
PFDiff: Training-free Acceleration of Diffusion Models
through the Gradient Guidance of Past and Future

Anonymous Author(s)
Affiliation
Address
email

Abstract

Diffusion Probabilistic Models (DPMs) have shown remarkable potential in image1

generation, but their sampling efficiency is hindered by the need for numerous2

denoising steps. Most existing solutions accelerate the sampling process by propos-3

ing fast ODE solvers. However, the inevitable discretization errors of the ODE4

solvers are significantly magnified when the number of function evaluations (NFE)5

is fewer. In this work, we propose PFDiff, a novel training-free and orthogonal6

timestep-skipping strategy, which enables existing fast ODE solvers to operate with7

fewer NFE. Based on two key observations: a significant similarity in the model’s8

outputs at time step size that is not excessively large during the denoising process9

of existing ODE solvers, and a high resemblance between the denoising process10

and SGD. PFDiff, by employing gradient replacement from past time steps and11

foresight updates inspired by Nesterov momentum, rapidly updates intermediate12

states, thereby reducing unnecessary NFE while correcting for discretization errors13

inherent in first-order ODE solvers. Experimental results demonstrate that PFDiff14

exhibits flexible applicability across various pre-trained DPMs, particularly ex-15

celling in conditional DPMs and surpassing previous state-of-the-art training-free16

methods. For instance, using DDIM as a baseline, we achieved 16.46 FID (4 NFE)17

compared to 138.81 FID with DDIM on ImageNet 64x64 with classifier guidance,18

and 13.06 FID (10 NFE) on Stable Diffusion with 7.5 guidance scale.19

1 Introduction20

In recent years, Diffusion Probabilistic Models (DPMs) [1–4] have demonstrated exceptional mod-21

eling capabilities across various domains including image generation [5–7], video generation [8],22

text-to-image generation [9, 10], speech synthesis [11], and text-to-3D generation [12, 13]. They have23

become a key driving force advancing deep generative models. DPMs initiate with a forward process24

that introduces noise onto images, followed by utilizing a neural network to learn a backward process25

that incrementally removes noise, thereby generating images [2, 4]. Compared to other generative26

methods such as Generative Adversarial Networks (GANs) [14] and Variational Autoencoders (VAEs)27

[15], DPMs not only possess a simpler optimization target but also are capable of producing higher28

quality samples [5]. However, the generation of high-quality samples via DPMs requires hundreds or29

thousands of denoising steps, significantly lowering their sampling efficiency and becoming a major30

barrier to their widespread application.31

Existing techniques for rapid sampling in DPMs primarily fall into two categories. First, training-32

based methods [16–19], which can significantly compress sampling steps, even achieving single-step33

sampling [19]. However, this compression often comes with a considerable additional training cost,34

and these methods are challenging to apply to large pre-trained models. Second, training-free samplers35

[20–30], which typically employ implicit or analytical solutions to Stochastic Differential Equations36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

S
ta
b
le
-D
if
fu
si
o
n

O
u
r
s
+

S
ta
b
le
-D
if
fu
si
o
n

NFE = 6, FID = 20.33 NFE = 10, FID = 16.78

NFE = 6, FID = 15.47 NFE = 10, FID = 13.06

NFE = 250, FID = 15.86

NFE = 1000, FID = 15.82

Text Prompts: Winter night with snow -covered rooftops and soft yellow lights. (Left)
A Corgi running towards me in Times Square. (Right)

(a) Results from Stable-Diffusion [9] on MS-COCO2014 [31] (Classifier-Free Guidance, s = 7.5)

G
u
id
e
d
-D
if
fu
s
io
n

O
u
r
s
+

G
u
id
e
d
-D
if
fu
s
io
n

NFE=4 NFE=8 NFE=10 NFE=20 NFE=100

NFE=4 NFE=8 NFE=10 NFE=20 NFE=250

(b) Results from Guided-Diffusion [5] on ImageNet 64x64 [32] (Classifier Guidance, s = 1.0)

Figure 1: Sampling by conditional pre-trained DPMs [5, 9] using DDIM [20] and our method PFDiff
(dashed box) with DDIM as a baseline, varying the number of function evaluations (NFE).

(SDE)/Ordinary Differential Equations (ODE) for lower-error sampling processes. For instance, Lu37

et al. [21, 22], by analyzing the semi-linear structure of the ODE solvers for DPMs, have sought to38

analytically derive optimally the solutions for DPMs’ ODE solvers. These training-free sampling39

strategies can often be used in a plug-and-play fashion, compatible with existing pre-trained DPMs.40

However, when the NFE is below 10, the discretization error of these training-free methods will be41

significantly amplified, leading to convergence issues [21, 22], which can still be time-consuming.42

To further enhance the sampling speed of DPMs, we have analyzed the potential for improvement43

in existing training-free accelerated methods. Initially, we observed a notably high similarity in the44

model’s outputs for the existing ODE solvers of DPMs when time step size ∆t is not extremely large,45

as illustrated in Fig. 2a. This observation led us to utilize the gradients that have been computed46

from past time steps to approximate current gradients, thereby reducing unnecessary estimation of47

noise network. Furthermore, due to the similarities between the sampling process of DPMs and48

Stochastic Gradient Descent (SGD) [33] as noted in Remark 1, we incorporated a foresight update49

mechanism using Nesterov momentum [34], known for accelerating SGD training. Specifically, we50

ingeniously employ prior observation to predict future gradients, then utilize the future gradients as a51

“springboard” to facilitate larger update step size ∆t, as shown in Fig. 2b.52

Motivated by these insights, we propose PFDiff, a timestep-skipping sampling algorithm that rapidly53

updates the current intermediate state through the gradient guidance of past and future. Notably,54

PFDiff is training-free and orthogonal to existing DPMs sampling algorithms, providing a new or-55

thogonal axis for DPMs sampling. Unlike previous orthogonal sampling algorithms that compromise56

2

0 200 400 600 800 999
Δt

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1
T
Δ
Δt

T
Δ
Δt

Δ
1

∑ t=
0

‖ε
θ(x

t,t
)Δ

ε θ
(x

t+
Δt
,t
+
Δt
)‖

2

DDPM(η=1.0)
DDPM(η=0.5)
DDPM(η=0.2)
DDIM
DPM-Solver-1
DPM-Solver++-1
DPM-Solver-2
DPM-Solver-3

(a) Gradient Changes in SDE/ODE Solvers

ODE trajectories

Buffer
B ffer

PFDiff-1

First-ord

Forecasting sample Gradients savingSampling trajectory

“Springboard”
“Springboard”

(b) Comparison of Sampling Trajectories

Figure 2: (a) The trend of the MSE of the noise network output ϵθ(xt, t) over time step size ∆t,
where η in DDPM [2] comes from σ̄t in Eq. (6). Solid lines: ODE solvers, dashed lines: SDE solvers.
(b) Comparison of partial sampling trajectories between PFDiff-1 and a first-order ODE solver, where
the update directions are guided by the tangent direction of the sampling trajectories.

sampling quality for speed [28], we prove that PFDiff corrects for errors in the sampling trajectories57

of first-order ODE solvers. This improves sampling quality while reducing unnecessary NFE in58

existing ODE solvers, as illustrated in Fig. 2b. To validate the orthogonality and effectiveness of59

PFDiff, extensive experiments were conducted on both unconditional [2, 4, 20] and conditional [5, 9]60

pre-trained DPMs, with the visualization experiment of conditional DPMs depicted in Fig. 1. The61

results indicate that PFDiff significantly enhances the sampling performance of existing ODE solvers.62

Particularly in conditional DPMs, PFDiff, using only DDIM as the baseline, surpasses the previous63

state-of-the-art training-free sampling algorithms.64

2 Background65

2.1 Diffusion SDEs66

Diffusion Probabilistic Models (DPMs) [1–4] aim to generate D-dimensional random variables67

x0 ∈ RD that follow a data distribution q(x0). Taking Denoising Diffusion Probabilistic Models68

(DDPM) [2] as an example, these models introduce noise to the data distribution through a forward69

process defined over discrete time steps, gradually transforming it into a standard Gaussian distribution70

xT ∼ N (0, I). The forward process’s latent variables {xt}t∈[0,T] are defined as follows:71

q(xt | x0) = N (xt | αtx0, σ
2
t I), (1)

where αt is a scalar function related to the time step t, with α2
t + σ2

t = 1. In the model’s reverse pro-72

cess, DDPM utilizes a neural network model pθ(xt−1 | xt) to approximate the transition probability73

q(xt−1 | xt, x0),74

pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t), σ
2
θ(t)I), (2)

where σ2
θ(t) is defined as a scalar function related to the time step t. By sampling from a standard75

Gaussian distribution and utilizing the trained neural network, samples following the data distribution76

pθ(x0) =
∏T

t=1pθ(xt−1 | xt) can be generated.77

Furthermore, Song et al. [4] introduced SDE to model DPMs over continuous time steps, where the78

forward process is defined as:79

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q(x0), (3)
where wt represents a standard Wiener process, and f and g are scalar functions of the time step t.80

It’s noteworthy that the forward process in Eq. (1) is a discrete form of Eq. (3), where f(t) = d logαt

dt81

and g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t . Song et al. [4] further demonstrated that there exists an equivalent82

reverse process from time step T to 0 for the forward process in Eq. (3):83

dxt =
[
f(t)xt − g2(t)∇x log qt(xt)

]
dt+ g(t)dw̄t, xT ∼ q(xT), (4)

3

where w̄ denotes a standard Wiener process. In this reverse process, the only unknown is the score84

function ∇x log qt(xt), which can be approximated through neural networks.85

2.2 Diffusion ODEs86

In DPMs based on SDE, the discretization of the sampling process often requires a significant number87

of time steps to converge, such as the T = 1000 time steps used in DDPM [2]. This requirement88

primarily stems from the randomness introduced at each time step by the SDE. To achieve a more89

efficient sampling process, Song et al. [4] utilized the Fokker-Planck equation [35] to derive a90

probability flow ODE related to the SDE, which possesses the same marginal distribution at any given91

time t as the SDE. Specifically, the reverse process ODE derived from Eq. (3) can be expressed as:92

dxt =

[
f(t)xt −

1

2
g2(t)∇x log qt(xt)

]
dt, xT ∼ q(xT). (5)

Unlike SDE, ODE avoids the introduction of randomness, thereby allowing convergence to the data93

distribution in fewer time steps. Song et al. [4] employed a high-order RK45 ODE solver [36],94

achieving sample quality comparable to SDE at 1000 NFE with only 60 NFE. Furthermore, research95

such as DDIM [20] and DPM-Solver [21] explored discrete ODE forms capable of converging in96

fewer NFE. For DDIM, it breaks the Markov chain constraint on the basis of DDPM, deriving a new97

sampling formula expressed as follows:98

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+
√

1− αt−1 − σ̄2
t ϵθ(xt, t) + σ̄tϵt, (6)

where σ̄t = η
√
(1− αt−1) / (1− αt)

√
1− αt/αt−1, and αt corresponds to α2

t in Eq. (1). When99

η = 1, Eq. (6) becomes a form of DDPM [2]; when η = 0, it degenerates into an ODE, the form100

adopted by DDIM [20], which can obtain high-quality samples in fewer time steps.101

Remark 1. In this paper, we regard the gradient dx̄t, the noise network output ϵθ(xt, t), and the102

score function ∇x log qt(xt) as expressing equivalent concepts. This is because Song et al. [4]103

demonstrated that ϵθ(xt, t) = −σt∇x log qt(xt). Moreover, we have discovered that any first-order104

solver of DPMs can be parameterized as xt−1 = x̄t − γtdx̄t + ξϵt. Taking DDIM [20] as an105

example, where x̄t =
√

αt−1

αt
xt, γt =

√
αt−1

αt
− αt−1 −

√
1− αt−1, dx̄t = ϵθ(xt, t), and ξ = 0.106

This indicates the similarity between SGD and the sampling process of DPMs, a discovery also107

implicitly suggested in the research of Xue et al. [30] and Wang et al. [37].108

3 Method109

3.1 Solving for reverse process diffusion ODEs110

By substituting ϵθ(xt, t) = −σt∇x log qt(xt) [4], Eq. (5) can be rewritten as:111

dxt

dt
= s(ϵθ(xt, t), xt, t) := f(t)xt +

g2(t)

2σt
ϵθ(xt, t), xT ∼ q(xT). (7)

Given an initial value xT , we define the time steps {ti}Ti=0 to progressively decrease from t0 = T112

to tT = 0. Let x̃t0 = xT be the initial value. Using T steps of iteration, we compute the sequence113

{x̃ti}
T
i=0 to obtain the solution of this ODE. By integrating both sides of Eq. (7), we can obtain the114

exact solution of this sampling ODE.115

x̃ti = x̃ti−1
+

∫ ti

ti−1

s(ϵθ(xt, t), xt, t)dt. (8)

For any p-order ODE solver, Eq. (8) can be discretely represented as:116

x̃ti−1→ti ≈ x̃ti−1
+

p−1∑
n=0

h(ϵθ(x̃t̂n
, t̂n), x̃t̂n

, t̂n) ·∆t̂, i ∈ [1, . . . , T], (9)

where t̂0 = ti−1, t̂p = ti, and ∆t̂ = t̂n+1 − t̂n denote the time step size. The function h rep-117

resents the different solution methodologies applied by various p-order ODE solvers to the func-118

tion s. For the Euler-Maruyama solver [38], h is the identity mapping of s. Further, we define119

4

ϕ(Q, x̃ti−1 , ti−1, ti) := x̃ti−1 +
∑p−1

n=0 h(ϵθ(x̃t̂n
, t̂n), x̃t̂n

, t̂n) · ∆t̂. Here, ϕ is any p-order ODE120

solver, and buffer Q =
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−1, ti

)
, where t̂0 = ti−1 and t̂p = ti.121

When using the ODE solver defined in Eq. (9) for sampling, the choice of T = 1000 leads to122

significant inefficiencies in DPMs. The study on DDIM [20] first revealed that by constructing a new123

forward sub-state sequence of length M + 1 (M ≤ T), {x̃ti}
M
i=0, from a subsequence of time steps124

[0, . . . , T] and reversing this sub-state sequence, it is possible to converge to the data distribution in125

fewer time steps. However, as illustrated in Fig. 2a, for ODE solvers, as the time step ∆t = ti − ti−1126

increases, the gradient direction changes slowly initially, but undergoes abrupt changes as ∆t→ T .127

This phenomenon indicates that under minimal NFE (i.e., maximal time step size ∆t) conditions, the128

discretization error in Eq. (9) is significantly amplified. Consequently, existing ODE solvers, when129

sampling under minimal NFE, must sacrifice sampling quality to gain speed, making it an extremely130

challenging task to reduce NFE to below 10 [21, 22]. Given this, we aim to develop an efficient131

timestep-skipping sampling algorithm, which reduces NFE while correcting discretization errors,132

thereby ensuring that sampling quality is not compromised, and may even be improved.133

3.2 Sampling guided by past gradients134

For any p-order timestep-skipping sampling algorithm for DPMs, the sampling process can be135

reformulated according to Eq. (9) as follows:136

x̃ti ≈ ϕ(Q, x̃ti−1
, ti−1, ti), i ∈ [1, . . . ,M], (10)

where buffer Q =
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−1, ti

)
and [1, . . . ,M] is an increasing subsequence of137

[1, . . . , T]. As illustrated in Fig. 2a, when the time step size ∆t (i.e., ti − ti−1) is not excessively138

large, the MSE of the noise network, defined as 1
T−∆t

∑T−∆t−1
t=0 ∥ϵθ(xt, t)−ϵθ(xt+∆t, t+∆t)∥2, is139

remarkably similar. This phenomenon is especially pronounced in ODE-based sampling algorithms,140

such as DDIM [20] and DPM-Solver [21]. This observation suggests that there are many unnecessary141

time steps in ODE-based sampling methods during the complete sampling process (e.g., when142

T = 1000), which is one of the reasons these methods can generate samples in fewer steps. Based on143

this, we propose replacing the noise network of the current timestep with the output from a previous144

timestep to reduce unnecessary NFE without compromising the quality of the final generated samples.145

Initially, we store the output of the previous timestep’s noise network in a buffer as follows:146

Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−1, ti

)
, where t̂0 = ti−1, t̂p = ti. (11)

Then, in the current timestep, we directly use the noise network output saved in the buffer from147

the previous timestep to replace the current timestep’s noise network output, thereby updating the148

intermediate states to the next timestep, as detailed below:149

x̃ti+1 ≈ ϕ(Q, x̃ti , ti, ti+1), where Q =
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−1, ti

)
. (12)

By using this approach, we can effectively accelerate the sampling process, reduce unnecessary NFE,150

and ensure the quality of the samples is not affected. The convergence proof is in Appendix B.1.151

3.3 Sampling guided by future gradients152

As stated in Remark 1, considering the similarities between the sampling process of DPMs and SGD153

[33], we introduce a foresight update mechanism of Nesterov momentum, utilizing future gradient154

information as a “springboard” to assist the current intermediate state in achieving more efficient155

leapfrog updates. Specifically, for the intermediate state x̃ti+1
predicted using past gradients as156

discussed in Sec. 3.2, we first estimate the future gradient and update the current buffer as follows:157

Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
, where t̂0 = ti+1, t̂p = ti+2. (13)

Subsequently, leveraging the concept of foresight updates, we predict a further future intermedi-158

ate state x̃ti+2 using the current intermediate state x̃ti along with the future gradient information159

corresponding to x̃ti+1
, as shown below:160

x̃ti+2 ≈ ϕ(Q, x̃ti , ti, ti+2), where Q =
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti+1, ti+2

)
. (14)

5

Furthermore, Zhou et al. [39] performed a Principal Component Analysis (PCA) on the sampling161

trajectories generated by ODE solvers for DPMs and discovered they almost lie in a two-dimensional162

plane embedded within a high-dimensional space. This implies that the Mean Value Theorem163

approximately holds during the sampling process using ODE solvers. Specifically, updating the164

current intermediate state x̃ti at an optimal time point s with the corresponding gradient information,165

ground truth ϵθ(x̃ts , ts), results in the smallest update error, where s is between time points i and166

i+ 2. Further, we can reason that for any first-order ODE solver, under the same time step, the use167

of future gradient information ϵθ(x̃ti+1
, ti+1) from Eq. (13) to update the current intermediate state168

x̃ti results in a smaller sampling error compared to using the gradient information at the current169

time point ϵθ(x̃ti , ti). A detailed proof is provided in Appendix B.2. However, for higher-order170

ODE solvers, the solving process implicitly utilizes future gradients as mentioned in Sec. 3.5, and171

the additional explicit introduction of future gradients increases sampling error. Therefore, when172

using higher-order ODE solvers as a baseline, the sampling process is accelerated by only using past173

gradients. It is only necessary to modify Eq. (14) to x̃ti+2 ≈ ϕ(Q, x̃ti+1 , ti+1, ti+2) while keeping Q174

constant. Ablation experiments can be found in Sec. 4.3.175

3.4 PFDiff: sampling guided by past and future gradients176

Combining Sec. 3.2 and Sec. 3.3, the intermediate state x̃ti+1 obtained through Eq. (12) is used to177

update the buffer Q in Eq. (13). In this way, we achieve our proposed efficient timestep-skipping178

algorithm, which we name PFDiff, as shown in Algorithm 1. For higher-order ODE solvers (p > 1),179

PFDiff only utilizes past gradient information, while for first-order ODE solvers (p = 1), it uses180

both past and future gradient information to predict further future intermediate states. Notably,181

during the iteration from intermediate state x̃ti to x̃ti+2
, we only perform a single batch computation182

(NFE = p) of the noise network in Eq. (13). Furthermore, we propose that in a single iteration183

process, x̃ti+2
in Eq. (14) can be modified to x̃ti+(k+1)

, achieving a k-step skip to sample more distant184

future intermediate states. Additionally, when k ̸= 1, the buffer Q, which acts as an intermediate185

“springboard” from Eq. (13), has various computational origins. This can be accomplished by186

modifying x̃ti+1 in Eq. (12) to x̃ti+l
. We collectively refer to this multi-step skipping and different187

“springboard” selection strategy as PFDiff-k_l (l ≤ k). Further algorithmic details can be found188

in Appendix C. Finally, through the comparison of sampling trajectories between PFDiff-1 and189

a first-order ODE sampler, as shown in Fig. 2b, PFDiff-1 showcases its capability to correct the190

sampling trajectory of the first-order ODE sampler while reducing the NFE.191

Proposition 3.1. For any given DPM first-order ODE solver ϕ, the PFDiff-k_l algorithm can192

describe the sampling process within an iteration cycle through the following formula:193

x̃ti+(k+1)
≈ ϕ(ϵθ(ϕ(ϵθ(x̃ti−(k−l+1)

, ti−(k−l+1)), x̃ti , ti, ti+l), ti+l), x̃ti , ti, ti+(k+1)), (15)

Algorithm 1 PFDiff-1

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ
1: Define time steps {ti}Mi=0 with M = 2N − 1p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
, where t̂0 = t0, t̂p = t1 ▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 2 do
6: if (i− 1) mod 2 = 0 then
7: x̃ti+1

= ϕ(Q, x̃ti , ti, ti+1) ▷ Updating guided by past gradients

8: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
▷ Update buffer (overwrite)

9: if p = 1 then
10: x̃ti+2 = ϕ(Q, x̃ti , ti, ti+2) ▷ Anticipatory updating guided by future gradients
11: else if p > 1 then
12: x̃ti+2

= ϕ(Q, x̃ti+1
, ti+1, ti+2) ▷ The higher-order solver uses only past gradients

13: end if
14: end if
15: end for
16: return x̃tM

6

where the value of ϵθ(x̃ti−(k−l+1)
, ti−(k−l+1)) can be directly obtained from the buffer Q, without the194

need for additional computations. The iterative process defined by Eq. (15) ensures that the sampling195

outcomes converge to the data distribution consistent with the solver ϕ, while effectively correcting196

errors in the sampling process (Proof in Appendix B).197

It is noteworthy that, although the PFDiff is conceptually orthogonal to the SDE/ODE solvers of198

DPMs, even when the time size ∆t is relatively small, the MSE of the noise network in the SDE199

solver exhibits significant differences, as shown in Fig. 2a. Consequently, PFDiff shows marked200

improvements on the ODE solver, and our experiments are almost exclusively based on ODE solvers,201

with exploratory experiments on SDE solvers referred to Sec. 4.1.202

3.5 Connection with other samplers203

Relationship with p-order solver [21, 22, 27]. According to Eq. (10), a single iteration of the204

p-order solver can be represented as:205

x̃ti+1 ≈ Solver− p(
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti, ti+1

)
, x̃ti , ti, ti+1), i ∈ [0, . . . ,M − 1]. (16)

A single iteration of the p-order solver uses p NFE to predict the next intermediate state. The206

intermediate step gradients obtained during this process can be considered as an approximation of207

future gradients. This approximation is implicitly contained within the sampling guided by future208

gradients that we propose. Furthermore, as shown in Eq. (15), a single iteration update of PFDiff209

based on a first-order solver can be seen as using a 2-order solver with only one NFE.210

4 Experiments211

In this section, we validate the effectiveness of PFDiff as an orthogonal and training-free sampler212

through a series of extensive experiments. This sampler can be integrated with any order of ODE213

solvers, thereby significantly enhancing the sampling efficiency of various types of pre-trained DPMs.214

To systematically showcase the performance of PFDiff, we categorize the pre-trained DPMs into two215

main types: conditional and unconditional. Unconditional DPMs are further subdivided into discrete216

and continuous, while conditional DPMs are subdivided into classifier guidance and classifier-free217

guidance. In choosing ODE solvers, we utilized the widely recognized first-order DDIM [20],218

Analytic-DDIM [23], and the higher-order DPM-Solver [21] as baselines. For each experiment, we219

use the Fréchet Inception Distance (FID↓) [40] as the primary evaluation metric, and provide the220

experimental results of the Inception Score (IS↑) [41] in the Appendix D.7 for reference. Lastly,221

apart from the ablation studies on parameters k and l discussed in Sec. 4.3, we showcase the optimal222

results of PFDiff-k_l (where k = 1, 2, 3 and l ≤ k) across six configurations as a performance223

demonstration of PFDiff. As described in Appendix C, this does not increase the computational224

burden in practical applications. All experiments were conducted on an NVIDIA RTX 3090 GPU.225

4.1 Unconditional sampling226

For unconditional DPMs, we selected discrete DDPM [2] and DDIM [20], as well as pre-trained227

models from continuous ScoreSDE [4], to assess the effectiveness of PFDiff. For these pre-trained228

models, all experiments sampled 50k instances to compute evaluation metrics.229

For unconditional discrete DPMs, we first select first-order ODE solvers DDIM [20] and Analytic-230

DDIM [23] as baselines, while implementing SDE-based DDPM [2] and Analytic-DDPM [23]231

methods for comparison, where η = 1.0 is from σ̄t in Eq. (6). We conduct experiments on the232

CIFAR10 [42] and CelebA 64x64 [43] datasets using the quadratic time steps employed by DDIM. By233

varying the NFE from 6 to 20, the evaluation metric FID↓ is shown in Figs. 3a and 3b. Additionally,234

experiments with uniform time steps are conducted on the CelebA 64x64, LSUN-bedroom 256x256235

[44], and LSUN-church 256x256 [44] datasets, with more results available in Appendix D.2. Our236

experimental results demonstrate that PFDiff, based on pre-trained models of discrete unconditional237

DPMs, significantly improves the sampling efficiency of DDIM and Analytic-DDIM samplers across238

multiple datasets. For instance, on the CIFAR10 dataset, PFDiff combined with DDIM achieves a239

FID of 4.10 with only 15 NFE, comparable to DDIM’s performance of 4.04 FID with 1000 NFE. This240

is something other time-step skipping algorithms [23, 28] that sacrifice sampling quality for speed241

7

6 8 10 12 15 20
NFE

10

20

30

40

50

60

70

FI
D

DDPM(η=1.0)
Analytic-DDPM(η=1.0)
DDIM
Analytic-DDIM
DDIM+Ours
Analytic-DDIM+Ours

(a) CIFAR10 (Discrete)

6 8 10 12 15 20
NFE

5

10

15

20

25

30

35

40

45

FI
D

DDPM(η=1.0)
Analytic-DDPM(η=1.0)
DDIM
Analytic-DDIM
DDIM+Ours
Analytic-DDIM+Ours

(b) CelebA 64x64 (Discrete)

6 8 9 10 12 15 16 20 21
NFE

5
10
20

50

300

FI
D

DPM-Solver-1
DPM-Solver-2
DPM-Solver-3
DPM-Solver-1+Ours
DPM-Solver-2+Ours
DPM-Solver-3+Ours

(c) CIFAR10 (Continuous)

Figure 3: Unconditional sampling results. We report the FID↓ for different methods by varying the
number of function evaluations (NFE), evaluated on 50k samples.

4 6 8 10 15 20
NFE

0

10

20

30

40

50

60

FI
D

DDIM
DPM-Solver-2
DPM-Solver-3
DPM-Solver++(2M)
∗AutoDiffusion
DDIM+Ours

(a) ImageNet 64x64
(Guided-Diffusion)

(Classifier Guidance, s = 1.0)

5 6 8 10 15 20
NFE

20

30

40

50

60

70
FI
D

DDIM
DPM-Solver-2
DPM-Solver-3
DPM-Solver++(2M)
DDIM+Ours

(b) MS-COCO2014
(Stable-Diffusion)

(Classifier-Free Guidance, s = 1.5)

5 6 8 10 15 20
NFE

14

16

18

20

22

24

FI
D

DDIM
DPM-Solver-2
†DPM-Solver++(2M)
†DPM-Solver-v3(2M)
†UniPC
DDIM+Ours

(c) MS-COCO2014
(Stable-Diffusion)

(Classifier-Free Guidance, s = 7.5)

Figure 4: Conditional sampling results. We report the FID↓ for different methods by varying the
NFE. Evaluated: ImageNet 64x64 with 50k, others with 10k samples. ∗AutoDiffusion [26] method
requires additional search costs. †We borrow the results reported in DPM-Solver-v3 [27] directly.

cannot achieve. Furthermore, in Appendix D.2, by varying η from 1.0 to 0.0 in Eq. (6) to control the242

scale of noise introduced by SDE, we observe that as η decreases (reducing noise introduction), the243

performance of PFDiff gradually improves. This once again validates our assumption proposed in244

Sec. 3.2, based on Fig. 2a, that there is a significant similarity in the model’s outputs at the time step245

size that is not excessively large for the existing ODE solvers.246

For unconditional continuous DPMs, we choose the DPM-Solver-1, -2 and -3 [21] as the baseline247

to verify the effectiveness of PFDiff as an orthogonal timestep-skipping algorithm on the first and248

higher-order ODE solvers. We conducted experiments on the CIFAR10 [42] using quadratic time249

steps, varying the NFE. The experimental results using FID↓ as the evaluation metric are shown in Fig.250

3c. More experimental details can be found in Appendix D.3. We observe that PFDiff consistently251

improves the sampling performance over the baseline with fewer NFE settings, particularly in cases252

where higher-order ODE solvers fail to converge with a small NFE (below 10) [21].253

4.2 Conditional sampling254

For conditional DPMs, we selected the pre-trained models of the widely recognized classifier guidance255

paradigm, ADM-G [5], and the classifier-free guidance paradigm, Stable-Diffusion [9], to validate256

the effectiveness of PFDiff. We employed uniform time steps setting and the DDIM [20] ODE solver257

as a baseline across all datasets. Evaluation metrics were computed by sampling 50k samples on the258

ImageNet 64x64 [32] dataset for ADM-G and 10k samples on other datasets, including ImageNet259

256x256 [32] in ADM-G and MS-COCO2014 [31] in Stable-Diffusion.260

For conditional DPMs employing the classifier guidance paradigm, we conducted experiments on the261

ImageNet 64x64 dataset [32] with a guidance scale (s) set to 1.0. For comparison, we implemented262

DPM-Solver-2 and -3 [21], and DPM-Solver++(2M) [22], which exhibit the best performance on263

conditional DPMs. Additionally, we introduced the AutoDiffusion method [26] using DDIM as a264

8

baseline for comparison, noting that this method incurs additional search costs. We compared FID↓265

scores by varying the NFE as depicted in Fig. 4a, with corresponding visual comparisons shown266

in Fig. 1b. We observed that PFDiff reduced the FID from 138.81 with 4 NFE in DDIM to 16.46,267

achieving an 88.14% improvement in quality. The visual results in Fig. 1b further demonstrate that, at268

the same NFE setting, PFDiff achieves higher-quality sampling. Furthermore, we evaluated PFDiff’s269

sampling performance based on DDIM on the large-scale ImageNet 256x256 dataset [32]. Detailed270

results are provided in Appendix D.4.271

For conditional, classifier-free guidance paradigms of DPMs, we employed the sd-v1-4 checkpoint272

and computed the FID↓ scores on the validation set of MS-COCO2014 [31]. We conducted experi-273

ments with a guidance scale (s) set to 7.5 and 1.5. For comparison, we implemented DPM-Solver-2274

and -3 [21], and DPM-Solver++(2M) [22] methods. At s = 7.5, we introduced the state-of-the-art275

method reported in DPM-Solver-v3 [27] for comparison, along with DPM-Solver++(2M) [22], UniPC276

[29], and DPM-Solver-v3(2M) [27]. The FID↓ metrics by varying the NFE are presented in Figs. 4b277

and 4c, with additional visual results illustrated in Fig. 1a. We observed that PFDiff, solely based278

on DDIM, achieved state-of-the-art results during the sampling process of Stable-Diffusion, thus279

demonstrating the efficacy of PFDiff. Further experimental details can be found in Appendix D.5.280

4.3 Ablation study281

We conducted ablation experiments on the six different algorithm configurations of PFDiff mentioned282

in Appendix C, with k = 1, 2, 3 (l ≤ k). Specifically, we evaluated the FID↓ scores on the283

unconditional and conditional pre-trained DPMs [2, 4, 5, 9] by varying the NFE. Detailed experimental284

setups and results can be found in Appendix D.6.1. The experimental results indicate that for various285

pre-trained DPMs, the choice of parameters k and l is not critical, as most combinations of k and l286

within PFDiff can enhance the sampling efficiency over the baseline. Moreover, with k = 1 fixed,287

PFDiff-1 can significantly improve the baseline’s sampling quality within the range of 8∼20 NFE.288

For even better sampling quality, one can sample a small subset of examples (e.g., 5k) to compute289

evaluation metrics or directly conduct visual analysis, easily identifying the most effective k and l290

combinations.291

To validate the PFDiff algorithm as mentioned in Sec. 3.3, which necessitates the joint guidance292

of past and future gradients for first-order ODE solvers, and only past gradients for higher-order293

ODE solvers, offering a more effective means of accelerating baseline sampling. This study employs294

the first-order ODE solver DDIM [20] as the baseline, isolating the effects of both past and future295

gradients, and uses the higher-order ODE solver DPM-Solver [21] as the baseline, removing the296

influence of future gradients for ablation experiments. Specific experimental configurations and297

results are shown in Appendix D.6.2. The results indicate that, as described by the PFDiff algorithm298

in Sec. 3.3, it is possible to further enhance the sampling efficiency of ODE solvers of any order.299

5 Conclusion300

In this paper, based on the recognition that the ODE solvers of DPMs exhibit significant similarity in301

model outputs when the time step size is not excessively large, and with the aid of a foresight update302

mechanism, we propose PFDiff, a novel method that leverages the gradient guidance from both past303

and future to rapidly update the current intermediate state. This approach effectively reduces the304

unnecessary number of function evaluations (NFE) in the ODE solvers and significantly corrects the305

errors of first-order ODE solvers during the sampling process. Extensive experiments demonstrate306

the orthogonality and efficacy of PFDiff on both unconditional and conditional pre-trained DPMs,307

especially in conditional pre-trained DPMs where PFDiff outperforms previous state-of-the-art308

training-free sampling methods.309

Limitations and broader impact Although PFDiff can effectively accelerate the sampling speed of310

existing ODE solvers, it still lags behind the sampling speed of training-based acceleration methods311

and one-step generation paradigms such as GANs. Moreover, there is no universal setting for the312

optimal combination of parameters k and l in PFDiff; adjustments are required according to different313

pre-trained DPMs and NFE. It is noteworthy that PFDiff may be utilized to accelerate the generation314

of malicious content, thereby having a detrimental impact on society.315

9

References316

[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised317

learning using nonequilibrium thermodynamics. In International conference on machine learning, pages318

2256–2265. PMLR, 2015.319

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural320

information processing systems, 33:6840–6851, 2020.321

[3] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.322

Advances in neural information processing systems, 32, 2019.323

[4] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben324

Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint325

arXiv:2011.13456, 2020.326

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in327

neural information processing systems, 34:8780–8794, 2021.328

[6] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.329

Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning Research,330

23(47):1–33, 2022.331

[7] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the332

IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.333

[8] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron,334

Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch n’pack: Navit, a335

vision transformer for any aspect ratio and resolution. Advances in Neural Information Processing Systems,336

36, 2024.337

[9] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution338

image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer339

vision and pattern recognition, pages 10684–10695, 2022.340

[10] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang341

Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer Science.342

https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.343

[11] Kaitao Song, Yichong Leng, Xu Tan, Yicheng Zou, Tao Qin, and Dongsheng Li. Transcormer: Transformer344

for sentence scoring with sliding language modeling. Advances in Neural Information Processing Systems,345

35:11160–11174, 2022.346

[12] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.347

arXiv preprint arXiv:2209.14988, 2022.348

[13] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,349

Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In350

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 300–309,351

2023.352

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron353

Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing354

systems, 27, 2014.355

[15] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,356

2013.357

[16] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv358

preprint arXiv:2202.00512, 2022.359

[17] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer360

data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.361

[18] Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-gan:362

Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022.363

[19] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint364

arXiv:2303.01469, 2023.365

10

[20] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint366

arXiv:2010.02502, 2020.367

[21] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode368

solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information369

Processing Systems, 35:5775–5787, 2022.370

[22] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver371

for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.372

[23] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal373

reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.374

[24] Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal covariance with375

imperfect mean in diffusion probabilistic models. arXiv preprint arXiv:2206.07309, 2022.376

[25] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on377

manifolds. arXiv preprint arXiv:2202.09778, 2022.378

[26] Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei Chao,379

and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architectures for automated380

diffusion model acceleration. In Proceedings of the IEEE/CVF International Conference on Computer381

Vision, pages 7105–7114, 2023.382

[27] Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode solver with383

empirical model statistics. arXiv preprint arXiv:2310.13268, 2023.384

[28] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free. arXiv385

preprint arXiv:2312.00858, 2023.386

[29] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-corrector387

framework for fast sampling of diffusion models. Advances in Neural Information Processing Systems, 36,388

2024.389

[30] Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming Ma.390

Sa-solver: Stochastic adams solver for fast sampling of diffusion models. Advances in Neural Information391

Processing Systems, 36, 2024.392

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,393

and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014:394

13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages395

740–755. Springer, 2014.396

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical397

image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.398

Ieee, 2009.399

[33] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical400

statistics, pages 400–407, 1951.401

[34] Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k** 2).402

Doklady Akademii Nauk SSSR, 269(3):543, 1983.403

[35] Bernt Øksendal and Bernt Øksendal. Stochastic differential equations. Springer, 2003.404

[36] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of computational405

and applied mathematics, 6(1):19–26, 1980.406

[37] Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural407

network diffusion. arXiv preprint arXiv:2402.13144, 2024.408

[38] Peter E Kloeden, Eckhard Platen, Peter E Kloeden, and Eckhard Platen. Stochastic differential equations.409

Springer, 1992.410

[39] Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion models in411

around 5 steps. arXiv preprint arXiv:2312.00094, 2023.412

[40] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans413

trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information414

processing systems, 30, 2017.415

11

[41] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved416

techniques for training gans. Advances in neural information processing systems, 29, 2016.417

[42] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.418

[43] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In419

Proceedings of the IEEE international conference on computer vision, pages 3730–3738, 2015.420

[44] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun: Con-421

struction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint422

arXiv:1506.03365, 2015.423

[45] Elliott Ward Cheney, EW Cheney, and W Cheney. Analysis for applied mathematics, volume 1. Springer,424

2001.425

12

A Related work426

While the solvers for Diffusion Probabilistic Models (DPMs) are categorized into two types, SDE and427

ODE, most current accelerated sampling techniques are based on ODE solvers due to the observation428

that the stochastic noise introduced by SDE solvers hampers rapid convergence. ODE-based solvers429

are further divided into training-based methods [16–19] and training-free samplers [20–30]. Training-430

based methods can notably reduce the number of sampling steps required for DPMs. An example of431

such a method is the knowledge distillation algorithm proposed by Song et al. [19], which achieves432

one-step sampling for DPMs. This sampling speed is comparable to that of GANs [14] and VAEs433

[15]. However, these methods often entail significant additional costs for distillation training. This434

requirement poses a challenge when applying them to large pre-trained DPM models. Therefore, our435

work primarily focuses on training-free, ODE-based accelerated sampling strategies.436

Training-free accelerated sampling techniques based on ODE can generally be applied in a plug-437

and-play manner, adapting to existing pre-trained DPMs. These methods can be categorized based438

on the order of the ODE solver—that is, the NFE required per sampling iteration—into first-order439

[20, 23–25] and higher-order [21, 22, 27, 29, 36]. Typically, higher-order ODE solvers tend to sample440

at a faster rate, but may fail to converge when the NFE is low (below 10), sometimes performing441

even worse than first-order ODE solvers. In addition, there are orthogonal techniques for accelerated442

sampling. For instance, Li et al. [26] build upon existing ODE solvers and use search algorithms to443

find optimal sampling sub-sequences and model structures to further speed up the sampling process;444

Ma et al. [28] observe that the low-level features of noise networks at adjacent time steps exhibit445

similarities, and they use caching techniques to substitute some of the network’s low-level features,446

thereby further reducing the number of required time steps.447

The algorithm we propose belongs to the class of training-free and orthogonal accelerated sampling448

techniques, capable of further accelerating the sampling process on the basis of existing first-order449

and higher-order ODE solvers. Compared to the aforementioned orthogonal sampling techniques,450

even though the skipping strategy proposed by Ma et al. [28] effectively accelerates the sampling451

process, it may do so at the cost of reduced sampling quality, making it challenging to reduce the452

NFE below 50. Although Li et al. [26] can identify more optimal subsampling sequences and model453

structures, this implies higher search costs. In contrast, our proposed orthogonal sampling algorithm454

is more efficient in skipping time steps. First, our skipping strategy does not require extensive search455

costs. Second, we can correct the sampling errors of first-order ODE solvers while reducing the456

number of sampling steps required by existing ODE solvers, achieving more efficient accelerated457

sampling.458

B Proof of convergence and error correction for PFDiff459

In this section, we prove the convergence of PFDiff and elaborate on how it theoretically corrects460

first-order ODE solver errors. To delve deeper into PFDiff, we propose the following assumptions:461

Assumption B.1. When the time step size ∆t = ti−ti−(k−l+1) is not excessively large, the output es-462

timates of the noise network based on the p-order ODE solver at different time steps are approximately463

the same, that is,
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti, ti+l

)
≈

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−l+1), ti

)
.464

Assumption B.2. For the integral from time step ti to ti+(k+1),
∫ ti+(k+1)

ti
s(ϵθ(xt, t), xt, t)dt,465

there exist intermediate time steps ts̃, ts ∈ (ti, ti+(k+1)) such that
∫ ti+(k+1)

ti
s(ϵθ(xt, t), xt, t)dt =466

s(ϵθ(xts̃ , ts̃), xts̃ , ts̃) · (ti+(k+1) − ti) = h(ϵθ(xts , ts), xts , ts) · (ti+(k+1) − ti) holds, where the467

definition of the function h remains consistent with Sec. 3.1.468

The first assumption is based on the observation in Fig. 2a that when ∆t is not excessively large,469

the MSE of the noise network remains almost unchanged across different time steps. The second470

assumption is based on the Mean Value Theorem for Integrals, which states that if f(x) is a continuous471

real-valued function on a closed interval [a, b], then there exists at least one point c ∈ [a, b] such that472 ∫ b

a
f(x)dx = f(c)(b− a) holds. It is important to note that the Mean Value Theorem for Integrals473

originally applies to real-valued functions and does not directly apply to vector-valued functions474

[45]. However, the study by Zhou et al. [39] using Principal Component Analysis (PCA) on the475

trajectories of the ODE solvers for DPMs demonstrates that these trajectories are primarily distributed476

13

on a two-dimensional plane, which allows the Mean Value Theorem for Integrals to approximately477

hold under Assumption B.2.478

B.1 Proof of convergence for sampling guided by past gradients479

Starting from Eq. (8), we consider an iteration process of a p-order ODE solver from x̃ti to x̃ti+l
,480

where l is the “springboard” choice determined by PFDiff-k_l. This iterative process can be expressed481

as:482

x̃ti+l
= x̃ti +

∫ ti+l

ti

s(ϵθ(xt, t), xt, t)dt. (B.1)

Discretizing Eq. (B.1) yields:483

x̃ti→ti+l
≈ x̃ti +

p−1∑
n=0

h(ϵθ(x̃t̂n
, t̂n), x̃t̂n

, t̂n) · (t̂n+1 − t̂n), (B.2)

where t̂0 = ti and t̂p = ti+l. Consistent with Sec. 3.1, the function h represents the different solution484

methodologies applied by various p-order ODE solvers to the function s. To accelerate sampler con-485

vergence and reduce unnecessary evaluations of the NFE, we adopt Assumption B.1, namely guiding486

the sampling of the current intermediate state by utilizing past gradient information. Specifically,487

we approximate that
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti, ti+l

)
≈

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−l+1), ti

)
, where k488

represents the number of steps skipped in one iteration by PFDiff-k_l. Eq. (B.2) can be rewritten as:489

x̃ti→ti+l
≈ x̃ti +

i+l−1∑
n=i

h(ϵθ(x̃tn , tn), x̃tn , tn) · (tn+1 − tn)

≈ x̃ti +

i−1∑
n=i−(k−l+1)

h(ϵθ(x̃tn , tn), x̃tn , tn) · (tn+1 − tn)

= ϕ(
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−(k−l+1), ti

)
, x̃ti , ti, ti+l),

(B.3)

where ϕ is any p-order ODE solver. Eq. (B.3) demonstrates that under Assumption B.1, for any p-490

order ODE solver ϕ, PFDiff-k_l utilizes past gradient information as a substitute for current gradient491

information to update the current intermediate state. This method not only reduces the NFE but also492

approximates the solution of x̃ti+l
, ensuring convergence to the data distribution corresponding to493

the solver ϕ. It is important to note that the sampling process described in Eq. (B.3) relies solely on494

past gradient information and does not estimate the output of the noise network based on the current495

intermediate state.496

In particular, within Proposition 3.1 for any first-order (p = 1) ODE solver ϕ, according to Eq.497

(B.3), we can approximate x̃ti+l
≈ ϕ(ϵθ(x̃ti−(k−l+1)

, ti−(k−l+1)), x̃ti , ti, ti+l). Thus, Eq. (15) can498

be rewritten as:499

x̃ti+(k+1)
≈ ϕ(ϵθ(x̃ti+l

, ti+l), x̃ti , ti, ti+(k+1)). (B.4)

For any first-order ODE solver ϕ, Eq. (B.3) and (B.4) utilize the gradient information from both past500

and future to constitute a complete sampling iteration process for PFDiff-k_l. Eq. (B.4) indicates501

that under the Assumption B.1 and upon the convergence of Eq. (B.4), PFDiff-k_l is guaranteed to502

converge to the data distribution corresponding to the sampler ϕ for any first-order ODE solver.503

B.2 Error correction and proof of convergence of Proposition 3.1504

Based on Eq. (8), we consider an iteration process of a first-order (p = 1) ODE solver from x̃ti to505

x̃ti+(k+1)
, which can be expressed as:506

x̃ti+(k+1)
= x̃ti +

∫ ti+(k+1)

ti

s(ϵθ(xt, t), xt, t)dt

≈ x̃ti + h(ϵθ(x̃ti , ti), x̃ti , ti) · (ti+(k+1) − ti)

= ϕ(ϵθ(x̃ti , ti), x̃ti , ti, ti+(k+1)),

(B.5)

14

where the second line of Eq. (B.5) is obtained by discretizing the first line with an existing first-order507

ODE solver (p = 1), and the definition of ϕ and h are consistent with Appendix B.1. It is well-known508

that the discretization method used in Eq. (B.5) restricts the sampling step size ∆t = ti+(k+1) − ti509

of the first-order ODE solver. A too-large step size will cause the first-order ODE solver to not510

converge. This indicates that although Assumption B.2 points out that the sampling trajectory of511

the first-order ODE solver lies on a two-dimensional plane, this trajectory is not a straight line (if512

it were a straight line, a larger sampling step size could be used). Therefore, using ϵθ(x̃ti , ti) for513

discretized sampling in Eq. (B.5) introduces a significant sampling error, as shown by the first-order514

ODE sampling trajectory in Fig. 2b. To reduce the first-order ODE solver sampling error, we have515

revised Eq. (B.5) based on Assumption B.2, as follows:516

x̃ti+(k+1)
= x̃ti +

∫ ti+(k+1)

ti

s(ϵθ(xt, t), xt, t)dt

= x̃ti + s(ϵθ(x̃ts̃ , ts̃), x̃ts̃ , ts̃) · (ti+(k+1) − ti)

= x̃ti + h(ϵθ(x̃ts , ts), x̃ts , ts) · (ti+(k+1) − ti)

= ϕ(ϵθ(x̃ts , ts), x̃ti , ti, ti+(k+1))

≈ ϕ(ϵθ(x̃ti+l
, ti+l), x̃ti , ti, ti+(k+1)),

(B.6)

where k and l are determined by the selected PFDiff-k_l and the second and third lines are obtained517

based on Assumption B.2. Combining Eq. (B.6) and Eq. (B.3) leads to the complete Eq. (15),518

thereby completing the convergence proof of Proposition 3.1. Moreover, ts falls within the interval519

[ti, ti+(k+1)], and since the sampling trajectory of the first-order ODE solver is not a straight line,520

generally ts ̸= ti and ts ̸= ti+(k+1). The interval [ti, ti+(k+1)] is amended to (ti, ti+(k+1)). By521

adopting the foresight update mechanism of the Nesterov momentum [34], and guiding the current in-522

termediate state sampling with future gradient information, we replace ϵθ(x̃ts , ts) with ϵθ(x̃ti+l
, ti+l).523

According to the definition of PFDiff-k_l, ti+l also lies within the interval (ti, ti+(k+1)), and for524

different combinations of k and l, this means searching and approximating the ground truth ts within525

the interval (ti, ti+(k+1)). Among the six different versions of PFDiff-k_l defined in Appendix C, we526

believe that the optimal ts has been approximated. Compared to the direct discretization of ϵθ(xt, t)527

in Eq. (B.5), we corrected the sampling error of the first-order ODE solver and proved its convergence528

by guiding sampling based on the future gradient information ϵθ(x̃ti+l
, ti+l) under Assumption B.2,529

as shown in the sampling trajectory of PFDiff-1 in Fig. 2b. Together with this section and Appendix530

B.1, this completes the error correction and convergence proof of Proposition 3.1.531

C Algorithms of PFDiffs532

As described in Sec. 3.4, during a single iteration, we can leverage the foresight update mechanism to533

skip to a more distant future. Specifically, we modify Eq. (14) to x̃ti+(k+1)
≈ ϕ(Q, x̃ti , ti, ti+(k+1))534

to achieve a k-step skip. We refer to this method as PFDiff-k. Additionally, when k ̸= 1, the535

computation of the buffer Q, originating from Eq. (13), presents different selection choices. We536

modify Eq. (12) to x̃ti+l
≈ ϕ(Q, x̃ti , ti, ti+l), l ≤ k to denote different “springboard” choices with537

the parameter l. This strategy of multi-step skips and varying “springboard” choices is collectively538

termed as PFDiff-k_l (l ≤ k). Consequently, based on modifications to parameters k and l in Eq.539

(12) and Eq. (14), Eq. (13) is updated to Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+l, ti+(k+1)

)
, and Eq. (11)540

is updated to Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−l+1), ti

)
. When k = 1, since l ≤ k, then l = 1,541

and PFDiff-k_l is the same as PFDiff-1, as shown in Algorithm 1 in Sec. 3.4. When k = 2, l542

can be either 1 or 2, forming Algorithms PFDiff-2_1 and PFDiff-2_2, as shown in Algorithm 2.543

Furthermore, when k = 3, this forms three different versions of PFDiff-3, as shown in Algorithm544

3. In this study, we utilize the optimal results from the six configurations of PFDiff-k_l (k = 1, 2, 3545

(l ≤ k)) to demonstrate the performance of PFDiff. As described in Appendix B.2, this is essentially546

an approximation of the ground truth ts. Through these six different algorithm configurations, we547

approximately search for the optimal ts. It is important to note that despite using six different548

algorithm configurations, this does not increase the computational burden in practical applications.549

This is because, by visual analysis of a small number of generated images or computing specific550

evaluation metrics, one can effectively select the algorithm configuration with the best performance.551

Moreover, even without any selection, directly using the PFDiff-1 configuration can achieve significant552

15

performance improvements on top of existing ODE solvers, as shown in the ablation study results in553

Sec. 4.3.554

Algorithm 2 PFDiff-2

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ, skip type l
1: Define time steps {ti}Mi=0 with M = 3N − 2p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
, where t̂0 = t0, t̂p = t1 ▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 3 do
6: if (i− 1) mod 3 = 0 then
7: if l = 1 then ▷ PFDiff-2_1
8: x̃ti+1

= ϕ(Q, x̃ti , ti, ti+1) ▷ Updating guided by past gradients

9: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+3

)
▷ Update buffer (overwrite)

10: else if l = 2 then ▷ PFDiff-2_2
11: x̃ti+2

= ϕ(Q, x̃ti , ti, ti+2) ▷ Updating guided by past gradients

12: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+2, ti+3

)
▷ Update buffer (overwrite)

13: end if
14: if p = 1 then
15: x̃ti+3

= ϕ(Q, x̃ti , ti, ti+3) ▷ Anticipatory updating guided by future gradients
16: else if p > 1 then
17: x̃ti+3

= ϕ(Q, x̃ti+l
, ti+l, ti+3) ▷ The higher-order solver uses only past gradients

18: end if
19: end if
20: end for
21: return x̃tM

Algorithm 3 PFDiff-3

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ, skip type l
1: Define time steps {ti}Mi=0 with M = 4N − 3p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
, where t̂0 = t0, t̂p = t1 ▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 4 do
6: if (i− 1) mod 4 = 0 then
7: x̃ti+4

= ϕ(Q, x̃ti , ti, ti+l) ▷ Updating guided by past gradients

8: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+l, ti+4

)
▷ Update buffer (overwrite)

9: if p = 1 then
10: x̃ti+4

= ϕ(Q, x̃ti , ti, ti+4) ▷ Anticipatory updating guided by future gradients
11: else if p > 1 then
12: x̃ti+4

= ϕ(Q, x̃ti+l
, ti+l, ti+4) ▷ The higher-order solver uses only past gradients

13: end if
14: end if
15: end for
16: return x̃tM

D Additional experiment results555

In this section, we provide further supplements to the experiments on both unconditional and556

conditional pre-trained Diffusion Probabilistic Models (DPMs) as mentioned in Sec. 4. Through557

these additional supplementary experiments, we more fully validate the effectiveness of PFDiff as an558

16

orthogonal and training-free sampler. Unless otherwise stated, the selection of pre-trained DPMs,559

choice of baselines, algorithm configurations, GPU utilization, and other related aspects in this section560

are consistent with those described in Sec. 4.561

D.1 License562

In this section, we list the used datasets, codes, and their licenses in Table 1.563

Table 1: The used datasets, codes, and their licenses.

Name URL License

CIFAR10 [42] https://www.cs.toronto.edu/∼kriz/cifar.html \
CelebA 64x64 [43] https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html \
LSUN-Bedroom [44] https://www.yf.io/p/lsun \
LSUN-Church [44] https://www.yf.io/p/lsun \
ImageNet [32] https://image-net.org/ \
MS-COCO2014 [31] https://cocodataset.org/ CC BY 4.0
ScoreSDE [4] https://github.com/yang-song/score_sde_pytorch Apache-2.0
DDIM [20] https://github.com/ermongroup/ddim/tree/main MIT
Analytic-DPM [23] https://github.com/baofff/Analytic-DPM \
DPM-Solver [21] https://github.com/LuChengTHU/dpm-solver MIT
DPM-Solver++ [22] https://github.com/LuChengTHU/dpm-solver MIT
Guided-Diffusion [5] https://github.com/openai/guided-diffusion MIT

Stable-Diffusion [9] https://github.com/CompVis/stable-diffusion CreativeML
Open RAIL-M

D.2 Additional results for unconditional discrete-time sampling564

In this section, we report on experiments with unconditional, discrete DPMs on the CIFAR10 [42]565

and CelebA 64x64 [43] datasets using quadratic time steps. The FID↓ scores for the PFDiff algorithm566

are reported for changes in the number of function evaluations (NFE) from 4 to 20. Additionally,567

we present FID scores on the CelebA 64x64 [43], LSUN-bedroom 256x256 [44], and LSUN-church568

256x256 [44] datasets, utilizing uniform time steps. The experimental results are summarized569

in Table 2. Results indicate that using DDIM [20] as the baseline, our method (PFDiff) nearly570

achieved significant performance improvements across all datasets and NFE settings. Notably, PFDiff571

facilitates rapid convergence of pre-trained DPMs to the data distribution with NFE settings below 10,572

validating its effectiveness on discrete pre-trained DPMs and the first-order ODE solver DDIM. It is573

important to note that on the CIFAR10 and CelebA 64x64 datasets, we have included the FID scores574

of Analytic-DDIM [23], which serves as another baseline. Analytic-DDIM modifies the variance in575

DDIM and introduces some random noise. With NFE lower than 10, the presence of minimal random576

noise amplifies the error introduced by the gradient information approximation in PFDiff, reducing577

its error correction capability compared to the Analytic-DDIM sampler. Thus, in fewer-step sampling578

(NFE<10), using DDIM as the baseline is more effective than using Analytic-DDIM, which requires579

recalculating the optimal variance for different pre-trained DPMs, thereby introducing additional580

computational overhead. In other experiments with pre-trained DPMs, we validate the efficacy of the581

PFDiff algorithm by combining it with the overall superior performance of the DDIM solver.582

Furthermore, to validate the motivation proposed in Sec. 3.2 based on Fig. 2a—that at not excessively583

large time step size ∆t, an ODE-based solver shows considerable similarity in the noise network584

outputs—we compare it with the SDE-based solver DDPM [2]. Even at smaller ∆t, the mean585

squared error (MSE) of the noise outputs from DDPM remains high, suggesting that the effectiveness586

of PFDiff may be limited when based on SDE solvers. Further, we adjusted the η parameter in587

Eq. (6) (which controls the amount of noise introduced in DDPM) from 1.0 to 0.0 (at η = 0.0,588

the SDE-based DDPM degenerates into the ODE-based DDIM [20]). As shown in Fig. 2a, as η589

decreases, the MSE of the noise network outputs gradually decreases at the same time step size ∆t,590

indicating that reducing noise introduction can enhance the effectiveness of PFDiff. To verify this591

motivation, we utilized quadratic time steps on CIFAR10 and CelebA 64x64 datasets and controlled592

17

https://www.cs.toronto.edu/$\sim $kriz/cifar.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.yf.io/p/lsun
https://www.yf.io/p/lsun
https://image-net.org/
https://cocodataset.org/
https://github.com/yang-song/score_sde_pytorch
https://github.com/ermongroup/ddim/tree/main
https://github.com/baofff/Analytic-DPM
https://github.com/LuChengTHU/dpm-solver
https://github.com/LuChengTHU/dpm-solver
https://github.com/openai/guided-diffusion
https://github.com/CompVis/stable-diffusion

Table 2: Sample quality measured by FID↓ on the CIFAR10 [42], CelebA 64x64 [43], LSUN-
bedroom 256x256 [44], and LSUN-church 256x256 [44] using unconditional discrete-time DPMs,
varying the number of function evaluations (NFE). Evaluated on 50k samples. PFDiff uses DDIM
[20] and Analytic-DDIM [23] as baselines and introduces DDPM [2] and Analytic-DDPM [23] with
η = 1.0 from Eq. (6) for comparison.

+PFDiff Method NFE

4 6 8 10 12 15 20

CIFAR10 (discrete-time model [2], quadratic time steps)

× DDPM(η = 1.0) [2] 108.05 71.47 52.87 41.18 32.98 25.59 18.34
× Analytic-DDPM [23] 65.81 56.37 44.09 34.95 29.96 23.26 17.32
× Analytic-DDIM [23] 106.86 24.02 14.21 10.09 8.80 7.25 6.17
× DDIM [20] 65.70 29.68 18.45 13.66 11.01 8.80 7.04

✓ Analytic-DDIM 289.84 23.24 7.03 4.51 3.91 3.75 3.65
✓ DDIM 22.38 9.48 5.64 4.57 4.39 4.10 3.68

CelebA 64x64 (discrete-time model [20], quadratic time steps)

× DDPM(η = 1.0) [2] 59.38 43.63 34.12 28.21 24.40 20.19 15.85
× Analytic-DDPM [23] 32.10 39.78 32.29 26.96 23.03 19.36 15.67
× Analytic-DDIM [23] 69.75 16.60 11.84 9.37 7.95 6.92 5.84
× DDIM [20] 37.76 20.99 14.10 10.86 9.01 7.67 6.50

✓ Analytic-DDIM 360.21 28.24 5.66 4.90 4.62 4.55 4.55
✓ DDIM 13.29 7.53 5.06 4.71 4.60 4.70 4.68

CelebA 64x64 (discrete-time model [20], uniform time steps)

× DDPM(η = 1.0) [2] 65.39 49.52 41.65 36.68 33.45 30.27 26.76
× Analytic-DDPM [23] 102.45 42.43 34.36 33.85 30.38 28.90 25.89
× Analytic-DDIM [23] 90.44 24.85 16.45 16.67 15.11 15.00 13.40
× DDIM [20] 44.36 29.12 23.19 20.50 18.43 16.71 14.76

✓ Analytic-DDIM 308.58 56.04 14.07 10.98 8.97 6.39 5.19
✓ DDIM 51.87 12.79 8.82 8.93 7.70 6.44 5.66

LSUN-bedroom 256x256 (discrete-time model [2], uniform time steps)

× DDIM [20] 115.63 47.40 26.73 19.26 15.23 11.68 9.26
✓ DDIM 140.40 18.72 11.50 9.28 8.36 7.76 7.14
LSUN-church 256x256 (discrete-time model [2], uniform time steps)

× DDIM [20] 121.95 50.02 30.04 22.04 17.66 14.58 12.49
✓ DDIM 72.86 18.30 14.34 13.27 12.05 11.77 11.12

the amount of noise introduced by adjusting η, to demonstrate that PFDiff can leverage the temporal593

redundancy present in ODE solvers to boost its performance. The experimental results, as shown594

in Table 3, illustrate that with the reduction of η from 1.0 (SDE) to 0.0 (ODE), PFDiff’s sampling595

performance significantly improves at fewer time steps (NFE≤20). The experiment results regarding596

FID variations with NFE as presented in Table 3, align with the trends of MSE of noise network597

outputs with changes in time step size ∆t as depicted in Fig. 2a. This reaffirms the motivation we598

proposed in Sec. 3.2.599

D.3 Additional results for unconditional continuous-time sampling600

In this section, we supplement the specific FID↓ scores for the unconditional, continuous pre-601

trained DPMs models with first-order and higher-order ODE solvers, DPM-Solver-1, -2 and602

-3, [21] as baselines, as shown in Table 4. For all experiments in this section, we con-603

ducted tests on the CIFAR10 dataset [42], using the checkpoint checkpoint_8.pth under the604

18

Table 3: Sample quality measured by FID↓ on the CIFAR10 [42] and CelebA 64x64 [43] using
unconditional discrete-time DPMs with and without our method (PFDiff), varying the number of
function evaluations (NFE) and η from Eq. (6). Evaluated on 50k samples.

Method NFE

4 6 8 10 12 15 20

CIFAR10 (discrete-time model [2], quadratic time steps)

DDPM(η = 1.0) [2] 108.05 71.47 52.87 41.18 32.98 25.59 18.34
+PFDiff (Ours) 475.47 432.24 344.96 332.41 285.88 158.90 28.05

DDPM(η = 0.5) [20] 71.08 34.32 22.37 16.63 13.37 10.75 8.38
+PFDiff (Ours) 432.50 349.09 311.62 167.65 59.93 23.17 10.61

DDPM(η = 0.2) [20] 66.33 30.26 18.94 14.01 11.25 9.00 7.18
+PFDiff (Ours) 316.15 189.02 18.55 7.73 5.70 4.53 4.00

DDIM(η = 0.0) [20] 65.70 29.68 18.45 13.66 11.01 8.80 7.04
+PFDiff (Ours) 22.38 9.48 5.64 4.57 4.39 4.10 3.68
CelebA 64x64 (discrete-time model [20], quadratic time steps)

DDPM(η = 1.0) [2] 59.38 43.63 34.12 28.21 24.40 20.19 15.85
+PFDiff (Ours) 433.25 439.19 415.41 317.43 324.58 326.50 171.41

DDPM(η = 0.5) [20] 40.58 23.72 16.74 13.15 11.27 9.36 7.73
+PFDiff (Ours) 435.27 417.58 314.63 310.10 252.19 69.31 19.23

DDPM(η = 0.2) [20] 38.20 21.35 14.55 11.22 9.47 7.99 6.71
+PFDiff (Ours) 394.03 319.02 45.15 12.71 7.85 5.10 4.96

DDIM(η = 0.0) [20] 37.76 20.99 14.10 10.86 9.01 7.67 6.50
+PFDiff (Ours) 13.29 7.53 5.06 4.71 4.60 4.70 4.68

Table 4: Sample quality measured by FID↓ of different orders of DPM-Solver [21] on the CIFAR10
[42] using unconditional continuous-time DPMs with and without our method (PFDiff), varying the
number of function evaluations (NFE). Evaluated on 50k samples.

Method order NFE

4 6 8 10 12 16 20

CIFAR10 (continuous-time model [4], quadratic time steps)

DPM-Solver-1 [21] 1 40.55 23.86 15.57 11.64 9.64 7.23 6.06

+PFDiff (Ours) 1 113.74 11.41 5.90 4.23 3.92 3.73 3.75
DPM-Solver-2 [21] 2 298.79 106.05 41.79 14.43 6.75 4.24 3.91
+PFDiff (Ours) 2 85.22 16.30 9.67 6.64 5.74 5.12 4.78

6 9 12 15 21

DPM-Solver-3 [21] 3 382.51 233.56 44.82 7.98 3.63
+PFDiff (Ours) 3 103.22 5.67 5.72 5.62 5.24

vp/cifar10_ddpmpp_deep_continuous configuration provided by ScoreSDE [4]. For the hyper-605

parameter method of DPM-Solver [21], we adopted singlestep_fixed; to maintain consistency606

with the discrete-time model in Appendix D.2, the parameter skip was set to time_quadratic (i.e.,607

quadratic time steps). Unless otherwise specified, we used the parameter settings recommended by608

DPM-Solver. The results in Table 4 show that by using the PFDiff method described in Sec. 3.4609

and taking DPM-Solver as the baseline, we were able to further enhance sampling performance on610

19

the basis of first-order and higher-order ODE solvers. Particularly, in the 6∼12 NFE range, PFDiff611

significantly improved the convergence issues of higher-order ODE solvers under fewer NFEs. For612

instance, at 9 NFE, PFDiff reduced the FID of DPM-Solver-3 from 233.56 to 5.67, improving the613

sampling quality by 97.57%. These results validate the effectiveness of using PFDiff with first-order614

or higher-order ODE solvers as the baseline.615

D.4 Additional results for classifier guidance616

Table 5: Sample quality measured by FID↓ on the ImageNet 64x64 [32] and ImageNet 256x256
[32], using ADM-G [5] model with guidance scales of 1.0 and 2.0, varying the number of function
evaluations (NFE). Evaluated: ImageNet 64x64 with 50k, ImageNet 256x256 with 10k samples. ∗We
directly borrowed the results reported by AutoDiffusion [26], and AutoDiffusion requires additional
search costs. ∗We directly borrowed the results reported by AutoDiffusion [26], and AutoDiffusion
requires additional search costs. “\” represents missing data in the original paper.

Method Step NFE

4 6 8 10 15 20

ImageNet 64x64 (pixel DPMs model [5], uniform time steps, guidance scale 1.0)

DDIM [20] Single 138.81 23.58 12.54 8.93 5.52 4.45
DPM-Solver-2 [21] Single 327.09 292.66 264.97 236.80 166.52 120.29
DPM-Solver-2 [21] Multi 48.64 21.08 12.45 8.86 5.57 4.46
DPM-Solver-3 [21] Single 383.71 376.86 380.51 378.32 339.34 280.12
DPM-Solver-3 [21] Multi 54.01 24.76 13.17 8.85 5.48 4.41
DPM-Solver++(2M) [22] Multi 44.15 20.44 12.53 8.95 5.53 4.33
∗AutoDiffusion [26] Single 17.86 11.17 \ 6.24 4.92 3.93

DDIM+PFDiff (Ours) Single 16.46 8.20 6.22 5.19 4.20 3.83
ImageNet 256x256 (pixel DPMs model [5], uniform time steps, guidance scale 2.0)

DDIM [20] Single 51.79 23.48 16.33 12.93 9.89 9.05
DDIM+PFDiff (Ours) Single 37.81 18.15 12.22 10.33 8.59 8.08

In this section, we provide the specific FID scores for pre-trained DPMs in the conditional, classifier617

guidance paradigm on the ImageNet 64x64 [32] and ImageNet 256x256 datasets [32], as shown in618

Table 5. We now describe the experimental setup in detail. For the pre-trained models, we used the619

ADM-G [5] provided 64x64_diffusion.pt and 64x64_classifier.pt for the ImageNet 64x64620

dataset, and 256x256_diffusion.pt and 256x256_classifier.pt for the ImageNet 256x256621

dataset. All experiments were conducted with uniform time steps and used DDIM as the baseline [20].622

We implemented the second-order and third-order methods from DPM-Solver [21] for comparison and623

explored the method hyperparameter provided by DPM-Solver for both singlestep (corresponding624

to “Single” in Table 5) and multistep (corresponding to “Multi” in Table 5). Additionally, we625

implemented the best-performing method from DPM-Solver++ [22], multi-step DPM-Solver++(2M),626

as a comparative measure. Furthermore, we also introduced the superior-performing AutoDiffusion627

[26] method as a comparison. ∗We directly borrowed the results reported in the original paper,628

emphasizing that although AutoDiffusion does not require additional training, it incurs additional629

search costs. “\” represents missing data in the original paper. The specific experimental results of the630

configurations mentioned are shown in Table 5. The results demonstrate that PFDiff, using DDIM631

as the baseline on the ImageNet 64x64 dataset, significantly enhances the sampling efficiency of632

DDIM and surpasses previous optimal training-free sampling methods. Particularly, in cases where633

NFE≤10, PFDiff improved the sampling quality of DDIM by 41.88%∼88.14%. Moreover, on the634

large ImageNet 256x256 dataset, PFDiff demonstrates a consistent performance improvement over635

the DDIM baseline, similar to the improvements observed on the ImageNet 64x64 dataset.636

D.5 Additional results for classifier-free guidance637

In this section, we supplemented the specific FID↓ scores for the Stable-Diffusion [9] (conditional,638

classifier-free guidance paradigm) setting with a guidance scale (s) of 7.5 and 1.5. Specifically, for639

20

the pre-trained model, we conducted experiments using the sd-v1-4.ckpt checkpoint provided by640

Stable-Diffusion. All experiments used the MS-COCO2014 [31] validation set to calculate FID↓641

scores, with uniform time steps. PFDiff employs the DDIM [20] method as the baseline. Initially,642

under the recommended s = 7.5 configuration by Stable-Diffusion, we implemented DPM-Solver-2643

and -3 as comparative methods, and conducted searches for the method hyperparameters provided by644

DPM-Solver as singlestep (corresponding to “Single” in Table 6) and multistep (corresponding645

to “Multi” in Table 6). Additionally, we introduced previous state-of-the-art training-free methods,646

including DPM-Solver++(2M) [22], UniPC [29], and DPM-Solver-v3(2M) [27] for comparison.647

The experimental results are shown in Table 6. †We borrow the results reported in DPM-Solver-v3648

[27] directly. The results indicate that on Stable-Diffusion, PFDiff, using only DDIM as a baseline,649

surpasses the previous state-of-the-art training-free sampling methods in terms of sampling quality in650

fewer steps (NFE<20). Particularly, at NFE=10, PFDiff achieved a 13.06 FID, nearly converging651

to the data distribution, which is a 14.25% improvement over the previous state-of-the-art method652

DPM-Solver-v3 at 20 NFE, which had a 15.23 FID. Furthermore, to further validate the effectiveness653

of PFDiff on Stable-Diffusion, we conducted experiments using the s = 1.5 setting with the same654

experimental configuration as s = 7.5. For the comparative methods, we only experimented with the655

multi-step versions of DPM-Solver-2 and -3 and DPM-Solver++(2M), which had faster convergence656

at fewer NFE under the s = 7.5 setting. As for UniPC and DPM-Solver-v3(2M), since DPM-Solver-657

v3 did not provide corresponding experimental results at s = 1.5, we did not list their comparative658

results. The experimental results show that PFDiff, using DDIM as the baseline under the s = 1.5659

setting, demonstrated consistent performance improvements as seen in the s = 7.5 setting, as shown660

in Table 6.661

Table 6: Sample quality measured by FID↓ on the validation set of MS-COCO2014 [31] using
Stable-Diffusion model [9] with guidance scales of 7.5 and 1.5, varying the number of function
evaluations (NFE). Evaluated on 10k samples. †We borrow the results reported in DPM-Solver-v3
[27] directly.

Method Step NFE

5 6 8 10 15 20

MS-COCO2014 (latent DPMs model [9], uniform time steps, guidance scale 7.5)

DDIM [20] Single 23.92 20.33 17.46 16.78 16.08 15.95
DPM-Solver-2 [21] Single 84.15 74.02 31.87 17.63 15.15 13.77
DPM-Solver-2 [21] Multi 18.97 17.37 16.29 15.99 14.32 14.38
DPM-Solver-3 [21] Single 156.27 102.59 54.52 26.29 16.95 14.85
DPM-Solver-3 [21] Multi 18.89 17.34 16.25 16.11 14.10 13.44
†DPM-Solver++(2M) [22] Multi 18.87 17.44 16.40 15.93 15.84 15.72
†UniPC [29] Multi 18.77 17.32 16.20 16.15 16.06 15.94
†DPM-Solver-v3(2M) [27] Multi 18.83 16.41 15.41 15.32 15.30 15.23

DDIM+PFDiff (Ours) Single 18.31 15.47 13.26 13.06 13.57 13.97

MS-COCO2014 (latent DPMs model [9], uniform time steps, guidance scale 1.5)

DDIM [20] Single 70.36 54.32 37.54 29.41 20.54 18.17
DPM-Solver-2 [21] Multi 37.47 27.79 19.65 18.39 17.27 16.85
DPM-Solver-3 [21] Multi 35.90 25.88 18.26 19.10 17.21 16.67
DPM-Solver++(2M) [22] Multi 36.58 26.78 18.92 20.26 18.61 17.78

DDIM+PFDiff (Ours) Single 24.31 20.99 18.09 17.00 16.03 15.57

D.6 Additional ablation study results662

D.6.1 Additional results for PFDiff hyperparameters study663

In this section, we extensively investigate the impact of the hyperparameters k and l on the perfor-664

mance of the PFDiff algorithm, supplemented by a series of ablation experiments regarding their665

configurations and outcomes. Specifically, we first conducted experiments on the CIFAR10 dataset666

21

Table 7: Ablation of the impact of k and l on PFDiff in CIFAR10 [42], ImageNet 64x64 and MS-
COCO2014 using DDPM [2], ScoreSDE [4], ADM-G [5] and Stable-Diffusion [9] models. We
report the FID↓, varying the number of function evaluations (NFE). Evaluated: MS-COCO2014 with
10k, others with 50k samples.

Method NFE

4 6 8 10 15 20

CIFAR10 (discrete-time model [2], quadratic time steps)

DDIM [20] 65.70 29.68 18.45 13.66 8.80 7.04
+PFDiff-1 124.73 19.45 5.78 4.95 4.25 4.14
+PFDiff-2_1 59.61 9.84 7.01 6.31 5.18 4.78
+PFDiff-2_2 167.12 53.22 8.43 4.95 4.10 3.78
+PFDiff-3_1 22.38 13.40 9.40 7.70 6.03 5.05
+PFDiff-3_2 129.18 19.35 5.64 4.57 4.19 4.08
+PFDiff-3_3 205.87 76.62 20.84 5.71 4.41 3.68
CIFAR10 (continuous-time model [4], quadratic time steps)

DPM-Solver-1 [21] 40.55 23.86 15.57 11.64 7.59 6.06
+PFDiff-1 250.56 76.78 6.53 4.28 3.78 3.75
+PFDiff-2_1 178.70 11.41 5.90 5.01 4.27 4.07
+PFDiff-2_2 289.06 250.48 71.08 9.17 4.09 3.83
+PFDiff-3_1 113.74 11.82 7.91 6.34 4.97 4.37
+PFDiff-3_2 264.88 130.24 8.92 4.23 3.78 3.78
+PFDiff-3_3 275.10 287.77 183.11 30.72 4.69 4.01

ImageNet 64x64 (pixel DPMs model [5], uniform time steps, s = 1.0)

DDIM [20] 138.81 23.58 12.54 8.93 5.52 4.45
+PFDiff-1 26.86 11.39 7.47 5.83 4.76 4.39
+PFDiff-2_1 17.14 8.94 6.38 5.46 4.30 3.83
+PFDiff-2_2 23.66 9.93 6.86 5.72 4.49 3.94
+PFDiff-3_1 16.74 9.43 7.19 5.86 4.69 4.44
+PFDiff-3_2 16.46 8.20 6.22 5.19 4.20 4.28
+PFDiff-3_3 23.06 9.73 6.92 5.55 4.47 4.49

MS-COCO2014 (latent DPMs model [9], uniform time steps, s = 7.5)

DDIM [20] 35.48 20.33 17.46 16.78 16.08 15.95
+PFDiff-1 98.78 23.06 13.26 13.06 13.72 14.09
+PFDiff-2_1 33.39 15.47 15.05 15.01 15.24 15.35
+PFDiff-2_2 178.10 53.77 16.92 13.55 13.57 14.08
+PFDiff-3_1 29.02 16.38 15.69 15.66 15.52 15.51
+PFDiff-3_2 75.73 17.60 14.46 14.52 14.84 14.99
+PFDiff-3_3 217.86 80.03 21.99 14.38 13.61 13.97

[42] using quadratic time steps, based on pre-trained unconditional discrete DDPM [2] and continuous667

ScoreSDE [4] DPMs. For the conditional DPMs, we used uniform time steps in classifier guidance668

ADM-G [5] pre-trained DPMs, setting the guidance scale (s) to 1.0 for experiments on the ImageNet669

64x64 dataset [32]; for the classifier-free guidance Stable-Diffusion [9] pre-trained DPMs, we set670

the guidance scale (s) to 7.5. All experiments were conducted using the DDIM [20] algorithm as a671

baseline, and PFDiff-k_l configurations (k = 1, 2, 3 (l ≤ k)) were tested in six different algorithm672

configurations. The change in NFE and the corresponding FID↓ scores are shown in Table 7. The673

experimental results show that under various combinations of k and l, PFDiff is able to enhance the674

sampling performance of the DDIM baseline in most cases across different types of pre-trained DPMs.675

Particularly when k = 1 is fixed, PFDiff-1 significantly improves the sampling performance of the676

DDIM baseline within the range of 8∼20 NFE. For practical applications requiring higher sampling677

quality at fewer NFE, optimal combinations of k and l can be identified by fixing NFE and sampling678

a small number of samples for visual analysis or computing specific metrics, without significantly679

22

increasing the computational burden. However, as discussed in Sec. 5, although the experimental680

results presented in Table 7 demonstrate the excellent performance of the combinations of k and l681

under various pre-trained DPMs and NFE settings, no universally optimal configuration exists. This682

finding somewhat limits the generality of the proposed PFDiff algorithm and sets objectives for our683

future research.684

D.6.2 Ablation study of gradient guidance685

To further investigate the impact of gradient guidance from the past or future on the rapid updating686

of current intermediate states, this section supplements experimental results and analysis using687

first-order and higher-order ODE solvers as baselines. Specifically, as described in Sec. 3.3, PFDiff688

uses a first-order ODE solver as a baseline, where future gradient guidance corrects sampling errors,689

with detailed proofs provided in Appendix B.2. Hence, using the first-order ODE solver DDIM690

[20] as a baseline, we removed past and future gradients separately and employed quadratic time691

steps. This was based on the pre-trained model from DDPM [2] on the CIFAR10 [42] dataset,692

evaluating the FID↓ metric by changing the number of function evaluations (NFE). For higher-order693

ODE solvers, the solving process implicitly utilizes future gradients as mentioned in Sec. 3.5, and694

the additional explicit introduction of future gradients increases sampling error. Therefore, when695

using higher-order ODE solvers as a baseline, PFDiff accelerates the sampling process using only696

past gradients. Specifically, for higher-order ODE solvers, we selected DPM-Solver-2 and -3 [21]697

as the baseline, also employing quadratic time steps, and based on the ScoreSDE [4] pre-trained698

model on CIFAR10 [42]. Only the future gradients were removed to validate the effectiveness of the699

PFDiff algorithm by changing the NFE and evaluating the FID↓ metric. As shown in Table 8, the700

experimental results indicate that using the first-order ODE solver DDIM as a baseline, employing701

only past gradients (similar to DeepCache [28]), or only future gradients, only slightly improves the702

baseline’s sampling performance; however, combining both significantly enhances the baseline’s703

sampling performance. Meanwhile, using higher-order ODE solvers DPM-Solver-2 and -3 as the704

baseline, because the algorithm inherently contains future gradients, continuing to explicitly introduce705

future gradients increases the overall error. Therefore, using only past gradients (PFDiff) significantly706

improves the baseline’s sampling efficiency, especially under fewer steps (NFE<10), where PFDiff707

markedly ameliorates the non-convergence issues of the higher-order ODE solvers.708

Table 8: Ablation of the impact of the past and future gradients on PFDiff, using different orders of
ODE Solver as the baseline, in CIFAR10 [42] using DDPM [2] and ScoreSDE [4] models. We report
the FID↓, varying the number of function evaluations (NFE). Evaluated on 50k samples.

+PFDiff Method NFE

4 6 8 10 12 16 20

CIFAR10 (discrete-time model [2], quadratic time steps, baseline: 1-order ODE solver)

× DDIM [20] 65.70 29.68 18.45 13.66 11.01 8.80 7.04

× +Past (similar to [28]) 52.81 27.47 17.87 13.64 10.79 8.20 7.02
× +Future 66.06 25.39 11.93 8.06 6.04 4.17 4.07
✓ +Past & Future 22.38 9.84 5.64 4.57 4.39 4.10 3.68
CIFAR10 (continuous-time model [4], quadratic time steps, baseline: 2-order ODE solver)

× DPM-Solver-2 [21] 298.79 106.05 41.79 14.43 6.75 4.24 3.91
✓ +Past 85.22 16.30 9.67 6.64 5.74 5.12 4.78
× +Past & Future 351.78 159.13 57.15 28.24 15.57 6.47 4.73

CIFAR10 (continuous-time model [4], quadratic time steps, baseline: 3-order ODE solver)

6 9 12 15 21

× DPM-Solver-3 [21] 382.51 233.56 44.82 7.98 3.63
✓ +Past 103.22 5.67 5.72 5.62 5.24
× +Past & Future 336.26 88.99 27.54 9.59 5.12

23

D.7 Inception score experimental results709

To evaluate the effectiveness of the PFDiff algorithm and the widely used Fréchet Inception Distance710

(FID↓) metric [40] in the sampling process of Diffusion Probabilistic Models (DPMs), we have also711

incorporated the Inception Score (IS↑) metric [41] for both unconditional and conditional pre-trained712

DPMs. Specifically, for the unconditional discrete-time pre-trained DPMs DDPM [2], we maintained713

the experimental configurations described in Table 2 of Appendix D.2, and added IS scores for714

the CIFAR10 dataset [42]. For the unconditional continuous-time pre-trained DPMs ScoreSDE[4],715

the experimental configurations are consistent with Table 4 in Appendix D.3, and IS scores for the716

CIFAR10 dataset were also added. For the conditional classifier guidance paradigm of pre-trained717

DPMs ADM-G [5], the experimental setup aligned with Table 5 in Appendix D.4, including IS scores718

for the ImageNet 64x64 and ImageNet 256x256 datasets [32]. Considering that the computation719

of IS scores relies on features extracted using InceptionV3 pre-trained on the ImageNet dataset,720

calculating IS scores for non-ImageNet datasets was not feasible, hence no IS scores were provided for721

the classifier-free guidance paradigm of Stable-Diffusion [9]. The experimental results are presented722

in Table 9. A comparison between the FID↓ metrics in Tables 2, 4, and 5 and the IS↑ metrics in Table723

9 shows that both IS and FID metrics exhibit similar trends under the same experimental settings,724

i.e., as the number of function evaluations (NFE) changes, lower FID scores correspond to higher725

IS scores. Further, Figs. 1a and 1b, along with the visualization experiments in Appendix D.8,726

demonstrate that lower FID scores and higher IS scores correlate with higher image quality and richer727

Table 9: Sample quality measured by IS↑ on the CIFAR10 [42], ImageNet 64x64 [32] and ImageNet
256x256 [32] using DDPM [2], ScoreSDE [4] and ADM-G [5] models, varying the number of
function evaluations (NFE). Evaluated: ImageNet 256x256 with 10k, others with 50k samples. ∗We
directly borrowed the results reported by AutoDiffusion [26], and AutoDiffusion requires additional
search costs. “\” represents missing data in the original paper and DPM-Solver-2 [21] implementation.

+PFDiff Method NFE

4 6 8 10 15 20

CIFAR10 (discrete-time model [2], quadratic time steps)

× DDPM(η = 1.0) [2] 4.32 5.66 6.55 7.08 7.91 8.25
× Analytic-DDPM [23] 5.76 6.29 6.93 7.42 8.07 8.33
× Analytic-DDIM [23] 4.46 7.47 8.11 8.43 8.72 8.89
× DDIM [20] 5.68 7.21 7.92 8.26 8.62 8.81

✓ Analytic-DDIM 1.62 8.78 9.43 9.61 9.35 9.29
✓ DDIM 7.79 9.29 9.62 9.43 9.29 9.29
CIFAR10 (continuous-time model [4], quadratic time steps)

× DPM-Solver-1 [21] 7.20 8.30 8.85 8.98 9.43 9.51
× DPM-Solver-2 [21] 1.70 5.29 7.94 9.09 \ 9.74

✓ DPM-Solver-1 4.29 9.25 9.76 9.86 9.85 9.97
✓ DPM-Solver-2 6.96 8.58 8.75 9.26 \ 9.69

ImageNet 64x64 (pixel DPMs model [5], uniform time steps, guidance scale 1.0)

× DDIM [20] 7.02 31.13 40.51 46.06 54.37 59.09
× DPM-Solver-2(Multi) [21] 19.03 33.75 44.65 51.79 62.18 67.69
× DPM-Solver-3(Multi) [21] 17.46 29.80 41.86 50.90 62.68 68.44
× DPM-Solver++(2M) [22] 20.72 34.22 43.62 50.02 60.00 65.66
× ∗AutoDiffusion [26] 34.88 43.37 \ 57.85 64.03 68.05

✓ DDIM 35.67 50.14 58.42 59.78 64.54 69.09
ImageNet 256x256 (pixel DPMs model [5], uniform time steps, guidance scale 2.0)

× DDIM [20] 37.72 95.90 122.13 144.13 165.91 179.27

✓ DDIM 55.90 122.56 158.57 169.72 183.07 192.70

24

details generated by the PFDiff sampling algorithm. These results further confirm the effectiveness728

of the PFDiff algorithm and the FID metric in evaluating the performance of sampling algorithms.729

D.8 Additional visualize study results730

To demonstrate the effectiveness of PFDiff, we present the visual sampling results on the CIFAR10731

[42], CelebA 64x64 [43], LSUN-bedroom 256x256 [44], LSUN-church 256x256 [44], ImageNet732

64x64 [32], ImageNet 256x256 [32], and MS-COCO2014 [31] datasets in Figs. 5-10. These results733

illustrate that PFDiff, using different orders of ODE solvers as a baseline, is capable of generating734

samples of higher quality and richer detail on both unconditional and conditional pre-trained Diffusion735

Probabilistic Models (DPMs).736

25

NFE = 4 NFE = 10

FID = 65.70 FID = 13.66

NFE = 4 NFE = 10

FID = 37.76 FID = 10.86

NFE = 8

FID = 18.45

NFE = 8

FID = 14.10

(a) DDIM [20]

FID = 106.86 FID = 10.09 FID = 69.75 FID = 9.37FID = 14.21 FID = 11.84

(b) Analytic-DDIM [23]

FID = 22.38 FID = 4.57 FID = 13.29 FID = 4.71FID = 5.64 FID = 5.06

(c) DDIM+PFDiff (Ours)

Figure 5: Random samples by DDIM [20], Analytic-DDIM [23], and PFDiff (baseline: DDIM) with
4, 8, and 10 number of function evaluations (NFE), using the same random seed, quadratic time steps,
and pre-trained discrete-time DPMs [2, 20] on CIFAR10 [42] (left) and CelebA 64x64 [43] (right).

NFE = 5

FID = 71.02

NFE = 10NFE = 10 NFE = 5

FID = 19.26 FID = 73.43 FID = 22.04

(a) DDIM [20]

FID = 25.32 FID = 9.28 FID = 26.69 FID = 13.27

(b) DDIM+PFDiff (Ours)

Figure 6: Random samples by DDIM [20] and PFDiff (baseline: DDIM) with 5 and 10 number
of function evaluations (NFE), using the same random seed, uniform time steps, and pre-trained
discrete-time DPMs [2] on LSUN-bedroom 256x256 [44] (left) and LSUN-church 256x256 [44]
(right).

26

NFE = 6 NFE = 12

FID = 23.86 FID = 9.64

(a) DPM-Solver-1 [21]

FID = 11.41 FID = 3.92

(b) DPM-Solver-1+PFDiff (Ours)

FID = 106.05 FID = 6.75

(c) DPM-Solver-2 [21]

FID = 16.30 FID = 5.74

(d) DPM-Solver-2+PFDiff (Ours)

FID = 382.51 FID = 44.82

(e) DPM-Solver-3 [21]

FID = 103.22 FID = 5.72

(f) DPM-Solver-3+PFDiff (Ours)

Figure 7: Random samples by DPM-Solver-1, -2, and -3 [21] with and without our method (PFDiff)
with 6 and 12 number of function evaluations (NFE), using the same random seed, quadratic time
steps, and pre-trained continuous-time DPMs [4] on CIFAR10 [42].

27

NFE = 4 NFE = 8

FID = 138.81 FID = 12.54

(a) DDIM [20]

FID = 48.64 FID = 12.45

(b) DPM-Solver-2 [21]

FID = 44.15 FID = 12.53

(c) DPM-Solver++(2M) [22]

FID = 16.46 FID = 6.22

(d) DDIM+PFDiff (Ours)

Figure 8: Random samples by DDIM [20], DPM-Solver-2 [21], DPM-Solver++(2M) [22], and PFDiff
(baseline: DDIM) with 4 and 8 number of function evaluations (NFE), using the same random seed,
uniform time steps, and pre-trained Guided-Diffusion [5] on ImageNet 64x64 [32] with a guidance
scale of 1.0.

NFE = 4 NFE = 8

FID = 51.79 FID = 16.33

(a) DDIM [20]

FID = 37.81 FID = 12.22

(b) DDIM+PFDiff (Ours)

Figure 9: Random samples by DDIM [20] and PFDiff (baseline: DDIM) with 4 and 8 number
of function evaluations (NFE), using the same random seed, uniform time steps, and pre-trained
Guided-Diffusion [5] on ImageNet 256x256 [32] with a guidance scale of 2.0.

28

D
D
IM

(F
ID
=
2
3
.9
2
)

D
P
M
-S
o
lv
e
r
+
+

(F
ID
=
1
8
.8
7
)

D
D
IM
+
P
F
D
if
f

(F
ID
=
1
8
.3
1
)

Text Prompts (listed from left to right):
A large bird is standing in the water by some rocks.
A candy covered cup cake sitting on top of a white plate.
People at a wine tasting with a table of wine bottles and glasses of red wine.
A bathtub sits on a tiled floor near a sink that has ornate mirrors over it while greenery grows on the
other side of the tub.
A kitchen and dining area in a house with an open floor plan that looks out over the landscape from a
large set of windows.

NFE = 5

D
D
IM

(F
ID
=
1
6
.7
8
)

D
P
M
-S
o
lv
e
r
+
+

(F
ID
=
1
5
.9
3
)

D
D
IM
+
P
F
D
if
f

(F
ID
=
1
3
.0
6
)

NFE = 10

Figure 10: Random samples by DDIM [20], DPM-Solver++(2M) [22], and PFDiff (baseline: DDIM)
with 5 and 10 number of function evaluations (NFE), using the same random seed, uniform time
steps, and pre-trained Stable-Diffusion [9] with a guidance scale of 7.5. Text prompts are a random
sample from the MS-COCO2014 [31] validation set.

29

NeurIPS Paper Checklist737

1. Claims738

Question: Do the main claims made in the abstract and introduction accurately reflect the739

paper’s contributions and scope?740

Answer: [Yes]741

Justification: See abstract and section 1.742

Guidelines:743

• The answer NA means that the abstract and introduction do not include the claims744

made in the paper.745

• The abstract and/or introduction should clearly state the claims made, including the746

contributions made in the paper and important assumptions and limitations. A No or747

NA answer to this question will not be perceived well by the reviewers.748

• The claims made should match theoretical and experimental results, and reflect how749

much the results can be expected to generalize to other settings.750

• It is fine to include aspirational goals as motivation as long as it is clear that these goals751

are not attained by the paper.752

2. Limitations753

Question: Does the paper discuss the limitations of the work performed by the authors?754

Answer: [Yes]755

Justification: See section 5.756

Guidelines:757

• The answer NA means that the paper has no limitation while the answer No means that758

the paper has limitations, but those are not discussed in the paper.759

• The authors are encouraged to create a separate "Limitations" section in their paper.760

• The paper should point out any strong assumptions and how robust the results are to761

violations of these assumptions (e.g., independence assumptions, noiseless settings,762

model well-specification, asymptotic approximations only holding locally). The authors763

should reflect on how these assumptions might be violated in practice and what the764

implications would be.765

• The authors should reflect on the scope of the claims made, e.g., if the approach was766

only tested on a few datasets or with a few runs. In general, empirical results often767

depend on implicit assumptions, which should be articulated.768

• The authors should reflect on the factors that influence the performance of the approach.769

For example, a facial recognition algorithm may perform poorly when image resolution770

is low or images are taken in low lighting. Or a speech-to-text system might not be771

used reliably to provide closed captions for online lectures because it fails to handle772

technical jargon.773

• The authors should discuss the computational efficiency of the proposed algorithms774

and how they scale with dataset size.775

• If applicable, the authors should discuss possible limitations of their approach to776

address problems of privacy and fairness.777

• While the authors might fear that complete honesty about limitations might be used by778

reviewers as grounds for rejection, a worse outcome might be that reviewers discover779

limitations that aren’t acknowledged in the paper. The authors should use their best780

judgment and recognize that individual actions in favor of transparency play an impor-781

tant role in developing norms that preserve the integrity of the community. Reviewers782

will be specifically instructed to not penalize honesty concerning limitations.783

3. Theory Assumptions and Proofs784

Question: For each theoretical result, does the paper provide the full set of assumptions and785

a complete (and correct) proof?786

Answer: [Yes]787

30

Justification: See Appendix B.788

Guidelines:789

• The answer NA means that the paper does not include theoretical results.790

• All the theorems, formulas, and proofs in the paper should be numbered and cross-791

referenced.792

• All assumptions should be clearly stated or referenced in the statement of any theorems.793

• The proofs can either appear in the main paper or the supplemental material, but if794

they appear in the supplemental material, the authors are encouraged to provide a short795

proof sketch to provide intuition.796

• Inversely, any informal proof provided in the core of the paper should be complemented797

by formal proofs provided in appendix or supplemental material.798

• Theorems and Lemmas that the proof relies upon should be properly referenced.799

4. Experimental Result Reproducibility800

Question: Does the paper fully disclose all the information needed to reproduce the main ex-801

perimental results of the paper to the extent that it affects the main claims and/or conclusions802

of the paper (regardless of whether the code and data are provided or not)?803

Answer: [Yes]804

Justification: See section 4 and Appendix D.805

Guidelines:806

• The answer NA means that the paper does not include experiments.807

• If the paper includes experiments, a No answer to this question will not be perceived808

well by the reviewers: Making the paper reproducible is important, regardless of809

whether the code and data are provided or not.810

• If the contribution is a dataset and/or model, the authors should describe the steps taken811

to make their results reproducible or verifiable.812

• Depending on the contribution, reproducibility can be accomplished in various ways.813

For example, if the contribution is a novel architecture, describing the architecture fully814

might suffice, or if the contribution is a specific model and empirical evaluation, it may815

be necessary to either make it possible for others to replicate the model with the same816

dataset, or provide access to the model. In general. releasing code and data is often817

one good way to accomplish this, but reproducibility can also be provided via detailed818

instructions for how to replicate the results, access to a hosted model (e.g., in the case819

of a large language model), releasing of a model checkpoint, or other means that are820

appropriate to the research performed.821

• While NeurIPS does not require releasing code, the conference does require all submis-822

sions to provide some reasonable avenue for reproducibility, which may depend on the823

nature of the contribution. For example824

(a) If the contribution is primarily a new algorithm, the paper should make it clear how825

to reproduce that algorithm.826

(b) If the contribution is primarily a new model architecture, the paper should describe827

the architecture clearly and fully.828

(c) If the contribution is a new model (e.g., a large language model), then there should829

either be a way to access this model for reproducing the results or a way to reproduce830

the model (e.g., with an open-source dataset or instructions for how to construct831

the dataset).832

(d) We recognize that reproducibility may be tricky in some cases, in which case833

authors are welcome to describe the particular way they provide for reproducibility.834

In the case of closed-source models, it may be that access to the model is limited in835

some way (e.g., to registered users), but it should be possible for other researchers836

to have some path to reproducing or verifying the results.837

5. Open access to data and code838

Question: Does the paper provide open access to the data and code, with sufficient instruc-839

tions to faithfully reproduce the main experimental results, as described in supplemental840

material?841

31

Answer: [Yes]842

Justification: We provide code in the supplemental materials, which will be made available843

on the GitHub platform.844

Guidelines:845

• The answer NA means that paper does not include experiments requiring code.846

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/847

public/guides/CodeSubmissionPolicy) for more details.848

• While we encourage the release of code and data, we understand that this might not be849

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not850

including code, unless this is central to the contribution (e.g., for a new open-source851

benchmark).852

• The instructions should contain the exact command and environment needed to run to853

reproduce the results. See the NeurIPS code and data submission guidelines (https:854

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.855

• The authors should provide instructions on data access and preparation, including how856

to access the raw data, preprocessed data, intermediate data, and generated data, etc.857

• The authors should provide scripts to reproduce all experimental results for the new858

proposed method and baselines. If only a subset of experiments are reproducible, they859

should state which ones are omitted from the script and why.860

• At submission time, to preserve anonymity, the authors should release anonymized861

versions (if applicable).862

• Providing as much information as possible in supplemental material (appended to the863

paper) is recommended, but including URLs to data and code is permitted.864

6. Experimental Setting/Details865

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-866

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the867

results?868

Answer: [Yes]869

Justification: Our method is training-free, but we also report the hyperparameters used when870

evaluating our proposed method. Details can be found in section 4 and Appendix D.871

Guidelines:872

• The answer NA means that the paper does not include experiments.873

• The experimental setting should be presented in the core of the paper to a level of detail874

that is necessary to appreciate the results and make sense of them.875

• The full details can be provided either with the code, in appendix, or as supplemental876

material.877

7. Experiment Statistical Significance878

Question: Does the paper report error bars suitably and correctly defined or other appropriate879

information about the statistical significance of the experiments?880

Answer: [No]881

Justification: We generate 50k images for 32x32, 64x64 datasets and 10k for 256x256 to882

evaluate the FID metric. According to previous works [20, 21, 26, 27], when evaluating883

with the generated samples mentioned above, the standard deviation of the FID evaluations884

is rather small (mainly less than 0.01). These small standard deviations do not change the885

conclusions.886

Guidelines:887

• The answer NA means that the paper does not include experiments.888

• The authors should answer "Yes" if the results are accompanied by error bars, confi-889

dence intervals, or statistical significance tests, at least for the experiments that support890

the main claims of the paper.891

• The factors of variability that the error bars are capturing should be clearly stated (for892

example, train/test split, initialization, random drawing of some parameter, or overall893

run with given experimental conditions).894

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,895

call to a library function, bootstrap, etc.)896

• The assumptions made should be given (e.g., Normally distributed errors).897

• It should be clear whether the error bar is the standard deviation or the standard error898

of the mean.899

• It is OK to report 1-sigma error bars, but one should state it. The authors should900

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis901

of Normality of errors is not verified.902

• For asymmetric distributions, the authors should be careful not to show in tables or903

figures symmetric error bars that would yield results that are out of range (e.g. negative904

error rates).905

• If error bars are reported in tables or plots, The authors should explain in the text how906

they were calculated and reference the corresponding figures or tables in the text.907

8. Experiments Compute Resources908

Question: For each experiment, does the paper provide sufficient information on the com-909

puter resources (type of compute workers, memory, time of execution) needed to reproduce910

the experiments?911

Answer: [Yes]912

Justification: In section 4, we mentioned that all experiments were conducted on an NVIDIA913

RTX 3090 GPU.914

Guidelines:915

• The answer NA means that the paper does not include experiments.916

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,917

or cloud provider, including relevant memory and storage.918

• The paper should provide the amount of compute required for each of the individual919

experimental runs as well as estimate the total compute.920

• The paper should disclose whether the full research project required more compute921

than the experiments reported in the paper (e.g., preliminary or failed experiments that922

didn’t make it into the paper).923

9. Code Of Ethics924

Question: Does the research conducted in the paper conform, in every respect, with the925

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?926

Answer: [Yes]927

Justification: Our work is conducted with the NeurIPS code of ethics.928

Guidelines:929

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.930

• If the authors answer No, they should explain the special circumstances that require a931

deviation from the Code of Ethics.932

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-933

eration due to laws or regulations in their jurisdiction).934

10. Broader Impacts935

Question: Does the paper discuss both potential positive societal impacts and negative936

societal impacts of the work performed?937

Answer: [Yes]938

Justification: See section 5.939

Guidelines:940

• The answer NA means that there is no societal impact of the work performed.941

• If the authors answer NA or No, they should explain why their work has no societal942

impact or why the paper does not address societal impact.943

33

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses944

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations945

(e.g., deployment of technologies that could make decisions that unfairly impact specific946

groups), privacy considerations, and security considerations.947

• The conference expects that many papers will be foundational research and not tied948

to particular applications, let alone deployments. However, if there is a direct path to949

any negative applications, the authors should point it out. For example, it is legitimate950

to point out that an improvement in the quality of generative models could be used to951

generate deepfakes for disinformation. On the other hand, it is not needed to point out952

that a generic algorithm for optimizing neural networks could enable people to train953

models that generate Deepfakes faster.954

• The authors should consider possible harms that could arise when the technology is955

being used as intended and functioning correctly, harms that could arise when the956

technology is being used as intended but gives incorrect results, and harms following957

from (intentional or unintentional) misuse of the technology.958

• If there are negative societal impacts, the authors could also discuss possible mitigation959

strategies (e.g., gated release of models, providing defenses in addition to attacks,960

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from961

feedback over time, improving the efficiency and accessibility of ML).962

11. Safeguards963

Question: Does the paper describe safeguards that have been put in place for responsible964

release of data or models that have a high risk for misuse (e.g., pretrained language models,965

image generators, or scraped datasets)?966

Answer: [NA]967

Justification: Our method is a training-free accelerated sampling approach. It relies on968

existing pre-trained DPMs and does not involve the release of data or models, thus there is969

no need for safeguards.970

Guidelines:971

• The answer NA means that the paper poses no such risks.972

• Released models that have a high risk for misuse or dual-use should be released with973

necessary safeguards to allow for controlled use of the model, for example by requiring974

that users adhere to usage guidelines or restrictions to access the model or implementing975

safety filters.976

• Datasets that have been scraped from the Internet could pose safety risks. The authors977

should describe how they avoided releasing unsafe images.978

• We recognize that providing effective safeguards is challenging, and many papers do979

not require this, but we encourage authors to take this into account and make a best980

faith effort.981

12. Licenses for existing assets982

Question: Are the creators or original owners of assets (e.g., code, data, models), used in983

the paper, properly credited and are the license and terms of use explicitly mentioned and984

properly respected?985

Answer: [Yes]986

Justification: See Appendix D.1.987

Guidelines:988

• The answer NA means that the paper does not use existing assets.989

• The authors should cite the original paper that produced the code package or dataset.990

• The authors should state which version of the asset is used and, if possible, include a991

URL.992

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.993

• For scraped data from a particular source (e.g., website), the copyright and terms of994

service of that source should be provided.995

34

• If assets are released, the license, copyright information, and terms of use in the996

package should be provided. For popular datasets, paperswithcode.com/datasets997

has curated licenses for some datasets. Their licensing guide can help determine the998

license of a dataset.999

• For existing datasets that are re-packaged, both the original license and the license of1000

the derived asset (if it has changed) should be provided.1001

• If this information is not available online, the authors are encouraged to reach out to1002

the asset’s creators.1003

13. New Assets1004

Question: Are new assets introduced in the paper well documented and is the documentation1005

provided alongside the assets?1006

Answer: [NA]1007

Justification: We do not release new assets.1008

Guidelines:1009

• The answer NA means that the paper does not release new assets.1010

• Researchers should communicate the details of the dataset/code/model as part of their1011

submissions via structured templates. This includes details about training, license,1012

limitations, etc.1013

• The paper should discuss whether and how consent was obtained from people whose1014

asset is used.1015

• At submission time, remember to anonymize your assets (if applicable). You can either1016

create an anonymized URL or include an anonymized zip file.1017

14. Crowdsourcing and Research with Human Subjects1018

Question: For crowdsourcing experiments and research with human subjects, does the paper1019

include the full text of instructions given to participants and screenshots, if applicable, as1020

well as details about compensation (if any)?1021

Answer: [NA]1022

Justification: We do not involve crowdsourcing nor research with human subjects.1023

Guidelines:1024

• The answer NA means that the paper does not involve crowdsourcing nor research with1025

human subjects.1026

• Including this information in the supplemental material is fine, but if the main contribu-1027

tion of the paper involves human subjects, then as much detail as possible should be1028

included in the main paper.1029

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1030

or other labor should be paid at least the minimum wage in the country of the data1031

collector.1032

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1033

Subjects1034

Question: Does the paper describe potential risks incurred by study participants, whether1035

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1036

approvals (or an equivalent approval/review based on the requirements of your country or1037

institution) were obtained?1038

Answer: [NA]1039

Justification: We do not involve human subjects nor crowdsourcing.1040

Guidelines:1041

• The answer NA means that the paper does not involve crowdsourcing nor research with1042

human subjects.1043

• Depending on the country in which research is conducted, IRB approval (or equivalent)1044

may be required for any human subjects research. If you obtained IRB approval, you1045

should clearly state this in the paper.1046

35

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions1047

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1048

guidelines for their institution.1049

• For initial submissions, do not include any information that would break anonymity (if1050

applicable), such as the institution conducting the review.1051

36

	Introduction
	Background
	Diffusion SDEs
	Diffusion ODEs

	Method
	Solving for reverse process diffusion ODEs
	Sampling guided by past gradients
	Sampling guided by future gradients
	PFDiff: sampling guided by past and future gradients
	Connection with other samplers

	Experiments
	Unconditional sampling
	Conditional sampling
	Ablation study

	Conclusion
	Related work
	Proof of convergence and error correction for PFDiff
	Proof of convergence for sampling guided by past gradients
	Error correction and proof of convergence of Proposition 3.1

	Algorithms of PFDiffs
	Additional experiment results
	License
	Additional results for unconditional discrete-time sampling
	Additional results for unconditional continuous-time sampling
	Additional results for classifier guidance
	Additional results for classifier-free guidance
	Additional ablation study results
	Additional results for PFDiff hyperparameters study
	Ablation study of gradient guidance

	Inception score experimental results
	Additional visualize study results

