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ABSTRACT

Recent studies have revealed that the widely-used pre-trained language models propagate
societal biases from the large unmoderated pre-training corpora. Existing solutions mostly
focused on debiasing the pre-training corpora or embedding models. Thus, these approaches
need a separate pre-training process and extra training datasets which are resource-intensive
and costly. Indeed, studies showed that these approaches hurt the models’ performance
on downstream tasks. In this study, we focus on gender debiasing and propose Gender-
tuning which comprises of the two training processes: gender-word perturbation and
fine-tuning. This combination aims to interrupt gender word association with other words
in training examples and classifies the perturbed example according to the ground-truth
label. Gender-tuning uses a joint-loss for training both the perturbation model and fine-
tuning. Comprehensive experiments show that Gender-tuning effectively reduces gender
biases scores in pre-trained language models and, at the same time, improves performance
on downstream tasks. Gender-tuning is applicable as a plug-and-play debiasing tool for
pre-trained language models. The source code and pre-trained models will be available on
the author’s GitHub page.

1 INTRODUCTION

In recent years, pre-trained language models have achieved state-of-the-art performance across various
downstream tasks in natural language processing (Devlin et al., 2019; Liu et al., 2019; Clark et al., 2020).
One of the crucial reasons for this success is pre-training from large-scale corpora, which are collected from
unmoderated sources such as the internet. Prior studies have shown that pre-trained language models capture
a significant amount of social biases existing in the pre-training corpus (Bolukbasi et al., 2016; Caliskan
et al., 2017; Zhao et al., 2018; May et al., 2019; Kurita et al., 2019; Gehman et al., 2020). For instance, they
showed that the pre-trained language models learn the word "he" is closer to the word "engineer" because
of the high frequency of the co-occurrence of this combination in the training corpora, which is known as
social biases. Since pre-trained language models are increasingly deployed in real-world scenarios, there is a
serious concern that these language models propagate discriminative prediction and unfairness.

Several studies have focused on developing solutions for mitigating the social biases, including but not limited
to using banned word lists (Raffel et al., 2020), building training datasets with more care and deliberation
(Bender et al., 2021), balancing the biased and unbiased terms in the training dataset (Dixon et al., 2018;
Bordia & Bowman, 2019), debiasing embedding spaces (Liang et al., 2020; Cheng et al., 2021), and self-
debiasing in text generation (Schick et al., 2021). Although all these solutions have shown different levels
of success, Meade et al. (2021) illustrated that the current debiasing techniques worsen language models’
ability in various functionalities. For example, the solutions related to banned words prevent language models
from gaining knowledge of topics related to banned words. Also, the current debiasing techniques hurt the
pre-trained language model performance on downstream tasks (Meade et al., 2021). Furthermore, dataset
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Figure 1: The illustration of what is happening for a training example through the first training step of
Gender-tuning, masked language modeling. Gender-tuning masks the existing gender-related word(s) and
predicts the masked word(s) with the word(s), which minimize masked language modeling training loss.

curation/augmentation and pre-training (two resource-intensive tasks) are needed for most of the above
solutions (Schick et al., 2021).

To break social biases, we propose a debiasing method named Gender-tuning that comprises two subsequent
training phases: bias perturbation and fine-tuning. The proposed method uses masked language modeling
for the gender bias perturbation training phase. Gender-tuning masks the gender word(s) in an example and
predicts the highest probable token (Figure 1) that minimizes the masking model loss. Then Gender-tuning
classifies the gender-perturbed example through fine-tuning (second training phase) based on the ground-truth
label and computes fine-tuning loss. Afterward, the proposed method uses an aggregation of losses generated
from the two training phases called joint-loss. The joint-loss allows Gender-tuning to interrupt the association
between the gender words and other words in training examples while preserving the ground-truth label. As a
result, Gender-tuning trains avoid propagating the biases in the pre-trained language models when training on
the downstream task and mitigate the social biases score in the pre-trained language models.

The key advantage of our method is integrating debiasing approach into fine-tuning setting. This allows the
learning process to be carried out without requiring a separate pre-training or additional training data other
than the downstream task dataset. Integrating with fine-tuning also makes Gender-tuning a plug-and-play
debiasing tool for any pre-trained language models. We conducted comprehensive experiments following two
state-of-the-art studies, sentence-based embedding debiasing (Sent-D) (Liang et al., 2020) and FairFil (FairF)
(Cheng et al., 2021) to evaluate the effectiveness of the Gender-tuning. The results show that Gender-tuning
reduces the gender biases in the pre-trained language model more accurately than in those studies while
improving the downstream task performance. Furthermore, we reported the performance of the Gender-tuning
using RoBERTa, which has BERT-based architecture with larger pre-training corpora and training steps. The
results in both models (BERT and RoBERTa) proved that gender-tuning successfully reduces the gender
bias scores in pre-trained language models. Indeed, our ablation study show that joint-loss training plays an
essential role in Gender-tuning’s success.

2 METHODOLOGY

In this section, we formally introduce the proposed approach setup named Gender-tuning and the insights
behind it (Figure 2).

2.1 GENDER-TUNING

As shown in Figure 2, Gender-tuning develops the capabilities of fine-tuning’s training process to alleviate the
problem of social biases propagating when training on downstream task datasets and reducing the social biases
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Figure 2: The proposed method, Gender-tuning, empowers fine-tuning to debias pre-trained language model
by using a masked language model to perturb the linguistic relation between the gender-word(s) and other
words in training examples and computes the perturbation training loss. Then Gender-tuning classifies the
perturbed example based on the ground-truth label through fine-tuning and generates a fine-tuning loss.
Finally, for fair training, Gender-tuning uses a joint-loss for training the masked language model and fine-
tuning. The examples without any gender-word are directly fed to fine-tuning.

scores in the pre-trained language models. For this aim, Gender-tuning aggregate two training processes: 1)
Gender-word(s) perturbation and 2) Fine-tuning.

Gender-tuning uses masked language modeling to perturb the relation between the gender words and other
words in an example by masking the gender word(s) and predicting the word(s) which minimize the masked
language model training loss and generates the gender-perturbed example. In this case, the final hidden
vectors corresponding to the masked token(s) is fed into an output softmax over the embedding vocabulary
same as a standard language model. If the i-th token(s) is chosen, Gender-tuning replace the i-th token(s) with
the [MASK] token(s). Then the final hidden vector for i-th token(s) will be used to predict the masked token(s)
with the aggregation of the cross-entropy loss from all masked token(s) that we denote as perturbation loss
(Lperturb) (Fig. 2).

Afterward, the gender-perturbed example created by the masked modeling’s training process is fed into
fine-tuning to be classified based on the ground-truth label (y). Then pθ(y

′ = y|x̂) is the fine-tuning function
to predict the gender-perturbed example’s label (y′) based on the gender-perturbed example (x̂) and compute
the fine-tuning training loss (LFine), where θ is the pre-trained language model parameters for the fine-tuning.
Finally, Gender-tuning will be trained based on a Gender-tuning loss (LJoint) that is a weighted aggregation
of these two processes (i.e., masked modeling and fine-tuning):

LJoint = α Lperturb + (1− α)LFine (1)

Where α is a weighting factor, we employ it to adjust the contribution of the two training losses in computing
the Gender-tuning loss. The joint loss is used to train the masked language model and the fine-tuning in
training iterations. For passing each training iteration, the training loss of both steps must be close to zero.
Otherwise, the training continues until getting the smallest value for Gender-tuning training loss.

Combining the two training losses to compute the joint-loss helps the debiasing process in two ways. Firstly,
suppose the masked language model creates an inconsistent example. For instance, the example: " the film
affirms the power of the [actress]" changes to ⇒ " the film affirms the power of the [science]", which is not
only a non-related gender word but can change the concept of the example and raise perturbation loss value
(Lperturb. > 0). In this case, if fine-tuning classifies the perturbed example correctly and makes fine-loss
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Table 1: The illustration of the different types of perturbation outputs such as neutral, same-gender, convert-
gender, deleting, and identical that are generated by Gender-tuning.

Training input Perturbed Type Label
with [his] usual intelligence and subtlety. with [the] usual intelligence and subtlety. neutral 1

by casting an [actress] whose face projects by casting an [image] whose face projects
that [woman] ’s doubts and yearnings , that [person] ’s doubts and yearnings , neutral 1
it succeeds. it succeeds.

certainly has a new career ahead of [him] if certainly has a new career ahead of [her] if convert-gender 1
[he] so chooses. [she] so chooses.

by [men] of marginal intelligence , with by [people] of marginal intelligence , with neutral 0
reactionary ideas. reactionary ideas.

why this distinguished [actor] would stoop so low. why this distinguished [man] would stoop so low. same-gender 0

it is very awful - - and oozing with creepy [men]. it is very awful - - and oozing with creepy [UNK] . deleting 0

Proves once again [he] hasn’t lost. Proves once again [he] hasn’t lost . identical 1

close to zero, the aggregation of training losses from the perturbation and fine-tuning forces Gender-tuning to
continue the training iteration and be updated.

Secondly, suppose Gender-tuning creates social gender bias through the process of gender perturbation. For
instance, the example: "angry black [actor] changes to ⇒ "angry black [woman]" that "woman" and "actor"
are not close semantically and raise perturbation loss value (Lperturb. > 0). In this case, the output of the
fine-tuning might be correct (Lfine ≈ 0) based on the learned biases in the pre-trained language model.
However, aggregation of two training losses generates a big join-loss that prevents fine-tuning from getting a
reward for being correct and enforces the Gender-tuning to continue the training iteration and be updated.

2.2 PERTURBATION STRATEGY

The pre-trained language models achieved state-of-the-art performance on the downstream tasks datasets by
applying the masked language model for the example perturbation in pre-training phase. Thus we hypothesize
that the masked language modeling can generate realistic gender-perturbed examples that can considerably
modify the gender relation between the input tokens without affecting the label. Furthermore, it is safe for
consistency between two training phases of Gender-tuning, i.e., gender-words perturbation and fine-tuning.
However, there is a concern that the pre-trained masked language model transfers the gender bias through the
perturbation process.

For clarifying this concern, we investigate the predicted tokens that the pre-trained masked language model
replaces with the gender-words. We randomly select 300 examples from training dataset including 150
examples with feminine words and 150 examples with masculine words. Based on these 300 examples, we
observe five types of perturbation as shown through some examples in Table 1:

• Neutral; replace the gender-words with neutral word such as people, they, their, and etc.

• Convert-gender; replace the gender-words with opposite gender. the word "he" change to "she".

• Same-gender; replace the gender-words with the same gender. change the word "man" to "boy".

• Deleting; replace the gender-words with unknown token ([UNK]). In 300 examples, it only happens
when there are several masked tokens.
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• Identical; replace the gender word with itself. It mostly happens when there is only one gender
word.

In our investigation with 300 examples, we had 46% Neutral, 29% Identical, 17% Convert-gender, 7%
Same-gender, and 1% Deleting perturbation. As illustrated in Table 1, Gender-tuning does not make a
meaningful change in identical and same-gender perturbation. These examples likely conform to the gender
biases in the masked language modeling. Suppose identical, or same-gender perturbation gets the correct
output from the perturbation process (Lperturb. ≈ 0). In this case, the only way to learn the biases in the
masked language model is to get the correct output from fine-tuning step and joint-loss close to zero. This
issue stops the masked and pre-trained language models from further update. However, joint-loss plays an
essential role in alleviating learning gender bias from identical and same-gender perturbations.

To clarify the role of joint-loss in overcoming this problem, we investigated fine-tuning output on identical
and same-gender perturbations. We observed that fine-tuning gets the incorrect output from 60% of the
identical and 75% of the same-gender perturbation. Thus these examples return to training iteration because
their joint-loss is big enough to update the language model and perform a new training iteration. New training
iteration means re-perturbing and re-fine-tuning result on these examples. Therefore, training based on
both training steps’ loss and computing joint-loss persistently prevents learning from gender bias in masked
modeling as well as the pre-trained language model.

3 EXPERIMENTS

We evaluate the effectiveness of Gender-tuning at reducing gender biases in pre-trained language models
and its performance on downstream tasks. For comparison purposes, we follow two previous studies on
embedding debiasing, Sentence debiasing (Sent-D) (Liang et al., 2020) and FairFilter (FairF) (Cheng et al.,
2021).

3.1 DATASET

We conducted empirical studies on the following three tasks from the GLUE1 benchmark (Wang et al.,
2019): (1) SST-2: Stanford Sentiment Treebank is used for binary classification for sentences extracted from
movie reviews (Socher et al., 2013). It contains 67K training sentences. (2) CoLA: Corpus of Linguistic
Acceptability (Warstadt et al., 2019) consists of English acceptability judgment. CoLA contains almost 9K
training examples. (3) QNLI: Question Natural Language Inference (Wang et al., 2018) is a QA dataset
which is derived from the Stanford Question Answering Dataset (Rajpurkar et al., 2016) and used for binary
classification. QNLI contains 108K training pairs. Also, we use the feminine and masculine word lists created
by (Zhao et al., 2018) for gender-word perturbation in Gender-tuning.

3.2 BIAS EVALUATION METRIC

Following the prior studies, we use Sentence Encoder Association Test (SEAT) (May et al., 2019) to measure
the gender bias scores in the pre-trained language models that trained using Gender-tuning. SEAT extended
the Word Embedding Association Test (WEAT; caliskan2017semantics) to sentence-level representations.
WEAT compares the distance of two sets. Two sets of target words (e.g., {family, child, parent,...} and
{work, office, profession,...} ) that characterize particular concepts family and career respectively. Two
sets of attribute words (e.g., {man, he, him,...} and {woman, she, her,...} ) that characterize a type of bias.
WEAT evaluates whether the representations for words from one particular attribute word set tend to be more
closely associated with the representations for words from one particular target word set. For instance, if the

1https://gluebenchmark.com/tasks
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female attribute words listed above tend to be more closely associated with the family target words, this
may indicate bias within the word representations.

Let’s denote A and B as sets of attribute words and X and Y the set of target words. As described in (Caliskan
et al., 2017) the WEAT test statistic is:

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B) (2)

where for a specific word w , s(w,A,B) is defined as the difference between w’s mean cosine similarity with
the words from A and w’s mean cosine similarity with the word from B. They report an effective size given
by:

d =
µ([s(x,A,B)]x∈X − µ([s(y,A,B)]y∈Y )

σ([s(t,X, Y )]t∈A∪B)
(3)

where µ and σ denote the mean and standard deviation respectively. Hence, an effect size closer to zero
represents smaller degree of bias in the word representation. The SEAT test extended WEAT by replacing the
word with a collection of template sentences (i.e., "this is a [word]", "that is a [word]"). Then the WEAT test
statistic can be computed on a given sets of sentences including attribute and target words using sentence
representations from a language model.

3.3 EXPERIMENTAL SETUP

Two widely used pre-trained language models have been chosen for this study, BERT-base (Devlin et al.,
2019)and RoBERTa-base (Liu et al., 2019). BERT-base is a bidirectional encoder with 12 layers and 110M
parameters that is pre-trained on 16GB of text. RoBERTa-base has almost the same architecture as BERT
but is pre-trained on ten times more data (160GB) with significantly more pre-training steps than BERT. We
report the SEAT effect size for three different setups: (1) Origin: Directly fine-tuning the pre-trained model
using huggingface (Wolf et al., 2020) on the three downstream task datasets. (2) Gender-tuningrandom:
Performing Gender-tuning with perturbing the input tokens randomly (5% of each input sequence) on the
downstream task datasets. (3) Gender-tuning (our method): Performing Gender-tuning with perturbing the
input tokens based on existing gender-word on the downstream task datasets. We use the same hyperparameter
for all three setups for a fair comparison.

The hyperparameters of the models, except batch size, are set to their default2 values (e.g., epoch=3, learning-
rate = 2× 10−5, and etc.). After trying several trials run, the batch size has been selected among {8, 16, 32}.
We empirically selected the optimal value for α by a grid search in 0 < α < 1 with 0.1 increments. For each
downstream task, the best value of α sets to 0.7. All experiments were performed with three training epochs
and using an NVIDIA V100 GPU.

4 RESULTS AND DISCUSSION

Table 2 illustrates the debiasing performance comparison between Gender-tuning and two previous studies
and their performance on downstream task datasets after debiasing. We report SEAT absolute effect size
(e-size) on sentence templates of Terms/Names under different gender-domains provided by (Caliskan et al.,
2017). Also, we report the results of debiasing when Gender-tuning perturbs the input example randomly
(select randomly 5% of the input tokens for perturbing, not just gender words). The best results of the
individual SEAT test effect size (e-size), average absolute e-size (lower is better), and accuracy performance
(higher is better) are shown in bold font.

2https://github.com/huggingface/transformers
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Table 2: Debiasing results in BERT and RoBERTa using SST-2, CoLA, and QNLI datasets. First six rows
measure binary SEAT effect size (e-size) for sentence-level tests from (Caliskan et al., 2017). The seventh
row presents the absolute value of average effect size (Avg. Abs. e-size). SEAT scores closer to 0 represent
lower bias. Also, the eighth row shows the accuracy performance after debiasing. We compared our proposed
method using the BERT with two recent embedding debiasing methods, Sent-D (Liang et al., 2020) and FairF
(Cheng et al., 2021). The origin model has been implemented from huggingface. The Gender-tuningrandom
masks the input example randomly, the Gender-tuning masks the gender-related words. Gender-tuning gains
the lowest average bias in both models.

SST-2 BERT RoBERTa
Origin Sent-D FairF Gender-tuning_random Gender-tuning Origin Gender-tuning_random Gender-tuning

Names, Career/Family 0.28 0.10 0.21 0.46 0.03 0.07 0.08 0.14
Terms, Career/Family 0.18 0.05 0.37 0.03 0.16 0.33 0.44 0.01
Terms, Math/Art 0.49 0.22 0.26 0.05 0.39 1.32 1.25 0.57
Names, Math/Art 0.59 0.75 0.09 0.65 0.31 1.34 1.12 1.11
Terms, Science/Art 0.14 0.08 0.12 0.42 0.08 0.25 0.12 0.47
Names, Science/Art 0.02 0.04 0.05 0.38 0.10 0.47 0.62 0.47
Avg. Abs. e-size 0.283 0.212 0.182 0.331 0.178 0.630 0.605 0.461
Accuracy 91.97 89.10 91.60 92.66 92.10 93.57 93.92 93.69
CoLA
Names, Career/Family 0.45 0.14 0.03 0.34 0.10 0.29 0.15 0.05
Terms, Career/Family 0.08 0.18 0.11 0.15 0.03 0.26 0.08 0.00
Terms, Math/Art 0.73 0.31 0.09 0.55 0.53 0.06 0.02 0.15
Names, Math/Art 0.97 0.30 0.10 0.72 0.24 0.06 0.25 0.07
Terms, Science/Art 0.41 0.16 0.24 0.05 0.37 0.32 0.57 0.70
Names, Science/Art 0.33 0.19 0.12 0.28 0.07 0.27 0.14 0.03
Avg. Abs. e-size 0.495 .217 0.120 0.343 0.223 0.210 0.201 0.166
Accuracy 56.51 55.40 56.50 56.85 56.60 57.35 57.55 58.54
QNLI
Names, Career/Family 0.11 0.05 0.10 0.01 0.02 0.04 0.38 0.17
Terms, Career/Family 0.35 0.004 0.20 0.13 0.04 0.22 0.10 0.04
Terms, Math/Art 0.09 0.08 0.32 0.30 0.08 0.53 0.16 0.09
Names, Math/Art 0.28 0.62 0.28 0.23 0.16 0.48 0.06 0.03
Terms, Science/Art 0.34 0.71 0.24 0.25 0.21 0.47 0.57 0.53
Names, Science/Art 0.10 0.44 0.16 0.15 0.04 0.36 0.47 0.52
Avg. Abs. e-size 0.211 0.321 0.222 0.178 0.091 0.350 0.290 0.230
Accuracy 91.30 90.60 90.80 91.61 91.32 92.03 92.51 92.09

Compared with the original BERT and RoBERTa fine-tuning results (Table 2), Gender-tuning effectively
reduces the average absolute effect size for both language models on all downstream tasks. However,
compared with the previous debiasing methods on the BERT language model, Gender-tuning gains the
smallest average effect size on SST-2 and QNLI. On the CoLA dataset, Gender-tuning on the BERT language
model got the smallest SEAT effect size on the ’Terms, Career/Family’ and ’Name, Science/Art’ domains.

Moreover, in contrast with the previous debiasing methods that mostly hurt the language model performance
on the downstream tasks, Gender-tuning improves the performance on downstream tasks. This means that the
proposed method preserves the useful semantic information of the training data after debiasing. According
to the Table 2, BERT model’s results, Gender-tuningrandom obtains the best accuracy performance. This
is because the size of the training examples in random perturbation is larger than when perturbing only
the examples that contain the gender word(s). However, in the RoBERTa model, which is pre-trained on a
significantly larger-scale of pre-training corpora than BERT, Gender-tuning notably improves performance
accuracy.

4.1 ABLATION

We conducted the ablation experiment to demonstrate the importance of computing the joint-loss for
training Gender-tuning. For this aim, we perform Gender-tuning without using the joint-loss (Gender-
tuningno−Joint). In this case, only fine-tuning loss trains the Gender-tuning training processes (i.e., gender-
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Table 3: Comparing the results from Gender-tuningno−Joint that uses only the fine-tuning loss with Origin
models (from huggingface) and our proposed methodt (Gender-tuning). The results show that Gender-tuning
achieved the least bias average value on all downstream task datasets in both models, BERT and RoBERTa.

SST-2 BERT RoBERTa
Origin Gender-tuning_no- Joint Gender-tuning Origin Gender-tuning_no- Joint Gender-tuning

Names, Career/Family 0.28 0.16 0.03 0.07 0.62 0.14
Terms, Career/Family 0.18 0.37 0.16 0.33 0.41 0.01
Terms, Math/Art 0.49 0.49 0.39 1.32 1.02 0.57
Names, Math/Art 0.59 0.56 0.31 1.34 0.97 1.11
Terms, Science/Art 0.14 0.32 0.08 0.25 0.00 0.47
Names, Science/Art 0.02 0.47 0.10 0.47 0.56 0.46
Avg. Abs. e-size 0.283 0.395 0.178 0.630 0.596 0.461
Accuracy 91.97 92.66 92.10 93.57 92.54 93.69
CoLA
Names, Career/Family 0.45 0.04 0.1 0.29 0.16 0.05
Terms, Career/Family 0.08 0.11 0.03 0.26 0.11 0.00
Terms, Math/Art 0.73 0.96 0.53 0.06 0.29 0.15
Names, Math/Art 0.97 0.82 0.24 0.06 0.87 0.07
Terms, Science/Art 0.41 0.19 0.37 0.32 0.80 0.70
Names, Science/Art 0.33 0.32 0.07 0.27 0.88 0.03
Avg. Abs. e-size 0.495 0.406 0.223 0.210 0.518 0.166
Accuracy 56.51 56.70 56.60 57.35 57.27 58.54
QNLI
Names, Career/Family 0.11 0.15 0.02 0.04 0.14 0.17
Terms, Career/Family 0.35 0.41 0.04 0.22 0.11 0.04
Terms, Math/Art 0.09 0.03 0.08 0.53 0.62 0.09
Names, Math/Art 0.28 0.04 0.16 0.48 0.42 0.03
Terms, Science/Art 0.34 0.27 0.21 0.47 0.50 0.53
Names, Science/Art 0.10 0.11 0.04 0.36 0.20 0.52
Avg. Abs. e-size 0.211 0.168 0.091 0.350 0.331 0.230
Accuracy 91.30 91.28 91.32 92.03 91.69 92.09

word perturbation and fine-tuning). In Table 3, we report the gender biases scores for Gender-tuningno−Joint

and compare it with (1) Origin; original fine-tuning model, and (2) Gender-tuning; The proposed approach.
The results prove the importance of the joint-loss as we mentioned earlier in Section 3.

In both BERT and RoBERTa models, results illustrate that Gender-tuning is more effective for reducing the
average gender bias than Gender-tuningno−Joint using only fine-loss. Also, in most of the gender domains,
Gender-tuning gains the smallest SEAT absolute effect size compared to the original model and Gender-
tuningno−Joint, especially in the BERT model. Indeed, in RoBERTa, Gender-tuning improves the pre-trained
model performance noticeably. In the BERT model, Gender-tuningno−Joint achieves marginally higher
performance accuracy on the downstream tasks except the CoLA dataset. This success achieves by cooperation
between two training steps’ error in Gender-tuning and computing joint-loss. Gender-tuningno−Joint does
not update the masked and pre-trained language models when the output of the fine-tuning classification is
correct (Lfine ≈ 0). Even though the correct output likely bases on the gender biases existing in the masked
or pre-trained language model.

Moreover, through the comprehensive experiments, we observed that sometimes example perturbation changes
the input example in a way that is not conceptually related to the ground-truth label. For example, when
input example is :{[He] is a wonderful [actor]" (label: positive)}, one of the possibility for perturbation
result can be {"[She] is a wonderful [nightmare]" (label: positive)}. Based on this example, let’s assume
that the Gender-tuning classification output becomes correct, and consequently, the fine-loss is close to zero.
Thus the language models are not updated and learn the wrong concept (the sentiment of the perturbed
example changes to negative after perturbation, but Gender-tuning assigns it to the ground-truth label, which
is positive.). In this case, joint-loss survives the language model by considering the perturbation loss for
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training iteration. When the predicted word is far from gender-related, the perturbation error is big enough to
retrain the language model.

5 RELATED WORKS

Social biases have recently been recognized as a critical issue in pre-trained language models. Some studies
proposed different solutions for mitigating social biases in pre-trained language models, e.g., (Bolukbasi
et al., 2016; Caliskan et al., 2017; Zhao et al., 2018; May et al., 2019; Kurita et al., 2019; Sheng et al., 2019;
Basta et al., 2019; Webster et al., 2020; Gehman et al., 2020; Abid et al., 2021). These solutions can be
categorized into two groups (Blodgett et al., 2020): debiasing database and debiasing embedding.

Debiasing Database; The most straightforward approach for reducing the social biases in the train-
ing corpora is dataset(s) bias-neutralization. In this way, the training corpus is directly re-balanced by
swapping or removing bias-related words and counterfactual data augmentation (CDA) (Zmigrod et al., 2019;
Dinan et al., 2020; Webster et al., 2020; Dev et al., 2020; Barikeri et al., 2021). Also, (Gehman et al., 2020)
proposed domain-adaptive pre-training on unbiased corpora. Although the results showed these proposed
methods mitigated the social biases in the pre-trained models, they need to perform the retraining on a larger
scale of the corpora. For example, webster2020measuring proposed a CDA that needs an additional 100k
steps of training on the augmented dataset. Data augmentation and collecting a large-scale unbiased corpus
are both computationally costly.

Debiasing Embedding; There are several solutions for debiasing static word embedding (Boluk-
basi et al., 2016; Kaneko & Bollegala, 2019; Manzini et al., 2019; Ravfogel et al., 2020) and debiasing
contextualized word-embedding (Caliskan et al., 2017; Brunet et al., 2019) and sentence-embedding (Liang
et al., 2020; Cheng et al., 2021). Compared to debiasing static word embedding, where the semantic
representation of a word is limited to a single vector, contextualized word/sentence embedding models are
more challenging (Kaneko & Bollegala, 2019). Since the key to the pre-trained language models’ success is
due to powerful embedding layers (Liang et al., 2020), debiasing embedding might affect transferring of
the accurate information and performance of these models on the downstream tasks. Also, they need some
pre-training for debiasing the embedding layer before fine-tuning on downstream tasks.

In this study, we developed the fine-tuning process by adding a gender word perturbation and using a joint-loss
for training to avoid social biases propagation when training on the downstream tasks and reduce the biases
scores in pre-trained language models. Thus our proposed approach is applicable to debiasing any pre-trained
language models that work with the original fine-tuning. Indeed, Gender-tuning solely uses the downstream
task dataset for debiasing the pre-trained language models. The results of a comprehensive experiment show
that Gender-tuning effectively reduces the gender biases scores in pre-trained language models.

6 CONCLUSION

We proposed a novel debiasing approach for pre-trained language models by empowering the fine-tuning.
In this study, we evaluated our proposed method on gender biases and named it Gender-tuning. Gender-
tuning aggregates gender-word perturbation and fine-tuning for debiasing the pre-trained model on the
downstream task dataset. Then an aggregation loss from these two steps is used for training iterations. The
comprehensive experiments prove that Gender-tuning effectively reduces gender-bias scores while preserving
semantic information in the pre-trained language models. Thus Gender-tuning improves the performance on
downstream tasks as well. The key advantage of our approach is using the fine-tuning setting that allows the
learning process to be carried out without the need for additional training data and the pre-training process.
Also, it makes Gender-tuning as a plug-and-play debiasing tool for any pre-trained language models.
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