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ABSTRACT

The evaluation of deep generative models including generative adversarial networks
(GANs) and diffusion models has been extensively studied in the literature. While
the existing evaluation methods mainly target a centralized learning problem with
training data stored by a single client, many applications of generative models
concern distributed learning settings, e.g. the federated learning scenario, where
training data are collected by and distributed among several clients. In this paper,
we study the evaluation of generative models in distributed learning tasks with
heterogeneous data distributions. First, we focus on the Fréchet inception distance
(FID) and consider the following FID-based aggregate scores over the clients:
1) FID-avg as the mean of clients’ individual FID scores, 2) FID-all as the FID
distance of the trained model to the collective dataset containing all clients’ data.
We prove that the model rankings according to the FID-all and FID-avg scores could
be inconsistent, which can lead to different optimal generative models according to
the two aggregate scores. Next, we consider the kernel inception distance (KID)
and similarly define the KID-avg and KID-all aggregations. Unlike the FID case,
we prove that KID-all and KID-avg result in the same rankings of generative
models. We perform several numerical experiments on standard image datasets and
training schemes to support our theoretical findings on the evaluation of generative
models in distributed learning problems.

1 INTRODUCTION

Deep generative models including diffusion models (Sohl-Dickstein et al., 2015) and generative
adversarial networks (GANs) (Goodfellow et al., 2014) have attained impressive results over a wide
array of machine learning tasks (Karras et al., 2019; Ho et al., 2020; Ramesh et al., 2022). This
success can be attributed to the enormous capacity of multi-layer neural networks in modeling complex
distributions of image and text data as well as the intricate design of the training mechanisms in GANs
and diffusion models. The promising results of these frameworks have inspired the development of
several methodologies for the training and evaluation of generative models in the literature.

While the existing literature on deep generative models has mostly focused on centralized settings
with training data stored by a single learner, many modern applications of deep learning algorithms
are aimed at distributed scenarios where training data are collected by multiple agents in a network.
A well-known instance of such a distributed setting is the federated learning task (McMahan et al.,
2017), where several clients are connected to a server and aim to train a decentralized model through
their communications with the server node while preserving the privacy of their collected data. A
significant challenge in such distributed learning settings is the heterogeneous data distributions
across clients, since the background features of every client could lead to a different data distribution.
Especially, in training a deep generative model over a distributed network, the heterogeneity of the
clients’ distributions could highly impact the performance and evaluation of the trained model.

In this work, we focus on the evaluation of deep generative models in heterogeneous distributed
learning settings. Our primary goal is to highlight the challenges of extending standard evaluation
metrics for generative models from the centralized setting to the heterogeneous distributed case. To
do this, we consider and analyze the following two sensible extensions of an evaluation score: 1) the
average score over clients (score-avg), i.e. the mean of the evaluation scores for individual clients,
2) the score with respect to the aggregate distribution of all clients (score-all) considering all the
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samples in the network. We consider standard assessment scores and analyze the consistency of
model rankings suggested by the described extensions of the score to the distributed learning problem.

While the described score-all aggregation has been commonly used for the evaluation of generative
models in the existing literature on distributed and federated generative model learning, we note that
the estimation of the score-all metric will be challenging in a real distributed learning scenario. These
challenges are mainly due to the privacy and computation constraints in standard distributed learning
problems, preventing clients from sharing their observed samples and any revealing statistics of their
training data with the rest of the network. On the other hand, the score-avg can be computed more
efficiently since it only requires the client-based score value, which needs minor information on the
samples and low communication expenses. However, it remains unclear if the original ranking of
generative models according to score-all would be preserved under the score-avg assessment, because
standard distances used for the evaluation task are non-linear in the input distributions.

In our theoretical analysis, we specifically focus on the Fréchet inception distance (FID) (Heusel
et al., 2017) and kernel inception distance (KID) (Bińkowski et al., 2018) scores, which have been
widely used in the evaluation of generative models. For the FID score, not only do we prove that the
FID-all and FID-avg take different values, but further we show that the model rankings according to
the two scores can be different. Indeed, we prove that the generative models with the optimal FID-avg
and FID-all scores are different under heterogeneous client distributions, revealing the discrepancy
between the two aggregate assessments.

On the other hand, in the case of KID score we prove that the aggregate scores KID-all and KID-avg
result in the same rankings of generative models although they could take different values. This
result shows the consistency of the KID evaluation between the mean aggregation in KID-avg and the
collective data-based aggregation in KID-all. Therefore, our theoretical results suggest the different
consistency behaviors of FID and KID scores when aggregated over a heterogeneous distributed
learning setting: while averaging individual KID scores results in the same ranking as the KID score
with respect to the distribution of collective client’s data, the same conclusion does not hold for FID
and more generally Wasserstein distance-based evaluation metrics.

Finally, we discuss several numerical results on standard image datasets and generative model
architectures which support our theoretical comparison of the aggregate evaluation scores in federated
learning problems. Our empirical results suggest that the FID-all and FID-avg aggregations could
lead to inconsistent rankings of the trained generative models in standard GANs and diffusion models.
In our experiments, we observed that FID-avg often takes higher values when generated samples
look sharper. On the other hand, the FID-all score seemed to be higher scores for models with
higher diversity in their generated samples. In contrast, KID-all and KID-avg resulted in consistent
rankings of the trained models where the evaluated score seems to aggregate both quality and diversity
performance. In our numerical experiments, we also evaluated the precision, recall (Sajjadi et al.,
2018; Kynkäänniemi et al., 2019), density, and coverage (Naeem et al., 2020) scores under the two
introduced aggregations which, except in the case of recall score, could lead to different rankings of
the trained model under the discussed score aggregations. In the following, we summarize the main
contributions of our study:

• Highlighting the challenges of evaluating generative models in heterogeneous distributed learning
settings;

• Analyzing two types of aggregate FID scores in distributed learning scenarios and proving the
inconsistencies between the optimal models under the two scores;

• Demonstrating the consistent rankings suggested by the client-wise averaged KID and the
aggregate-data-based KID evaluations;

• Presenting numerical results on the evaluation of generative models in distributed settings and
empirically supporting the theoretical claims.

2 RELATED WORK

A large body of related works (Theis et al., 2016) has focused on the evaluation of generative models
in standard centralized learning settings. The existing evaluation scores can be categorized into two
general groups: 1) Distance-based metrics defining a distance between the distribution of training
data and learnt generative model. The distance between the real and fake distributions is usually

2



Under review as a conference paper at ICLR 2024

computed after passing the samples through a pre-trained neural net offering a proper embedding
of image data. The well-known evaluation scores in this category are the FID (Heusel et al., 2017)
and KID (Bińkowski et al., 2018) scores. 2) Quality and diversity-based scores which output a score
based on the sharpness and variety of the generated samples. The widely-used evaluation metrics
in this category are the Inception score (Salimans et al., 2016), precision and recall metrics (Sajjadi
et al., 2018; Kynkäänniemi et al., 2019), and density and coverage scores (Naeem et al., 2020). We
note that in this work our goal is not to introduce a new evaluation metric, and our aim is to analyze
the extensions of these scores to distributed and federated learning problems under heterogeneous
data distributions across clients.

In another set of related works, extensions of generative model training methods including GANs
and diffusion models to distributed federated learning have been studied. Rasouli et al. (2020)
propose Fed-GAN to train GANs in a federated learning setting. In (Hardy et al., 2019), the gradient
from sample generation for the generator is exchanged on the server, while each client possesses a
personalized discriminator. According to (Yonetani et al., 2019), different weights are assigned to
local discriminators in the non-i.i.d. setting. Conversely, Wu et al. (2022) ensure client privacy by
sharing the discriminator across clients, while keeping the generator private. Additionally, Su et al.
(2023) explore a dual diffusion paradigm to extend diffusion-based models into the federated learning
setting, addressing concerns related to data leakage.

3 PRELIMINARIES

3.1 DEEP GENERATIVE MODELS

In a deep generative model framework, a neural network generator G is used to map a hidden random
vector Z ∈ Rd drawn according to a fixed distribution, e.g. isotropic multivariate Gaussian N (0, σ2I)
to a real-like sample G(Z). Several deep learning approaches have been proposed to train such a
generator network, including maximum-likelihood-based methods such as variational autoencoder
(Kingma & Welling, 2013) and flow-based models (Dinh et al., 2016), generative adversarial networks
(GANs) (Goodfellow et al., 2014), and denoising diffusion models (Ho et al., 2020). In our numerical
evaluation, we mainly concentrated on the latter two methods, GANs and diffusion models, due to
their state-of-the-art performance in computer vision applications.

In GANs, the training of generative models is framed as a min-max game between a generator
network G mapping latent vector Z to a real-like output and a discriminator network D attempting to
differentiate G’s generated samples from real training data. The GAN game is typically formulated as
the following min-max optimization problem where θ, ω represent the parameters of generator and
discriminator neural nets, and f

(
Gθ, Dω

)
is the min-max objective representing D’s dissimilarity

score for the generated and real samples:
min
θ

max
ω

f
(
Gθ, Dω

)
. (1)

The training of GANs in a distributed learning problem aims at solving the above problem via a
distributed optimization method. For example, in a federated learning setting where the local clients
are connected to a single server node, the training of GAN players can be achieved by a federated
min-max optimization algorithm as discussed in the related work section.

In the case of diffusion models, the generative model performs by multi-step denoising of a Gaussian
input. The training of this approach is typically done by reversing the denoising process where the
training data are turned to a Gaussian input via an iterative addition of independent Gaussian noise
vectors. To extend diffusion models in federated learning, we follow the simple FedAvg (McMahan
et al., 2017) method and average the locally updated diffusion networks at the server followed by
synchronizing the clients with the averaged model.

3.2 DISTANCE-BASED EVALUATION OF GENERATIVE MODELS

In order to assess the performance of a generative model, a standard approach is to measure the
distance between the distribution of real and generated data. Due to the high-dimensionality of
standard image data, the evaluation of image-based generative models is typically performed after
passing the data point through a pre-trained Inception model on the ImageNet dataset.

Specifically, a standard distance-based metric is the Fréchet inception distance (FID) defined as the
2-Wasserstein distance between two Gaussian distributions with the mean and covariance parameters
of the data distribution PX , denoted by µX , CX , and with the mean and covariance of the generative
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model PG, denoted by µG, CG:

FID(PX , PG) :=
∥∥µX − µG

∥∥2
2
+Tr

(
CX + CG − 2

(
CXCG

)1/2)
.

Note that we can interpret the FID score as an approximation of the 2-Wasserstein distance given the
first and second-order moments of the distributions.

Another widely-used distance-based score for the evaluation of generative models is the kernel
inception distance (KID), which measures the maximum mean discrepancy (MMD) between the two
distributions which is calculated using a kernel similarity function k : Rd × Rd → R. Here, the
definition of the MMD distance between PX and PG based on kernel k follows from
KID

(
PX , PG

)
:= EX,X′∼PX

[
k(X,X ′)

]
+ EY,Y ′∼PG

[
k(Y, Y ′)

]
− 2EX∼PX , Y∼PG

[
k(X,Y )

]
,

where we suppose samples X,X ′ ∼ PX and Y, Y ′ ∼ PG are independently drawn. We note that
KID(PX , PG) is a non-linear function of input distributions and in the case of a universal kernel
function, e.g. Gaussian kernel, is a strictly convex function of the input distributions.

4 EVALUATION OF GENERATIVE MODELS IN DISTRIBUTED LEARNING
SETTINGS

In this section, we discuss two extensions of distance-based evaluation scores from a centralized
case to heterogeneous distributed learning settings. In our analysis, we use D(PX , PG) to denote a
general distance between data distribution PX and the generative model PG. For example, D can be
chosen to be the FID score or KID score, which we will analyze later in the section.

In a standard centralized setting, we have only a single distribution PX for real data. However, the
main characteristic of a heterogeneous distributed learning problem is the multiplicity of the involved
clients’ distribution. Here, we suppose a distributed setting k clients and use PX1

, . . . , PXk
to denote

their underlying distributions, i.e. PXi stands for the data distribution at client i. In addition, we
assume that every client i contributes a fraction 0 < λi < 1 of the data in the network, that is λi =

ni

n

with n =
∑k

j=1 nj is the total number of samples in the network and ni is the number of samples at
client i.

As a result of multiple input distributions, we need to define an aggregate evaluation score that is
based on distance measure D. The aggregate distance is supposed to summarize the performance of
the generative model PG in only one score. To do this, we consider and analyze two reasonable ways
of defining the aggregate score:

1. Average Score Davg: The score-avg is the mean of the client’s individual distance measures, i.e.

Davg

(
PX1

, . . . , PXk
; PG

)
:=

k∑
i=1

λiD
(
PXi

, PG

)
. (2)

2. Collective-data-based Score Dall: The score-all with respect to the collective data of the clients
is the distance between PG to the averaged distribution P̂X :=

∑k
i=1 λiPXi :

Dall

(
PX1

, . . . , PXk
; PG

)
:= D

(
P̂X , PG

)
. (3)

In the above, note that
∑k

i=1 λiPXi
is indeed a mixture distribution with k components PX1

, . . . , PXk

with frequency weights λ1, . . . , λk. To relate the above aggregate scores, we first observe that when
D is a convex function of the input distributions, which applies to both FID and KID scores, the
score-avg Davg will upper-bound the score-all Dall:

Observation 1. If D(PX , PG) is a convex function of PX , then

Dall

(
PX1 , . . . , PXk

; PG

)
≤ Davg

(
PX1 , . . . , PXk

; PG

)
Remark 1. The convexity assumption on distance D in the above observation applies to standard
divergence scores, including Wasserstein distances, f -divergence measures, total variation distance,
and the maximum mean discrepancy. Consequently, the result applies to the FID and KID scores.

While the mentioned observation shows how the two aggregate scores are compared with one
another, it does not imply a monotonic relationship between Dall

(
PX1

, . . . , PXk
; PG

)
and
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Davg

(
PX1

, . . . , PXk
; PG

)
. Therefore, this observation does not provide a comparison of the

ranking of generative models according to the two aggregate scores. In the following subsections, we
study this question for the particular FID and KID scores.

4.1 AGGREGATE FID SCORES IN DISTRIBUTED LEARNING

In the case of FID score, we utilize the formulation of FID as the 2-Wassesrtein-distance between the
Gaussian-fitted model that leads to a Riemannian geometry. This observation results in the following
theorem on FID-all and FID-avg aggregations. We defer the proofs to the Appendix.
Theorem 1. Suppose that PX1

, . . . , PXk
are the clients’ distributions with the mean parameters

µ1, . . . ,µk and covariance matrices C1, . . . , Ck, respectively, in the semantic space of the Inception
net. Then, the followings hold for a generative model PG with mean µG and covariance CG.

1. For FID-all, if we define random X̂ with the average mean µ̂ =
∑k

i=1 λiµi and covariance
matrix Ĉ =

∑k
i=1 λi

(
Ci + µiµ

⊤
i − µ̂µ̂⊤) in the Inception-based semantic space, we have

FIDall

(
PX1

, . . . , PXk
; PG

)
= FID

(
PX̂ , PG

)
.

2. For FID-avg, if we define a random vector X̃ with the average mean µ̂ =
∑k

i=1 λiµi and

covariance matrix C̃ as the unique solution to C̃ =
∑k

i=1 λi

(
C̃1/2CiC̃

1/2
)1/2

in the Inception-
based semantic space we will have

FIDavg

(
PX1 , . . . , PXk

; PG

)
= FID

(
PX̃ , PG

)
+

k∑
i=1

λiFID
(
PX̃ , PXi

)
.

Thus, the FID-all as a function of G is changing monotonically with FID
(
PX̃ , PG

)
for defined X̃ .

Remark 2. In Theorem 1, C̃ follows from the Wasserstein barycenter of the Gaussian distributions
and under the condition that C1, . . . , Ck commute, i.e. CiCj = CjCi for every i, j, simplifies to

C̃ =
( k∑
i=1

λiC
1/2
i

)2

.

Remark 3. In Theorem 1, the optimal mean vectors for FID-all and FID-avg aggregations are the
same. In contrast, the optimal covariance matrix of FID-avg denoted by C̃ has no dependence on the
choice of µi’s, while the optimal covariance matrix of FID-all C̃ will be affected by the difference
between µi’s due to the term

∑k
i=1 λi(µiµ

⊤
i − µ̂µ̂⊤). In general, Theorem 1 implies that the gap

between FID-all and FID-avg can be written in the following form where const. remains constant
under different PG’s and CG is the embedded covariance matrix of PG:
FIDavg

(
PX1

, . . . , PXk
;PG

)
−FIDall

(
PX1

, . . . , PXk
;PG

)
= 2Tr

(
(CGĈ)1/2−(CGC̃)1/2

)
+const.

As explained in the above remarks, Theorem 1 shows that the optimal covariance matrices under
FID-all and FID-avg could be significantly different in heterogeneous settings with different µi’s.
Therefore, since the FID-all and FID-avg scores can be interpreted as the distance to covariance
matrices Ĉ and C̃, respectively, the rankings suggested by the aggregations will be different if two
generators’ covariances CG and CG′ have different ordering of distances to Ĉ and C̃.

4.2 KID-BASED EVALUATION IN DISTRIBUTED LEARNING

After showing the possibility of inconsistent rankings by FID-all and FID-avg, we consider the KID
score and analyze the consistency of KID-all and KID-avg aggregations. The following theorem
proves that unlike the FID-case, the KID-all and KID-avg will result in a consistent ordering of the
models and there is a monotonic relationship between the two aggregate scores.
Theorem 2. Consider a kernel function k : Rd × Rd → R and the resulting KID score. Then
for the clients’ distributions PX1

, . . . , PXk
with frequency parameters λ1, . . . , λk, we will have the

following for the average distribution P̂X =
∑k

j=1 λjPXj
:

KIDavg

(
PX1

, . . . , PXk
; PG

)
= KIDall

(
PX1

, . . . , PXk
; PG

)
+

k∑
i=1

λi KID
(
P̂X , PXi

)
,
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Figure 1: Experimental results of Gaussian mixture dataset. (a): The optimal varx parameters are
different under FD-avg and FD-all evaluations. (b): Distance between KD-avg and KD-all remains
the same.(c): the clients’ and generator’s samples.

which implies a monotonic relationship between KID-all and KID-avg as a function of PG.

Therefore, the above theorem shows the consistent rankings implied by the aggregate KID-avg and
KID-all scores, as the difference between the scores remains constant while changing the model PG.

5 NUMERICAL RESULTS

5.1 EVALUATION ON SYNTHETIC GAUSSIAN MIXTURE DATASETS

As discussed in Remark 3, the optimal selection of the covariance matrix differs for the FID-all and
FID-avg aggregate scores. To illustrate this distinction, we performed a toy experiment, revealing
that FID-avg attains its minimum value when the generator’s variance closely approximates that of
an individual client, whereas FID-all reaches its minimum value when the generator’s variance aligns
with that of the aggregated distribution.

Setup. Our experimental setup involves two clients, denoted by C1 and C2. C1 possesses a dataset
consisting of 50,000 samples drawn from the Gaussian distribution N ([1, 0]⊤,Σ), while C2 holds a
dataset with 50,000 samples drawn from N ([−1, 0]⊤,Σ), where Σ = diag([1, 1]T ). We introduce
a generator, denoted as Gvarx , which is parameterized by varx. varx regulates the variance of the
generator along the X-axis. Specifically, Gvarx generates 50,000 data points following a Gaussian
distribution N ([0, 0]T ,ΣG), where ΣG = diag([varx, 1]T ). The relationship between the two clients
and the generator is visually depicted in Figure 1. Additionally, we introduce an "ideal estimator"
denoted as Ê = C1∪C2. This ideal estimator possesses the unique ability to replicate the distribution
of the training dataset perfectly. We employ the ideal estimator as a reference for our analysis.

Evaluation Metrics. We measure the similarity between samples generated by clients and generators
using the Fréchet distance (FD), which follows from the Wasserstein-based definition of FID-all and
FID-avg without the application of the pre-trained Inception network. We consider the aggregate
scores FD-avg and FD-all as defined in Equation (2) and Equation (3). Note that the FD-all for the
ideal estimator is zero and we use FD-ref = 1

2

∑2
i=1 FD(Ê, Ci) as a reference for FD-avg. We also

measure the Kernel distance (KD), which follows the definition of KID-all and KID-avg without
Inception network. KD-ref is defined for the kernel distance in a similar fashion to FD-ref.

Results. By increasing varx from 0 to 4, we get a sequence of FD-avg / FD-all pairs and we plot them
with the varx in Figure 1. Our experimental results highlight the following conclusions. First, we
observed that the minimum of FD-all occurs at varx = 2, while that of FD-avg occurs at varx = 1,
which indicates that the optimal solutions of varx to minimize FD-all and FD-avg are inconsistent.
In this case, FD-all and FD-avg lead to different rankings of the models with varx = 1 and varx = 2.
Additionally, we observed that, counterintuitively, the ‘ideal estimator’ did not reach the minimum
average of the Fréchet distances. The distance between KD-avg and KD-all remains the same with
the change of varx and both of which reach minimum at varx = 2.

5.2 EVALUATION ON REAL IMAGE DATASETS

We evaluated our theoretical results on standard image datasets including CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and ImageNet-32 (Deng et al., 2009; Chrabaszcz et al., 2017). In our
experiments, we simulated heterogeneous federated learning experiments consisting of non-i.i.d. data
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at different clients: for CIFAR-10, we considered 10 clients, each owning 5000 samples exclusively
from a single class of the image dataset. Therefore, every client’s dataset contains 5000 images
having the same label. We put the experiment on CIFAR-100 and ImageNet in Appendix.

FID-all   =   63.99  
FID-avg =  126.05
KID-all   =  0.047
KID-avg =  0.101  

FID-all   = 72.13  
FID-avg = 119.06
KID-all   = 0.045
KID-avg = 0.098  

Figure 2: Left: Images generated by a generative model obtain a lower FID-all. Right: Images from
real datasets with class ’plane’ obtain a lower FID-avg. FID-avg and FID-all lead to inconsistent
rankings, while KID-avg and KID-all result in the same ranking.

Neural Net-based Generators. We trained WGAN-GP and DDPM models using the standard
training protocols outlined in Gulrajani et al. (2017) and Ho et al. (2020) under the federated CIFAR-
10 setting described above. To train the generative models in the federated learning setting, we
employed the standard FedAvg approach McMahan et al. (2017). Detailed information regarding
the experiment setting can be found in the Appendix. We trained the WGAN-GP generative models
multiple times using different random states, and we set different training lengths for every training
procedure. We saved the models at different checkpoints every 10 epochs, which is common in
training generative models to select the best-performing saved model according to an evaluation
metric such as FID and KID.

Perfect Data-simulating Generators. In our CIFAR-10 experiments, we also simulated and evalu-
ated an "ideal generator" capable of perfectly replicating all samples belonging to the ’plane’ class in
CIFAR10. In this scenario, the samples "generated" by the ideal generator exhibit impeccable fidelity
but lack diversity since no samples from other categories can be produced.

FID-based and KID-based Evaluation of Generative Models. We evaluated the generative models
according to FID-all, FID-avg, KID-all, and KID-avg as defined in Section 4. In several cases, we
observed that FID-all / FID-avg could assign inconsistent rankings to the generators. Specficially,
we computed FID-all and FID-avg for the ideal ’plane’-class-based generator and neural net-based
DDPM generators under the distributed CIFAR10 setting. We present some examples generated
from the two generators in Figure 2 and report their scores according to the four metrics. The results
suggest that FID-avg assigns a considerably higher score to the ideal ’plane’-based generator, whose
images preserve perfect details but lack diversity in image categories. Conversely, FID-all assigns a
relatively higher value to the DDPM model because its images possess greater diversity. On the other
hand, we also observed that KID-avg and KID-all give consistent rankings. Both of them led to the
evaluation that the ideal plane generator is slightly better than the DDPM generator.

To further experiment the ranking of generative models according to the discussed aggregate scores,
we extracted samples from each class of CIFAR-100 and treated them as the output of one hundred
distinct generators, each corresponding to a single class. By assessing these generators on the
federated CIFAR-10 dataset, we obtained one hundred pairs of FID-avg / FID-all values, and a subset
of these pairs with inconsistent rankings according to FID-all/FID-avg is visualized in the left of
Figure 3. The complete set of evaluation results is available in the Appendix. These results further
highlight that the rankings provided by FID-all and FID-avg can exhibit inconsistencies in the context
of distributed learning. Such inconsistencies could pose a challenge when selecting from a series of
checkpoints or model architectures during the training of generative models in distributed learning
scenarios, where a distributed computation of FID-all is more challenging than obtaining FID-avg
due to privacy considerations.

Regarding the KID-based evaluation, our numerical results suggest that the gap between KID-all
and KID-avg remains constant and hence they lead to the same rankings of the geneartive models.
Here, we conducted our evaluations on all the geneartive models instances as previously described,
and the results are visualized in the left subfigure of Figure 4. These findings reveal that all distinct
generators consistently exhibit a uniform gap between KID-avg and KID-all. Consequently, our
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Larger Variance

……

Figure 3: FID-based evaluations on federated CIFAR-10 and variance-limited federated CIFAR-10,
FID-avg and FID-all can lead to inconsistent rankings.

Larger Variance

Figure 4: Left: KID evaluations of WGAN-GP checkpoints on federated CIFAR10. Right: KID
Evaluations of variance-controlled generators on variance-limited federated CIFAR10.

results indicate that the rankings established by KID-avg consistently align with those of KID-all in
distributed learning settings.

5.3 EVALUATION ON VARIANCE-LIMITED FEDERATED DATASETS

In the federated learning literature, it is relatively common that each client possesses only a small
portion of the collective dataset, and the data diversity within each client’s holdings is significantly
constrained. To experiment the effect of such distribution heterogeneity, we simulated and evaluated
generative models under variance-limited federated datasets. To obtain a variance-limited federated
dataset, for each class in the image dataset, we kept only a single image and its K-nearest neighbors.
To find the K nearest neighbors, we used the L2-distance in the Inception-V3 2048-dimensional
semantic space. This approach effectively mimics scenarios where each client’s data has limited
variance. We simulated the variance-limited federated learning setting for CIFAR-10, CIFAR-100
and a 32×32 version of ImageNet (IN-32) Chrabaszcz et al. (2017). For CIFAR-10 and CIFAR-100,
we utilized all the classes in the dataset and for IN-32 we utilized the first 100 classes. We chose
K = 20 in the experiments. Intuitively, a larger K leads to a more significant intra-client variance.

Variance-controlled Generators. To simulate a generator, we initiate the process by randomly
selecting a sample from the dataset. We then gather its M-nearest neighbors from the original dataset
(w/o federated learning setting). We consider this subset of samples as a set of generated samples
generated by a generator denoted by GM . By increasing the value of M , we generated a sequence of
generators with progressively higher variance values. We tried the M range from 100 to 50000.

Numerical Results. We evaluated all the generative models, denoted as GM with the chosen M
values, using the Variance-Limited Federated datasets. The evaluation results on CIFAR10 are in the
right subfigure of Figure 3 and Figure 4. Results on ImageNet-32 are illustrated in Figure 5. Our
findings reveal a distinct pattern in the behavior of FID-avg and FID-all as generator variance varies
while the distance between KID-avg and KID-all remains the same. The result on CIFAR-100 can
be found in the Appendix. Our numerical results highlight the impact of the choice of FID-all and
FID-avg on model rankings in federated learning settings with limited intra-client variance.

5.4 PRECISION/RECALL AND DENSITY/COVEREGE EVALUATIONS

In addition to FID and KID, we followed the definition in Equation (2) and Equation (3) and
performed similar experiments to evaluate the consistency between the two aggregate scores for
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Larger Variance

Larger Variance

Figure 5: FID and KID-based Evaluations of variance-controlled generators on variance-limited
federated ImageNet-32.

Figure 6: Precision / Recall and Density / Coverage under variance-limited federated CIFAR10.

Precision/Recall (Kynkäänniemi et al., 2019) and Density/Coverage (Naeem et al., 2020). In the
case of Precision/Recall, we utilized the official implementation with the number of clusters set to
5. We assessed precision and recall under the variance-limited CIFAR10 setting, with the results
presented in Figure 6. The numerical scores indicate that in a heterogeneous data setting, the two
aggregate precision scores may not consistently rank the generative models. On the other hand, based
on the recall’s definition, it can be seen that Recall-all and Recall-avg will always take the same
value, since the recall score reduces to an average over the generated data. Our numerical results are
also consistent with this observation. For the Density/Coverage evaluations, the numerical results in
Figure 6 suggest that while the density-based aggregate scores lead to more consistent rankings under
data heterogeneity, both density-all/-avg may still provide inconsistent rankings. On the other hand,
the coverage-based evaluations mimic the recall-based evaluation and consistently rank the models.

6 CONCLUSION

In this paper, we studied the evaluation of generative models in heterogeneous distributed learning
problems where the clients have different distributions. We discussed the challenges of evaluating the
overall performance of a trained generative model with only one score and showed the inconsistent
rankings of sensible aggregations of standard FID scores in the network. On the other hand, we
demonstrated that the same extensions of KID offer the same ranking of generative models. Our
theoretical and experimental results indicate that KID-avg can be computed efficiently under the
privacy constraints in distributed learning problems, while preserving the KID-all-based ranking
of generative models. A possible future direction for our work is to extend the theoretical study to
other evaluation criteria such as precision/recall and density/coverage scores. Also, understanding
the behavior of the aggregate score using non-arithmetic averaging could be useful for evaluating
deep generative models in federated learning contexts.

LIMITATIONS AND BROADER IMPACT

We note that our numerical study focuses on the applications of generative models to image datasets
and the empirical conclusions may not apply to other standard types of data including text and audio
data. Regarding the work’s broader impact, we note that our analysis could be connected to the
fairness evaluation of generative models in distributed learning contexts, as it suggests evaluation
metrics for the assessment of diversity in the generated data. The study of fairness and diversity for
generative models is required for a principled deployment of generative models in sensitive machine
learning applications.
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