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ABSTRACT

Adversarial training is promising for improving the robustness of deep neural net-
works towards adversarial perturbations, especially on the classification task. The
effect of this type of training on semantic segmentation, contrarily, just com-
mences. We make the initial attempt to explore the defense strategy on seman-
tic segmentation by formulating a general adversarial training procedure that can
perform decently on both adversarial and clean samples. We propose a dynamic
divide-and-conquer adversarial training (DDC-AT) strategy to enhance the de-
fense effect, by setting additional branches in the target model during training,
and dealing with pixels with diverse properties towards adversarial perturbation.
Our dynamical division mechanism divides pixels into multiple branches automat-
ically, achieved by unsupervised learning. Note all these additional branches can
be abandoned during inference and thus leave no extra parameter and computation
cost. Extensive experiments with various segmentation models are conducted on
PASCAL VOC 2012 and Cityscapes datasets, in which DDC-AT yields satisfying
performance under both white- and black-box attacks.

1 INTRODUCTION

Recent work has revealed that deep learning models, especially in the classification task, are often
vulnerable to adversarial samples (Szegedy et al., 2013; Goodfellow et al., 2014; Papernot et al.,
2016b). Adversarial attack can deceive the target model by generating crafted adversarial perturba-
tions on original clean samples. Such perturbations are often imperceptible. Meanwhile, such threat
also exists in semantic segmentation (Xie et al., 2017b; Metzen et al., 2017; Arnab et al., 2018), as
shown in Fig. 1. However, there is seldom work to improve the robustness of semantic segmentation
networks. As a universal approach, adversarial training (Goodfellow et al., 2014; Kurakin et al.,
2016b; Madry et al., 2017) is effective to enhance the target model in classification by training mod-
els with adversarial samples. In this paper, we study the effect of adversarial training on the semantic
segmentation task. We find that adversarial training impedes convergence on clean samples, which
also happens in classification. Thus we set our goal as making networks perform well on adversarial
examples and meanwhile maintaining good performance on clean samples.

For the semantic segmentation task, each pixel has one classification output. Thus the property
of every pixel in one image toward adversarial perturbations might be different. Based on this
motivation, we design a dynamic divide-and-conquer adversarial training (DDC-AT) strategy. We
propose to use multiple branches in the target model during training, each handling pixels with a
set of properties. During training, a “main branch” is adopted to deal with pixels from adversarial
samples and pixels from clean samples that are not likely to be perturbed; an “auxiliary branch” is
utilized to deal with pixels from clean samples that are sensitive to perturbations.

(a) Image (b) No Defense (c) With Our Defense (d) Image (e) No Defense (f) With Our Defense

Figure 1: For each image in (a)/(d), the left side is the normal data while the right side is perturbed
by adversarial noise. (b)/(e) shows that adversarial attack could fail existing segmentation models.
We provide an effective defense strategy shown in (c)/(f).
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Moreover, such divide-and-conquer setting is dynamical. During training, pixels stay near the de-
cision boundary from clean samples are initially set to the “auxiliary branch”. They become more
insensitive to perturbations in the network, and finally move back to the “main branch” for pro-
cessing. Such dynamical procedure is implemented by training a “mask branch” via unsupervised
learning. With this mechanism, our method reduces performance deterioration over clean samples.
Experiments manifest that such mechanism also improves robustness towards adversarial samples.
Another notable advantage of our proposed DDC-AT is that branches apart from the main one can
be abandoned during inference. Thus parameters and computation cost remain almost the same. We
conduct extensive experiments with various segmentation models on both PASCAL VOC 2012 (Ev-
eringham et al., 2010) and Cityscapes (Cordts et al., 2016) datasets. It is validated that our standard
adversarial training strategy is effective to improve the robustness of semantic segmentation net-
works, and our new DDC-AT strategy further boost the effectiveness of defense. It yields superior
performance under both white- and blackbox attack. Our main contribution is threefold.

• It is the first attempt to have comprehensive exploration on the effect of adversarial training
for semantic segmentation. Our standard adversarial training can be treated as a strong
baseline to evaluate defense strategies for semantic segmentation networks.

• We propose the DDC-AT to notably improve the defense performance of segmentation
networks on both clean and adversarial samples.

• We conduct experiments with various model structures on different datasets, which mani-
fest the effectiveness and generality of DDC-AT.

2 RELATED WORK

Adversarial Attack Adversarial attack can be divided into two categories of white-box attack (Atha-
lye & Carlini, 2018; Goodfellow et al., 2014), where attackers have complete knowledge of the target
model, and black-box attack (Papernot et al., 2017; 2016a), where attackers have almost no knowl-
edge of the target model. Existing adversarial attack methods focus on solving image classification
problems. Such attack is normally achieved by computing or simulating the gradient information
of target models (Goodfellow et al., 2014; Tramèr et al., 2017; Dong et al., 2018; Kurakin et al.,
2016a). Meanwhile, as indicated by recent works (Xie et al., 2017b; Metzen et al., 2017; Arnab
et al., 2018), semantic segmentation networks are also vulnerable to adversarial samples.

Adversarial Defense Current defense methods for the classification task can be divided into four
kinds. 1) Changing the input of networks to remove perturbation (Jia et al., 2019). 2) Adopting
random strategy to obtain correct output (Xie et al., 2017a). 3) Designing robust structures for dif-
ferent tasks (Xie et al., 2019). 4) Adversarial training, which adds adversarial samples into training
procedure (Kurakin et al., 2016b; Tramèr et al., 2017; Song et al., 2018) and can improve robust-
ness of networks to a certain degree. Goodfellow et al. (Goodfellow et al., 2014) first increased the
robustness by feeding the model with both original and adversarial samples, and many researchers
proposed follow-up work (Tramèr et al., 2017; Cai et al., 2018; Kannan et al., 2018; Wang & Zhang,
2019; Zhang & Wang, 2019).

On the other hand, no literature exists yet to improve robustness of semantic segmentation networks
against various types of adversarial perturbations, without extra data during training and extra model
parameters during testing. e.g., Xiao et al. (Xiao et al., 2018) proposed defense methods that aim
at the detection of adversarial regions while detection only is not enough since the model still gives
incorrect prediction; several methods improve the robustness of networks with extra data (Klingner
et al., 2020; Mao et al., 2020; Bar et al., 2019). We advocate that models should accomplish correct
outputs for adversarial samples during inference without extra training data and model parameters,
and adversarial training is such a universal method while there is still no comprehensive exploration
for its effects on the semantic segmentation task.

3 STANDARD ADVERSARIAL ATTACK AND TRAINING

Given a semantic segmentation network f and an input x, the segmentation output is o = f(x),
where x ∈ RH×W×3 and o ∈ RH×W×K – H , W and K are the height, width and number of
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Figure 2: Motivation and overall framework of DDC-AT. (a) Clean pixels in the output space are
divided into two categories by divide-and-conquer strategy. (b) Main branch fn is utilized to conquer
adversarial pixels, and clean pixels stay far away from classification boundary. The auxiliary branch
fa is employed to conquer clean pixels that are sensitive to perturbation. The mask branch fm
divides pixels into these two branches dynamically. The final output o is combined from the division
during training. In testing, both fa and fm are abandoned, and only fn is utilized to output on.

classes respectively. For a clean sample xclean, pixel xclean(i, j) is called “clean pixel”; for the ad-
versarial sample xadv , which is obtained by adding perturbation on xclean, pixel xadv(i, j) is called
“adversarial pixel”, paired with xclean(i, j). Moreover, the standard cross-entropy loss is denoted as
L(f(x), y), where y is the one-hot label of x. Adversarial sample for f can be generated by comput-
ing the gradient information of f (Arnab et al., 2018; Goodfellow et al., 2014). Further, adversarial
attack is often iteratively implemented and BIM (Kurakin et al., 2016a) is such an approach – it has
parameters for perturbation range ϵ, step range α, and start with xadv0 = xclean – as:

xadvt+1 = clipϵ(xadvt + α× sign(▽xadvt (L(f(xadvt), y))), (1)

where xadvt is the adversarial sample after the t-th attack step, function clipϵ() forces its output to
reside in the range of [xclean − ϵ, xclean + ϵ], sign() is the sign function and ▽a(b) is the matrix
derivative of b with respect to a.

We first design our standard adversarial training (SAT) on semantic segmentation task. We find
that models trained with adversarial samples only largely drop performance on clean samples, and
this leads to the phenomenon that the results on adversarial samples are better than those on clean
samples. This phenomenon is called “label leaking” (Kurakin et al., 2016b). Models with “label
leaking” are not suitable for the evaluation of robustness. Thus, to ensure the performance on both
clean/adversarial samples and avoid label leaking, we use mixed data where clean and adversar-
ial samples are equally included in each batch during training. This mixed strategy can scale up
adversarial training to large models and datasets in classification (Kurakin et al., 2016b). It also
works for semantic segmentation. SAT yields reasonable defense effects on various datasets as in
the experimental part and the detailed procedure of SAT is listed in the Sec. A.2 of appendix.

4 DYNAMIC DIVIDE-AND-CONQUER ADVERSARIAL TRAINING

To further boost the robustness of semantic segmentation networks, we then propose a novel and
much more effective strategy named dynamic divide-and-conquer adversarial training (DDC-AT).

4.1 DIVIDE-AND-CONQUER PROCEDURE

DDC-AT adopts divide-and-conquer procedure during training, as shown in Fig. 2 (b) and explained
as the following. 1) Divide: for an input image x, DDC-AT divides its pixels into two sub-tasks for
two branches respectively. 2) Conquer: each branch predicts labels for the pixels assigned to it. 3)
Merge: predictions from two branches are merged into the final prediction of image x.
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Algorithm 1 Dynamic divide-and-conquer adversarial training for semantic segmentation networks
Parameter: clean training set X, shared backbone S, main branch fn, auxiliary branch fa, mask branch fm,
training batch size m, and maximum training iteration Tmax, Number of iterations T ← 0

1: while T ̸= Tmax do
2: Load a mini-batch of data Db = {xclean

1 , ..., xclean
b } from X with one-hot labels Yb = {y1, ..., yb}.

3: Use the current state of network {S, fn, fa, fm}, Db, and Yb to generate adversarial examples as
Ab = {xadv

1 , ..., xadv
b }, and obtain “mask label” for Db and Ab as Mclean

b = {Mclean
1 , ...,Mclean

b }
and Madv

b = {Madv
1 , ...,Madv

b }.
4: Compute output from fm for Db, and obtain the label map {pclean1 , ..., pcleanb }.
5: Compute output from fm for Ab, and obtain the label map {padv1 , ..., padvb }.
6: Compute {qclean1 , ..., qcleanb } and {qadv1 , ..., qadvb }, where qcleani = 1− pcleani , qadvi = 1− padvi .
7: Tb = {xclean

1 , ..., xclean
⌊b/2⌋ , x

adv
⌊b/2⌋+1, ..., x

adv
b }, Mb = {Mclean

1 , ...,Mclean
⌊b/2⌋ ,M

adv
⌊b/2⌋+1, ...,M

adv
b },

Pb = {pclean1 , ..., pclean⌊b/2⌋ , p
adv
⌊b/2⌋+1, ..., p

adv
b }, Qb = {qclean1 , ..., qclean⌊b/2⌋ , q

adv
⌊b/2⌋+1, ..., q

adv
b }.

8: Compute loss by equation 2 with Tb, Yb, Pb and Qb. Update weights of network {S, fn, fa}.
9: Compute loss by equation 3 using Tb and Mb. Update weights of {S, fm}. T ← T + 1

10: end while

Dividing Pixels As shown in Fig. 2 (a), clean pixels in the output space can be divided into two
types during training, according to their “boundary property”.

1) Pixels A without “boundary property”: clean pixels and their paired adversarial pixels are in the
same classification space (in the “Safe Training Area”). The properties of clean and adversarial
pixels are similar in this output space. They are likely to stay far away from the boundary. Their
distribution can be aligned in an identical branch with adversarial training.

2) Pixels B with “boundary property”: clean pixels and their paired adversarial pixels are in diverse
classification spaces. Such clean pixels are likely to stay near the classification boundary (in the
“Perturbation Sensitive Region”). They have “boundary property” since they are easy to be perturbed
through the boundary. Directly aligning them with the adversarial pixels in the identical branch is
difficult, since the distribution is complex. Thus, we propose to first use two different branches to
train them respectively. Once the clean and their adversarial pixels stay in the same space, we use
an identical branch to align them.

In short, we divide pixels in one clean image into different kinds according to whether they have
“boundary property”. The “boundary property” describes whether clean pixels and the correspond-
ing adversarial pixels have different predictions or not. For semantic segmentation, normally not all
pixels in a clean sample will be perturbed to have wrong predictions after adding adversarial noise.
Thus, some pixels in a clean sample will have boundary property while others not.

Conquering Pixels Based on the above division setting, we set our framework as shown in Fig.
2 (b), which consists of three branches. They are “main branch”, “auxiliary branch” and “mask
branch”, denoted by fn, fa and fm respectively. fn and fa can be utilized to conquer pixels, i.e.,
predicting labels for pixels through forwarding the corresponding networks. We use “main branch”
to conquer A, as well as all adversarial pixels, and use “auxiliary branch” to conquer B. In this way,
clean pixels in one image after division can be processed by different branches. In additional, fn
and fa have shared backbone, which means they help each other in the feature level. It is noteworthy
that only the main branch is used for inference.

Merging Pixels As shown in Fig. 2 (b), divided pixels after conquering can be merged. This is
because all pixels in one clean image are divided into fn and fa, and there is no overlap between the
pixels assigned to fn and fa. Thus they can be merged into the final prediction of the input image to
compute loss, according to the division. Moreover, this also indicates that the output space to decide
the division should be the combination of fn and fa during training.

4.2 DYNAMICAL DIVISION AND IMPLEMENTATION

In this section, we illustrate the dynamical property of division setting in DDC-AT, and explain how
such division is achieved through unsupervised learning.
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Dynamical Division During training, B is first set to the auxiliary branch for training. Once such
clean pixels turn into A, they move to the main branch. Since the auxiliary branch is specially
designed for the training of B, it can remove boundary property for such clean pixels effectively to
ensure that more clean pixels gradually move into the main branch. In this design, the main branch
finally trains all clean pixels, which stay far away from the boundary. Such mechanism effectively
helps to avoid the decrease of performance on clean samples. Moreover, training adversarial pixels
with A can improve the robustness towards adversarial perturbations for the main branch.

The Implementation DDC-AT requires to distribute all adversarial pixels into fn, and adopts
dynamical division for clean pixels. Such division can be implemented with a “mask branch” fm.

First, fm predicts the division for pixels as shown in Fig. 2 (b). For an input x, output from fn, fa,
and fm is on, oa, and om ∈ RH×W×2 respectively. The label map of om is p ∈ RH×W , which is a
binary matrix to decide division. p(i, j) = 1 means pixel x(i, j) is sent to fa. Otherwise, it moves
to fn. This operation yields the combined output for x as o = oa ⊙ p + on ⊙ (1 − p), as shown in
Fig. 2 (b). Here ⊙ is the Hadamard product. If xclean is perturbed to xadv , we denote the combined
output as oclean and oadv respectively, which are obtained in the same way.

Next, the ideal division scheme is based on these combined outputs. This scheme has a “mask label”
notation M ∈ RH×W . M(i, j) = 1 means the pixel in (i, j) location is “divided into fa”. Other-
wise, it is “divided into fn”. We set the mask label for xclean as M clean, and denote the label map of
oclean and oadv as Bclean and Badv respectively. For pixel xclean(i, j), if Bclean(i, j) ̸= Badv(i, j),
it should set into fa since it has the boundary property. In this case, we set M clean(i, j) = 1. Other-
wise, it should set into fn, making M clean(i, j) = 0. Besides, all adversarial pixels should be sent
to fn, and we set the mask label for xadv as Madv = 0 which is the matrix with all elements as zero.

Madv and M clean are obtained according to the ideal division rule in DDC-AT. We can use them
as the ground truth to train fm. Repeating the whole process makes fm learn how to achieve ideal
division for pixels automatically. The algorithm pipeline to obtain Madv and M clean is listed in
the Sec. A.2 of appendix. Such training is unsupervised where the learning of fm does not need
external supervised information. In addition, since B will be turned into A, they will be assigned
into fn progressively during training. Thus, finally all pixels are assigned into fn, and the predicted
mask has almost all zero values.

4.3 OVERALL LOSS FUNCTION

For the training data x (xclean or xadv), its label map obtained from the mask branch is p ∈ RH×W ,
and we set q as q = 1− p. The loss of x for fn and fa can be written as

Ln = E

(
−

K−1∑
i=0

[y(:, :, i) · ι(fn(x)(:, :, i))]⊙ q

)
,La = E

(
−

K−1∑
i=0

[y(:, :, i) · ι(fa(x)(:, :, i))]⊙ p

)
, (2)

where E is the operation to compute the mean value, ι() is the function of computing logarithm,
y(:, :, i), fn(x)(:, :, i) and fa(x)(:, :, i) are score maps with shape as RH×W . Turn the mask label
M for x into one-hot form M̃ ∈ RH×W×2, the loss for fm is

Lm = E

(
−

1∑
i=0

[M̃(:, :, i) · ι(fm(x)(:, :, i))]

)
. (3)

Combined with equation 2 and equation 3, the overall loss term is
Lall = λ1Ln + λ2La + λ3Lm, (4)

where λ1, λ2 and λ3 are set to 1 in experiments. Overall training procedure is concluded in Alg. 1.

5 EXPERIMENTS

The newly proposed standard adversarial training (SAT) and dynamic divide-and-conquer adversar-
ial training (DDC-AT) are effective for robust semantic segmentation. We evaluate our method
on challenging PASCAL VOC 2012 (Everingham et al., 2010) and Cityscapes (Cordts et al.,
2016) datasets, with popular semantic segmentation architectures PSPNet (Zhao et al., 2017) and
DeepLabv3 (Chen et al., 2017). In the following, we first show the implementation details related to
training strategy and hyper-parameters, then we exhibit results on corresponding datasets.
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Table 1: Evaluation under white-box attack on VOC with the mean value of mIoU reported. “No De-
fense” means normal training without adversarial samples. “clean” means mIoU on clean samples.
Results in columns “1” to “7” are mIoUs under BIM attack (L∞ constraint) with attack iteration
number ranging from 1-7, results in the column“DeepFool” are mIoUs under DeepFool attack, re-
sults in the column “C&W” are mIoUs under C&W attack, results in the column “BIM L2” are
mIoUs under BIM attack (L2 constraint).

clean Model: PSPNet
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.769 0.371 0.189 0.111 0.078 0.062 0.054 0.048 0.403 0.033 0.157
SAT 0.743 0.521 0.681 0.707 0.445 0.404 0.279 0.264 0.590 0.655 0.364

DDC-AT 0.760 0.535 0.756 0.723 0.479 0.470 0.338 0.332 0.612 0.674 0.371

clean Model: DeepLabv3
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.775 0.374 0.196 0.119 0.081 0.064 0.055 0.048 0.393 0.039 0.167
SAT 0.727 0.507 0.624 0.645 0.431 0.385 0.288 0.266 0.590 0.660 0.370

DDC-AT 0.752 0.518 0.699 0.678 0.436 0.447 0.323 0.326 0.604 0.671 0.378

5.1 EXPERIMENTAL DATASET

PASCAL VOC 2012 (with abbreviation as VOC) (Everingham et al., 2010) focuses on object seg-
mentation. It contains 20 object classes and one class for background, with 1,464, 1,499 and 1,456
images for training, validation and testing respectively. The training set is augmented to 10,582 im-
ages in (Hariharan et al., 2015), which is also adopted. The Cityscapes (Cordts et al., 2016) dataset
is collected for urban scene understanding with 19 categories. It contains high quality pixel-level
annotations with 2,975, 500 and 1,525 images for training, validation and testing respectively.

5.2 IMPLEMENTATION DETAILS

We choose white-box BIM attacker (by L∞ constraint) (Kurakin et al., 2016a) to generate adver-
sarial samples during training, since single-step attack (e.g. FGSM) is more likely to introduce
“label leaking” (Kurakin et al., 2016b). The maximum perturbation value is set to ϵ = 0.03 × 255.
The consideration is that perturbation can be visually noticed by human (Arnab et al., 2018) with
larger values. The attack step size and number of attack iterations are set as α = 0.01 × 255 and
n = 3 for training respectively. We use the mean of class-wise intersection over union (mIoU) as
our evaluation metric. The parameters ϵ, α and n are kept constant during training. For each training
mini-batch, half of the input includes adversarial samples that are dynamically decided by current
model states, resulting in variance of results. For both SAT and DDC-AT, we train for one more time
and report the average results as well as their standard deviations (in the Sec. A.3 of appendix).

5.3 PASCAL VOC 2012

White-Box Attack White-box attackers utilize the exact gradient information of the target model
(Athalye & Carlini, 2018). Specifically, for the evaluation, we consider untargeted BIM attack (L∞
constraint, ϵ = 0.03× 255, α = 0.01× 255) with n ranging from 1 to 7, untargeted DeepFool (L∞
constraint, ϵ = 0.03×255) (Moosavi-Dezfooli et al., 2016), C&W (L∞ constraint, ϵ = 0.03×255)
(Carlini & Wagner, 2017), and BIM attack (L2 constraint, n=3, ϵ = 0.03× 255, α = 0.01× 255).

The results of different defense methods on VOC are shown in Table 1. In this table, we compare our
methods with the baseline (model trained with clean samples only, i.e., no defense). Notably, without
defense, all untargeted attacks yield sharp performance decrease. Especially, under untargeted BIM
attack (L∞ constraint), the results approach zeros when the attack iteration number is large.

For BIM attack (L∞ constraint), Table 1 basically indicates that results on adversarial samples with
large attack iteration number represent the lower bound of each method on adversarial perturbations,
since the corresponding performance drops with the increase of n, and converges when n is large
(actually, the mean value of mIoU does not change more than 0.025 when n is 10 or 20, compared
with the results when n=7 for No Defense, SAT and DDC-AT). This leads to the conclusion that
SAT is already reasonable: it improves results from 0.048 to 0.264 on PSPNet and 0.048 to 0.266 on
DeepLabv3 when n = 7. Moreover, SAT also improves results on other different types of attacks.
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Table 2: Evaluation under black-box attack on VOC. Symbolic representations are same as Table 1.

clean Model: PSPNet
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.769 0.433 0.240 0.148 0.106 0.078 0.060 0.058 0.466 0.156 0.209
SAT 0.743 0.584 0.565 0.535 0.513 0.471 0.449 0.415 0.640 0.685 0.587

DDC-AT 0.760 0.596 0.615 0.564 0.534 0.486 0.461 0.437 0.684 0.705 0.596

clean Model: DeepLabv3
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.775 0.445 0.246 0.148 0.105 0.083 0.070 0.064 0.491 0.196 0.209
SAT 0.727 0.567 0.518 0.518 0.510 0.470 0.450 0.431 0.644 0.685 0.645

DDC-AT 0.752 0.583 0.604 0.547 0.526 0.483 0.460 0.436 0.687 0.706 0.659

Image Ground Truth No Defense DDC-AT

Figure 3: Visual comparison on VOC. Top row is obtained from models with PSPNet, and bottom
row is derived from models with DeepLabv3.

In addition, training with only adversarial samples for SAT will lead to “label leaking” phenomenon
and heavily reduce performance on clean samples. For example, on the evaluation of VOC for such
setting, the mean value of mIoU on clean samples is 0.722 (lower than AT with 0.743), while the
result on adversarial samples with BIM attack (L∞ constraint, n=3, ϵ = 0.03×255, α = 0.01×255)
is 0.801 (higher than that on clean samples).

DDC-AT in Table 1 gives results of our final framework. Performance of DDC-AT on clean sam-
ples increases compared with SAT (by 0.017 and 0.025 on PSPNet and DeepLabv3 respectively),
consistent with our design motivation. Further, the performance of DDC-AT is higher than SAT
notably under each attacker iteration on average for BIM attack (L∞ constraint). Intriguingly,
the best case of SAT under every attack iteration is almost the worst case of DDC-AT. For ex-
ample, when the attack iteration n = 3, we have 0.707 + 0.008 < 0.723 − 0.005 on PSPNet and
0.645 + 0.010 < 0.678 − 0.011 on DeepLabv3. More interestingly, for unseen attacks, DDC-AT
also clearly improves robustness over SAT. We also provide visual comparison on VOC in Fig. 3 for
illustrating the effectiveness of DDC-AT.

Black-Box Attack Black-box attackers cannot utilize the exact gradient information of the target
model. Instead, gradient information from a substitute network, which is defensively trained on
the same dataset (Papernot et al., 2017; 2016a; Liu et al., 2016), can be adopted. In our evaluation
setting, the perturbation for trained PSPNet models is generated by DeepLabv3, trained on the same
dataset and enhanced with adversarial training, and vice versa. For SAT and DDC-AT, the substitute
networks are the same. As described in Sec. 5.2, models trained with the same method and dataset
may have diverse behavior. To reduce evaluation bias from training randomness, we evaluate SAT
and DDC-AT on dataset D̂ in the following way. Using training strategy Ŝ (SAT or DDC-AT) with
a model structure f̂ on D̂, we obtain model set M̂1. Then using adversarial training with a model
structure different from f̂ on D̂, we obtain model set M̂2 as substitute defensive networks. Finally,
for each model in M̂1, we use attack generated from each model in M̂2 for evaluation.

The results under black-box evaluation on VOC are included in Table 2. The performance of clean
models also decreases along with the increase of attack iteration for BIM attack (L∞ constraint), like
the white-box situation. This phenomenon suggests that there is strong transferability for adversarial
samples in the semantic segmentation task. It is therefore meaningful to evaluate robustness under
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Table 3: Evaluation of our method and the baseline under white-box attack on Cityscapes. Symbolic
representations are same as Table 1.

clean Model: PSPNet
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.746 0.454 0.262 0.120 0.055 0.031 0.021 0.016 0.358 0.138 0.227
SAT 0.690 0.521 0.467 0.376 0.329 0.276 0.258 0.252 0.560 0.491 0.458

DDC-AT 0.717 0.546 0.502 0.401 0.347 0.306 0.287 0.270 0.572 0.508 0.467

clean Model: DeepLabv3
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.748 0.458 0.260 0.122 0.057 0.033 0.023 0.018 0.315 0.138 0.226
SAT 0.694 0.520 0.461 0.365 0.318 0.279 0.262 0.246 0.567 0.484 0.450

DDC-AT 0.713 0.546 0.509 0.403 0.349 0.309 0.290 0.273 0.574 0.505 0.468

Table 4: Evaluation of our method and the baseline under black-box attack on Cityscapes. Symbolic
representations are same as Table 1.

clean Model: PSPNet
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.746 0.476 0.280 0.141 0.069 0.039 0.033 0.022 0.356 0.211 0.253
SAT 0.690 0.511 0.444 0.399 0.367 0.320 0.308 0.291 0.577 0.578 0.566

DDC-AT 0.717 0.561 0.506 0.425 0.379 0.339 0.323 0.306 0.586 0.584 0.574

clean Model: DeepLabv3
1 2 3 4 5 6 7 DeepFool C&W BIM L2

No Defense 0.748 0.482 0.299 0.153 0.076 0.044 0.031 0.024 0.358 0.273 0.273
SAT 0.694 0.507 0.432 0.394 0.361 0.328 0.316 0.297 0.584 0.583 0.574

DDC-AT 0.713 0.523 0.478 0.416 0.378 0.341 0.328 0.311 0.596 0.597 0.592

this black-box setting. In comparison between DDC-AT and SAT, we use the same hyper-parameters
as white-box attacks. From Table 2, it is clear that SAT also improves the defense effect under black-
box attacks. The final performance of DDC-AT is consistently higher than SAT for BIM attack (L∞
constraint) with attack iteration number ranging from 1 to 7, as well as other attacks.

5.4 CITYSCAPES

White-Box Attack The results of different methods on clean samples are included in Table 3.
DDC-AT effectively reduces the drop of performance on clean samples, compared with SAT: DDC-
AT improves mIoU on clean samples by 0.027 and 0.023, which are significant with the setting
of PSPNet and DeepLabv3, compared with SAT. And we show results under white-box attack on
Cityscapes dataset in Table 3. Obviously, clean models get worse with the increase of attack it-
erations for BIM attack (L∞ constraint), like the case in VOC, which proves the general effect of
adversarial attack on different datasets. The results of DDC-AT and SAT under various attack itera-
tions for BIM attack (L∞ constraint) are like we observe before – they also improve the robustness
of the models on this large dataset. DDC-AT outperforms SAT in Table 3 where the best cases of
SAT under every attack iteration are actually worse than the worst cases of DDC-AT. Furthermore,
DDC-AT also outperforms SAT on other types of attacks in this dataset.

Black-Box Attack The results under the evaluation of black-box attack for the Cityscapes dataset
are shown in Table 4. DDC-AT also outperforms SAT on average with various types of attacks.

6 CONCLUSION

In this paper, we have explored the property of adversarial training on the semantic segmentation
task. Our defense strategy can consistently enhance the robustness of target models under adver-
sarial attack. Besides proposing the standard adversarial training (SAT) process, we propose a new
strategy to improve the performance of adversarial training in this task, with no extra parameter
and computation cost introduced during inference. The extensive experimental results with differ-
ent model structures on two representative benchmark datasets suggest that the proposed method
achieves significantly better generalization and stability on unseen adversarial examples and clean
samples, compared with standard adversarial training.
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A APPENDIX

A.1 SUPERIORITY OF DIVIDE-AND-CONQUER

DDC-AT is designed to be superior than SAT and this is proved in the experiments part. It gets
much better performance than classical SAT on both clean as well as adversisal pixels, and we list
the detailed explanation as below.

1) For segmentation, usually not all pixels in a clean sample will be perturbed to have wrong pre-
dictions after adding adversarial noises. Thus, some pixels in a clean sample will have boundary
property while others not, and mask branch fm can divide pixels into fn and fa based on their
boundary properties. This is the motivation for our divide strategy.

2) First, for the training of clean pixels in the main branch fn, training with A only (setting of
DDC-AT) is much easier than mixed training with both A and B (setting of SAT). The introduced
auxiliary branch fa in DDC-AT can turn B into A gradually and effectively. Thus, the main branch
fn that is adopted for inference can better handle clean pixels and improve accuracy over SAT.

3) Second, to obtain decent results on adversarial pixels, SAT trains adversarial pixels with both
A and B, while DDC-AT trains adversarial pixels with only A for the main branch fn. Obviously,
training with both A and B causes higher difficulty for the learning of adversarial pixels than training
with A only. Thus, DDC-AT yields higher accuracy on adversarial pixels.

A.2 DETAILS

Details of Algorithm –The Algorithm of SAT and Obtaining Mask Label The detailed proce-
dure of SAT is listed in Alg. 2. This algorithm yields reasonable defense effect on various datasets
and meets part of our requirement as the standard adversarial training. Moreover, the pipeline to
obtain the adversarial sample xadv , mask label Madv and M clean from a clean sample xclean is
summarized in Alg. 3.

Algorithm 2 Standard adversarial training
Parameter: clean training set X, segmentation network f , maximum number of training iterations Tmax

Number of iteration T ← 0

1: while T ̸= Tmax do
2: Load a mini-batch of data Db = {xclean

1 , ..., xclean
b } from X with one-hot labels Yb = {y1, ..., yb}.

3: Use the network f and the chosen attack to obtain adversarial samples Ab = {xadv
1 , ..., xadv

b }.
4: Design the training batch as Tb = {xclean

1 , ..., xclean
⌊b/2⌋ , x

adv
⌊b/2⌋+1, ..., x

adv
b } from Db and Ab.

5: Forward Tb through f to obtain outputs, compute cross-entropy loss with the outputs and Yb.
6: Update parameters of the network f by back propagation.
7: T ← T + 1
8: end while

Algorithm 3 Algorithm to obtain ground truth (mask label) for training of mask branch fm

Parameter: clean data xclean, the corresponding one-hot label y, all-zero matrix 0, matrix function F = 1[N ]
(F(i, j) = 1 ifN (i, j) is True)
1: Obtain output ocleann , ocleana , and ocleanm for xclean from fn, fa, and fm. Label map of ocleanm is pclean.
2: Compute combined output oclean = ocleana ⊙ pclean + ocleann ⊙ (1 − pclean), its label map is Bclean,

Bclean(i, j) ∈ {0, 1, ...K − 1}.
3: Use loss L(ocleann , y) to generate adversarial examples xadv .
4: Obtain output oadvn , oadva , and oadvm for xadv from fn, fa, and fm. The label map of oadvm is padv .
5: Compute combined output oadv = oadva ⊙ padv + oadvn ⊙ (1 − padv) with label map Badv , where

Badv(i, j) ∈ {0, 1, ...K − 1}.
6: Generate “mask label” for xclean as Mclean = 1[Bclean ̸= Badv], Mclean ∈ RH×W .
7: Generate “mask label” for xadv as Madv = 0 with the same shape of Mclean.
8: return Mclean, Madv , xclean, and xadv .
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Table 5: The architecture and initial learning rate of the model (PSPNet/DeepLabv3) for the method
with no defense and SAT. The visual illustration can be seen from Fig. 4 and 5. “Base LR” denotes
initial learning rate of different modules.

Module Name Base LR
Backbone -

ResNet 0.01
PPM/ASPP 0.01× 10

Branch -
Convolution 0.01× 10

Batch Normalization 0.01× 10
ReLU -

Convolution 0.01× 10

Table 6: The architecture and initial learning rate of the model (PSPNet/DeepLabv3), which is
employed in DDC-AT. “Base LR” denotes initial learning rate of different modules. “BN” means
Batch Normalization.

Module Name Base LR
Shared Backbone -

ResNet 0.01
PPM/ASPP 0.01× 10

Main branch Auxiliary branch Mask branch -
Convolution Convolution Convolution 0.01× 10

BN BN BN 0.01× 10
ReLU ReLU ReLU -

Convolution Convolution Convolution 0.01× 10

Details of Model Structures The model structures for the method with no defense, which are
PSPNet (Zhao et al., 2017) and DeepLabv3 (Chen et al., 2017) here, are shown in Table 5. Differ-
ent modules in corresponding models have different initial learning rates. Meanwhile, the model
structure of SAT is the same as the model trained with no defense. On the other hand, we add ex-
tra segmentation branches to target models in DDC-AT during training. One important problem is
where to set main branch, auxiliary branch and mask branch. In DDC-AT, these three branches are
separated from the same location for both VOC and Cityscapes: for PSPNet, they are separated after
the PPM module; for DeepLabv3, they are separated after the ASPP module. Thus, the structures
for PSPNet and DeepLabv3 in DDC-AT are shown as Table 6. Moreover, note that the split point is
close to the output of network, which is convenient to choose for models with other structures.

A.3 EXPERIMENTS

Experiments–Analysis of Standard Deviation Value We report the standard deviation values
for the experiments in Table 1, 2, 3, 4 here. The standard deviation values for the experiments of
white-box attack on VOC are shown in Table 7. It is obvious that the standard deviation of SAT is
low, which means SAT is stable. Further, smaller standard deviation for DDC-AT indicates that its
results are more stable. Moreover, the standard deviation values for the experiments of black-box
attack on VOC are also exhibited in Table 7. It shoud be note that the standard deviation of SAT
is larger than the results by white-box attacks because black-box perturbations for each model are
obtained from a set of substitute networks, which have different adversarial behaviors. Meanwhile,
the standard deviation of DDC-AT is lower in all cases, especially under unseen attacks. It proves
that DDC-AT is more stable and effective than SAT by all types of attack. Furthermore, the standard
deviation values for the experiments of white-box attack and black-box attack on Cityscapes are
simultaneously displayed in Table 7 and these results also support that both DDC-AT and SAT are
stable while DDC-AT is even better.
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Table 7: Evaluation under white-box attack as well as black-box attack on the datasets of VOC
and Cityscapes, which reports the standard deviation value of mIoU. Symbolic representation is the
same as that of Table 1.

clean Model: PSPNet, Dataset: VOC, Setting: White-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.005 0.042 0.018 0.008 0.029 0.032 0.032 0.032 0.014 0.012 0.041
DDC-AT 0.001 0.005 0.005 0.005 0.022 0.040 0.040 0.046 0.011 0.011 0.018

clean Model: DeepLabv3, Dataset: VOC, Setting: White-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.010 0.040 0.006 0.010 0.019 0.020 0.020 0.010 0.004 0.012 0.011
DDC-AT 0.001 0.006 0.013 0.011 0.005 0.030 0.012 0.020 0.004 0.004 0.001

clean Model: PSPNet, Dataset: VOC, Setting: Black-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.005 0.032 0.029 0.027 0.028 0.027 0.042 0.041 0.021 0.013 0.030
DDC-AT 0.001 0.021 0.017 0.017 0.018 0.031 0.039 0.040 0.003 0.001 0.008

clean Model: DeepLabv3, Dataset: VOC, Setting: Black-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.010 0.023 0.038 0.033 0.037 0.040 0.041 0.050 0.018 0.016 0.004
DDC-AT 0.001 0.020 0.051 0.035 0.018 0.017 0.016 0.016 0.010 0.005 0.010

clean Model: PSPNet, Dataset: Cityscapes, Setting: White-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.010 0.002 0.010 0.003 0.003 0.010 0.010 0.005 0.030 0.015 0.018
DDC-AT 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.005 0.001 0.001 0.001

clean Model: DeepLabv3, Dataset: Cityscapes, Setting: White-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.010 0.005 0.010 0.007 0.006 0.005 0.004 0.004 0.017 0.013 0.009
DDC-AT 0.003 0.003 0.004 0.004 0.002 0.002 0.002 0.002 0.002 0.015 0.004

clean Model: PSPNet, Dataset: Cityscapes, Setting: Black-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.010 0.005 0.030 0.026 0.033 0.023 0.026 0.025 0.024 0.020 0.025
DDC-AT 0.001 0.004 0.010 0.010 0.010 0.002 0.002 0.002 0.001 0.001 0.003

clean Model: DeepLabv3, Dataset: Cityscapes, Setting: Black-box
1 2 3 4 5 6 7 DeepFool C&W BIM L2

SAT 0.010 0.008 0.030 0.028 0.030 0.022 0.023 0.025 0.011 0.018 0.023
DDC-AT 0.003 0.006 0.019 0.010 0.010 0.004 0.003 0.004 0.007 0.005 0.002

Experiments–Ablation Study The motivation of DDC-AT is to dynamically divide pixels
with/without boundary property into diverse branches during training. We prove our division setting
is better than other alternatives by adjusting the division setting for pixels with boundary property.
Especially, the common alternatives are the following.

• Use “main branch” to deal with pixels from clean and adversarial samples without bound-
ary property. Use “auxiliary branch” to process pixels from clean and adversarial samples
with boundary property. We name this setting DDC-AT-M. Its visual explanation is shown
in Fig. 6, where we also implement dynamical division by training a “mask branch”.

• Use “main branch” to deal with pixels from clean samples, pixels from adversarial samples
without boundary property. Use “auxiliary branch” to solve pixels from adversarial samples
with boundary property. We name this setting DDC-AT-N. Its visual explanation is shown
in Fig. 7, where the dynamical division is also completed by training a “mask branch”.

• Use only “main branch” to deal with pixels from either clean or adversarial samples. This
is what SAT does, thus we do not train the mask branch. Moreover, its visual explanation
is shown in Fig. 5.

• Especially, the visual explanation for “the model trained with no defense” is shown in 4,
where we only involve clean samples into training.

For all these methods, only main branch is utilized during testing. We evaluate the performances of
these alternatives and list results in Table 8. For PSPNet model, the performance of DDC-AT-N is
higher than SAT and lower than DDC-AT. Their standard deviations are in the same scale. The av-
erage results of DDC-AT-M are comparable with SAT and are worse than DDC-AT. Also, compared
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with DDC-AT, the standard deviation increases clearly by DDC-AT-M. This is because the adversar-
ial samples during the training are different at every training iteration, and the dynamical distribution
enhances such randomness. Similarly, for DeepLabv3 model, the average results of DDC-AT-M and
DDC-AT-N are lower than DDC-AT, and higher than SAT consistently. The standard deviation in-
creases compared with DDC-AT and SAT. In summary, the division setting of DDC-AT is optimal
among these common alternatives in terms of both average performance and stability measurement.

Table 8: Performance comparison of defense setting in ablation study on VOC. Symbolic represen-
tation is the same as that of Table 1. We record the mean value (“Mean”) and standard deviation
(“Std”) of results through several repeated training process.

Methods clean Model: PSPNet
1 2 3 4 5 6 7

Mean

SAT 0.743 0.521 0.681 0.707 0.445 0.404 0.279 0.264
DDC-AT-M 0.751 0.511 0.690 0.690 0.441 0.463 0.304 0.318
DDC-AT-N 0.748 0.528 0.737 0.694 0.456 0.460 0.318 0.330
DDC-AT 0.760 0.535 0.756 0.723 0.479 0.470 0.338 0.332

Std

SAT 0.005 0.042 0.018 0.008 0.029 0.032 0.032 0.033
DDC-AT-M 0.001 0.025 0.031 0.022 0.009 0.035 0.040 0.041
DDC-AT-N 0.003 0.013 0.003 0.007 0.003 0.044 0.034 0.045
DDC-AT 0.001 0.005 0.005 0.005 0.022 0.040 0.040 0.046

Methods clean Model: DeepLabv3
1 2 3 4 5 6 7

Mean

SAT 0.727 0.507 0.624 0.645 0.431 0.385 0.288 0.266
DDC-AT-M 0.741 0.505 0.720 0.666 0.451 0.435 0.314 0.304
DDC-AT-N 0.741 0.506 0.683 0.665 0.426 0.415 0.312 0.302
DDC-AT 0.752 0.518 0.699 0.678 0.436 0.447 0.323 0.326

Std

SAT 0.010 0.040 0.006 0.010 0.019 0.020 0.020 0.010
DDC-AT-M 0.001 0.023 0.046 0.029 0.047 0.034 0.038 0.041
DDC-AT-N 0.001 0.014 0.044 0.023 0.024 0.035 0.017 0.023
DDC-AT 0.001 0.006 0.013 0.011 0.005 0.030 0.012 0.020

Experiments–Evaluation with Different Backbones All results in the manuscript are obtained
from models with Resnet50 (He et al., 2016) backbone. Here, we provide the comparison, when
all defense methods are trained with the backbone of Resnet101 (He et al., 2016). Similar to the
situation of ResNet50 in the manuscript, we evaluate their performances on the clean samples and
adversarial samples, under white-box attacks as well as black-box attacks. The results under white-
box/black-box attack on VOC/Cityscapes are recorded in Table 9. From this table, we can see
the performance on clean samples is improved for all defense methods, since we use ResNet101
to replace ResNet50. Meanwhile, the results of DDC-AT indicate that DDC-AT can still further
improve the defense effect on clean and adversarial samples, compared with SAT.
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Figure 4: The training framework for the method without defense. Such training scheme does not
add adversarial samples into training.

Figure 5: The training framework for standard adversarial training SAT. Such training scheme al-
ways uses one identical branch to align clean and adversarial samples.

Figure 6: The training framework for DDC-AT-M

Figure 7: The training framework for DDC-AT-N
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Table 9: The evluation of our method and the baseline on white-box/black-box attack, experiments
are executed on the dataset of VOC/Cityscapes. We report the mIoU for different defense methods
with various model structures. Especially, we record the mean value (“Mean”) and standard de-
viation (“Std”) of results through several repeated training process. The bold indicates the higher
performance between SAT and DDC-AT. Symbolic representation is the same as that of Table 1.

Model: PSPNet, Dataset: VOC, Setting: White-box
Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.789 0.439 0.255 0.161 0.108 0.079 0.062 0.053 0.455 0.092 0.196

SAT 0.761 0.535 0.710 0.715 0.457 0.490 0.366 0.341 0.609 0.648 0.370
DDC-AT 0.772 0.569 0.736 0.746 0.511 0.539 0.395 0.402 0.617 0.654 0.382

Std SAT 0.007 0.018 0.007 0.031 0.005 0.038 0.003 0.036 0.006 0.021 0.014
DDC-AT 0.002 0.011 0.023 0.021 0.001 0.037 0.013 0.031 0.001 0.005 0.005

Model: DeepLabv3, Dataset: VOC, Setting: White-box
Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.788 0.435 0.258 0.165 0.113 0.079 0.063 0.052 0.445 0.087 0.197

SAT 0.754 0.557 0.704 0.737 0.459 0.494 0.328 0.333 0.536 0.632 0.358
DDC-AT 0.764 0.588 0.754 0.772 0.517 0.512 0.364 0.374 0.550 0.640 0.365

Std SAT 0.009 0.003 0.013 0.008 0.006 0.000 0.003 0.002 0.036 0.015 0.009
DDC-AT 0.002 0.001 0.015 0.008 0.014 0.035 0.033 0.032 0.042 0.025 0.006

Model: PSPNet, Dataset: Cityscapes, Setting: White-box
Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.762 0.489 0.319 0.197 0.120 0.074 0.048 0.033 0.425 0.158 0.266

SAT 0.715 0.563 0.563 0.644 0.450 0.394 0.333 0.306 0.594 0.606 0.436
DDC-AT 0.729 0.581 0.578 0.695 0.477 0.420 0.354 0.330 0.605 0.613 0.450

Std SAT 0.005 0.004 0.032 0.011 0.021 0.021 0.012 0.009 0.020 0.031 0.018
DDC-AT 0.003 0.003 0.016 0.004 0.001 0.007 0.005 0.004 0.004 0.003 0.003

Model: DeepLabv3, Dataset: Cityscapes, Setting: White-box
Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.765 0.484 0.317 0.189 0.114 0.070 0.046 0.032 0.395 0.145 0.261

SAT 0.713 0.544 0.635 0.614 0.444 0.364 0.337 0.275 0.578 0.631 0.420
DDC-AT 0.727 0.564 0.694 0.701 0.502 0.455 0.376 0.361 0.585 0.637 0.430

Std SAT 0.010 0.023 0.014 0.014 0.020 0.010 0.021 0.024 0.030 0.006 0.030
DDC-AT 0.007 0.002 0.001 0.007 0.004 0.004 0.006 0.004 0.004 0.001 0.001

Model: PSPNet, Dataset: VOC, Setting: Black-box
Defense Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.789 0.493 0.305 0.203 0.150 0.115 0.093 0.086 0.388 0.235 0.196

SAT 0.761 0.552 0.498 0.497 0.482 0.458 0.450 0.437 0.637 0.578 0.541
DDC-AT 0.772 0.593 0.562 0.521 0.501 0.467 0.460 0.446 0.642 0.590 0.554

Std SAT 0.007 0.029 0.032 0.045 0.044 0.044 0.043 0.041 0.003 0.025 0.004
DDC-AT 0.002 0.006 0.030 0.035 0.031 0.021 0.021 0.015 0.009 0.014 0.004

Model: DeepLabv3, Dataset: VOC, Setting: Black-box
Defense Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.788 0.515 0.318 0.215 0.164 0.129 0.106 0.094 0.388 0.229 0.199

SAT 0.754 0.621 0.607 0.587 0.541 0.531 0.498 0.487 0.621 0.594 0.552
DDC-AT 0.764 0.649 0.650 0.638 0.574 0.559 0.525 0.512 0.630 0.603 0.578

Std SAT 0.009 0.006 0.020 0.031 0.026 0.028 0.032 0.032 0.012 0.024 0.004
DDC-AT 0.002 0.006 0.022 0.026 0.011 0.011 0.016 0.007 0.001 0.007 0.004

Model: PSPNet, Dataset: Cityscapes, Setting: Black-box
Defense Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.762 0.506 0.345 0.216 0.139 0.097 0.064 0.057 0.387 0.129 0.184

SAT 0.715 0.662 0.583 0.585 0.580 0.572 0.543 0.534 0.616 0.550 0.534
DDC-AT 0.729 0.704 0.694 0.699 0.673 0.654 0.650 0.631 0.610 0.556 0.546

Std SAT 0.005 0.022 0.021 0.019 0.017 0.018 0.019 0.018 0.002 0.029 0.003
DDC-AT 0.003 0.003 0.005 0.003 0.006 0.010 0.002 0.007 0.002 0.010 0.003

Model: DeepLabv3, Dataset: Cityscapes, Setting: Black-box
Defense Method clean 1 2 3 4 5 6 7 DeepFool C&W BIM L2

Mean
No Defense 0.765 0.513 0.351 0.229 0.150 0.099 0.070 0.054 0.399 0.149 0.190

SAT 0.713 0.573 0.547 0.544 0.513 0.466 0.445 0.416 0.632 0.606 0.557
DDC-AT 0.727 0.619 0.651 0.609 0.549 0.494 0.464 0.435 0.637 0.624 0.575

Std SAT 0.010 0.020 0.010 0.014 0.013 0.018 0.014 0.020 0.001 0.023 0.009
DDC-AT 0.007 0.009 0.003 0.005 0.006 0.005 0.006 0.007 0.003 0.003 0.008
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t-SNE visualizations for PSPNet on Cityscapes

t-SNE visualizations for DeepLabv3 on Cityscapes

t-SNE visualizations for PSPNet on VOC

t-SNE visualizations for DeepLabv3 on VOC

a b c d e f

Figure 8: The t-SNE analysis for VOC and Cityscapes. a: clean samples in the model with no
defense, b: adversarial samples in the model with no defense, c: clean samples in the SAT model,
d: adversarial samples in the SAT model, e: clean samples in the DDC-AT model, f: adversarial
samples in the DDC-AT model. The adversarial samples are generated with white-box BIM attack
(L∞ constraint, n=2, ϵ = 0.03× 255, α = 0.01× 255)

A.4 ANALYSIS

t-SNE Analysis for SAT and DDC-AT To further analyze the defense effect of SAT and DDC-
AT, we use t-SNE to visualize the corresponding feature distribution of trained models. As displayed
in Fig. 8, we find: for the distribution of clean samples in models with no defense, features from dif-
ferent classes are separated severally. This is helpful for segmentation. However, for the distribution
of adversarial samples, features from different categories are mixed. For SAT and DDC-AT, features
of adversarial samples and clean samples from different classes are both separated. Thus, SAT and
DDC-AT can improve the robustness of models and keep great performance on clean samples.

Visual Analysis for SAT and DDC-AT We provide visual cases from the results of models trained
with No Defense, SAT and DDC-AT on VOC and Cityscapes dataset. They are shown in Fig. 9, 10,
11 and 12. All corresponding models are trained with ResNet50 as backbone, and evaluated under
white-box attacks. The attacks are executed with the hyper-parameters as ϵ = 0.03 × 255, α =
0.01 × 255, n = 3. As we can see, both SAT and DDC-AT can improve the effect of defense on
these datasets, while the performance of DDC-AT is better than SAT.
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Image Ground Truth No Defense SAT DDC-AT

Figure 9: The visual comparison for different defense methods, which are executed on VOC dataset
with model structure as PSPNet.

Image Ground Truth No Defense SAT DDC-AT

Figure 10: The visual comparison for different defense methods, which are executed on VOC dataset
with model structure as DeepLabv3.
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Image Ground Truth No Defense SAT DDC-AT

Figure 11: The visual comparison for different defense methods, which are executed on Cityscapes
dataset with model structure as PSPNet.

Image Ground Truth No Defense SAT DDC-AT

Figure 12: The visual comparison for different defense methods, which are executed on Cityscapes
dataset with model structure as DeepLabv3.
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