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Abstract

The Long-Tailed Recognition (LTR) problem arises in imbalanced datasets. This
paper bridges the theory-practice gap in this context, providing mathematical in-
sights into the training dynamics of LTR scenarios by proposing a theorem stating
that, under strong convexity, the learner’s weights trained on the full dataset are
bounded by those trained only on the Head. We extend this theorem for multiple
subsets and introduce a novel perspective of using Continual Learning (CL) for
LTR. We sequentially learn the Head and Tail by updating the learner’s weights
without forgetting the Head using CL methods. We prove that CL reduces loss
compared to fine-tuning on the Tail. Our experiments on MNIST-LT and standard
LTR benchmarks (CIFAR100-LT, CIFAR10-LT, and ImageNet-LT) validate our
theory and demonstrate the effectiveness of CL solutions. We also show the effi-
cacy of CL on real-world data, specifically the Caltech256 dataset, outperforming
state-of-the-art classifiers. Our work unifies LTR and CL and paves the way for
leveraging advances in CL to tackle the LTR challenge effectively.

1 Introduction

Data in real-world scenarios often exhibits long-tailed distributions [1, 2, 3, 4], where the number
of samples in some classes (Head set) is significantly larger than in other classes (Tail set). This
imbalance of data distribution presents challenges for the optimization and generalization of deep
learning models, described as the Long-Tailed Recognition (LTR) problem, which is defined as train-
ing a model on highly imbalanced data while aiming for high performance on a balanced test set [3].
In this context, optimizing the training process becomes a non-trivial task. The Head classes, due
to their sample dominance, disproportionately influence the loss function and the gradient updates.
This often results in a model that performs well on the Head but poorly on the Tail [5]. Numerous
studies have addressed the issue of class imbalance by various methods: over-sampling Tail classes
[6, 7, 8], employing feature extractors trained on the Head set for transfer learning [9, 10, 11, 12],
regularizing loss or gradients [13, 14, 15], and recently, weight balancing to maintain uniform per-
class weight norms [5]. As machine learning models continue to grow in size and complexity,
understanding the mathematical properties that govern their training dynamics becomes critical.

This paper proposes a novel perspective that unifies the problems of Continual Learning (CL)
and LTR, which facilitates the application of CL solution approaches directly to LTR problems.
CL aims to minimize forgetting when deep learning models are adapting themselves to new
tasks/distributions. Consequently, we contribute to unifying these two areas by proving a theo-
rem stating that under strong convexity, the learner’s weights trained on the full dataset are confined
within an upper bound relative to those trained solely on the Head. This bound is proportional to the
dataset’s imbalance factor and inversely proportional to the loss function’s strong convexity param-

Mathematics of Modern Machine Learning Workshop at NeurIPS 2023.



eter. We extend this theorem to arbitrary partitions with varying class sizes, proving that weights
from training on these subsets also lie within bounded neighborhoods of those trained on the largest
subset. Subsequently, we propose using Continual Learning (CL) methods to sequentially learn the
Head and Tail without forgetting the former. We introduce a further theorem, demonstrating that
CL yields a lower loss when compared to strictly fine-tuning on the Tail. Our theory is validated
on five datasets: MNIST-LT, CIFAR100-LT, CIFAR10-LT, ImageNet-LT, and Caltech256. Experi-
ments show that CL methods achieve effective performances compared to baselines and SOTA LTR
models, particularly on the naturally imbalanced Caltech256 dataset.

Our contributions in this paper can be summarized as follows: (1) We propose a mathematical insight
into the optimization dynamics in the LTR scenario by establishing an upper bound on the distance
between weights obtained when trained on the full dataset and the Head. Furthermore, we extend
this theorem to apply to any number of partitions with varying class sizes. (2) Using this bound
as a basis, we introduce a new perspective on using CL solutions for the LTR problem supported
by another theorem that proves the effectiveness of CL in reducing the loss when focusing on Tail
classes. (3) We substantiate our method through comprehensive experiments that demonstrate the
effectiveness of CL techniques in addressing LTR. Our results indicate significant performance gains
in long-tailed scenarios when using standard CL approaches.

2 Method

2.1 Overview

Continual Learning for Long-Tailed Recognition: 

Bridging the Gap in Theory and Practice

Motivation

The Long-Tailed Recognition (LTR) problem arises in imbalanced datasets.

This paper bridges the theory-practice gap in this context, providing

mathematical insights into the training dynamics of LTR and proposing a

novel perspective of using Continual Learning (CL) for addressing this

problem.

• We propose a mathematical insight into the optimization dynamics in the

LTR scenario by establishing an upper bound on the distance between

weights obtained when trained on the full dataset and the Head.

Furthermore, we extend this theorem to apply to any number of partitions

with varying class sizes.

• Using this bound as a basis, we introduce a new perspective on using CL

solutions for the LTR problem supported by another theorem that proves

the effectiveness of CL in reducing the loss when focusing on Tail

classes.

• We substantiate our method through comprehensive experiments that

demonstrate the effectiveness of CL techniques in addressing LTR.

Proposed Perspective

This diagram depicts the overview of the proposed solution where a

machine learning model is trained on an imbalanced dataset, where the

learner, initially at 𝜃𝑖, tends to favor the majority class, converging to a point

𝜃∗ near 𝜃𝐻
∗  (optimal for the Head but not the Tail). Our proposed theorem

demonstrates that the optimal point 𝜃∗ is within a bounded neighborhood (𝑟)

of 𝜃𝐻
∗ . Employing Continual Learning, we sequentially train on Head and

Tail, steering the learner towards 𝜓𝐻𝑇, an rea in the weight space where the

model’s performance is balanced for both Head and Tail.
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Results

Numerical Verification

To verify the predicted upper bound in Theorem 1, The actual distance

between 𝜃∗ and 𝜃𝐻
∗  in different 𝐼𝐹 and µ are compared with the calculated

upper bound.

The results confirm that CL methods are effective for LTR, aligning with our 

theorems. While not outperforming specialized LTR methods, CL shows 

significant improvement over baselines.

 We then utilize the Caltech256 dataset to evaluate the performance of CL 

on a naturally skewed dataset and demonstrate that CL can outperform 

SOTA methods.

To validate the efficacy of CL in LTR, we apply five CL strategies (LwF, 

EWC, Modified EWC, GPM, and SGP) on CIFAR100-LT (Table 1), 

CIFAR10-LT (Table 2), and ImageNet-LT (Table 3). 

Conclusion

We advanced a CL-based approach for LTR, grounded in the following 

three theorems that provide insights into optimization dynamics of models in 

LTR scenarios: 1) an upper bound on weight distances when trained on the 

Head versus the entire dataset, 2) an extension to multiple subsets, and 3) 

a proof that CL yields lower loss in LTR scenarios. Our empirical validation 

on bench marks like MNIST-LT, CIFAR100-LT, CIFAR10-LT, and 

ImageNet-LT, as well as real-world data via Caltech256, corroborates our 

theoretical framework. Future work will delve into non-convex loss 

landscapes and refine CL methods for LTR, aiming for robust solutions in 

imbalanced settings.
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Theorem 3

Consider a logistic regression model with parameters 𝜃 trained using 

regularized cross-entropy loss in an LTR setting, converging to 𝜃𝑖 . Then, 

ℒ 𝒟, 𝜃𝐸𝑊𝐶
𝑖+1 < ℒ 𝒟, 𝜃ℒ

𝑖+1 , where 𝜃𝐸𝑊𝐶
𝑖+1  and 𝜃ℒ

𝑖+1 denote the weights of the 

model after a single update using EWC loss and regularized cross-entropy 

loss, respectively.

Theorem 1

Assume that a logistic regression model with parameters 𝜃 is trained using

regularized cross-entropy loss in an LTR setting. Then, 𝜃∗ − 𝜃𝐻
∗ 2 ≤

4𝛿

𝜇𝐻+𝜇
 , where 𝜃∗ represents the parameter vector obtained after training,

𝜃𝐻
∗  denotes the parameter vector when the model is trained solely on the

Head set, 𝛿 is the maximum difference between the loss of the learner

using the entire dataset or the Head set for any value of 𝜃, and 𝜇𝐻 and

𝜇 are the strong convexity parameters of the loss computed on either the

Head set or the entire dataset.

Theorem 2

Let a logistic regression model with parameters 𝜃 be trained using 

regularized cross-entropy loss in an LTR setting, and let dataset 𝒟 be 

divided into 𝑛  partitions. Further, let a subset of 𝑚 < 𝑛 partitions be 

𝑖=1ڂ
𝑚 𝒟𝑖 ⊆ 𝒟 , with the largest partition being 𝒟𝑎 i.e. 𝑎 =

arg max
𝑖

𝒟𝑖 , 𝑖 ∈ [1, 𝑚] .Then, the weights𝜃ڂ 𝒟𝑖

∗  obtained from training the 

model on ڂ𝑖=1
𝑚 𝒟𝑖 will always be in a bounded neighborhood of the weights 

𝜃𝒟𝑎

∗  obtained from training on the largest subset  𝒟𝑎.

In this section, we derive the conditions in which CL can be applied to a

long-tailed scenario by analyzing the convergence of the model when

training data is highly imbalanced.

In order to prove the effectiveness of employing CL methods for addressing

LTR problems, the 116 following theorem is proposed.

Contributions

Theorem 1

Theorem 2

Theorem 3

Figure 1: An overview of learning under the
LTR scenario and our proposed algorithm is
presented. Detailed description provided in
text.

Assume an LTR problem with a learner, denoted
as θ (initialized with θi), trained on an imbalanced
dataset D, as shown in Fig. 1. The gradients
are dominated by the larger Head set, leading the
learner’s parameters to converge to θ∗. We pro-
pose a theorem stating that under a strongly convex
loss function, θ∗ lies within a bounded radius r of
θ∗H , the weights when trained solely on the Head set
DH . The radius r is proportional to the loss func-
tion’s strong convexity and inversely proportional to
the imbalance factor. To address this, we reformu-
late LTR as two sequential tasks: learning the Head
and Tail separately. However, sequential learning in-
troduces catastrophic forgetting. Ideal weights θ∗HT
lie in the intersection of ψH (Where model performs
well on Head) and ψT (Where model performs well
on Tail), denoted by ψHT . To avoid forgetting the
Head while learning the Tail, we employ Continual Learning (CL) techniques. By using CL, the
model learns the Tail set without compromising its performance on the Head, ultimately performing
well on both sets and ending up in ψHT .

2.2 Problem Formulation

LTR addresses learning from imbalanced data, segmented into Head set (DH ) with more samples
and Tail set (DT ) with fewer. Imbalance factor (IF ) quantifies the severity of this issue in a dataset
and is defined as ∣Dcmax∣

∣Dcmin∣ , where cmax = argmax ∣Dc∣, and cmin = argmin ∣Dc∣, such that Dcmax ∈

DH and Dcmin ∈ DT .

Definition 2.1. A dataset is deemed long-tailed when ∣Dcmax ∣≫ ∣Dcmin ∣ or, in other words, IF ≫ 1.
When a model is trained on such a dataset and its performance is assessed on a uniformly distributed
test set (i.e. ∣Dc∣ = k for each class Dc within the test set), the problem is referred to as Long-Tailed
Recognition.
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2.3 Training on Long-tailed Distribution

In this section, we derive the conditions in which CL can be applied to a long-tailed scenario. We
assume that all head classes are of size ∣DH ∣, and all tail classes are of size ∣DT ∣, with ∣DH ∣ >> ∣DT ∣.
The training process in the LTR setup is analyzed using the following Theorem.

Theorem 2.2. Assume that a logistic regression model with parameters θ is trained using regular-
ized cross-entropy loss in an LTR setting. Then, ∥θ∗ − θ∗H∥

2
≤ 4δ

µH+µ , where θ∗ represents the pa-
rameter vector obtained after training, θ∗H denotes the parameter vector when the model is trained
solely on the Head set, δ is the maximum difference between the loss of the learner using the entire
dataset or the Head set for any value of θ, and µH and µ are the strong convexity parameters of the
loss computed on either the Head set or the entire dataset.

Proof Sketch. (Formal proof in Appendix B.1) Initially, we decompose the total loss into two com-
ponents: one for the Head and another for the Tail. We establish that in a LTR setting, the total
loss asymptotically converges to the Head loss. Subsequently, leveraging the strong convexity prop-
erty of the loss function, we prove that as these two loss components converge, their respective
minimizers also converge.

The analysis in Appendix B.2 confirms our findings on the upper bound, even when assuming strict
convexity instead of strong convexity. Theorem 2.2 is based on a single Head and Tail in the dataset,
which is often not true in real-world data. To generalize, we allow the Head and Tail sets to follow
a long-tailed distribution and partition them into multiple Head and Tail subsets. We continue this
partitioning until the imbalance factor IFDi for each subset Di is not significantly greater than 1.
Theorem 2.3 extends Theorem 2.2 to cover this more complex scenario.

Theorem 2.3. Let a logistic regression model with parameters θ be trained using regularized cross-
entropy loss in an LTR setting, and let dataset D be divided into n partitions. Further, let a subset
of m < n partitions be ⋃m

i=1Di ⊆ D, with the largest partition being Da, i.e. a = argmaxi∣Di∣, i ∈
[1,m] . Then, the weights θ∗⋃Di

obtained from training the model on ⋃m
i=1Di will always be in a

bounded neighborhood of the weights θ∗Da
obtained from training on the largest subset Da.

Proof Sketch. (Appendix B.5) We partition the dataset and focus on the two largest subsets. Using
Theorem 2.2, we derive a bound for weight differences between them. Iteratively, we aggregate the
largest subset with the next largest, applying Theorem 2.2 each time to calculate an upper bound on
weight differences for training on all subsets versus the largest aggregated subset.

2.4 CL for LTR

In order to prove the effectiveness of employing CL methods for addressing LTR problems, the
following theorem is proposed.

Theorem 2.4. Consider a logistic regression model with parameters θ trained using regularized
cross-entropy loss (L) in an LTR setting, converging to θi. Then, L(D, θi+1EWC) < L(D, θ

i+1
L ), where

θi+1EWC and θi+1L denote the weights of the model after a single update using Elastic Weight Consoli-
dation (EWC) [16] loss and regularized cross-entropy loss, respectively.

Proof Sketch. (See Appendix B.6) Using Taylor expansion, we approximate losses for weights
updated via EWC and regularized cross-entropy. We prove EWC’s regularization term constrains
weight updates more effectively. Due to the strong convexity and the Fisher information matrix’s
positive nature, EWC-updated weights yield a strictly lower loss.

This theorem validates that even a fundamental CL method like EWC can enhance LTR. Its math-
ematical simplicity makes it suitable for Theorem 2.4, suggesting that advanced CL methods will
likely offer further benefits, as confirmed by subsequent experimental results.

3 Experimental Results and Discussions

Upper bound. To verify the upper bound in Eq. 8, we calculate the estimated upper bound for
each γ and µ using Eq. 14 in Appendix B.3. It is important to note that this upper bound is tighter
compared to Eq. 8 . We compare the upper bound with the actual distance in Fig. 2 and show that
for all IF and µ values, the measured distance is lower than the theoretical upper bound.
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Figure 2: The actual distance between θ∗ and θ∗H in different IF and µ compared with the calculated
upper bound.

Table 1: LTR benchmarks for
CIFAR100-LT.

Model IF
100 50 10

Baseline [17] 38.32 43.85 55.71
Baseline + CB [17] 39.60 45.32 57.99

LTR methods
Focal loss [18] 38.41 44.32 55.78
Focal+CB [17] 39.60 45.17 57.99
τ -norm [19] 47.73 52.53 63.81
LDAM-DRW [20] 42.04 46.62 58.71
BBN [21] 42.56 47.02 59.12
LogitAjust [22] 42.01 47.03 57.74
LDAM+SSP [23] 43.43 47.11 58.91
De-confound [24] 44.10 50.30 59.61
SSD [25] 46.00 50.50 62.30
DiVE [26] 45.35 51.13 62.00
DRO-LT [27] 47.31 57.57 63.41
PaCo [28] 52.00 56.00 64.20
WD [5] 46.01 52.71 66.03
WD & Max [5] 53.35 57.71 68.67

CL methods
LwF [29] 45.05 49.33 58.71
EWC [16] 44.35 50.28 58.84
Modified EWC 45.93 50.98 60.67
GPM [30] 47.93 53.20 63.31
SGP [31] 50.04 55.91 66.13

Table 2: LTR benchmarks for
CIFAR10-LT.

Model IF
100 50

Baseline [17] 69.8 75.2
Baseline + CB [17] 74.7 79.3

LTR methods
Mixup [32] 73.1 77.8
Focal loss[18] 70.4 75.3
PG Re-sampling [33] 67.1 75.0
3LSSL [34] 85.2 88.2
Focal+CB[17] 74.6 79.3
LDAM-DRW[20] 77.0 79.3
BBN [35] 79.8 82.2
Manifold mixup [17] 73.0 78.1
CBA-LDAM [17] 80.3 82.2
ELF (LDAM)+DRW [17] 78.1 82.4
De-confound [24] 80.6 83.6
Hybrid-SC [36] 81.4 85.4
MiSLAS [37] 82.1 85.7
BCL [38] 84.3 87.2

CL methods
LwF [29] 76.3 78.6
EWC [16] 75.1 80.1
Modified EWC 77.8 81.3
GPM [30] 81.2 84.8
SGP [31] 83.0 85.5

Table 3: LTR benchmarks for
ImageNet-LT.

Model Top-1
accuracy

Baseline [17] 44.4
Baseline + CB [17] 33.2

LTR methods
KD [39] 35.8
Focal [18] 30.5
SR Re-sampling [40] 46.8
OLTR [41] 35.6
cRT [19] 49.6
τ -norm [19] 49.4
LFME [42] 37.5
De-confound [24] 51.8
Seasaw Loss [43] 50.4
DiVE [26] 53.1
DRO-LT [27] 53.5
DisAlign [44] 52.9
WD [5] 48.6
WD+Max [5] 53.9

CL methods
LwF [29] 47.6
EWC [16] 48.9
Modified EWC [45] 49.1
GPM [30] 50.6
SGP [31] 52.0

Table 4: The performance of CL com-
pared with SOTA models.

Method Backbone
Inc.V4 Res.101

L2 − FE [46] 84.1% 85.3%
L2 [46] 85.8% 87.2%
L2 − SP [46] 85.3% 87.2%
DELTA [46] 86.8% 88.7%
TransTailor [47] - 87.3%
Continual Learning 87.56% 88.9%

LTR datasets To validate the efficacy of CL in LTR, we
apply five CL strategies—LwF [29], EWC [16], Modified
EWC [45], GPM [30], and SGP [31]—on CIFAR100-LT
(Table 1), CIFAR10-LT (Table 2), and ImageNet-LT (Ta-
ble 3). Class sample sizes decrease exponentially, as de-
tailed in Appendix D. Results confirm that CL methods
are effective for LTR, aligning with our theorems. While
not outperforming specialized LTR methods, CL shows
significant improvement over baselines. The superior per-
formance of some of the LTR methods is attributed to tai-
lored design and the potential inexactness of the strong
convexity assumption. Existing LTR solutions like BBN learn Head and Tail sequentially to pre-
vent performance loss on the Head. Our results indicate that CL methods are more effective for
LTR tasks, suggesting CL could offer more robust solutions. Techniques like RIDE perform well
in LTR due to ensemble learning, and CL also can be integrated into such setups. We then utilize
the Caltech256 dataset [48] to evaluate the performance of CL on a naturally skewed dataset. The
results are presented in Table 4. We observe that CL outperforms the state-of-the-art on this dataset,
demonstrating the strong potential of using CL in dealing with long-tailed real-world datasets.

4 Conclusion and Future Work

We advanced a CL-based approach for LTR, grounded in the following three theorems that pro-
vide insights into optimization dynamics of models in LTR scenarios: 1) an upper bound on weight
distances when trained on the Head versus the entire dataset, 2) an extension to multiple subsets,
and 3) a proof that CL yields lower loss in LTR scenarios. Our empirical validation on bench-
marks like MNIST-LT, CIFAR100-LT, CIFAR10-LT, and ImageNet-LT, as well as real-world data
via Caltech256, corroborates our theoretical framework. Future work will delve into non-convex
loss landscapes and refine CL methods for LTR, aiming for robust solutions in imbalanced settings.
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Appendix

A Related Work

Long-Tailed Recognition. Real-world datasets often exhibit imbalanced distributions, with some
classes appearing more frequently than others. Training a model on such imbalanced data can result
in poor performance on the rare classes. LTR addresses this issue by enabling models to perform
well on both Head and Tail classes [13]. LTR approaches can be broadly categorized into three pri-
mary groups: data distribution re-balancing, class-balanced losses, and transfer learning from Head
to Tail [19]. Data distribution re-balancing techniques include over-sampling the Tail [6, 49], under-
sampling the Head [50], and class-balanced sampling [51, 40]. Class-balanced loss approaches
modify the loss function to treat each sample differently, e.g., including class distribution-based
loss [13, 14, 52], focal loss [53], and Bayesian uncertainty [54]. Additionally, transfer learning
techniques leverage features learned from the Head to improve learning on the Tail [55, 9]. More
recently, [21] discussed the limitations of class re-balancing and proposed the Bilateral-Branch Net-
work (BBN) to improve representation learning. [56]. introduced the RoutIng Diverse Experts
(RIDE) model to enhance Long-Tailed Recognition (LTR) by reducing model variance. [57] chal-
lenged the assumption that test set distribution is always uniform, introducing test-agnostic long-
tailed recognition. They used self-supervised learning to facilitate universal feature learning, im-
proving performance on test sets with unknown distribution. Although numerous prior works have
addressed LTR, few provide a mathematical analysis of the training process using imbalanced data
[58, 59]. These works demonstrate that the Head is learned more quickly than the Tail, primar-
ily focusing on the training dynamics. In contrast, our theoretical analysis studies the convergence
point of training within the LTR framework. As mentioned earlier, some of the LTR solutions fall
into the category of sequential learning, where head and tail are learned sequentially. Unlike these
works, our work delves into the theoretical foundations of why sequential learning is particularly
well-suited for LTR, identifying the key factors that influence the success of these methods. By
establishing a mathematical framework, we present a novel perspective on the applicability of se-
quential learning to LTR, a depth of exploration not found in prior works. We also introduce CL as
a comprehensive solution to the LTR problem for the first time, drawing on broad principles rather
than specific techniques.

Continual Learning. CL addresses the challenge of adapting a deep learning model to new tasks
(e.g., new classes or distributions) while maintaining performance on the previously learned tasks.
The main challenge to address by CL methods is the mitigation of catastrophic forgetting, i.e., forget-
ting the previous tasks as the new tasks are learned. CL methods are typically grouped into three cat-
egories: expansion-based, regularization-based, and memory-based approaches. Expansion-based
CL methods utilize a distinct subset of parameters for learning each task [60, 61, 62]. Regularization-
based techniques penalize significant changes in crucial network parameters (relative to previous
tasks) by incorporating a regularization term in the loss function [30, 63, 64, 16, 29]. Memory-
based approaches employ a replay memory to store a limited number of samples from previous
tasks, which are then used in future training to minimize forgetting [65, 66, 67]. Few works attempt
to solve both problems of CL and LTR simultaneously in the long-tailed class incremental learn-
ing setup. First, [68] have proposed a novel replay method called Partitioning Reservoir Sampling
(PRS), which dedicates a sufficient amount of memory to tail classes in order to avoid catastrophic
forgetting in minority classes. Class incremental learning is also addressed in a more challenging
setup where the new tasks are not uniformly distributed [69]. In this case, the new tasks are LTR,
which makes CL more challenging. They considered two setups: Ordered and Shuffled, where the
number of samples in each new task is less than in previous tasks, and when the size of classes is
completely random, respectively. More recently, gradient surgery has been employed for addressing
CL where the gradient from the new task is projected to the orthogonal direction of the previously
learned tasks to ensure learning the new task does not impact the previous task [5, 31]. These meth-
ods achieve state-of-the-art performance on the CL benchmarks. Note that none of the above works
attempts to employ CL as an alternative solution for LT.
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B Proofs

B.1 Proof of Theorem 2.2

Proof. The model is trained on the entire dataset D by minimizing the loss function L:

L(D) =
1

∣D∣

⎛

⎝

∣DH ∣
∑
i=1

ℓ(Di
H) +

∣DT ∣
∑
i=1

ℓ(Di
T )
⎞

⎠
, (1)

where ℓ(Di) is the loss of each individual sample. By substituting L(DH) =
1
∣DH ∣ ∑

∣DH ∣
i=1 ℓ(Di

H)

and L(DT ) =
1
∣DT ∣ ∑

∣DT ∣
i=1 ℓ(Di

T ) :

L(D) =
∣DH ∣

∣D∣
L(DH) +

∣DT ∣

∣D∣
L(DT ). (2)

We define γ = IF
1+IF , which falls within the range of [0.5,1). We can rewrite Eq. 2 as:

L(D) = γL(DH) + (1 − γ)L(DT ). (3)

Since IF ≫ 0 in LTR, we can conclude that the value of γ approaches one. Consequently, L(D)
approaches L(DH) for all θ values. Let δ be defined as the maximum difference of the losses:

∣L(D) −L(DH)∣ ≤ δ. (4)

From Eq. 3, it follows that lim
IF≫0

δ = 0.

One of the most effective losses for the LTR problem is the regularized cross-entropy loss. This
loss is the cross-entropy with an additional regularization term that prevents weights from growing
excessively:

L(D, θ) = −
1

N

N

∑
i=1
yi log (P (f(θ, xi))) +

µ

2
∥θ∥2, (xi, yi) ∈ D. (5)

This loss improves generalizability by reducing overfitting and achieves state-of-the-art performance
when dealing with LTR scenarios [5]. Moreover, as our model is logistic regression, this loss is
strongly convex since ∇2L(β, θ) ≥ µ. From the definition of strong convexity [70], it therefore
follows that:

L(x1) ≥ L(x2) +∇L(x2)
T
(x1 − x2) +

µL
2
∥x1 − x2∥

2, (6)

where µL is the strong convexity parameter. Now, we are introducing Lemma B.1:

Lemma B.1. If ∣f(x) − g(x)∣ ≤ δ and both f(x) and g(x) are strongly convex then:

∥xg − xf∥
2
≤

4δ

µf + µg
, (7)

where xg and xf are argmin f(x) and argmin g(x), respectively. The proof of this lemma is
presented in Appendix B.3.

Applying Lemma B.1 to Eqs. 4 and 6 yields:

∥θ∗ − θ∗H∥
2
≤

4δ

µH + µ
, (8)

where θ∗ and θ∗H are argminL and argminLH , respectively.

B.2 Remark B.2 and its proof

Remark B.2. Under a more relaxed assumption, where L(D, θ) is strictly (but not strongly) convex,
the upper bound can be calculated using Lemma B.3.
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Lemma B.3. If ∣f(x) − g(x)∣ ≤ δ and both f(x) and g(x) are strictly convex then:

∥xg − xf∥
2
≤

4δ

λf + λg
, (9)

where xg and xf are argmin f(x) and argmin g(x), and λf and λg are the minimum eigenvalues
of the hessian matrices of f(x) and g(x), respectively. The full proof is provided in Appendix B.7.

Using lemma B.3, the upper bound of ∥θ∗ − θ∗H∥
2 is expressed as 4δ

λf+λg
. To ensure that this upper

bound is limited and approaches zero when δ → 0, the minimum eigenvalues of the Hessians of both
loss functions should have lower bounds, which is again another definition of strong convexity.

B.3 Proof of Lemma B.1

Proof. Since f(x) is strongly convex:

f(x2) ≥ f(x1) +∇f(x1)
T
(x2 − x1) +

µf

2
∥x2 − x1∥

2. (10)

Accordingly if x2 = xg = argmin g(x) and x1 = xf = argmin f(x), then:

f(xg) − f(xf) ≥ ∇f(xf)
T
(xg − xf) +

µf

2
∥xg − xf∥

2. (11)

Since xf is the minimizer of f , ∇f(xf) = 0. Therefore:

f(xg) − f(xf) ≥
µf

2
∥xg − xf∥

2. (12)

Similarly, considering g(x), with x1 = xg , and x2 = xf , we can derive Equation 10 as follows:

g(xf) − g(xg) ≥
µg

2
∥xf − xg∥

2. (13)

By adding and rearranging Eqs. 12 and 13, we will have:

(g(xf) − f(xf)) + (f(xg) − g(xg)) ≥
(µf + µg)

2
∥xg − xf∥

2. (14)

Using ∣f(x) − g(x)∣ ≤ δ, we can maximize (g(xf) − f(xf)) and (f(xg) − g(xg)) to obtain:

2δ ≥
µf + µg

2
∥xg − xf∥

2. (15)

Hence:
∥xg − xf∥

2
≤

4δ

µf + µg
, (16)

which completes the proof.

B.4 Proof of Lemma B.3

Proof. Using the second-order Taylor series expansion for multivariate functions, we can approxi-
mate f(xg) and g(xf) as follows:

f(xg) ≃ f(xf) +∇f(xf)(xg − xf) +
1

2
(xg − xf)

⊺Hf(xf)(xg − xf), (17)

g(xf) ≃ g(xg) +∇g(xg)(xf − xg) +
1

2
(xf − xg)

⊺Hg(xg)(xf − xg), (18)

whereHf(xf) andHg(xg) are the Hessian matrices of f and g evaluated at xf and xg , respectively.

Since ∇f(xf) = ∇g(xg) = 0, by adding Eq. 17 and Eq. 18 together, we obtain:

f(xg)− g(xg)+ g(xf)− f(xf) ≃
1

2
(xg −xf)

⊺Hf(xf)(xg −xf)+
1

2
(xf −xg)

⊺Hg(xg)(xf −xg),

(19)
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Using ∣f(x) − g(x)∣ ≤ δ, we can maximize (g(xf) − f(xf)) and (f(xg) − g(xg)):

2δ ≥
1

2
(xg − xf)

⊺Hf(xf)(xg − xf) +
1

2
(xf − xg)

⊺Hg(xg)(xf − xg), (20)

Let λf and λg be the minimum eigenvalues of Hf(xf) and Hg(xg), respectively. By properties of
the minimum eigenvalues, we can say:

(xg − xf)
⊺Hf(xf)(xg − xf) ≥ λf∥xg − xf∥

2, (21)

(xf − xg)
⊺Hg(xg)(xf − xg) ≥ λg∥xf − xg∥

2. (22)
Using Eqs. 21 and 22, we can rewrite Eq. 20:

2δ ≥
1

2
λf∥xg − xf∥

2
+
1

2
λg∥xf − xg∥

2. (23)

Therefore:
∥xf − xg∥

2
≤

4δ

λf + λg
, (24)

which completes the proof.

B.5 Proof of Theorem 2.3

Proof. Let D be a dataset divided into a sequence of partitions D1,D2, . . . ,Dn such that the im-
balance factor between any two consecutive partitions Di and Di+1 is significantly large, i.e.,
∣Di∣
∣Di+1∣ ≫ 1.

Consider a random subset of D sorted from largest to smallest denoted as Da,Db,Dc, . . . (where
∣Da∣≫ ∣Db∣≫ ∣Dc∣).

From Theorem 2.2, we know that if the imbalance factor between two partitions is significantly
large, ∣D1∣

∣D2∣ ≫ 1, then the distance between the optimal parameters when trained on D1 and D1 ∪D2

is bounded by ζ, i.e., ∣∣θ∗D1
− θ∗D1∪D2∣∣

2 ≤ ζ where ζ is computed using Eq. 9 in the manuscript.

Applying this Theorem to Da and Db, we have:

∣∣θ∗Da
− θ∗Da∪Db

∣∣
2
≤ ζ1

Next, considering the combination of Da ∪Db and Dc, given that ∣Da∪Db∣
∣Dc∣ ≫ 1, we deduce:

∣∣θ∗Da∪Db
− θ∗Da∪Db∪Dc

∣∣
2
≤ ζ2

Given that the weights reside in a metric space, and the distances are Euclidean, the triangle inequal-
ity applies. Combining the above inequalities, we therefore get:

∣∣θ∗Da
− θ∗Da∪Db∪Dc

∣∣
2
≤ (
√
ζ1 +
√
ζ2)

2

Extending this argument for all partitions, we can conclude:

∣∣θ∗Da
− θ∗∑Di

∣∣
2
≤ (

m

∑
i=1

√
ζi)

2

where m is the number of subsets selected randomly.

B.6 Proof of Theorem 2.4

Proof. Define the updated weight vector after one iteration over the Tail using EWC loss as:

θi+1EWC = θ
i
− η∇LEWC(DT , θ

i
) (25)

Similarly, for L:
θi+1L = θi − η∇L(DT , θ

i
) (26)
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From the Taylor series expansion, we can estimate the L of the model with θi+1EWC over D:

L(D, θi+1EWC) ≃ L(D, θ
i
) − η∇LEWC(DT , θ

i
)∇L(D, θi) (27)

Similarly, for the L of the model with θi+1L over D:

L(D, θi+1L ) ≃ L(D, θ
i
) − η∇L(DT , θ

i
)∇L(D, θi) (28)

Subtracting Eq. 28 from 27, we derive:

L(D, θi+1EWC) −L(D, θ
i+1
L ) ≃ η∇L(D, θ

i
)(∇L(DT , θ

i
) −∇LEWC(DT , θ

i
)) (29)

Elastic Weight Consolidation (EWC) loss is expressed as:

LEWC(θ
i
) = L(θi) +

λ

2

∣θ∣
∑
i

Fi(θ
i
− θ∗)2 (30)

Thus, we can compute ∇LEWC(DT , θ
i) as:

∇LEWC(DT , θ
i
) = ∇L(DT , θ

i
) + λdiag(F )(θi − θ∗) (31)

Substituting Eq. 31 into Eq. 29, we obtain:

L(D, θi+1EWC) −L(D, θ
i+1
L ) = −ηλdiag(F )∇L(D, θi)T (θi − θ∗) (32)

To determine the sign of ηλdiag(F )∇L(D, θi)T (θi − θ∗), we must investigate the sign of each
factor. The values of η and λ are positive by construction. To determine the sign of∇L(D, θi)T (θi−
θ∗), based on the strong convexity of L with respect to θi and θ∗, we have:

L(D, θ∗) ≥ L(D, θi) +∇L(D, θi)T (θ∗ − θi) +
µL
2
∣θi − θ∗∣2. (33)

Rearranging, we obtain:

∇L(D, θi)T (θ∗ − θi) ≤ L(D, θ∗) −L(D, θi) −
µL
2
∥θi − θ∗∥2. (34)

Since θ∗ minimizes L, the term L(D, θ∗) −L(D, θi) is always negative. Moreover, −µL
2
∥θi − θ∗∥2

is also always negative, leading to:

∇L(D, θi)T (θ∗ − θi) < 0. (35)

Consequently, ∇L(D, θi)T (θi − θ∗) is positive definite.

Finally, the diag(F ) term is determined to be positive valued, according to the following
Lemma B.4. Thus we have derived that the sign of ηλdiag(F )∇L(D, θi)T (θi − θ∗) is positive,
which from Eq. 32 we can conclude:

L(D, θi+1EWC) −L(D, θ
i+1
L ) < 0, (36)

which completes the proof.

Lemma B.4. Let a logistic regression model be characterized by parameters θ and trained using
regularized cross-entropy loss. Then, the diagonal values of its Fisher information matrix (diag(F))
are strictly positive.
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B.7 Proof of Lemma B.4

Proof. The Fisher information matrix is the estimated value of the Hessian of the log-likelihood:

F = E [∇2
(− logL(θ))] (37)

In logistic regression, we model the probability of a binary outcome y given input x as:

P (y = 1∣x; θ) =
1

1 + e−θTx
(38)

where θ is the vector of model parameters. For a dataset {(xi, yi)}
N
i=1}, the negative log-likelihood

is:

− logL(θ) =
N

∑
i=1
[−yi log (

1

1 + e−θTxi
) − (1 − yi) log (1 −

1

1 + e−θTxi
)] (39)

So the Hessian of the negative log-likelihood is:

∇
2
(− logL(θ)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2(− logL)
∂θ2

1
⋯

∂2(− logL)
∂θ1∂θd

⋮ ⋱ ⋮
∂2(− logL)
∂θd∂θ1

⋯
∂2(− logL)

∂θ2
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(40)

As a result:
∇

2
(− logL(θ)) = ∇2L(θ) (41)

where d is the dimensionality of θ. Now since the model is logistic regression and loss is regularized
cross-entropy, from Eq. 6, we have:

L(x1) ≥ L(x2) +∇L(x2)
T
(x1 − x2) +

µL
2
∥x1 − x2∥

2, (42)

Which is the condition of strong convexity. As a result:

∇
2
L ≥ µLI (43)

From Eq.41 and Eq. 43:
∇

2
(− logL(θ)) = ∇2L(θ) ≥ µI (44)

Hence:
E [∇2

(− logL(θ))] ≥ µI (45)
consequently:

diag(F ) > diag(D), where Dii > 0, for all i (46)
which completes the proof.

C Experimental Setup

Datasets. First, we use the MNIST-LT [71] toy dataset with different IF values and strong convexity
parameters to study the behavior of the upper bound and compliance with our theorem. Next, to
evaluate the performance of CL in addressing LTR, we employ three widely used LTR datasets:
CIFAR100-LT, CIFAR10-LT [13], and ImageNet-LT [9]. These datasets represent long-tailed
versions of the original CIFAR100, CIFAR10, and ImageNet datasets, maintaining the same number
of classes while decreasing the number of samples per class using an exponential function. Finally,
to highlight the benefits of using CL for LTR, we carry out additional experiments using the naturally
skewed Caltech256 dataset [48].

Implementation Details. We adhere to the experiment setup described in [5, 4]. Following the
experimental setup of [5, 4], We use ResNet-32 [72] and ResNeXt-50 [73] for CIFAR and ImageNet
benchmarks, respectively. The LTR methods selected for comparison are state-of-the-art solutions
in the area. All training was conducted using an NVIDIA RTX 3090 GPU with 24GB VRAM. The
details of the implementation specifics are provided in Appendix B.

Evaluation. For the LTR datasets (MNIST-LT, CIFAR100-LT, CIFAR10-LT, ImageNet-LT), we first
train the model on the long-tailed imbalanced training set and then evaluate it on the balanced test set,
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following the evaluation protocol of [5]. For Caltech256, we use the entire training set for training
and assess the model’s performance on the entire test set, retaining its original distribution. All
reported values represent classification accuracy percentages. All our experiments were conducted
utilizing the PyTorch framework1. The specifics of each algorithm’s implementation are summarized
in Table B1. The parameters for each algorithm such as Learning Rate (LR), Optimizer, Momentum,
LR Scheduler, CL Weight, and number of Epochs are detailed. The algorithms considered include
Learning without Forgetting (LwF), Elastic Weight Consolidation (EWC), a modified version of
EWC, Gradient Projection Memory (GPM), and Scaled Gradient Projection (SGP).

Table A1: Implementation Details of the Considered Algorithms for LTR benchmark.
Algorithm LR Opt. Momentum LR Scheduler CL Loss Weight Epochs

LwF 0.001 SGD 0.9 - 0.01 5
EWC 0.01 SGD 0.9 - 10 90

Modified EWC 0.01 SGD 0.9 - 1000 90
GPM 0.001 SGD 0 Cosine Anneal LR - 100
SGP 0.001 SGD 0 Cosine Anneal LR - 150

D Datasets

Fig. C1 illustrates the distribution of samples among different classes and the division of the dataset
into the Head and Tail sections. In the case of CIFAR100-LT with IF= 100, the initial partition is
configured such that 5% of the samples fall within the Tail and 95% in the Head section (Classes
60 to 100 are classified as Tail). For comparison purposes, the rest of the datasets follow a similar
partition threshold where 60% of the classes are assigned to the Head section.
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Figure A1: Class cardinality of (a) MNIST-LT, (b) CIAFR100-LT, (c) CIFAR10-LT, (d) ImageNet-
LT and (e) Caltech256

E The Impact of Imbalance Factor and strong Convexity Parameter

To investigate the distance between the acquired sets of weights by training onD orDH (∥θ∗−θ∗H∥),
we first train a logistic regression model on MNIST-LT with varying IF and µ values. Then we
calculate the Euclidean distance between the two sets of weights, as illustrated in Fig. 4. As expected
from Eq. 8, increasing either the IF or strong convexity (µ) results in a reduced distance, indicating

1The code for the algorithms was obtained and modified from various open-source repositories:
https://github.com/ngailapdi/LWF
https://github.com/shivamsaboo17/Overcoming-Catastrophic-forgetting-in-Neural-Networks
https://github.com/sahagobinda/GPM
https://github.com/sahagobinda/SGP
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that the weights of the model trained using D approach the weights when it is solely trained using
DH .
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Figure 4: The distance between θ∗ and θ∗H in different IF and µ.

F CL Performance Analysis

Here, let’s discuss three key concepts in the context of CL: catastrophic forgetting, backward trans-
fer, and forward transfer [34]. As mentioned earlier, catastrophic forgetting occurs when the per-
formance of a class declines after retraining. Despite the use of CL methods, which are designed
to mitigate this forgetting, a certain degree of forgetting is still inevitable. Forward transfer is the
improvement in performance on a new task after employing CL, which is the central aim of retrain-
ing in CL. Finally, backward transfer is a beneficial side-effect where retraining on new samples
can actually enhance the model’s performance on the previous tasks. Now, let’s discuss Fig. 5,
which presents the difference in per-class accuracy of the best CL method (SGP) versus the base-
line network. The analysis is based on CIFAR100-LT with an IF of 100. The figure is divided
into three regions corresponding to the scenarios discussed above: catastrophic forgetting (bottom),
backward transfer (top-left), and forward transfer (top-right). The bottom region in the figure rep-
resents classes that undergo catastrophic forgetting, while the top-right region represents the Tail
samples (with a class index larger than 60), which demonstrate improved performance, or forward
transfer. We observe that using SGP as a CL solution for LTR results in very effective improvements
in the per-class accuracy of the Tail (forward transfer). Interestingly, despite the absence of Head
data in the retraining process, 42 out of 60 Head classes see some level of improvement after the
model is exposed to the Tail samples (backward transfer). This result emphasizes the remarkable
potential of CL methods in enhancing the performance on both new and previous tasks.

ap
pl

e
aq

ua
riu

m
_f

ish
ba

by
be

ar
be

av
er

be
d

be
e

be
et

le
bi

cy
cle

bo
ttl

e
bo

wl bo
y

br
id

ge bu
s

bu
tte

rfl
y

ca
m

el
ca

n
ca

st
le

ca
te

rp
illa

r
ca

ttl
e

ch
ai

r
ch

im
pa

nz
ee

clo
ck

clo
ud

co
ck

ro
ac

h
co

uc
h

cr
ab

cr
oc

od
ile cu
p

di
no

sa
ur

do
lp

hi
n

el
ep

ha
nt

fla
tfi

sh
fo

re
st fo
x

gi
rl

ha
m

st
er

ho
us

e
ka

ng
ar

oo
ke

yb
oa

rd
la

m
p

la
wn

_m
ow

er
le

op
ar

d
lio

n
liz

ar
d

lo
bs

te
r

m
an

m
ap

le
_t

re
e

m
ot

or
cy

cle
m

ou
nt

ai
n

m
ou

se
m

us
hr

oo
m

oa
k_

tre
e

or
an

ge
or

ch
id

ot
te

r
pa

lm
_t

re
e

pe
ar

pi
ck

up
_t

ru
ck

pi
ne

_t
re

e
pl

ai
n

pl
at

e
po

pp
y

po
rc

up
in

e
po

ss
um

ra
bb

it
ra

cc
oo

n
ra

y
ro

ad
ro

ck
et

ro
se se
a

se
al

sh
ar

k
sh

re
w

sk
un

k
sk

ys
cr

ap
er

sn
ai

l
sn

ak
e

sp
id

er
sq

ui
rre

l
st

re
et

ca
r

su
nf

lo
we

r
sw

ee
t_

pe
pp

er
ta

bl
e

ta
nk

te
le

ph
on

e
te

le
vi

sio
n

tig
er

tra
ct

or
tra

in
tro

ut
tu

lip
tu

rtl
e

wa
rd

ro
be

wh
al

e
wi

llo
w_

tre
e

wo
lf

wo
m

an
wo

rm

Class Index

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
ffe

re
nc

e 
in

 A
cc

ur
ac

y

Catastrophic Forgetting

Backward Transfer Forward TransferPositive Difference
Negative Difference
Per-Class Differences
Behavior Trend

Figure 5: The difference in per-class accuracy of SGP and the baseline model.

Here, rather than employing the baseline for computing per-class accuracy differences, we compare
the CL method, GPM (which follows the same trend but slightly worse performance than SGP), with
an LTR model, WD, that exhibits similar overall accuracy. The outcomes are depicted in Fig. A2
(a). In this figure, the red bars denote classes where WD outperforms GPM, whereas the bluebars
indicate the classes where GPM excels. We observe that GPM performs generally better on the Tail,
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whereas WD outperforms in Head. On average, WD’s accuracy on Head classes is 4.5% higher,
while GPM achieves a 9.5% higher accuracy on Tail samples. Here, we analyze the difference in
per-class accuracy of GPM , Modified EWC (which exhibits similar but slightly better performance
than EWC), and LwF with respect to each other, and present the results in Figs. A2 (b, c, and
d). Among these three CL methods, GPM demonstrates the best results on the Tail, particularly in
classes 60 to 80. LwF performs better when data is extremely limited (classes 90 to 100). The best
method for Head classes is Modified EWC (outperforming GPM in 40 out of 60 Head classes), as
a result of both minimizing instances of catastrophic forgetting and promoting backward transfer.
These comparisons highlight that each CL method exhibits distinct behaviors when applied to the
LTR problem.
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Figure A2: The difference in per-class accuracy of (a) GPM and WD, (b) GPM and LwF, (c) LwF
and Modified EWC, and (d) GPM and Modified EWC.
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G Run Time analysis

The inference runtime is identical between CL-based methods and LTR solutions, due to the same
architecture in both types of methods and the fact that CL does not affect inference. When CL is
used to address LTR, the data is divided into head and tail sets. At each step of the training, only
one partition of data is involved. Since the architecture is consistent among all LTR approaches
within a particular benchmark, the runtime is determined by the amount of data fed to the model.
So, dividing the learning into multiple steps and using CL does not impact the total runtime, nor
does it increase the training time.

H Weight imbalance

An interesting phenomenon observed when training models on highly imbalanced data is the pres-
ence of artificially large weights in neurons corresponding to the Head classes [5]. The LTR solution,
WD, addresses this problem by penalizing weight growth using weight decay. One way to assess
the network’s ability to handle LTR is by analyzing the bias in per-class weight norms. To this end,
we present the per-class weight norms of the Baseline, WD, and SGP models in Fig. 7.
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Figure 7: Per-class weight norms of the
baseline, SGP, and WD.

The figure reveals a significant imbalance in the weight
norms of the Baseline model, which is naively trained on
the imbalanced dataset. In contrast, the WD and SGP
models exhibit more uniform weight norms across dif-
ferent classes. Interestingly, although SGP starts with
the heavily imbalanced weights of the Baseline model,
it converges towards a more uniform weight distribution
without any explicit penalty on weight growth. Unlike
many other CL methods that restrict the plasticity of cru-
cial weights, GPM only constrains the direction of the
weight update in the weight space, enabling the model
to converge to a more balanced weight distribution. This
further demonstrates the effectiveness of CL in address-
ing LTR.

I Limitations

Strong convexity is a key assumption in our theorem, which determines an upper bound for the
distance between the weights of a learner trained on the full dataset and the weights of the same
learner trained solely on the Head. This assumption offers a solid theoretical foundation for our
method, showcasing the feasibility of using CL techniques to address the LTR problem. However,
as many deep learning models in practice employ non-convex loss functions that potentially limit
the theorem’s applicability to specific cases, it is crucial to highlight that our experimental results
are not strictly dependent on the strong convexity condition. In fact, our method exhibits impressive
performance even under more relaxed conditions, indicating its robustness and adaptability.

J Broader Impact

Dealing with imbalanced data is of paramount importance in ensuring fairness and reducing bias
in AI applications, particularly in cases where the underrepresented classes correspond to minority
groups. The long-tailed distribution of real-world data poses a significant challenge in achieving
equitable performance for both common and rare cases. This paper’s proposed algorithm, which
addresses the LTR problem through the lens of CL, holds great potential in mitigating the adverse
effects of class imbalance on model performance. By effectively learning from both the Head and
the Tail, the proposed method can enhance the performance on underrepresented classes, leading to
more fair and accurate AI models across various domains.
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