX top 3/6 Experts 776M 662M 3.55 6.23 5.48 24.13

Table 7. Perplexity ablation (↓) of BAM total parameter and active parameter matching with BTX on small scale experiments. To match
BTX’s parameters to BAM, we increase BTX from top-1 to top-3 gating. This means that each token representation activates 3 FFN
experts. Same as the previous ablation, 3 of 6 experts are upcycled from the 3 expert dense models while the other 3 are upcycled from the
same copy of the dense seed model).
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