
Conditional independence testing under
misspecified inductive biases

Felipe Maia Polo
Department of Statistics
University of Michigan

felipemaiapolo@gmail.com

Yuekai Sun
Department of Statistics
University of Michigan
yuekai@umich.edu

Moulinath Banerjee
Department of Statistics
University of Michigan
moulib@umich.edu

Abstract

Conditional independence (CI) testing is a fundamental and challenging task in
modern statistics and machine learning. Many modern methods for CI testing rely
on powerful supervised learning methods to learn regression functions or Bayes
predictors as an intermediate step; we refer to this class of tests as regression-
based tests. Although these methods are guaranteed to control Type-I error when
the supervised learning methods accurately estimate the regression functions or
Bayes predictors of interest, their behavior is less understood when they fail due
to misspecified inductive biases; in other words, when the employed models are
not flexible enough or when the training algorithm does not induce the desired
predictors. Then, we study the performance of regression-based CI tests under
misspecified inductive biases. Namely, we propose new approximations or up-
per bounds for the testing errors of three regression-based tests that depend on
misspecification errors. Moreover, we introduce the Rao-Blackwellized Predictor
Test (RBPT), a regression-based CI test robust against misspecified inductive bi-
ases. Finally, we conduct experiments with artificial and real data, showcasing the
usefulness of our theory and methods.

1 Introduction

Conditional independence (CI) testing is fundamental in modern statistics and machine learning (ML).
Its use has become widespread in several different areas, from (i) causal discovery [12, 24, 34, 11]
and (ii) algorithmic fairness [28], to (iii) feature selection/importance [5, 37] and (iv) transfer learning
[25]. Due to its growing relevance across different sub-fields of statistics and ML, new testing
methods with different natures, from regression to simulation-based tests, are often introduced.

Regression-based CI tests, i.e., tests based on supervised learning methods, have become especially
attractive in the past years due to (i) significant advances in supervised learning techniques, (ii) their
suitability for high-dimensional problems, and (iii) their simplicity and easy application. However,
regression-based tests usually depend on the assumption that we can accurately approximate the
regression functions or Bayes predictors of interest, which is hardly true if (i) either the model classes
are misspecified or if (ii) the training algorithms do not induce the desired predictors, i.e., if we
have misspecified inductive biases. Misspecified inductive biases typically lead to inflated Type-I
error rates but also can cause tests to be powerless. Even though these problems can frequently arise
in practical situations, more attention should be given to theoretically understanding the effects of
misspecification on CI hypothesis testing. Moreover, current regression-based methods are usually
not designed to be robust against misspecification errors, making CI testing less reliable. In this
work, we study the performance of three major regression-based conditional independence tests under
misspecified inductive biases and propose the Rao-Blackwellized Predictor Test (RBPT), which is
more robust against misspecification.
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With more details, our main contributions are:

• We present new robustness results for three relevant regression-based conditional independence
tests: (i) Significance Test of Feature Relevance (STFR) [7], (ii) Generalized Covariance Measure
(GCM) test [31], and (iii) REgression with Subsequent Independence Test (RESIT) [42, 24, 12].
Namely, we derive approximations or upper bounds for the testing errors that explicitly depend on
the level of misspecification.

• We introduce the Rao-Blackwellized Predictor Test (RBPT), a modification of the Significance
Test of Feature Relevance (STFR) [7] test that is robust against misspecified inductive biases.
In contrast with STFR and previous regression/simulation-based1 methods, the RBPT does not
require models to be correctly specified to guarantee Type-I error control. We develop theoretical
results about the RBPT, and experiments show that RBPT is robust when controlling Type-I error
while maintaining non-trivial power.

2 Preliminaries

Conditional independence testing. Let (X,Y, Z) be a random vector taking values in X × Y × Z ⊆
RdX×dY ×dZ and P be a fixed family of distributions on the measurable space (X × Y × Z,B), where
B = B(X ×Y ×Z) is the Borel σ-algebra. Let (X,Y, Z) ∼ P and assume P ∈ P . If P0 ⊂ P is the set
of distributions in P such that X ⊥⊥ Y | Z, the problem of conditional independence testing can be
expressed in the following way:

H0 : P ∈ P0 H1 : P ∈ P\P0

In this work, we also write H0 : X ⊥⊥ Y | Z and H1 : X ̸⊥⊥ Y | Z. We assume throughout that
we have access to a dataset D(n+m) = {(Xi, Yi, Zi)}n+m

i=1 independent and identically distributed
(i.i.d.) as (X,Y, Z), where D(n+m) splits into a test set D(n)

te = {(Xi, Yi, Zi)}ni=1 and a training set
D(m)

tr = {(Xi, Yi, Zi)}n+m
i=n+1. For convenience, we use the training set to fit models and the test set to

conduct hypothesis tests, even though other approaches are possible.

Misspecified inductive biases in modern statistics and machine learning. Traditionally, misspeci-
fied inductive biases in statistics have been linked to the concept of model misspecification and then
strictly related to the chosen model classes. For instance, if the best (Bayes) predictor for Y given X,
f∗, is a non-linear function of X, but we use a linear function to predict Y , then we say our model
is misspecified because f∗ is not in the class of linear functions. In modern machine learning and
statistics, however, it is known that the training algorithm also plays a crucial role in determining
the trained model. For example, it is known that training overparameterized neural networks using
stochastic gradient descent bias the models towards functions with good generalization [14, 33]. In
addition, D’Amour et al. [9] showed that varying hyperparameter values during training could result
in significant differences in the patterns learned by the neural network. The researchers found, for
instance, that models with different random initializations exhibit varying levels of out-of-distribution
accuracy in predicting skin health conditions for different skin types, indicating that each model
learned distinct features from the images. The sensitivity of the trained model concerning different
training settings suggests that even models capable of universal approximation may not accurately
estimate the target predictor if the training biases do not induce the functions we want to learn.

We present a toy experiment to empirically demonstrate how the training algorithm can prevent us
from accurately estimating the target predictor even when the model class is correctly specified,
leading to invalid significance tests. We work in the context of a high-dimensional (overparameterized)
regression with a training set of 250 observations and 500 covariates. We use the Generalized
Covariance Model (GCM) test2 [31] to conduct the CI test. The data are generated as

Z ∼ N(0, I500), X | Z ∼ N(β⊤
XZ, 1), and Y | X,Z ∼ N(β⊤

Y Z, 1),

where the first five entries of βX are set to 20, and the remaining entries are zero, while the last five
entries of βY are set to 20, and the remaining entries are zero. This results in X and Y being condition-
ally independent given Z and depending on Z only through a small number of entries. Additionally,
E[X | Z] = β⊤

XZ and E[Y | Z] = β⊤
Y Z, indicating that the linear model class is correctly specified. To

1Simulation-based tests usually rely on estimating conditional distributions.
2See Appendix A.3 for more details
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perform the GCM test, we use LASSO (∥·∥1 penalization term added to empirical squared error) and
the minimum-norm least-squares solution to fit linear models that predict X and Y given Z. In this
problem, the LASSO fitting approach provides the correct inductive bias since βX and βY are sparse.

Figure 1: Type-I error rate is con-
tingent on the training algorithm and
not solely on the model classes. Un-
like the minimum-norm solution, the
LASSO fit gives the correct induc-
tive bias in high-dimensional regres-
sion, providing better Type-I error
control.

We set the significance level to α = 10% and estimate the Type-I
error rate for 100 different training sets. Figure 1 provides the
Type-I error rate empirical distribution and illustrates that, despite
using the same model class for both fitting methods, the training
algorithm induces an undesired predictor in the minimum-norm
case, implying an invalid test most of the time. On the other hand,
the LASSO approach has better Type-I error control. In Appendix
A, we give a similar example but using the Significance Test of
Feature Relevance (STFR) [7].

In this work, we formalize the idea of misspecified inductive
biases in the following way. Assume that a training algorithm A
is used to choose a model ĝ(m) = A(D(m)

tr ) from the class G(m).
We further assume that the sequence (ĝ(m))m∈N converges to a
limiting model g∗ in a relevant context-dependent sense. We
use different notions of convergence depending on the specific
problem under consideration, which will be clear in the following
sections. We say that g∗ "carries misspecified inductive biases" if
it does not equal the target Bayes predictor or regression function
f∗. There are two possible reasons for g∗ carrying misspecified
biases: either the limiting model class is small and does not include f∗, or the training algorithm A
cannot find the best possible predictor, even asymptotically.

Notation. We write EP and VarP for the expectation and variance of statistics computed using
i.i.d. copies of (X,Y, Z) ∼ P . Consequently, PP (A) = EP1A, where 1A is the indicator of an
event A. If EP and VarP are conditioned on some other statistics, we assume those statistics are
also computed using i.i.d. samples from P . As usual, Φ is the N(0, 1) distribution function. If
(am)m∈N and (bm)m∈N are sequences of scalars, then am = o(bm) is equivalent to am/bm → 0 as
m → ∞ and am = bm + o(1) means am − bm = o(1). If (V (m))m∈N is a sequence of random variables,
where V (m) as constructed using i.i.d. samples of P (m) ∈ P for each m, then (i) V (m) = op(1)
means that for every ε > 0 we have PP (m)(|V (m)| > ε) → 0 as m → ∞, (ii) V (m) = Op(1)
means that for every ε > 0 there exists a M > 0 such that supm∈N PP (m)(|V (m)| > M) < ε, (iii)
V (m) = am + op(1) means V (m) − am = op(1), (iv) V (m) = op(am) means V (m)/am = op(1), and
(v) V (m) = Op(am) means V (m)/am = Op(1). Finally, let (V (m)

P )m∈N,P∈P be a family of random
variables that distributions explicitly depend on m ∈ N and P ∈ P . We give an example to clarify what
we mean by "explicitly" depending on a specific distribution. Let V (m)

P = 1
m

∑m
i=1(Xi − µP ), where

µP = EP [X]. Here, V (m)
P explicitly depends on P because of the quantity µP . In this example, Xi’s

outside the expectation can have an arbitrary distribution (unless stated), i.e., could be determined by
P or any other distribution. With this context, (i) V (m)

P = oP(1) means that for every ε > 0 we have
supP∈P PP (|V (m)

P | > ε) → 0 as m → ∞, (ii) V (m)
P = OP(1) means that for every ε > 0 there exists a

M > 0 such that supm∈N,P∈P PP (|V (m)
P | > M) < ε, (iii) V (m)

P = oP(am) means V
(m)
P /am = oP(1),

and (iv) V (m)
P = OP(am) means V

(m)
P /am = OP(1).

Related work. There is a growing literature on the problem of conditional independence testing
regarding both theoretical and methodological aspects3. From the methodological point of view, there
is a great variety of tests with different natures. Perhaps, the most important groups of tests are (i)
simulation-based tests [5, 3, 4, 32, 35, 20], (ii) regression-based tests [40, 24, 42, 38, 31, 7], (iii)
kernel-based tests [10, 8, 34, 30], and (iv) information-theoretic based tests [29, 16, 39]. Due to the
advance of supervised and generative models in recent years, regression and simulation-based tests
have become particularly appealing, especially when Z is not low-dimensional or discrete. A related
but different line of research is constructing a lower confidence bound for conditional dependence
of X and Y given Z [41]. In that work, the authors propose a method that relies on computing
the conditional expectation of a possibly misspecified regression model, which can be related to

3See, for example, Marx and Vreeken [21], Shah and Peters [31], Li and Fan [19], Neykov et al. [23], Watson
and Wright [37], Kim et al. [15], Shi et al. [32], Scetbon et al. [30], Tansey et al. [35], Zhang et al. [39], Ai et al.
[1]
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our method presented in Section 4. Despite the relationship between methods, their motivations,
assumptions, and contexts are different.

Simulation-based tests depend on the fact that we can, implicitly or explicitly, approximate the
conditional distributions PX|Z or PY |Z . Two relevant simulation-based methods are the conditional
randomization and conditional permutation tests (CRT/CPT) [5, 3, 4, 35]. For these tests, Berrett
et al. [4] presents robustness results showing that we can approximately control Type I error even
if our estimates for the conditional distributions are not perfect and we are under a finite-sample
regime. However, it is also clear from their results that CRT and CPT might not control Type I
error asymptotically when models for conditional distributions are misspecified. On the other hand,
regression-based tests work under the assumption that we can accurately approximate the conditional
expectations E[X | Z] and E[Y | Z] or other Bayes predictors, which is hardly true if the modeling
and training inductive biases are misspecified. To the best of our knowledge, there are no published
robustness results for regression-based CI tests like those presented by Berrett et al. [4]. We explore
this literature gap.

3 Regression-based conditional independence tests under misspecified
inductive biases

This section provides results for the Significance Test of Feature Relevance (STFR) [7]. Due to limited
space, the results for the Generalized Covariance Measure (GCM) test [31] and the REgression with
Subsequent Independence Test (RESIT) [42, 24, 12] are presented in Appendix A. From the results in
Appendix A, one can easily derive a double robustness property for both GCM and RESIT, implying
that not all models need to be correctly specified or trained with the correct inductive biases for
Type-I error control.

3.1 Significance Test of Feature Relevance (STFR)

The STFR method studied by Dai et al. [7] offers a scalable approach for conducting conditional
independence testing by comparing the performance of two predictors. To apply this method, we first
train two predictors ĝ

(m)
1 : X × Z → Y and ĝ

(m)
2 : Z → Y on the training set D(m)

tr to predict Y given
(X,Z) and Z, respectively. We assume that candidates for ĝ(m)

2 are models in the same class as ĝ
(m)
1

but replacing X with null entries. Using samples from the test set D(n)
te , we conduct the test rejecting

H0 : X ⊥⊥ Y | Z if the statistic Λ(n,m) ≜
√
nT̄ (n,m)/σ̂(n,m) exceeds τα ≜ Φ−1(1− α), depending on

the significance level α ∈ (0, 1). We define T̄ (n,m) and σ̂(n,m) as

T̄ (n,m) ≜ 1
n

∑n
i=1 T

(m)
i and σ̂(n,m) ≜

[
1
n

∑n
i=1(T

(m)
i )2 −

(
1
n

∑n
i=1 T

(m)
i

)2]1/2
(3.1)

with T
(m)
i ≜ ℓ(ĝ

(m)
2 (Zi), Yi)− ℓ(ĝ

(m)
1 (Xi, Zi), Yi)+ εi. Here, ℓ is a loss function, typically used during

the training phase, and {εi}ni=1
iid∼ N(0, ρ2) are small artificial random noises that do not let σ̂(n,m)

vanish with a growing training set, thus allowing the asymptotic distribution of Λ(n,m) to be standard
normal under H0 : X ⊥⊥ Y | Z. If the p-value is defined as p(D(n)

te ,D(m)
tr ) = 1− Φ(Λ(n,m)), the test is

equivalently given by

φSTFR
α (D(n)

te ,D(m)
tr ) ≜

{
1, if p(D(n)

te ,D(m)
tr ) ≤ α

0, otherwise
(3.2)

The rationale behind STFR is that if H0 : X ⊥⊥ Y | Z holds, then ĝ
(m)
1 and ĝ

(m)
2 should have

similar performance in the test set. On the other hand, if H0 does not hold, we expect ĝ(m)
1 to have

significantly better performance, and then we would reject the null hypothesis. Said that, to control
STFR’s Type-I error, it is necessary that the risk gap between ĝ

(m)
1 and ĝ

(m)
2 , EP [ℓ(ĝ

(m)
2 (Z), Y ) |

D(m)
tr ]− EP [ℓ(ĝ

(m)
1 (X,Z), Y ) | D(m)

tr ], under H0 vanishes as the training set size increases. Moreover,
we need the risk gap to be positive for the test to have non-trivial power. These conditions can be met
if the risk gap of g∗1,P and g∗2,P , the limiting models of ĝ(m)

1 and ĝ
(m)
2 , is the same as the risk gap of

the Bayes’ predictors

f∗
1,P ≜ argminf1

EP [ℓ(f1(X,Z), Y )] and f∗
2,P ≜ argminf2

EP [ℓ(f2(Z), Y )],
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where the minimization is done over the set of all measurable functions4. However, the risk gap
between ĝ

(m)
1 and ĝ

(m)
2 will typically not vanish if g∗1,P and g∗2,P are not the Bayes’ predictors even

under H0. In general, we should expect g∗1,P to perform better than g∗2,P because the second predictor
does not depend on X. Furthermore, their risk gap can be non-positive even if f∗

1,P performs better
than f∗

2,P . In Appendix A.2, we present two examples in which model misspecification plays an
important role when conducting STFR. The examples show that Type-I error control and/or power
can be compromised due to model misspecification.

To derive theoretical results, we adapt the assumptions from Dai et al. [7]:
Assumption 3.1. There are functions g∗1,P , g∗2,P , and a constant γ > 0 such that

EP

[
ℓ(ĝ

(m)
2 (Z), Y ) | D(m)

tr

]
− EP

[
ℓ(g∗2,P (Z), Y )

]
−
(
EP

[
ℓ(ĝ

(m)
1 (X,Z), Y ) | D(m)

tr

]
− EP

[
ℓ(g∗1,P (X,Z), Y )

])
= OP(m

−γ)

Assumption 3.2. There exists a constant k > 0 such that

EP

[
|T (m)

1 |2+k | D(m)
tr

]
= OP(1) as m → ∞

Assumption 3.3. For every P ∈ P, there exists a constant σ2
P > 0 such that

VarP [T
(m)
1 | D(m)

tr ]− σ2
P = oP(1) as m → ∞ and inf

P∈P
σ2
P > 0

Finally, we present the results for this section. We start with an extension of Theorem 2 presented by
Dai et al. [7] in the case of misspecified inductive biases.
Theorem 3.4. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. If n is a function of m such that
n → ∞ and n = o(m2γ) as m → ∞, then

EP [φ
STFR
α (D(n)

te ,D(m)
tr )] = 1− Φ

(
τα −

√
n
σ2
P
ΩSTFR

P

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and
ΩSTFR

P ≜ EP [ℓ(g
∗
2,P (Z), Y )]− EP [ℓ(g

∗
1,P (X,Z), Y )]

Theorem 3.4 demonstrates that the performance of STFR depends on the limiting models g∗1,P and
g∗2,P . Specifically, if ΩSTFR

P > 0, then EP [φ
STFR
α (D(n)

te ,D(m)
tr )] → 1 even if H0 : X ⊥⊥ Y | Z holds. In

practice, we should expect ΩSTFR
P > 0 because of how we set the class for ĝ(m)

2 . In contrast, we could
have ΩSTFR

P ≤ 0, and then EP [φ
STFR
α (D(n)

te ,D(m)
tr )] ≤ α+o(1), even if the gap between Bayes’ predictors

is positive. See examples in Appendix A.2 for both scenarios. Next, we provide Corollary 3.6 to
clarify the relationship between testing and misspecification errors. This corollary formalizes the
intuition that controlling Type-I error is directly related to misspecification of g∗2,P , while minimizing
Type-II error is directly related to misspecification of g∗1,P .
Definition 3.5. For a distribution P and a loss function ℓ, define the misspecification gaps:
∆1,P ≜ EP [ℓ(g

∗
1,P (X,Z), Y )]−EP [ℓ(f

∗
1,P (X,Z), Y )] and ∆2,P ≜ EP [ℓ(g

∗
2,P (Z), Y )]−EP [ℓ(f

∗
2,P (Z), Y )]

The misspecification gaps defined in Definition 3.5 quantify the difference between the limiting
predictors g∗1,P and g∗2,P and the Bayes predictors f∗

1,P and f∗
2,P , i.e., give a misspecification measure

for g∗1,P and g∗2,P . Corollary 3.6 implies that the STFR controls Type-I error asymptotically if
∆2,P = 0, and guarantees non-trivial power if the degree of misspecification of g∗1,P is not large
compared to the performance difference of the Bayes predictors ∆P , that is, when ∆P −∆1,P > 0.
Corollary 3.6 (Bounding testing errors). Suppose we are under the conditions of Theorem 3.4.

(Type-I error) If H0 : X ⊥⊥ Y | Z holds, then

EP [φ
STFR
α (D(n)

te ,D(m)
tr )] ≤ 1− Φ

(
τα −

√
n
σ2
P
∆2,P

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P0 as m → ∞.

(Type-II error) In general, we have

1− EP [φ
STFR
α (D(n)

te ,D(m)
tr )] ≤ Φ

(
τα −

√
n
σ2
P
(∆P −∆1,P )

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and ∆P ≜ EP [ℓ(f
∗
2,P (Z), Y )]−

EP [ℓ(f
∗
1,P (X,Z), Y )].

4We assume f∗
1,P and f∗

2,P to be well-defined and unique.
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4 A robust regression-based conditional independence test

This section introduces the Rao-Blackwellized Predictor Test (RBPT), a misspecification robust
conditional independence test based on ideas from both regression and simulation-based CI tests.
The RBPT assumes that we can implicitly or explicitly approximate the conditional distribution
of X | Z and does not require inductive biases to be correctly specified. Because RBPT involves
comparing the performance of two predictors and requires an approximation of the distribution of
X | Z, we can directly compare it with the STFR [7] and the conditional randomization/permutation
tests (CRT/CPT) [5, 4]. The RBPT can control Type-I error under relatively weaker assumptions
compared to other tests, allowing some misspecified inductive biases.

The RBPT can be summarized as follows: (i) we train ĝ(m) that predicts Y given (X,Z) using D(m)
tr ;

(ii) we obtain the Rao-Blackwellized predictor h(m) by smoothing ĝ(m), i.e.,

h(m)(z) ≜
∫
ĝ(m)(x, z)dPX|Z=z(x),

then (iii) compare its performance with ĝ(m)’s using the test set D(n)
te and a convex loss5 function ℓ (not

necessarily used to train ĝ(m)), and (iv) if the performance of ĝ(m) is statistically better than h(m)’s,

Algorithm 1: Obtaining p-value for the RBPT

1 Input: (i) Test set D(n)
te = {(Xi, Yi, Zi)}ni=1, (ii)

initial predictor ĝ(m), (iii) conditional distribution
estimate Q̂

(m)

X|Z , (iv) convex loss function ℓ;
2 Output: p-value p;
3 For each i ∈ [n], get

ĥ(m)(Zi) =
∫
ĝ(m)(x, Zi)dQ̂

(m)

X|Z=Zi
(x);

4 Compute Ξ(n,m) ≜
√
nT̄ (n,m)/σ̂(n,m) where

T̄ (n,m) ≜ 1
n

∑n
i=1 T

(m)
i with

T
(m)
i ≜ ℓ(ĥ(m)(Zi), Yi)− ℓ(ĝ(m)(Xi, Zi), Yi)

and σ̂(n,m) being {Ti}’s sample std dev (Eq. 3.1).

5 return p = 1− Φ(Ξ(n,m)).

we reject H0 : X ⊥⊥ Y | Z. The proce-
dure described here bears a resemblance
to the Rao-Blackwellization of estimators.
In classical statistics, the Rao-Blackwell
theorem [17] states that by taking the con-
ditional expectation of an estimator with re-
spect to a sufficient statistic, we can obtain
a better estimator if the loss function is con-
vex. In our case, the variable Z can be seen
as a "sufficient statistic" for Y under the as-
sumption of conditional independence H0 :
X ⊥⊥ Y | Z. If H0 holds and the loss ℓ(ŷ, y)
is convex in its first argument, we can show
using Jensen’s inequality that the resulting
model h(m) has a lower risk relative to the
initial model ĝ(m), i.e., EP [ℓ(h

(m)(Z), Y ) |
D(m)

tr ] − EP [ℓ(ĝ
(m)(X,Z), Y ) | D(m)

tr ] ≤ 0.
Then, the risk gap in RBPT is non-positive
under H0 in contrast with STFR’s risk gap,
which we should expect to be always non-negative given the definition of ĝ(m)

2 in that case. That fact
negatively biases the RBPT test statistic, enabling better Type-I error control.

In practice, we cannot compute h(m) exactly because PX|Z is usually unknown. Then, we use an
approximation Q̂

(m)

X|Z , which can be given explicitly, e.g., using probabilistic classifiers or conditional
density estimators [13], or implicitly, e.g., using generative adversarial networks (GANs) [22, 3]. We
assume that Q̂(m)

X|Z is obtained using the training set. The approximated h(m) is

ĥ(m)(z) ≜
∫
ĝ(m)(x, z)dQ̂

(m)

X|Z=z(x)

where the integral can be solved numerically in case Q̂
(m)

X|Z has a known probability mass function
or Lebesgue density (e.g., via trapezoidal rule) or via Monte Carlo integration in case we can only
sample from Q̂

(m)

X|Z . Finally, for a fixed significance level α ∈ (0, 1), the test φRBPT
α is given by Equation

3.2 where the p-value is obtained via Algorithm 1.

Before presenting RBPT results, we introduce some assumptions. Let Q∗
X|Z represent the limiting

model for Q̂(m)

X|Z . The conditional distribution Q∗
X|Z depends on the underlying distribution P , but we

omit additional subscripts for ease of notation. Assumption 4.1 defines the limiting models and fixes
a convergence rate.

5The loss function ℓ(ŷ, y) needs to be convex with respect to its first entry (ŷ) for all y. Both the test set and
training set sizes, and the loss function ℓ can be chosen using the heuristics introduced by Dai et al. [7].

6



Assumption 4.1. There is a function g∗P , a conditional distribution Q∗
X|Z , and a constant γ > 0 s.t.

EP

[∥∥∥ĝ(m)(Z)− g∗P (Z)
∥∥∥2
2

∣∣∣ D(m)
tr

]
= OP(m

−γ) and EP

[
dTV(Q̂

(m)

X|Z , Q
∗
X|Z) | D

(m)
tr

]
= OP(m

−γ)

where dTV denotes the total variation (TV) distance. Additionally, assume that both Q̂
(m)

X|Z and Q∗
X|Z

are dominated by a common σ-finite measure which does not depend on Z or m.

The common dominating measure in Assumption 4.1 could be, for example, the Lebesgue measure
in RdX . Next, Assumption 4.2 imposes additional constraints on the limiting model Q∗

X|Z . Under
that assumption, the limiting misspecification level must be uniformly bounded over all P ∈ P.
Assumption 4.2. For all P ∈ P, the chi-square divergence

χ2
(
Q∗

X|Z ||PX|Z
)
≜
∫ dQ∗

X|Z
dPX|Z

dQ∗
X|Z − 1

is a well-defined integrable random variable and supP∈P EP

[
χ2
(
Q∗

X|Z ||PX|Z
)]

< ∞.

Now, assume ĝ(m) is chosen from a model class G(m). Assumption 4.3 imposes constraints on the
model classes {G(m)} and loss function ℓ.
Assumption 4.3. Assume (i) supg∈G(m) sup(x,z)∈X×Z ∥g(x, z)∥1 ≤ M < ∞, for some real and positive
M > 0, uniformly for all m, and (ii) that ℓ is a L−Lipschitz loss function (with respect to its first
argument) for a certain L > 0, i.e., for any ŷ, ŷ′, y ∈ Y , we have that |ℓ(ŷ, y)− ℓ(ŷ′, y)| ≤ L ∥ŷ − ŷ′∥2.

Assumption 4.3 is valid by construction since we choose G(m) and the loss function ℓ. That assumption
is satisfied when, for example, (a) models in ∪mG(m) are uniformly bounded, (b) ℓ(ŷ, y) = ∥ŷ − y∥pp
with p ≥ 1, and (c) Y is a bounded subset of RdY , i.e., in classification problems and most of the
practical regression problems. The loss ℓ(ŷ, y) = ∥ŷ − y∥pp, with p ≥ 1, is also convex with respect to
its first entry and then a suitable loss for RBPT. It is important to emphasize that ℓ does not need to be
the same loss function used during the training phase. For example, we could use ℓ(ŷ, y) = ∥ŷ − y∥22
in classification problems, where y is a one-hot encoded class label and ŷ is a vector of predicted
probabilities given by a model trained using the cross-entropy loss.
Theorem 4.4. Suppose that Assumptions 3.2, 3.3, 4.1, 4.2, and 4.3 hold. If n is a function of m such
that n → ∞ and n = o(mγ) as m → ∞, then

EP [φ
RBPT
α (D(n)

te ,D(m)
tr )] = 1− Φ

(
τα −

√
n
σ2
P
ΩRBPT

P

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and ΩRBPT
P = ΩRBPT

P,1 − ΩRBPT
P,2 with

ΩRBPT
P,1 ≜ EP

[
ℓ
(∫

g∗P (x, Z)dQ∗
X|Z(x), Y

)]
− EP

[
ℓ
(∫

g∗P (x, Z)dPX|Z(x), Y
)]

and

ΩRBPT
P,2︸ ︷︷ ︸

Jensen’s gap

≜ EP

[
ℓ(g∗P (X,Z), Y )

]
− EP

[
ℓ
(∫

g∗P (x, Z)dPX|Z(x), Y
)]

When H0 : X ⊥⊥ Y | Z holds and ℓ is a strictly convex loss function (w.r.t. its first entry), we have
that ΩRBPT

P,2 > 0, allowing6 some room for the "incorrectness" of Q∗
X|Z . That is, from Theorem 4.4,

as long as ΩRBPT
P ≤ 0, i.e., if Q∗

X|Z’s incorrectness (measured by ΩRBPT
P,1 ) is not as big as Jensen’s gap

ΩP,2, RBPT has asymptotic Type-I error control. Uniform asymptotic Type-I error control is possible
if supP∈P0

ΩRBPT
P ≤ 0. This is a great improvement of previous work (e.g., STFR, GCM, RESIT, CRT,

CPT) since there is no need for any model to converge to the ground truth if ΩRBPT
P,1 ≤ ΩRBPT

P,2 , which
is a weaker condition. See however that a small ΩRBPT

P,2 reduces the room for Q∗
X|Z incorrectness.

In the extreme case, when g∗P is the Bayes predictor, and therefore does not depend on X under
H0, we need7 Q∗

X|Z = PX|Z almost surely. On the other hand, if g∗P is close to the Bayes predictor,
RBPT has better power. That imposes an expected trade-off between Type-I error control and

6In practice, we do not need ℓ to be strictly convex for the Jensen’s gap to be positive. Assuming that g∗P
depends on X under H0 is necessary, though. That condition is usually true when g∗P is not the Bayes predictor.

7In this case, Assumption 3.3 is not true. We need to include artificial noises in the definition of Ti as it was
done in STFR by Dai et al. [7] in case we have high confidence that models converge to the ground truth.
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Figure 2: Type-I error rates (c = 0). In the first two plots, we set θ = 0 for RBPT, permitting Type-I error
control across different dZ values (Theorem 4.4), while RBPT2 allows Type-I error control for moderate dZ .
All the baselines fail to control Type-I errors regardless of dZ . The last two plots illustrate that CRT emerges as
the least robust test in this context, succeeded by RBPT and CPT.

power. To make a comparison with Berrett et al. [4] ’s results in the case of CRT and CPT, we can
express our remark in terms of the TV distance between Q∗

X|Z and PX|Z . It can be shown that if
EP [dTV(Q

∗
X|Z , PX|Z)] ≤ ΩRBPT

P,2 /(2ML), then Type-I error control is guaranteed (see Appendix A.5).
This contrasts with Berrett et al. [4] ’s results because EP [dTV(Q

∗
X|Z , PX|Z)] = 0 is not needed.

We conclude this section with some relevant observations related to the RBPT.

On RBPT’s power. Like STFR, non-trivial power is guaranteed if the predictor g∗P is good enough.
Indeed, the second part of Corollary 3.6 can be applied for an upper bound on RBPT’s Type-II error.

Semi-supervised learning. Let Y denote a label variable. Situations in which unlabeled samples
(Xi, Zi) are abundant while labeled samples (Xi, Yi, Zi) are scarce happen in real applications of
conditional independence testing [5, 4]. RBPT is well suited for those cases because the practitioner
can use the abundant data to estimate PX|Z flexibly. The semi-supervised learning scenario also
applies to RBPT2, which we describe next.

Running RBPT when it is hard to estimate PX|Z: the RBPT2. There might be situations in
which it is hard to estimate the full conditional distribution PX|Z . An alternative approach would be
estimating the Rao-Blackwellized predictor directly using a second regressor. After training ĝ(m),
we could use the training set, organizing it in pairs {(Zi, ĝ

(m)(Zi, Xi))}, to train a second predictor
ĥ(m) to predict ĝ(m)(Z,X) given Z. That predictor could be trained to minimize the mean-squared
error. The model ĥ(m) should be more complex than ĝ(m), in the sense that we should hope that the
first model performs better than the second under H0 in predicting Y . Consequently, this approach is
effective when unlabeled samples are abundant, and we can train ĥ using both unlabeled data and
the given training set. After obtaining ĥ(m), the test is conducted normally. We name this version of
RBPT as "RBPT2". We include a note on how to adapt Theorem 4.4 for RBPT2 in Appendix A.6.

5 Experiments

We empirically8 analyze RBPT/RBPT2 in the following experiments and compare them with relevant
benchmarks, especially when the used models are misspecified. We assume α = 10% and ℓ(ŷ, y) =
(ŷ − y)2. The benchmarks encompass STFR [7], GCM [31], and RESIT [42], which represent
regression-based CI tests. Furthermore, we examine the conditional randomization/permutation tests
(CRT/CPT) [5, 4] that necessitate the estimation of PX|Z .

Artificial data experiments. Our setup takes inspiration from Berrett et al. [4], and the data is
generated as

Z ∼ N (0, IdZ ) , X | Z ∼ N
(
(b⊤Z)2, 1

)
, Y | X,Z ∼ N

(
cX + a⊤Z + γ(b⊤Z)2, 1

)
.

Here, dZ denotes the dimensionality of Z, a and b are sampled from N (0, IdZ ), the constant c deter-
mines the conditional dependence of X and Y on Z, and the parameter γ dictates the hardness of
conditional independence testing: a non-zero γ implies potential challenges in Type-I error control
as there might be a pronounced marginal dependence between X and Y under H0. Moreover, the
training (resp. test) dataset consists of 800 (resp. 200) entries, and every predictor we employ operates
on linear regression. RESIT employs Spearman’s correlation between residuals as a test statistic while

8Code in https://github.com/felipemaiapolo/cit.
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CRT and CPT9 deploy STFR’s test statistic, all of them with p-values determined by conditional sam-
pling/permutations executed 100 times (B = 100), considering Q̂X|Z = N

(
(b⊤Z)2 + θ, 1

)
. The value

of θ gives the error level in approximating PX|Z . To get ĥ in the two variations of RBPT, we either use
Q̂X|Z (RBPT) or kernel ridge regression (KRR) equipped with a polynomial kernel to predict ĝ1(X,Z)
from Z (RBPT2). We sample generative parameters (a, b) five times using different random seeds, and
for each iteration, we conduct 480 Monte Carlo simulations to estimate Type-I error and power. The
presented results are the average (± standard deviation) estimated Type-I error/power across iterations.

Figure 3: Making RBPT2 more robust using
unlabeled data. With dZ = 40, we gradually
increase the unlabeled sample size from 0

to 1000 when fitting ĥ. The results show
that a larger unlabeled sample size leads to
effective Type-I error control. Even though
we present this result for RBPT2, the same
pattern is expected for RBPT in the presence
of unlabeled data.

In Figure 2 (resp. 4) we compare our methods’ Type-
I error rates (with c = 0) (resp. power) against bench-
marks. Regarding Figure 2, we focus on regression-
based tests (STFR, GCM, and RESIT) in the first two
plots and on simulation-based tests (CRT and CPT) in
the last two plots. Regarding the first two plots, it is
not straightforward to compare the level of misspecifi-
cation between our methods and the benchmarks, so we
use this as an opportunity to illustrate Theorem 4.4 and
results from Section 3 and Appendix A. Fixing θ = 0
for RBPT, the Rao-Blackwellized predictor h is perfectly
obtained, permitting Type-I error control regardless of
the chosen dZ . Using KRR for RBPT2 makes ĥ close
to h when dZ is not big and permits Type-I error control.
When dZ is big, more data is needed to fit ĥ, which can
be accomplished using unlabeled data, as demonstrated
in Figure 3 and commented in Section 4. On the other
hand, Type-I error control is always violated for STFR,
GCM, and RESIT when γ grows. Regarding the final
two plots, we can more readily assess the robustness of

the methods when discrepancies arise between Q̂X|Z and PX|Z as influenced by varying θ. Fig-
ure 2 illustrates that CRT is the least robust test in this context, succeeded by RBPT and CPT.
In Figure 4, we investigate how powerful RBPT and RBPT2 can be in practice when dZ = 30. We
compare our methods with CPT (when θ = 0), which seems to have practical robustness against
misspecified inductive biases. Figure 4 shows that RBPT2 and CPT have similar power while RBPT
is slightly more conservative.

Figure 4: Power curves for different
methods. We compare our methods
with CPT (when θ = 0), which seems
to have practical robustness against mis-
specified inductive biases. RBPT2 and
CPT have similar power, while RBPT
is slightly more conservative.

Some concluding remarks are needed. First, RBPT and RBPT2
have shown to be practical and robust alternatives to condi-
tional independence testing, exhibiting reasonable Type-I error
control, mainly when employed in conjunction with a large
unlabeled dataset, and power. Second, while CPT demonstrates
notable robustness and relatively good power, its practicality
falls short compared to RBPT (or RBPT2). This is because
CPT needs a known density functional form for Q̂X|Z (plus the
execution of MCMC chains) whereas RBPT (resp. RBPT2) can
rely on conventional Monte Carlo integration using samples
from Q̂X|Z (resp. supervised learning).

Real data experiments. For our subsequent experiments, we
employ the car insurance dataset examined by Angwin et al. [2].
This dataset encompasses four US states (California, Illinois,
Missouri, and Texas) and includes information from numerous
insurance providers compiled at the ZIP code granularity. The
data offers a risk metric and the insurance price levied on a
hypothetical customer with consistent attributes from every ZIP
code. ZIP codes are categorized as either minority or non-minority, contingent on the percentage of
non-white residents. The variables in consideration are Z, denoting the driving risk; X, an indicator
for minority ZIP codes; and Y , signifying the insurance price. A pertinent question revolves around

9For CPT execution, the Python script at http://www.stat.uchicago.edu/~rina/cpt.html was used,
operating a single MCMC chain and preserving all other parameters as defined by the original authors.
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Figure 5: Type-I error control and power analysis using car insurance data [2]. The first plot shows that RBPT
and RBPT2 have better control over Type-I errors compared to all other methods, including CPT. The second
plot reveals that all methods give the same qualitative result, corroborating the findings of Angwin et al. [2],
suggesting that RBPT and RBPT2 can have good power while being more robust to Type-I errors.

the validity of the null hypothesis H0 : X ⊥⊥ Y | Z, essentially questioning if demographic biases
influence pricing.

We split our experiments into two parts. In the initial part, our primary goal is to compare the Type-I
error rate across various tests. To ensure that H0 is valid, we discretize Z into twenty distinct values
and shuffle the Y values corresponding to each discrete Z value. If a test maintains Type-I error
control, we expect it to reject H0 for at most α = 10% of the companies in each state. In the second
part, we focus on assessing the power of our methods. Given our lack of ground truth, we qualitatively
compare RBPT and RBPT2 findings with those obtained by baseline methods and delineated by
Angwin et al. [2], utilizing a detailed and multifaceted approach. In this last experiment, we aggregate
the analysis for each state without conditioning on the firm. We resort to logistic regression for
estimating the distribution of X | Z used by RBPT, GCM, CRT, and CPT. For RBPT2, we use a
CatBoost regressor [26] to yield the Rao-Blackwellized predictor. We omit RESIT in this experiment
as the additive model assumption is inappropriate. Both CRT and CPT methods utilize the same
test metrics as STFR. The first plot10 of Figure 5 shows that RBPT and RBPT2 methods have better
control over Type-I errors compared to all other methods, including CPT. The second plot reveals
that all methods give the same qualitative result that discrimination against minorities in ZIP codes is
most evident in Illinois, followed by Texas, Missouri, and California. These findings corroborate with
those of Angwin et al. [2], indicating that our methodology has satisfactory power while maintaining
a robust Type-I error control.

6 Conclusion

In this work, we theoretically and empirically showed that widely used regression-based conditional
independence tests are sensitive to the specification of inductive biases. Furthermore, we introduced
the Rao-Blackwellized Predictor Test (RBPT), a misspecification-robust conditional independence
test. RBPT is theoretically grounded and has been shown to perform well in practical situations
compared to benchmarks.

Limitations and future work. Two limitations of RBPT are that (i) the robustness of RBPT can lead
to a more conservative test, as we have seen in the simulations; moreover, (ii) it requires the estimation
of the conditional distribution PX|Z , which can be challenging. To overcome the second problem, we
introduced a variation of RBPT, named RBPT2, in which the Rao-Blackwellized predictor is obtained
in a supervised fashion by fitting a second model ĥ : Z → Y that predicts the outputs of the first
model ĝ : X × Z → Y. However, this solution only works if ĥ is better than ĝ in predicting Y under
H0, which ultimately depends on the model class for ĥ and how that model is trained. Future research
directions may include (i) theoretically studying the power of RBPT in more detail and (ii) better
understanding RBPT2 from a theoretical or methodological point of view, e.g., answering questions
on how to choose and train the second model.
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A Extra content

A.1 Misspecified inductive biases in modern statistics and machine learning

Figure 6: Type-I error rate is contin-
gent on the training algorithm and
not solely on the model classes. Un-
like PCR, the LASSO fit provides
the correct inductive bias in high-
dimensional regression, controlling
Type-I error.

We present a toy experiment to empirically demonstrate how
the training algorithm can prevent us from accurately esti-
mating the Bayes predictor even when the model class is
correctly specified, leading to invalid significance tests. We
work in the context of a high-dimensional (overparameter-
ized) regression with a training set of 250 observations and
≥ 300 covariates. We use the Significance Test of Feature
Relevance test11 (STFR) [7] to conduct the CI test. The data
are generated as

Z ∼ N(0, I300), X | Z ∼ N(β⊤Z, 1), Y | X,Z ∼ N(β⊤Z, 1)

where the first thirty entries of β are set to 1, and the remain-
ing entries are zero. See that X ⊥⊥ Y | Z and that Y is linearly
related to Z and (X,Z), and then the class of linear predictors
is correctly specified when predicting Y from Z or (X,Z).
To perform the STFR test, we use LASSO (∥·∥1 penalization
term added to empirical squared error) and principal compo-
nents regression (PCR) to train the linear predictors. Since β
is sparse, the LASSO fit provides the correct inductive bias while PCR leads to misspecification. We
set the significance level to α = 1% and estimate the Type-I error rate for 100 different training sets.
Figure 6 provides the Type-I error rate empirical distribution and illustrates that, despite using the
same model class for both fitting methods, the training algorithm induces the wrong model in the
PCR case, implying an invalid test most of the time.

A.2 Examples on when STFR fails

Examples A.1 and A.2 show simple situations in which Type-I error control is compromised or
the conditional independence test has no power due to model misspecification. As we see in the
next examples, Type-I error control is directly related to G2 misspecification, while Type-II error
minimization directly relates to G1 misspecification.
Example A.1 (No Type-I error control). Suppose Y = Z + Z2 + εy and X = Z2 + εx, where
εy, εx ∼ N(0, 1) are independent noise variables and Z has finite variance. Consequently, X ⊥⊥ Y | Z.
Let G1 and G2 be the classes of linear regressors with no intercept, i.e.,

G1 = {g1(x, z) = βxx+ βzz : βx, βz ∈ R} and G2 = {g2(z) = βzz : βz ∈ R}.

If ℓ denotes the mean squared error, we have that EP [ℓ(g
∗
2,P (Z), Y )] − EP [ℓ(g

∗
1,P (X,Z), Y )] > 0

because the model class G2 is misspecified, that is, it does not contain the Bayes predictor given by
the conditional expectation E[Y | Z].

Example A.2 (Powerless test). Suppose Y = Z + sin(X) + εy, where Z,X, εy
iid∼ N(0, 1). Conse-

quently, X ̸⊥⊥ Y | Z. Define G1 and G2 as in Example A.1. If ℓ denotes the mean squared error, we
have that12 EP [ℓ(g

∗
2,P (Z), Y )]− EP [ℓ(g

∗
1,P (X,Z), Y )] = 0 even though the different Bayes’ predictors

have a difference in performance. This happens because the model g∗1,P is not close enough to the
Bayes predictor EP [Y | X,Z].

A.3 Generalized Covariance Measure (GCM) test

In the GCM test proposed by Shah and Peters [31], the expected value of the conditional covariance
between X and Y given Z is estimated and then tested to determine if it equals zero. To simplify
the exposition, we consider X and Y univariate and work in a setup similar to the STFR’s. If
(X,Y, Z) ∼ P , the GCM test relies on the observation that we can always write

X = f∗
1,P (Z) + ϵ and Y = f∗

2,P (Z) + η,

11See Section 3.1 for more details
12Because EP [XY ] = EP [XEP [Y |X]] = EP [X · 0] = 0.
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where f∗
1,P (Z) = EP [X | Z] and f∗

2,P (Z) = EP [Y | Z] while the error terms {ϵ, η} have zero
mean when conditioned on Z. Consequently, we can write EP [CovP (X,Y | Z)] = EP [ϵη]. To
estimate EP [CovP (X,Y | Z)], we can first fit two models ĝ

(m)
1 : Z → X and ĝ

(m)
2 : Z → Y, that

approximate f∗
1,P and f∗

2,P , using the training set D(m)
tr , and then compute an empirical version of

EP [ϵη] = EP [(X − f∗
1,P (Z))(Y − f∗

2,P (Z))] using ĝ
(m)
1 , ĝ(m)

2 , and D(n)
te .

In the GCM test, we reject H0 : X ⊥⊥ Y | Z if the statistic Γ(n,m) ≜ |
√
nT̄ (n,m)/σ̂(n,m)| exceeds

τα/2 ≜ Φ−1(1 − α/2), depending on the test significance level α ∈ (0, 1). Here, T̄ (n,m) and σ̂(n,m)

are defined as in 3.1 with T
(m)
i ≜ (Xi − ĝ

(m)
1 (Zi))(Yi − ĝ

(m)
2 (Zi)). If the p-value is defined as

p(D(n)
te ,D(m)

tr ) = 2(1 − Φ(Γ(n,m))), the test φGCM
α (D(n)

te ,D(m)
tr ) is analogously given by Equation 3.2.

Like the STFR, the GCM test depends on the models’ classes and implicitly on the training algorithm.
If the limiting models g∗1,P and g∗2,P are not f∗

1,P and f∗
2,P , then Type-I error control is not guaranteed.

We introduce definitions and assumptions. Assumption A.3 gives a rate of convergence for the models
ĝ
(m)
j in the mean squared error sense. Definition A.4 gives a definition for the misspecification gaps.

Assumption A.3. There are functions g∗1,P , g∗2,P , and a constant γ > 0 such that

EP

[
(ĝ

(m)
j (Z)− g∗j,P (Z))2 | D(m)

tr

]
= OP(m

−γ), for j = 1, 2

Definition A.4. For each j ∈ {1, 2}, define the misspecification gap as δj,P ≜ g∗j,P − f∗
j,P .

In the next result, we approximate GCM test Type-I error rate and power using the gaps in Definition
A.4 and Assumptions A.3, 3.2, and 3.3 applied to this context.
Theorem A.5. Suppose that Assumptions 3.2, 3.3, and A.3 hold. If n is a function of m such that
n → ∞ and n = o(mγ) as m → ∞, then

EP [φ
GCM
α (D(n)

te ,D(m)
tr )] = 1− Φ

(
τα/2 −

√
n

σ2
P

ΩGCM
P

)
+Φ

(
−τα/2 −

√
n

σ2
P

ΩGCM
P

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and

ΩGCM
P ≜ EP [CovP (X,Y | Z)] + EP [δ1,P (Z)δ2,P (Z)]

From Theorem A.5, it is possible to verify that if δj,P (Z) is zero for at least one j ∈ {1, 2}, i.e., if
at least one model converges to the conditional expectation, the GCM test asymptotically controls
Type-I error. This can be seen as a double-robustness property of the GCM, which is not present13 in
Shah and Peters [31]. If EP [δ1,P (Z)δ2,P (Z)] ̸= 0, then EP [φ

GCM
α (D(n)

te ,D(m)
tr )] → 1 as m → ∞ even

when H0 : X ⊥⊥ Y | Z. Under the alternative, if ΩGCM
P ̸= 0, Type-II error approaches 0 asymptotically.

A.4 REgression with Subsequent Independence Test (RESIT)

As revisited by Zhang et al. [42], the idea behind RESIT is to first residualize Y and X given Z and
then test dependence between the residuals. It is similar to GCM, but requires the error terms and
Z to be independent. When that assumption is reasonable, one advantage of RESIT over GCM is
that it has power against a broader set of alternatives. In this section, we use a permutation test [18,
Example 15.2.3] to assess the independence of residuals. We analyse RESIT’s Type-I error control.

If (X,Y, Z) ∼ P and (X,Y ) can be modeled as an additive noise model (ANM), that is, we can write

X = f∗
1,P (Z) + ϵ and Y = f∗

2,P (Z) + η, (A.1)

where f∗
1,P (Z) = EP [X | Z], f∗

2,P (Z) = EP [Y | Z], and the error terms (ϵ, η) are independent of Z,
it is possible to show that X ⊥⊥ Y | Z ⇔ ϵ ⊥⊥ η. To facilitate our analysis14, we consider first fitting
two models ĝ

(m)
1 and ĝ

(m)
2 that approximate f∗

1,P and f∗
2,P using the training set D(m)

tr and then test
the independence of the residuals15 ϵ̂i = Xi − ĝ

(m)
1 (Zi) and η̂i = Yi − ĝ

(m)
2 (Zi) using the test set D(n)

te .
Define (i) (ϵ̂, η̂) ≜ {(ϵ̂i, η̂i)}ni=1 (test set residuals vertically stacked in matrix form) and (ii) (ϵ̂, η̂)(b)

13This property is clear in our result because we consider data splitting.
14In practice, data splitting is not necessary. However, this procedure helps when theoretically analyzing the

method.
15We omit the residuals superscript to ease notation.
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as one of the B permutations, i.e., consider that we fix ϵ̂ and permute η̂ row-wise. Let Ψ be a test
statistic and Ψ((ϵ̂, η̂)) and Ψ((ϵ̂, η̂)(b)) its evaluation on the original residuals and the b-the permuted
set. If the permutation p-value is given by

p(D(n)
te ,D(m)

tr ) =
1 +

∑B
b=1 1[Ψ((ϵ̂, η̂)(b)) ≥ Ψ((ϵ̂, η̂))]

1 +B
(A.2)

a test φRESIT
α aiming level α ∈ (0, 1) is given by Equation 3.2.

Similarly to STFR and GCM, we consider g∗1,P and g∗2,P to be the limiting models for ĝ(m)
1 and ĝ

(m)
2 .

Different from GCM, both models g∗1,P and g∗2,P are multi-output since X and Y are not necessarily
univariate.

Now, we introduce some assumptions before we present our result for RESIT. Assumption A.6 gives
a rate of convergence for the models ĝ

(m)
j in the mean squared error sense.

Assumption A.6. There are models g∗1,P , g∗2,P , and a constant γ > 0 such that

EP

[∥∥∥ĝ(m)
j (Z)− g∗j,P (Z)

∥∥∥2
2

∣∣∣ D(m)
tr

]
= OP0(m

−γ), j = 1, 2

Assumption A.7 puts more structure on the distributions of the error terms (ϵ, η) and is a mild
assumption.

Assumption A.7. Assume that for all P ∈ P0, the distribution of (ϵ, η), Pϵ,η, is absolutely continuous
with respect to the Lebesgue measure in RdX × RdY with L-Lipschitz density pϵ,η for a certain L > 0.
That is, for any e1, e2 ∈ RdX and h1, h2 ∈ RdY , we have

|pϵ,η(e1, h1)− pϵ,η(e2, h2)| ≤ L ∥(e1, h1)− (e2, h2)∥2

We assume that L does not depend on P .

Assumption A.8 states that some of the variables we work with are uniformly almost surely bounded
over all P ∈ P0. This assumption is realistic in most practical cases.

Assumption A.8. There is bounded Borel set A ∈ B(RdX×dY ) such that

inf
P∈P0

PP ((X,Y ) ∈ A) = 1

and

inf
P∈P0

inf
g1,g2

PP ((g1(Z), g2(Z)) ∈ A) = 1

Here, infg1,g2 is taken over the model classes we consider (if the model classes vary with m, consider
the union of model classes). In the following, we present the result for RESIT. For that result, let: (i)
ϵ∗ ≜ ϵ− δ1,P (Zi) and η∗ ≜ η − δ2,P (Zi), where the misspecification gaps are given as in Definition
A.4; (ii) dTV represent the total variation (TV) distance between two probability distributions [36];
and (iii) the superscript n, e.g., in Pn

ϵ∗,η∗ , represent a product measure.

Theorem A.9. Under Assumptions A.6, A.7, and A.8, if H0 : X ⊥⊥ Y | Z holds and n is a function of
m such that n → ∞ and n = o(m

γ
2 ) as m → ∞, then

EP [φ
RESIT
α (D(n)

te ,D(m)
tr )] ≤ α+min{dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗), dTV(P
n
ϵ∗,η∗ , Pn

ϵ∗,η)}+ o(1)

where o(1) denotes uniform convergence over all P ∈ P0 as m → ∞.

From Theorem A.9, we can see that if at least one of the misspecification gaps δ1,P or δ2,P is null,
then EP [φ

RESIT
α (D(n)

te ,D(m)
tr )] ≤ α under H0 : X ⊥⊥ Y | Z. This can be seen as a double-robustness

property of the RESIT. If none of the misspecification gaps are null, we do not have any guarantees
on RESIT’s Type-I error control. It can be shown that the proposed upper bound converges to 1.
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A.5 RBPT extra derivation

Let µX be a dominating measure of Q∗
X|Z and PX|Z that does not depend on Z. Let q∗X|Z (resp. pX|Z)

be Q∗
X|Z (resp. PX|Z) density with respect to µX .

ΩRBPT
P,1 = EP

[
ℓ

(∫
g∗P (x, Z)dQ∗

X|Z(x), Y

)
− ℓ

(∫
g∗P (x, Z)dPX|Z(x), Y

)]

≤ L · EP

∥∥∥∥∫ g∗P (x, Z)dQ∗
X|Z(x)−

∫
g∗P (x, Z)dPX|Z(x)

∥∥∥∥
2

≤ L · EP

∥∥∥∥∫ g∗P (x, Z)dQ∗
X|Z(x)−

∫
g∗P (x, Z)dPX|Z(x)

∥∥∥∥
1

= L · EP

∥∥∥∥∫ g∗P (x, Z)(q∗X|Z(x|Z)− pX|Z(x|Z))dµX(x)

∥∥∥∥
1

≤ L · EP

∫
∥g∗P (x, Z)∥1 |q

∗
X|Z(x|Z)− pX|Z(x|Z)|dµX(x)

≤ ML · EP

∫
|q∗X|Z(x|Z)− pX|Z(x|Z)|dµX(x)

= 2ML · EP [dTV(Q
∗
X|Z , PX|Z)]

If
EP [dTV(Q

∗
X|Z , PX|Z)] ≤ ΩRBPT

P,2 /(2ML)

then
ΩRBPT

P ≤ 0

A.6 How to obtain a result for RBPT2?

We informally give some ideas on extending Theorem 4.4. Theorem 4.4 states that

EP [φ
RBPT
α (D(n)

te ,D(m)
tr )] = 1− Φ

(
τα −

√
n

σ2
P

ΩRBPT
P

)
+ o(1)

where ΩRBPT
P = ΩRBPT

P,1 − ΩRBPT
P,2 with

ΩRBPT
P,1 ≜ EP

[
ℓ

(∫
g∗P (x, Z)dQ∗

X|Z(x), Y

)]
− EP

[
ℓ

(∫
g∗P (x, Z)dPX|Z(x), Y

)]
and

ΩRBPT
P,2 ≜ EP

[
ℓ(g∗P (X,Z), Y )

]
− EP

[
ℓ

(∫
g∗P (x, Z)dPX|Z(x), Y

)]

If we wanted to adapt that result for RBPT2, we would have to redefine ΩRBPT
P,1 . The analogue of ΩRBPT

P,1

for RBPT2 would be

ΩRBPT2
P,1 ≜ EP

[
ℓ
(
ẼP [g∗P (X,Z) | Z] , Y

)]
− EP

[
ℓ (EP [g∗P (X,Z) | Z] , Y )

]

where ẼP [g∗P (X,Z) | Z = z] denotes the limiting regression model to predict g∗P (X,Z) given Z. If
we assume the existence of a big unlabeled dataset, deriving a result might be easier as we can
avoid the asymptotic details on the convergence of the second regression model by assuming that the
limiting Rao-Blackwellization model, for a fixed initial predictor, is known. The only challenge is
proving the convergence of ẼP [ĝ(X,Z) | Z] to ẼP [g∗P (X,Z) | Z].
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B Technical proofs

B.1 STFR

Lemma B.1. Assume we are under the conditions of Theorem 3.4. Then:

(σ̂(n,m))2 − VarP [T
(m)
1 | D(m)

tr ] = oP(1) as m → ∞

Proof. First, see that for an arbitrary ε > 0, there must be16 a sequence of probability measures in P,
(P (m))m∈N, such that

sup
P∈P

PP

[∣∣∣(σ̂(n,m))2 − VarP [T
(m)
1 | D(m)

tr ]
∣∣∣ > ε

]
≤ PP (m)

[∣∣∣(σ̂(n,m))2 − VarP (m) [T
(m)
1 | D(m)

tr ]
∣∣∣ > ε

]
+

1

m

Pick one of such sequences. Then, to prove that (σ̂(n,m))2 − VarP [T
(m)
1 | D(m)

tr ] = oP(1) as m → ∞,
it suffices to show that

PP (m)

[∣∣∣(σ̂(n,m))2 − VarP (m) [T
(m)
1 | D(m)

tr ]
∣∣∣ > ε

]
→ 0 as m → ∞

Now, expanding (σ̂(n,m))2 we get

(σ̂(n,m))2 =
1

n

n∑
i=1

(T
(m)
i )2 −

(
1

n

n∑
i=1

T
(m)
i

)2

=
1

n

n∑
i=1

[
(T

(m)
i )2 − EP (m) [(T

(m)
1 )2 | D(m)

tr ]
]
+ EP (m) [(T

(m)
1 )2 | D(m)

tr ]−

(
1

n

n∑
i=1

T
(m)
i

)2

=
1

n

n∑
i=1

[
(T

(m)
i )2 − EP (m) [(T

(m)
1 )2 | D(m)

tr ]
]
−

(
1

n

n∑
i=1

T
(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]

)2

− 2

(
1

n

n∑
i=1

T
(m)
i EP (m) [T

(m)
1 | D(m)

tr ]− (EP (m) [T
(m)
1 | D(m)

tr ])2
)

+ VarP (m) [T
(m)
1 | D(m)

tr ]

=
1

n

n∑
i=1

[
(T

(m)
i )2 − EP (m) [(T

(m)
1 )2 | D(m)

tr ]
]
−

(
1

n

n∑
i=1

T
(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]

)2

− 2EP (m) [T
(m)
1 | D(m)

tr ]

(
1

n

n∑
i=1

T
(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]

)
+ VarP (m) [T

(m)
1 | D(m)

tr ]

Then,

(σ̂(n,m))2 − VarP (m) [T
(m)
1 | D(m)

tr ] =

=
1

n

n∑
i=1

[
(T

(m)
i )2 − EP (m) [(T

(m)
1 )2 | D(m)

tr ]
]
−

(
1

n

n∑
i=1

T
(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]

)2

− 2EP (m) [T
(m)
1 | D(m)

tr ]

(
1

n

n∑
i=1

T
(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]

)

Using a law of large numbers for triangular arrays [6, Corollary 9.5.6] (we comment on needed
conditions to use this result below) and the continuous mapping theorem, we have that

• 1
n

∑n
i=1

[
(T

(m)
i )2 − EP (m) [(T

(m)
1 )2 | D(m)

tr ]
]
= op(1)

•
(

1
n

∑n
i=1 T

(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]
)2

= op(1)

• 2EP (m) [T
(m)
1 | D(m)

tr ]︸ ︷︷ ︸
Op(1) (Assumption 3.2)

(
1
n

∑n
i=1 T

(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]
)
= op(1)

16Because of the definition of sup.
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and then

sup
P∈P

PP

[∣∣∣(σ̂(n,m))2 − VarP [T
(m)
1 | D(m)

tr ]
∣∣∣ > ε

]
≤ PP (m)

[∣∣∣(σ̂(n,m))2 − VarP (m) [T
(m)
1 | D(m)

tr ]
∣∣∣ > ε

]
+

1

m
→ 0

as m → ∞, i.e.,
(σ̂(n,m))2 − VarP [T

(m)
1 | D(m)

tr ] = oP(1) as m → ∞

Conditions to use the law of large numbers. Let (P (m))m∈N be an arbitrary sequence of probability
measures in P. Define our triangular arrays as

{
V

(m)
i,1

}
1≤i≤n

and
{
V

(m)
i,2

}
1≤i≤n

, where V
(m)
i,1 ≜

T
(m)
i − EP (m) [T

(m)
1 | D(m)

tr ] and V
(m)
i,2 ≜ (T

(m)
i )2 − EP (m) [(T

(m)
1 )2 | D(m)

tr ]. Now, we comment on the
conditions for the law of large numbers [6, Corollary 9.5.6]:

1. This condition naturally applies by definition and because of Assumption 3.2.

2. From Assumption 3.2 and Resnick [27, Example 6.5.2],

EP (m)

[∣∣∣V (m)
i,1

∣∣∣ | D(m)
tr

]
≤ EP (m)

[∣∣∣T (m)
i

∣∣∣ | D(m)
tr

]
+
∣∣∣EP (m) [T

(m)
1 | D(m)

tr ]
∣∣∣ ≤ 2EP (m)

[∣∣∣T (m)
i

∣∣∣ | D(m)
tr

]
= Op(1)

and

EP (m)

[∣∣∣V (m)
i,2

∣∣∣ | D(m)
tr

]
≤ 2EP (m)

[
(T

(m)
i )2 | D(m)

tr

]
= Op(1)

3. Fix any ϵ > 0 and let k be defined as in Assumption 3.2. See that

EP (m)

[∣∣∣V (m)
i,1

∣∣∣1[|V (m)
i,1 | ≥ ϵn] | D(m)

tr

]
= EP (m)

[∣∣∣V (m)
i,1

∣∣∣1[(|V (m)
i,1 |/(ϵn))k ≥ 1] | D(m)

tr

]
≤ 1

(nϵ)k
EP (m)

[
|V (m)

i,1 |1+k | D(m)
tr

]
=

1

(nϵ)k
EP (m)

[
|T (m)

i − EP (m) [T
(m)
1 | D(m)

tr ]|1+k | D(m)
tr

]
≤ 1

(nϵ)k

{
EP (m)

[
|T (m)

i |1+k | D(m)
tr

] 1
1+k

+ EP (m)

[
|T (m)

i | | D(m)
tr

]}1+k

=
1

(nϵ)k
Op(1)

= op(1)

where the third inequality is obtained via Minkowski Inequality [27] and the fifth step is an
application of Assumption 3.2 and Resnick [27, Example 6.5.2]. Analogously, define k′ = k/2 and
see that

EP (m)

[∣∣∣V (m)
i,2

∣∣∣1[|V (m)
i,2 | ≥ ϵn] | D(m)

tr

]
= EP (m)

[∣∣∣V (m)
i,2

∣∣∣1[(|V (m)
i,2 |/(ϵn))k

′
≥ 1] | D(m)

tr

]
≤ 1

(nϵ)k′ EP (m)

[
|V (m)

i,2 |1+k′
| D(m)

tr

]
=

1

(nϵ)k′ EP (m)

[
|(T (m)

i )2 − EP (m) [(T
(m)
1 )2 | D(m)

tr ]|1+k′
| D(m)

tr

]
≤ 1

(nϵ)k′

{
EP (m)

[
(T

(m)
i )2(1+k′) | D(m)

tr

] 1
1+k′

+ EP (m)

[
(T

(m)
i )2 | D(m)

tr

]}1+k′

=
1

(nϵ)k′

{
EP (m)

[
(T

(m)
i )2+k | D(m)

tr

] 1
1+k′

+ EP (m)

[
(T

(m)
i )2 | D(m)

tr

]}1+k′

=
1

(nϵ)k′ Op(1)

= op(1)
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Theorem 3.4. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. If n is a function of m such that
n → ∞ and n = o(m2γ) as m → ∞, then

EP [φ
STFR
α (D(n)

te ,D(m)
tr )] = 1− Φ

(
τα −

√
n

σ2
P

ΩSTFR
P

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and

ΩSTFR
P ≜ EP [ℓ(g

∗
2,P (Z), Y )]− EP [ℓ(g

∗
1,P (X,Z), Y )]

Proof. First, note that there must be17 a sequence of probability measures in P , (P (m))m∈N, such that

sup
P∈P

∣∣∣∣EP [φ
STFR
α (D(n)

te ,D(m)
tr )]− 1 + Φ

(
τα −

√
n

σ2
P

ΩSTFR
P

)∣∣∣∣ ≤
∣∣∣∣∣EP (m) [φ

STFR
α (D(n)

te ,D(m)
tr )]− 1 + Φ

(
τα −

√
n

σ2
P (m)

ΩSTFR
P (m)

)∣∣∣∣∣+ 1

m

Then, it suffices to show that the RHS vanishes when we consider such a sequence (P (m))m∈N.

Now, let us first decompose the test statistic Λ(n,m) in the following way:

Λ(n,m) ≜

≜
√
nT̄ (n,m)

σ̂(n,m)

=

√
n
(
T̄ (n,m) − EP (m) [T

(m)
1 | D(m)

tr ]
)

σ̂(n,m)
+

√
nEP (m) [T

(m)
1 | D(m)

tr ]

σ̂(n,m)

=

√
n
(
T̄ (n,m) − EP (m) [T

(m)
1 | D(m)

tr ]
)

σ̂(n,m)
+

+

√
n
(
EP (m) [ℓ(ĝ

(m)
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Given that n is a function of m, we omit it when writing the W
(m)

j,P (m)’s. Define σ
(m)

P (m) ≜√
VarP (m) [T

(m)
1 | D(m)

tr ] and see that
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te ,D(m)
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tr ) ≤ α]
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[
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)
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]
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17Because of the definition of sup.
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Implying that

sup
P∈P

∣∣∣∣EP [φ
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α (D(n)

te ,D(m)
tr )]− 1 + Φ

(
τα −

√
n

σ2
P

ΩSTFR
P

)∣∣∣∣ = o(1) as m → ∞

Justifying step B.1. First, from a central limit theorem for triangular arrays [6, Corollary 9.5.11], we
have that

√
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(
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=
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i − EP (m) [T
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1 | D(m)

tr ]

σ
(m)

P (m)

)
⇒ N(0, 1)

we comment on the conditions to use this theorem below.

Second, we have that
√
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)
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(
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σ
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)
= op(1) as m → ∞

To see why the random quantity above converges to zero in probability, see that because of Assumption
3.3, Lemma B.1, and continuous mapping theorem, we have that

σ̂(n,m)

σ
(m)

P (m)

− 1 = op(1) and
σ
(m)

P (m)

σP (m)

− 1 = op(1) as m → ∞

Additionally, because of Assumptions 3.1, 3.3 and condition n = o(m2γ), we have that∣∣∣∣∣∣
√
nW

(m)

2,P (m)

σP (m)

∣∣∣∣∣∣ =
∣∣∣∣o(mγ)Op(m

−γ)
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∣∣∣∣ ≤ ∣∣∣∣o(mγ)Op(m
−γ)

infP∈P σP

∣∣∣∣ = op(1)

Finally,
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+
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√
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(m)
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σ
(m)

P (m)

+ op(1) ⇒ N(0, 1)

by Slutsky’s theorem. Because N(0, 1) is a continuous distribution, we have uniform convergence of
the distribution function [27][Chapter 8, Exercise 5] and we do not have to worry about the fact that

τα −
√
nΩSTFR

P (m)

σ
P (m)

depends on m.

Conditions to apply the central limit theorem. Now, we comment on the conditions for the central
limit theorem [6, Corollary 9.5.11]. Define our triangular array as

{
V

(m)
i

}
1≤i≤n

, where V
(m)
i ≜

T
(m)
i −E

P (m) [T
(m)
i |D(m)

tr ]

σ
(m)

P (m)

.

1. This condition naturally applies by definition and because of Assumption 3.2.

2. See that, for any m, we have that

EP (m) [(V
(m)
i )2 | D(m)

tr ] = 1
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3. Fix any ϵ > 0 and let k be defined as in Assumption 3.2. See that
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=
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[
1
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=
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(nϵ)k
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where the third inequality is obtained via Minkowski Inequality [27] and the last inequality is an
application of Assumption 3.2 and Resnick [27, Example 6.5.2].

Corollary 3.6. Suppose we are under the conditions of Theorem 3.4.

• (Type-I error) If H0 : X ⊥⊥ Y | Z holds, then

EP [φ
STFR
α (D(n)

te ,D(m)
tr )] ≤ 1− Φ

(
τα −

√
n

σ2
P

∆2,P

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P0 as m → ∞.

• (Type-II error) In general, we have

1− EP [φ
STFR
α (D(n)

te ,D(m)
tr )] ≤ Φ

(
τα −

√
n

σ2
P

(∆P −∆1,P )

)
+ o(1)

where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and ∆P ≜ EP [ℓ(f
∗
2,P (Z), Y )]−

EP [ℓ(f
∗
1,P (X,Z), Y )].

Proof. Under the conditions of Theorem 3.4, we start proving that

1. ∆P −∆1,P ≤ ΩSTFR
P holds;

2. Under H0, ΩSTFR
P ≤ ∆2,P holds.

For (1), see that,

ΩSTFR
P = EP [ℓ(g

∗
2,P (Z), Y )]− EP [ℓ(g

∗
1,P (X,Z), Y )]

= EP [ℓ(g
∗
2,P (Z), Y )]− EP [ℓ(f

∗
2,P (Z), Y )] (≥ 0)

+ EP [ℓ(f
∗
1,P (X,Z), Y )]− EP [ℓ(g

∗
1,P (X,Z), Y )]

+ EP [ℓ(f
∗
2,P (Z), Y )]− EP [ℓ(f

∗
1,P (X,Z), Y )]

≥ EP [ℓ(f
∗
1,P (X,Z), Y )]− EP [ℓ(g

∗
1,P (X,Z), Y )] + ∆P

= ∆P −∆1,P
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Now, for (2):

ΩSTFR
P = EP [ℓ(g

∗
2,P (Z), Y )]− EP [ℓ(g

∗
1,P (X,Z), Y )]

= EP [ℓ(g
∗
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∗
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+ EP [ℓ(f
∗
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∗
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+ EP [ℓ(f
∗
2,P (Z), Y )]− EP [ℓ(f

∗
1,P (X,Z), Y )] (= 0, because H0 holds)

≤ EP [ℓ(g
∗
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∗
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= ∆2,P

Finally, see that
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√
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≤ Φ

(
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√
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)
Combining these observations with Theorem 3.4, we get the result.

B.2 GCM

Theorem A.5. Suppose that Assumptions A.3, 3.2, and 3.3 hold. If n is a function of m such that
n → ∞ and n = o(mγ) as m → ∞, then

EP [φ
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where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and

ΩGCM
P ≜ EP [CovP (X,Y | Z)] + EP [δ1,P (Z)δ2,P (Z)]

Proof. First, note that there must be18 a sequence of probability measures in P , (P (m))m∈N, such that
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m

Then, it suffices to show that the RHS vanishes when we consider such a sequence (P (m))m∈N.

Now, let us first decompose the test statistic Γ(n,m) in the following way:
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18Because of the definition of sup.
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The terms involving one of the ϵ and η were all zero and were omitted. Given that n is a function of

m, we omit it when writing the W
(m)

j,P (m) ’s. Define σ
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Implying that
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Justifying step B.2. First, from a central limit theorem for triangular arrays [6, Corollary 9.5.11], we
have that
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The conditions for the central limit theorem [6, Corollary 9.5.11] can be proven to hold like in
Theorem 3.4’s proof.

Second, we have that
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and
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−

√
nW

(m)

2,P (m)

σP (m)

−
√
nW

(m)

3,P (m)

σP (m)

−
√
nW

(m)

4,P (m)

σP (m)

+

+ τα/2

(
σ̂(n,m)

σ
(m)

P (m)

− 1

)(
σ
(m)

P (m)

σP (m)

− 1

)
+ τα/2

(
σ
(m)

P (m)

σP (m)

− 1

)
+ τα/2

(
σ̂(n,m)

σ
(m)

P (m)

− 1

)
= op(1) as m → ∞

To see why the random quantities above converge to zero in probability, see that because of Assump-
tion 3.3, Lemma19 B.1, and continuous mapping theorem, we have that

σ̂(n,m)

σ
(m)

P (m)

− 1 = op(1) and
σ
(m)

P (m)

σP (m)

− 1 = op(1) as m → ∞

Additionally, because of Assumptions A.3, 3.3, Cauchy-Schwarz inequality, and condition n = o(mγ),
we have that∣∣∣∣∣∣

√
nW

(m)

2,P (m)

σP (m)

∣∣∣∣∣∣ =
∣∣∣∣∣
√
nEP (m) [(ĝ

(m)
1 (Z1)− g∗

1,P (m)(Z1))(ĝ
(m)
2 (Z1)− g∗

2,P (m)(Z1)) | D(m)
tr ]

σP (m)

∣∣∣∣∣
≤

√
nEP (m) [(ĝ

(m)
1 (Z1)− g∗

1,P (m)(Z1))2 | D(m)
tr ]EP (m) [(ĝ

(m)
2 (Z1)− g∗

2,P (m)(Z1))2 | D(m)
tr ]

infP∈P σP

=

√
o(mγ)Op(m−2γ)

infP∈P σP

= op(1)

∣∣∣∣∣∣
√
nW

(m)

3,P (m)

σP (m)

∣∣∣∣∣∣ =
∣∣∣∣∣
√
nEP (m) [(ĝ

(m)
1 (Z1)− g∗

1,P (m)(Z1))δ2,P (m)(Z1) | D(m)
tr ]

σP (m)

∣∣∣∣∣
≤

√
nEP (m) [(ĝ

(m)
1 (Z1)− g∗

1,P (m)(Z1))2 | D(m)
tr ]EP (m) [(δ2,P (m)(Z1))2]

infP∈P σP

=

√
o(mγ)Op(m−γ)

infP∈P σP

= op(1)

∣∣∣∣∣∣
√
nW

(m)

4,P (m)

σP (m)

∣∣∣∣∣∣ =
∣∣∣∣∣
√
nEP (m) [(ĝ

(m)
2 (Z1)− g∗

2,P (m)(Z1))δ1,P (m)(Z1) | D(m)
tr ]

σP (m)

∣∣∣∣∣
≤

√
nEP (m) [(ĝ

(m)
2 (Z1)− g∗

2,P (m)(Z1))2 | D(m)
tr ]EP (m) [(δ1,P (m)(Z1))2]

infP∈P σP

=

√
o(mγ)Op(m−γ)

infP∈P σP

= op(1)

19We can apply this STFR’s lemma because it still holds when we consider GCM’s test statistic.
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Finally,√
nW

(m)

1,P (m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

+

√
nW

(m)

2,P (m)

σP (m)

+

√
nW

(m)

3,P (m)

σP (m)

+

√
nW

(m)

4,P (m)

σP (m)

− τα/2 + τα/2
σ̂(n,m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

 =

=

√
nW

(m)

1,P (m)

σ
(m)

P (m)

−

√nW
(m)

1,P (m)

σ
(m)

P (m)

−

√
nW

(m)

1,P (m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

+

√
nW

(m)

2,P (m)

σP (m)

+

√
nW

(m)

3,P (m)

σP (m)

+

√
nW

(m)

4,P (m)

σP (m)

− τα/2 + τα/2
σ̂(n,m)

σP (m)


=

√
nW

(m)

1,P (m)

σ
(m)

P (m)

+ op(1) ⇒ N(0, 1)

and√
nW

(m)

1,P (m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

+

√
nW

(m)

2,P (m)

σP (m)

+

√
nW

(m)

3,P (m)

σP (m)

+

√
nW

(m)

4,P (m)

σP (m)

+ τα/2 − τα/2
σ̂(n,m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

 =

=

√
nW

(m)

1,P (m)

σ
(m)

P (m)

−

√nW
(m)

1,P (m)

σ
(m)

P (m)

−

√
nW

(m)

1,P (m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

+

√
nW

(m)

2,P (m)

σP (m)

+

√
nW

(m)

3,P (m)

σP (m)

+

√
nW

(m)

4,P (m)

σP (m)

+ τα/2 − τα/2
σ̂(n,m)

σP (m)


=

√
nW

(m)

1,P (m)

σ
(m)

P (m)

+ op(1) ⇒ N(0, 1)

by Slutsky’s theorem. Because N(0, 1) is a continuous distribution, we have uniform convergence of
the distribution function [27][Chapter 8, Exercise 5] and we do not have to worry about the fact that
τα/2 −

√
n

σ2

P (m)

ΩGCM
P (m) or −τα/2 −

√
n

σ2

P (m)

ΩGCM
P (m) depends on m.

B.3 RESIT

Lemma B.2. Let PU,V and P ′
U,V be two distributions on

(
U × V,B(U × V)

)
, U × V ⊆ RdU×dV ,

with dU , dV ≥ 1. Assume PU and P ′
U are dominated by a common σ-finite measure µ and that

PV |U=u = P ′
V |U=u is dominated by a σ-finite measure νu, for all u ∈ RdU . Then,

dTV(PU,V , P ′
U,V ) = dTV(PU , P

′
U )

where dTV denotes the total variation distance between two probability measures.

Proof. Let pU and p′U denote the densities of PU and P ′
U w.r.t. µ, and let pV |U (· | u) denote the density

of PV |U=u = P ′
V |U=u w.r.t. νu. From Scheffe’s theorem [36][Lemma 2.1], we have that:

dTV(PU,V , P ′
U,V ) =

1

2

∫ ∫
|pU (u)pV |U (v | u)− p′U (u)pV |U (v | u)|dνu(v)dµ(u)

=
1

2

∫ (∫
|pV |U (v | u)|dνu(v)

)
|pU (u)− p′U (u)|dµ(u)

=
1

2

∫ (∫
pV |U (v | u)dνu(v)

)
|pU (u)− p′U (u)|dµ(u)

=
1

2

∫
|pU (u)− p′U (u)|dµ(u)

= dTV(PU , P
′
U )

Lemma B.3. For all i ∈ [n], consider

(ϵ̂i, η̂i) | D(m)
tr ∼ P

ϵ̂,η̂|D(m)
tr

, (ϵi, η̂i) | D(m)
tr ∼ P

ϵ,η̂|D(m)
tr

, (ϵ̂i, ηi) | D(m)
tr ∼ P

ϵ̂,η|D(m)
tr

,

where ϵ̂i = ϵi − δ1,P (Zi)−
(
ĝ
(m)
1 (Zi)− g∗1,P (Zi)

)
and η̂i = ηi − δ2,P (Zi)−

(
ĝ
(m)
2 (Zi)− g∗2,P (Zi)

)
.
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Under Assumption A.7 and H0 : X ⊥⊥ Y | Z, we have that

EP [φ
RESIT
α (D(n)

te ,D(m)
tr ) | D(m)

tr ] ≤ α+min
{
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)
, dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)}
where dTV denotes the total variation distance between two probability measures.

Proof. Let us represent the stacked residuals (in matrix form) as (ϵ̂, η̂) = {(ϵ̂i, η̂i)}ni=1. See that(
(ϵ̂, η̂)(1), · · · , (ϵ̂, η̂)(B) | (ϵ̂, η̂) = (ϵ̄, η̄),D(m)

tr

)
d
=

(
(ϵ, η̂)(1), · · · , (ϵ, η̂)(B) | (ϵ, η̂) = (ϵ̄, η̄),D(m)

tr

)
Then, because the random quantities above are conditionally discrete, their distribution is dominated
by a counting measure depending on (ϵ̄, η̄). Because the distribution of (ϵ, η) is absolutely continuous
with respect to the Lebesgue measure, (ϵ̂, η̂) | D(m)

tr and (ϵ, η̂) | D(m)
tr are also absolutely continuous20

for every training set configuration, and then we can apply Lemma B.2 to get that

dTV

(
((ϵ̂, η̂), (ϵ̂, η̂)(1), · · · , (ϵ̂, η̂)(B)) | D(m)

tr , ((ϵ, η̂), (ϵ, η̂)(1), · · · , (ϵ, η̂)(B)) | D(m)
tr

)
= dTV

(
(ϵ̂, η̂) | D(m)

tr , (ϵ, η̂) | D(m)
tr

)
.

In the last step, we abuse TV distance notation: by the TV distance of two random variables, we
mean the TV distance of their distributions.

Now, define the event

Aα ≜

{
((e,h), (e,h)(1), · · · , (e,h)(B)) :

1 +
∑B

b=1 1[Ψ((e,h)(b)) ≥ Ψ((e,h))]

1 +B
≤ α

}
By the definition of the TV distance, we have that (under H0):

EP [φ
RESIT
α (D(n)

te ,D(m)
tr ) | D(m)

tr ] = PP

(
((ϵ̂, η̂), (ϵ̂, η̂)(1), · · · , (ϵ̂, η̂)(B)) ∈ Aα | D(m)

tr

)
≤ PP

(
((ϵ, η̂), (ϵ, η̂)(1), · · · , (ϵ, η̂)(B)) ∈ Aα | D(m)

tr

)
+ dTV

(
(ϵ̂, η̂) | D(m)

tr , (ϵ, η̂) | D(m)
tr

)
≤ α+ dTV

(
(ϵ̂, η̂) | D(m)

tr , (ϵ, η̂) | D(m)
tr

)
= α+ dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)
where the last equality holds from the fact that, given the training set, rows of (ϵ̂, η̂) and (ϵ, η̂) are
i.i.d.. See that PP

(
((ϵ, η̂), (ϵ, η̂)(1), · · · , (ϵ, η̂)(B)) ∈ Aα | D(m)

tr

)
≤ α because H0 holds and therefore

ϵi ⊥⊥ η̂i | D(m)
tr (making the permuted samples exchangeable).

Using symmetry, we have that

EP [φ
RESIT
α (D(n)

te ,D(m)
tr ) | D(m)

tr ] ≤ α+min
{
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)
, dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)}

Lemma B.4. For any i ∈ [n], consider that

(ϵ̂i, η̂i) | D(m)
tr ∼ P

ϵ̂,η̂|D(m)
tr

, (ϵi, η̂i) | D(m)
tr ∼ P

ϵ,η̂|D(m)
tr

, (ϵ̂i, ηi) | D(m)
tr ∼ P

ϵ̂,η|D(m)
tr

(ϵ∗i , η
∗
i ) ∼ Pϵ∗,η∗ , (ϵi, η

∗
i ) ∼ Pϵ,η∗ , (ϵ∗i , ηi) ∼ Pϵ∗,η

where ϵ̂i = ϵi − δ1,P (Zi) −
(
ĝ
(m)
1 (Zi)− g∗1,P (Zi)

)
, ϵ∗i = ϵi − δ1,P (Zi), η̂i = ηi − δ2,P (Zi) −(

ĝ
(m)
2 (Zi)− g∗2,P (Zi)

)
, and η∗

i = ηi − δ2,P (Zi). Then, under H0 : X ⊥⊥ Y | Z and Assumptions

20Given any training set configuration, the vectors (ϵ̂i, η̂i), (ϵi, η̂i), (ϵ̂i, ηi) are given by the sum of two
independent random vectors where at least one of them is continuous because of Assumption A.7 and therefore
the sum must be continuous, e.g., (ϵ̂i, η̂i) = (ϵi, ηi)+(g∗1,P (Zi)−ĝ

(m)
1 (Zi)−δ1,P (Zi), g

∗
2,P (Zi)−ĝ

(m)
2 (Zi)−

δ2,P (Zi)). See Lemma B.4 for a proof.

27



A.6 and A.7, all six distributions are absolutely continuous with respect to the Lebesgue measure and
their densities are given by

p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr ) = EP

[
pϵ
(
e+ δ1,P (Z) + ĝ

(m)
1 (Z)− g∗1,P (Z)

)
pη
(
h+ δ2,P (Z) + ĝ

(m)
2 (Z)− g∗2,P (Z)

)
| D(m)

tr

]
p
ϵ,η̂|D(m)

tr
(e, h | D(m)

tr ) = pϵ(e) · EP

[
pη
(
h+ δ2,P (Z) + ĝ

(m)
2 (Z)− g∗2,P (Z)

)
| D(m)

tr

]
p
ϵ̂,η|D(m)

tr
(e, h | D(m)

tr ) = EP

[
pϵ
(
e+ δ1,P (Z) + ĝ

(m)
1 (Z)− g∗1,P (Z)

)
| D(m)

tr

]
· pη(h)

pϵ∗,η∗(e, h) = EP [pϵ (e+ δ1,P (Z)) pη (h+ δ2,P (Z))]

pϵ,η∗(e, h) = pϵ(e) · EP [pη (h+ δ2,P (Z))]

pϵ∗,η(e, h) = EP [pϵ (e+ δ1,P (Z))] · pη(h)

Additionally, we have that

sup
(e,h)∈RdX×dY

(
p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr )− pϵ∗,η∗(e, h)
)2

= OP0(m
−γ)

sup
(e,h)∈RdX×dY

(
p
ϵ,η̂|D(m)

tr
(e, h | D(m)

tr )− pϵ,η∗(e, h)
)2

= OP0(m
−γ)

sup
(e,h)∈RdX×dY

(
p
ϵ̂,η|D(m)

tr
(e, h | D(m)

tr )− pϵ∗,η(e, h)
)2

= OP0(m
−γ)

Proof. Assume we are under H0. In order to show that P
ϵ̂,η̂|D(m)

tr
is absolutely continuous w.r.t.

Lebesgue measure (for each training set configuration) and that its density is given by

p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr ) = EP

[
pϵ
(
e+ δ1,P (Z) + ĝ

(m)
1 (Z)− g∗1,P (Z)

)
pη
(
h+ δ2,P (Z) + ĝ

(m)
2 (Z)− g∗2,P (Z)

)
| D(m)

tr

]
,

it suffices to show that

PP ((ϵ̂, η̂) ∈ A | D(m)
tr ) =

=

∫
1A(u, v)EP

[
pϵ
(
u+ δ1,P (Z) + ĝ

(m)
1 (Z)− g∗1,P (Z)

)
pη
(
v + δ2,P (Z) + ĝ

(m)
2 (Z)− g∗2,P (Z)

)
| D(m)

tr

]
d(u, v)

for any measurable set A.

Using Fubini’s theorem, we get

PP ((ϵ̂, η̂) ∈ A | D(m)
tr ) =

= EP

[
1A(ϵ− δ1,P (Z)− ĝ

(m)
1 (Z) + g∗1,P (Z), η − δ2,P (Z)− ĝ

(m)
2 (Z) + g∗2,P (Z)) | D(m)

tr

]
= EP

[∫
1A(e− δ1,P (Z)− ĝ

(m)
1 (Z) + g∗1,P (Z), h− δ2,P (Z)− ĝ

(m)
2 (Z) + g∗2,P (Z))pϵ,η(e, h)d(e, h) | D(m)

tr

]
= EP

[∫
1A(e− δ1,P (Z)− ĝ

(m)
1 (Z) + g∗1,P (Z), h− δ2,P (Z)− ĝ

(m)
2 (Z) + g∗2,P (Z))pϵ(e)pη(h)d(e, h) | D(m)

tr

]
= EP

[∫
1A(u, v)pϵ

(
u+ δ1,P (Z) + ĝ

(m)
1 (Z)− g∗1,P (Z)

)
pη
(
v + δ2,P (Z) + ĝ

(m)
2 (Z)− g∗2,P (Z)

)
d(u, v) | D(m)

tr

]
=

∫
1A(u, v)EP

[
pϵ
(
u+ δ1,P (Z) + ĝ

(m)
1 (Z)− g∗1,P (Z)

)
pη
(
v + δ2,P (Z) + ĝ

(m)
2 (Z)− g∗2,P (Z)

)
| D(m)

tr

]
d(u, v)

The proof is analogous to the other distributions.

28



Now, we proceed with the second part of the lemma. Using Assumptions A.6 and A.7, we get(
p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr )− pϵ∗,η∗(e, h)
)2

=

=
(
EP

[
pϵ
(
e+ δ1,P (Z) + ĝ

(m)
1 (Z)− g∗1,P (Z)

)
pη
(
h+ δ2,P (Z) + ĝ

(m)
2 (Z)− g∗2,P (Z)

)
− pϵ (e+ δ1,P (Z)) pη (h+ δ2,P (Z)) | D(m)

tr

])2
≤ L2

(
EP

[∥∥∥(ĝ(m)
1 (Z)− g∗1(Z), ĝ

(m)
2 (Z)− g∗2(Z)

)∥∥∥
2
| D(m)

tr

])2
≤ L2

(
EP

[∥∥∥(ĝ(m)
1 (Z)− g∗1(Z), ĝ

(m)
2 (Z)− g∗2(Z)

)∥∥∥2
2
| D(m)

tr

])
= L2EP

[∥∥∥ĝ(m)
1 (Z)− g∗1,P (Z)

∥∥∥2
2
| D(m)

tr

]
+ L2EP

[∥∥∥ĝ(m)
2 (Z)− g∗2,P (Z)

∥∥∥2
2
| D(m)

tr

]
= OP0(m

−γ)

where the last inequality is obtained via Jensen’s inequality. Because the upper bound obtained
through Lipschitzness does not depend on (e, h), we get

sup
(e,h)∈RdX×dY

(
p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr )− pϵ∗,η∗(e, h)
)2

= OP0(m
−γ)

The results for the other converging quantities are obtained in the same manner.

Theorem A.9. Under Assumptions A.6, A.7, and A.8, if H0 : X ⊥⊥ Y | Z holds and n is a function of
m such that n → ∞ and n = o(m

γ
2 ) as m → ∞, then

EP [φ
RESIT
α (D(n)

te ,D(m)
tr )] ≤ α+min{dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗), dTV(P
n
ϵ∗,η∗ , Pn

ϵ∗,η)}+ o(1)

where o(1) denotes uniform convergence over all P ∈ P0 as m → ∞.

Proof. We are trying to prove that

sup
P∈P0

[
EP [φ

RESIT
α (D(n)

te ,D(m)
tr )]− α−min{dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗), dTV(P
n
ϵ∗,η∗ , Pn

ϵ∗,η)}
]
≤ o(1) as m → ∞

First, see that using Lemma B.3 we get

EP [φ
RESIT
α (D(n)

te ,D(m)
tr )] =

= EP [EP [φ
RESIT
α (D(n)

te ,D(m)
tr ) | D(m)

tr ]]

≤ α+ EP

[
min

{
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)
, dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)}]
≤ α+min

{
EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
,EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)]}
≤ α+min

{
EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗) + dTV(P
n
ϵ∗,η∗ , Pn

ϵ,η∗),

EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ∗,η) + dTV(P
n
ϵ∗,η∗ , Pn

ϵ∗,η)
]}

≤ α+min

{∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗)
∣∣∣+ dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗),

∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ∗,η)
∣∣∣+ dTV(P

n
ϵ∗,η∗ , Pn

ϵ∗,η)
]}

and

sup
P∈P0

[
EP [φ

RESIT
α (D(n)

te ,D(m)
tr )]− α−min{dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗), dTV(P
n
ϵ∗,η∗ , Pn

ϵ∗,η)}
]
≤ sup

P∈P0

∆
(m)
P

(B.3)

29



where

∆
(m)
P ≜ min

{∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗)
∣∣∣+ dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗),

∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ∗,η)
∣∣∣+ dTV(P

n
ϵ∗,η∗ , Pn

ϵ∗,η)

}
−min{dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗), dTV(P
n
ϵ∗,η∗ , Pn

ϵ∗,η)}

It suffices to show that supP∈P0
∆

(m)
P = o(1) as m → ∞. Next step is to show that

sup
P∈P0

∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗)
∣∣∣ = o(1)

and
sup
P∈P0

∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ∗,η)
∣∣∣ = o(1)

as m → ∞. Given the symmetry, we focus on the first problem.

By the triangle inequality, we obtain

EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
≤ EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn
ϵ∗,η∗

)]
+dTV

(
Pn
ϵ∗,η∗ , Pn

ϵ,η∗
)
+EP

[
dTV

(
Pn
ϵ,η∗ , Pn

ϵ,η̂|D(m)
tr

)]
and consequently

sup
P∈P0

∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
− dTV

(
Pn
ϵ∗,η∗ , Pn

ϵ,η∗
)∣∣∣

≤ sup
P∈P0

EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn
ϵ∗,η∗

)]
︸ ︷︷ ︸

I

+ sup
P∈P0

EP

[
dTV

(
Pn

ϵ,η̂|D(m)
tr

, Pn
ϵ,η∗

)]
︸ ︷︷ ︸

II

We treat these terms separately.

(I) Consider a sequence of probability distributions (P (m))m∈N in P0 such that

sup
P∈P0

EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn
ϵ∗,η∗

)]
≤ EP (m)

[
dTV

(
P (m)n

ϵ̂,η̂|D(m)
tr

, P (m)n

ϵ∗,η∗

)]
+

1

m

Here, the distributions P and P (m) determine not only the distribution associated with D(m)
tr but also

the distribution of (ϵ̂, η̂, ϵ∗, η∗). Because we have that

dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn
ϵ∗,η∗

)
≤

≤ n · dTV

(
P
ϵ̂,η̂|D(m)

tr
, Pϵ∗,η∗

)
(Subadditivity of TV distance)

=
n

2

∫ ∣∣∣p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr )− pϵ∗,η∗(e, h)
∣∣∣ d(u, v) (Scheffe’s theorem [36][Lemma 2.1])

≤ nV

2
sup

(u,v)∈RdX×dY

∣∣∣p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr )− pϵ∗,η∗(e, h)
∣∣∣ (Assumption A.8)

=

(
n2V 2

4
sup

(u,v)∈RdX×dY

∣∣∣p
ϵ̂,η̂|D(m)

tr
(e, h | D(m)

tr )− pϵ∗,η∗(e, h)
∣∣∣2)1/2

=
(
o(mγ)OP0(m

−γ)
)1/2

(Lemma B.4)
= oP0(1)

where V is the volume of a ball containing the support of the RVs (existence of that ball is due
to Assumption A.8), we also have that dTV

(
P (m)n

ϵ̂,η̂|D(m)
tr

, P (m)n
ϵ∗,η∗

)
= op(1), when D(m)

tr samples

come from the sequence (P (m))m∈N. By the Dominated Convergence Theorem (DCT) [27, Corollary
6.3.2], we have

sup
P∈P0

EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn
ϵ∗,η∗

)]
≤ EP (m)

[
dTV

(
P (m)n

ϵ̂,η̂|D(m)
tr

, P (m)n

ϵ∗,η∗

)]
+

1

m
= o(1)
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To see why we can use the DCT here, realize that when samples come from P (m), W (m) =

dTV

(
P (m)n

ϵ̂,η̂|D(m)
tr

, P (m)n
ϵ∗,η∗

)
can be seen as a measurable function going from an original probability

space to some other space. Different distributions {P (m)} are due to different random variables while
the original probability measure is fixed. Because of that,

EP (m)

[
dTV

(
P (m)n

ϵ̂,η̂|D(m)
tr

, P (m)n

ϵ∗,η∗

)]
= E

[
W (m)

]
for the bounded random variable W (m), where the last expectation is taken in the original probability
space. We apply the DCT in E

[
W (m)

]
.

(II) Following the same steps as in part (I), we obtain

sup
P∈P0

EP

[
dTV

(
Pn

ϵ,η̂|D(m)
tr

, Pn
ϵ,η∗

)]
= o(1)

Going back to step B.3, consider another sequence of probability distributions (Q(m))m∈N in P0 such
that

sup
P∈P0

∆
(m)
P ≤ ∆

(m)

Q(m) +
1

m

where

∆
(m)

Q(m) =min

{∣∣∣EQ(m)

[
dTV

(
Q(m)n

ϵ̂,η̂|D(m)
tr

, Q(m)n

ϵ,η̂|D(m)
tr

)]
− dTV(Q

(m)n

ϵ∗,η∗ , Q
(m)n

ϵ,η∗)
∣∣∣+ dTV(Q

(m)n

ϵ∗,η∗ , Q
(m)n

ϵ,η∗),

∣∣∣EQ(m)

[
dTV

(
Q(m)n

ϵ̂,η̂|D(m)
tr

, Q(m)n

ϵ̂,η|D(m)
tr

)
− dTV(Q

(m)n

ϵ∗,η∗ , Q
(m)n

ϵ∗,η)
∣∣∣+ dTV(Q

(m)n

ϵ∗,η∗ , Q
(m)n

ϵ∗,η)
]}

−min{dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ,η∗), dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ∗,η)}

Because of continuity of min and

sup
P∈P0

∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ,η̂|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗)
∣∣∣ = o(1)

and
sup
P∈P0

∣∣∣EP

[
dTV

(
Pn

ϵ̂,η̂|D(m)
tr

, Pn

ϵ̂,η|D(m)
tr

)]
− dTV(P

n
ϵ∗,η∗ , Pn

ϵ∗,η)
∣∣∣ = o(1)

we have that

∆
(m)

Q(m) =

= min{dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ,η∗) + o(1), dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ∗,η) + o(1)}

−min{dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ,η∗), dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ∗,η)}

= min{dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ,η∗), dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ∗,η))}

−min{dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ,η∗), dTV(Q
(m)n

ϵ∗,η∗ , Q
(m)n

ϵ∗,η)}+ o(1)

= o(1)

Finally implying, from step B.3,

sup
P∈P0

[
EP [φ

RESIT
α (D(n)

te ,D(m)
tr )]− α−min{dTV(P

n
ϵ∗,η∗ , Pn

ϵ,η∗), dTV(P
n
ϵ∗,η∗ , Pn

ϵ∗,η)}
]
≤ o(1) as m → ∞

B.4 RBPT

Theorem 4.4. Suppose that Assumptions 4.1, 4.2, 4.3, 3.2, and 3.3 hold. If n is a function of m such
that n → ∞ and n = o(mγ) as m → ∞, then

EP [φ
RBPT
α (D(n)

te ,D(m)
tr )] = 1− Φ

(
τα −

√
n

σ2
P

ΩRBPT
P

)
+ o(1)
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where o(1) denotes uniform convergence over all P ∈ P as m → ∞ and

ΩRBPT
P = ΩRBPT

P,1 − ΩRBPT
P,2

with

ΩRBPT
P,1 ≜ EP

[
ℓ

(∫
g∗P (x, Z)dQ∗

X|Z(x), Y

)
− ℓ

(∫
g∗P (x, Z)dPX|Z(x), Y

)]

and

ΩRBPT
P,2︸ ︷︷ ︸

Jensen’s gap

≜ EP

[
ℓ(g∗P (X,Z), Y )− ℓ

(∫
g∗P (x, Z)dPX|Z(x), Y

)]

Proof. First, note that there must be21 a sequence of probability measures in P , (P (m))m∈N, such that

sup
P∈P

∣∣∣∣EP [φ
RBPT
α (D(n)

te ,D(m)
tr )]− 1 + Φ

(
τα −

√
n

σ2
P

ΩRBPT
P

)∣∣∣∣ ≤
∣∣∣∣∣EP (m) [φ

RBPT
α (D(n)

te ,D(m)
tr )]− 1 + Φ

(
τα −

√
n

σ2
P (m)

ΩRBPT
P (m)

)∣∣∣∣∣+ 1

m

Then, it suffices to show that the RHS vanishes when we consider such a sequence (P (m))m∈N.

Now, let us first decompose the test statistic Ξ(n,m) in the following way:

Ξ(n,m) ≜
√
nT̄ (n,m)

σ̂(n,m)
=

=

√
n
(
T̄ (n,m) − EP (m) [T

(m)
1 | D(m)

tr ]
)

σ̂(n,m)
+

√
nEP (m) [T

(m)
1 | D(m)

tr ]

σ̂(n,m)

=

√
n
(
T̄ (n,m) − EP (m) [T

(m)
1 | D(m)

tr ]
)

σ̂(n,m)
+

√
nEP (m) [ℓ(ĥ(m)(Z1), Y1)− ℓ(ĝ(m)(X1, Z1), Y1) | D(m)

tr ]

σ̂(n,m)

=

√
n
(
T̄ (n,m) − EP (m) [T

(m)
1 | D(m)

tr ]
)

σ̂(n,m)
+

√
nEP (m) [ℓ(

∫
ĝ(m)(x, Z1)dQ̂

(m)

X|Z(x), Y1)− ℓ(ĝ(m)(X1, Z1), Y1) | D(m)
tr ]

σ̂(n,m)

=

√
n
(
T̄ (n,m) − EP (m) [T

(m)
1 | D(m)

tr ]
)

σ̂(n,m)
+

+

√
nEP (m) [ℓ(

∫
ĝ(m)(x, Z1)dQ̂

(m)

X|Z(x), Y1)− ℓ(
∫
ĝ(m)(x, Z1)dQ

∗
X|Z(x), Y1) | D(m)

tr ]

σ̂(n,m)

+

√
nEP (m) [ℓ(

∫
ĝ(m)(x, Z1)dQ

∗
X|Z(x), Y1)− ℓ(

∫
g∗
P (m)(x, Z1)dQ

∗
X|Z(x), Y1) | D(m)

tr ]

σ̂(n,m)

+

√
nEP (m) [ℓ(g∗P (m)(X1, Z1), Y1)− ℓ(ĝ(m)(X1, Z1), Y1) | D(m)

tr ]

σ̂(n,m)

+

√
n

σ̂(n,m)
EP (m)

[[
ℓ
(∫

g∗P (m)(x, Z1)dQ
∗
X|Z(x), Y

)
− ℓ
(∫

g∗P (m)(x, Z1)dP
(m)

X|Z(x), Y
)]

+

+
[
ℓ
(∫

g∗P (m)(x, Z1)dP
(m)

X|Z(x), Y
)
− ℓ(g∗P (m)(X1, Z1), Y1)

]]

=

√
nW

(m)

1,P (m)

σ̂(n,m)
+

√
nW

(m)

2,P (m)

σ̂(n,m)
+

√
nW

(m)

3,P (m)

σ̂(n,m)
+

√
nW

(m)

4,P (m)

σ̂(n,m)
+

√
nΩRBPT

P (m)

σ̂(n,m)

21Because of the definition of sup.
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Given that n is a function of m, we omit it when writing the W
(m)

j,P (m)’s. Define σ
(m)

P (m) ≜√
VarP (m) [T

(m)
1 | D(m)

tr ] and see that

EP (m) [φ
RBPT
α (D(n)

te ,D(m)
tr )] = (B.4)

= PP (m) [p(D(n)
te ,D(m)

tr ) ≤ α]

= PP (m)

[
1− Φ

(
Ξ(n,m)

)
≤ α

]
= PP (m)

[
Ξ(n,m) ≥ τα

]
= PP (m)

√nW
(m)

1,P (m)

σ̂(n,m)
+

√
nW

(m)

2,P (m)

σ̂(n,m)
+

√
nW

(m)

3,P (m)

σ̂(n,m)
+

√
nW

(m)

4,P (m)

σ̂(n,m)
+

√
nΩRBPT

P (m)

σ̂(n,m)
≥ τα


= PP (m)

√nW
(m)

1,P (m)

σP (m)

+

√
nW

(m)

2,P (m)

σP (m)

+

√
nW

(m)

3,P (m)

σP (m)

+

√
nW

(m)

4,P (m)

σP (m)

+

√
nΩRBPT

P (m)

σP (m)

+ τα − τα
σ̂(n,m)

σP (m)

≥ τα


= PP (m)

√nW
(m)

1,P (m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

+

√
nW

(m)

2,P (m)

σP (m)

+

√
nW

(m)

3,P (m)

σP (m)

+

√
nW

(m)

4,P (m)

σP (m)

+ τα − τα
σ̂(n,m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

≥ τα −
√
nΩRBPT

P (m)

σP (m)


= 1− Φ

(
τα −

√
n

σ2
P (m)

ΩRBPT
P (m)

)
+ o(1) (B.5)

Implying that

sup
P∈P

∣∣∣∣EP [φ
RBPT
α (D(n)

te ,D(m)
tr )]− 1 + Φ

(
τα −

√
n

σ2
P

ΩRBPT
P

)∣∣∣∣ = o(1) as m → ∞

Justifying step B.5. First, from a central limit theorem for triangular arrays [6, Corollary 9.5.11], we
have that

√
n

W
(m)

1,P (m)

σ
(m)

P (m)

 =
√
n

(
T̄ (n,m) − EP (m) [T

(m)
1 | D(m)

tr ]

σ
(m)

P (m)

)
=

1√
n

n∑
i=1

(
T

(m)
i − EP (m) [T

(m)
1 | D(m)

tr ]

σ
(m)

P (m)

)
⇒ N(0, 1)

The conditions for the central limit theorem [6, Corollary 9.5.11] can be proven to hold like in
Theorem 3.4’s proof.

Second, we have that
√
nW

(m)

1,P (m)

σ
(m)

P (m)

−

√
nW

(m)

1,P (m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

+

√
nW

(m)

2,P (m)

σP (m)

+

√
nW

(m)

3,P (m)

σP (m)

+

√
nW

(m)

4,P (m)

σP (m)

+ τα − τα
σ̂(n,m)

σ
(m)

P (m)

σ
(m)

P (m)

σP (m)

 =

=

√
nW

(m)

1,P (m)

σ
(m)

P (m)

(
1−

σ
(m)

P (m)

σP (m)

)
−

√
nW

(m)

2,P (m)

σP (m)

−
√
nW

(m)

3,P (m)

σP (m)

−
√
nW

(m)

4,P (m)

σP (m)

+

+ τα

(
σ̂(n,m)

σ
(m)

P (m)

− 1

)(
σ
(m)

P (m)

σP (m)

− 1

)
+ τα

(
σ
(m)

P (m)

σP (m)

− 1

)
+ τα

(
σ̂(n,m)

σ
(m)

P (m)

− 1

)
= op(1) as m → ∞

To see why the random quantity above converges to zero in probability, see that because of Assumption
3.3, Lemma22 B.1, and continuous mapping theorem, we have that

σ̂(n,m)

σ
(m)

P (m)

− 1 = op(1) and
σ
(m)

P (m)

σP (m)

− 1 = op(1) as m → ∞

Additionally, because of Assumptions 4.1, 4.2, and 4.3 and condition n = o(mγ), we have that

22We can apply this STFR’s lemma because it still holds when we consider GCM’s test statistic.
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∣∣∣∣ √
n

σP (m)

W
(m)

2,P (m)

∣∣∣∣ = ∣∣∣∣ √
n

σP (m)

EP (m)

[
ℓ

(∫
ĝ(m)(x, Z1)dQ̂

(m)

X|Z(x), Y

)
− ℓ

(∫
ĝ(m)(x, Z1)dQ

∗
X|Z(x), Y

)
| D(m)

tr

]∣∣∣∣
≤

√
n

σP (m)

EP (m)

[∣∣∣∣ℓ(∫ ĝ(m)(x, Z1)dQ̂
(m)

X|Z(x), Y

)
− ℓ

(∫
ĝ(m)(x, Z1)dQ

∗
X|Z(x), Y

)∣∣∣∣ | D(m)
tr

]
≤ L

√
n

σP (m)

· EP (m)

[∥∥∥∥∫ ĝ(m)(x, Z1)dQ̂
(m)

X|Z(x)−
∫

ĝ(m)(x, Z1)dQ
∗
X|Z(x)

∥∥∥∥
2

| D(m)
tr

]
≤ L

√
n

σP (m)

· EP (m)

[∥∥∥∥∫ ĝ(m)(x, Z1)dQ̂
(m)

X|Z(x)−
∫

ĝ(m)(x, Z1)dQ
∗
X|Z(x)

∥∥∥∥
1

| D(m)
tr

]
≤ L

√
n

σP (m)

· EP (m)
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ĝ(m)(x, Z1)dQ

∗
X|Z(x), Y

)
− ℓ

(∫
g∗P (m)(x, Z1)dQ

∗
X|Z(x), Y

)
| D(m)

tr

]∣∣∣∣
≤

√
n

σP (m)

EP (m)
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[∥∥∥ĝ(m)(X1, Z1)− g∗P (m)(X1, Z1)
∥∥∥
2
| D(m)

tr

]
≤ L

√
n

infP∈P σP
·
(
EP (m)
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by Slutsky’s theorem. Because N(0, 1) is a continuous distribution, we have uniform convergence of
the distribution function [27][Chapter 8, Exercise 5], and we do not have to worry about the fact that
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C Experiments

C.1 Running times

Artificial-data experiments. Regarding running times (average per iteration), RBPT took 5 · 10−4s
to run, RBPT2 took 1.9s, STFR took 7.5−4s, RESIT took 1.3 · 10−1s, GCM took 6 · 10−4s, CRT took
1.7 · 10−2s, and CPT took 6.2 · 10−1s, all in a MacBook Air 2020 M1.

Real-data experiments. Regarding running times (average per iteration), RBPT took 1.1 · 10−1s to
run, RBPT2 took 2.4 · 10−1s, STFR took 10−3s, GCM took 10−3s, CRT took 2.5 · 10−2s, and CPT
took 7.2 · 10−1s, all in a MacBook Air 2020 M1.

C.2 Extra results

We include extra experiments in which Y | X,Z has skewed normal distributions with location
µ = cX + a⊤Z + γ(b⊤Z)2, scale σ = 1, and shape s = 3 (shape s = 0 lead to the normal distribution).
From the following plots, we can learn that the skewness often impacts negatively in Type-I error
control.

Figure 7: Type-I error rates (c = 0). In the first two plots, we set θ = 0 for RBPT, permitting Type-I error
control across different dZ values (Theorem 4.4), while RBPT2 allows Type-I error control for moderate dZ .
All the baselines fail to control Type-I errors regardless of dZ . The last two plots illustrate that CRT emerges as
the least robust test in this context, succeeded by RBPT and CPT.

Figure 8: (i) Making RBPT2 more robust using unlabeled data. With dZ = 40, we gradually increase the
unlabeled sample size from 0 to 1000 when fitting ĥ. The results show that a larger unlabeled sample size leads
to effective Type-I error control. Even though we present this result for RBPT2, the same pattern is expected for
RBPT in the presence of unlabeled data. (ii) Power curves for different methods. We compare our methods with
CPT (when θ = 0), which seems to have practical robustness against misspecified inductive biases. RBPT2 and
CPT have similar power while RBPT is slightly more conservative.
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