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ABSTRACT

Large Language Models (LLMs) have emerged as dominant tools for various tasks,
particularly when tailored for a specific target by prompt tuning. Nevertheless,
concerns surrounding data privacy present obstacles due to the tuned prompts’
dependency on sensitive private information. A practical solution is to host a local
LLM and optimize a soft prompt privately using data. Yet, hosting a local model
becomes problematic when model ownership is protected. Alternative methods,
like sending data to the model’s provider for training, intensify these privacy issues
facing an untrusted provider. In this paper, we present a novel solution called
Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge.
Our approach involves tuning a discrete prompt on the client side and then applying
it to the desired cloud models. We demonstrate that prompts suggested by LLMs
themselves can be transferred without compromising performance significantly.
To ensure that the prompts do not leak private information, we introduce the first
private prompt generation mechanism, by a differentially-private (DP) ensemble of
in-context learning with private demonstrations. With DP-OPT, generating privacy-
preserving prompts by Vicuna-7b can yield competitive performance compared to
non-private in-context learning on GPT3.5 or local private prompt tuning. Codes
are available at https://github.com/VITA-Group/DP-OPT.

1 INTRODUCTION

When Large Language Models gain vast knowledge and versatile ability from large-scale pre-training,
prompt engineering has surfaced as the most effective, cost-efficient, and adaptable method to tailor
LLMs for a range of downstream applications. In contrast to the resource-heavy optimization of
model parameters, prompt engineering merely necessitates API access and iteratively refines prompts
based on the validation of training instances. Though manual prompt engineering has achieved
impressive performance in various tasks (Petroni et al., 2019; Zhou et al., 2022), it often requires
decent human experience in prompt designing and domain knowledge for downstream tasks, including
legal judgement (Trautmann et al., 2022), healthcare (Wang et al., 2023b) and art (Oppenlaender
et al., 2023). To mitigate the high costs, data-driven prompt tuning was proposed to automate the
process. The most prominent example of this is soft prompt tuning, where prompts are characterized
as trainable embedding vectors and are refined using a collection of training instances (Houlsby et al.,
2019; Roberts et al., 2019; Brown et al., 2020; Chen et al., 2022).

However, one major barrier to the applications of prompt tuning is data privacy. When searching for
a validate prompt for an LLM API, such as ChatGPT, there is a need to upload a multitude of training
samples for evaluation queries. In privacy-sensitive scenarios, the operation could be prohibited due
to two concerns. 1) Data Confidentiality. Certain data, like medical histories, proprietary system
logs, and personal messages, are inherently confidential and should not be transmitted beyond local
devices, internal computing systems, and mobile phones. 2) Information Leakage. Resources derived
from private data might inadvertently contain personally identifiable information. For instance,
personal identifiers like names, residential addresses, and contact numbers present in the fine-tuning
data (Lukas et al., 2023) or during the pre-training phase (Carlini et al., 2021) might be retrievable
from the adjusted parameters. Even with a limited parameter set, such as prompts, the potential for
data breaches remains significant (Duan et al., 2023a).
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Figure 1: Differentially-Private Offsite Prompt Tuning (DP-OPT) works as an intermediate layer
between local data and cloud models. Leveraging a local model, DP-OPT can fine-tune a differentially-
private prompt that can transfer to the target model.

A straightforward approach would be to manage the entire prompt process on the local device
and offer services via an API. However, this becomes impractical when there’s a preference for
a sophisticated closed-source model, not to mention the substantial costs involved in hosting and
overseeing an LLM locally. For example, there is a high demand for serving prompts with the most
powerful LLMs, e.g., GPT-3.5, to leverage the state-of-the-art generation ability. Yet, the specifics
and structure of GPT-3.5 remain proprietary and undisclosed for protecting Intelligent Property (IP).
Even if GPT proprietors are willing to support local prompt tuning by dispatching compressed models
(Xiao et al., 2023), they could be confronted with the potential peril of losing their model’s ownership.

In this paper, we propose Differentially-Private Offsite Prompt Tuning (DP-OPT) to make LLM
engineer private and transferable prompts for cloud-hosted LLMs, which is illustrated in Fig. 1. The
crux of privacy protection is that DP-OPT operates exclusively on the client. Given a confidential
training dataset, DP-OPT uses a few samples as demonstrations to guide a local LLM to generate
prompts. The local assistant LLM may be significantly smaller than the intended cloud-based LLMs.
Such a prompt generation process is facilitated by a Differentially-Private (DP) ensemble of in-context
learning with disjoint private demonstration subsets. Our contributions are summarized as follows:

• We proposed the first end-to-end framework where DP-OPT operates on client devices and data
and yields a front-end prompt for inference on the privacy-untrusted cloud. Our framework is
the first solution that simultaneously protects (i) data confidentiality by keeping data local; (ii)
information privacy by the DP noise mechanism; and (iii) cloud model ownership and IP by
eliminating the parameter exposure of cloud models from local training.

• We first show that discrete prompts automatically tuned by LLMs are transferable across models
with favorable performance on cloud models. The finding motivates the offsite prompt tuning
(OPT) framework with local prompt tuning and cloud inference.

• We then provide the first Differentially-Private mechanism for generating private prompts
without gradients or public data. The privacy costs can be tightly bounded during prompt tuning.

• Empirically, our method presents an outstanding performance on multiple language tasks.
Prompts tuned on open-source Vicuna-7b (Chiang et al., 2023) can achieve significant perfor-
mance gains across 4 tasks after transfer to closed-source heterogeneous-architecture models
(GPT3.5) or open-source models (Llama-2 (Touvron et al., 2023) or Vicuna-33b).

2 RELATED WORK

Discrete Prompt Tuning. On the rise of pre-trained generative language models, discrete prompt
tuning (Shin et al., 2020) was introduced to amplify the inference capability of LLMs through
demonstrations (Brown et al., 2020) or informative instructions (Prasad et al., 2022; Shin et al.,
2020). The method is orthogonal to the soft prompt tuning (Lester et al., 2021; Liu et al., 2021)
that optimizes continuous prepended embeddings instead of discrete tokens and is therefore not
favored for API-only models. One line of the discrete prompt tuning aims to improve the search
efficiency by gradient-free phrase editing (Prasad et al., 2022), reinforcement learning (Deng et al.,
2022), embedding optimization (Shi et al., 2022), and projected-gradient optimization (Wen et al.,
2023). Another line of work does not rely on search or optimization algorithms and was initiated by
Automatic Prompt Engineering (APE) (Zhou et al., 2022) that employed LLM to prompt themselves.
Later, Deep Language Network (DLN) (Sordoni et al., 2023) improves APE by backward updates and
stacked language models. Though these methods achieve great progress in discrete prompt tuning
approaching the soft prompt results, the privacy risks or protection of the generated prompts have not
been studied yet. In our work, we first highlight the advantage of DLN prompts in transfer learning.
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Essentially different from the negative transfer effect presented in recent work (Wen et al., 2023),
we show that DLN prompts can transfer to and work better on larger models than on the source
models, namely positive transfer. Meanwhile, we provide the first solution to ensure the privacy of
the gradient-free algorithms that demonstrate strong empirical performance compared to in-context
learning and previous private gradient-based competitors.

Privacy Risks in Prompt Tuning. LLMs have been shown to possess the ability to memorize
data, not just from extensive pre-training datasets (Carlini et al., 2021; 2022b; Wang et al., 2023a),
but also from more concise private prompt-tuning datasets (Duan et al., 2023a). Consequently, it
becomes imperative to shield private data from potential exposure in released prompts. To illustrate
this vulnerability, Duan et al. (2023a) employed a membership-inference attack (Shokri et al., 2017;
Carlini et al., 2022a) to probe the susceptibilities of tuned soft prompts, revealing a significant success
rate for the attacks. Though the risk of soft prompt tuning has been highlighted, it is unclear how the
discrete prompts exemplified by DLN will leak private information. Our research uncovers direct data
leakage via prompts crafted by DLN, underscoring the need for novel discrete defense mechanisms.

Mitigating Privacy Leakage in Prompt Tuning. As a golden standard for bounding privacy risks,
there is increasing interest to incorporate differential privacy (DP) (Dwork, 2006) into prompt tuning
for privacy protection. Closely related to our work, PromptPATE utilized a DP ensemble approach
to label public data. Using these as in-context examples, they devised a discrete prompt tailored
for few-shot learning on designated models (Duan et al., 2023a). However, the work assumes a set
of non-private data which may not hold in practice. In the absence of public datasets, Duan et al.
(2023a) also showed the viability of DP-SGD (Abadi et al., 2016) in the realm of soft prompt tuning.
In parallel, DP In-Context Learning (ICL) (Wu et al., 2023) advocated for ensembling multiple
in-context samples to predict classification labels directly, which limits the query times by the number
of available private samples. Instead of prediction, Tang et al. (2023) proposed ensemble generation
by prompting LLMs with examples. The generated samples can be used for ICL and enable infinitely
many queries. Yet, these approaches were used with the full exposure of private samples to the target
model, rendering it infeasible when a model vendor is untrustworthy. From a technical standpoint,
our strategy differs from these methods on ensembling outputs to produce instructional prompts.
Specifically, we ensemble in-context examples to produce instructional prompts rather than labels.
This design facilitates the effortless migration of trained prompts to many models, eliminating the
need for extra training on cloud models.

Another focal point among the community is the sanitization of texts (Feyisetan et al., 2020; Xu et al.,
2020; Carvalho et al., 2023; Du et al., 2023; Utpala et al., 2023). These works introduce randomness
at the word level and are able to achieve the privacy guarantee in terms of local differential privacy
(LDP) (Kasiviswanathan et al., 2011) or a similar definition called metric differential privacy. Recent
advancements in this field (Mattern et al., 2022; Utpala et al., 2023) combine the idea of perturbation
with paraphrasing based on fine-tuning or zero-shot prompts.

Prompt Ensemble. In our work, we use a prompt ensemble together with a noise mechanism for
privatization. Previously, ensembling multiple prompts has been explored for improving inference
quality with large language models. Pitis et al. (2023) proposed to boost the in-context learning
by ensembling multiple few-shot prompts, which is effective on classification tasks. Similarly,
Hou et al. (2023) query an LLM by samples enveloped in diverse prompt templates, exhibiting
state-of-the-art classification performance. Yet the line of works focuses on few-token prediction
instead of long-context generation. As a pioneering effort, the ensemble technique was harnessed for
sequence-to-sequence linguistic generation, leveraging long short-term memory networks equipped
with attention mechanisms (Juraska et al., 2018). Subsequently, this ensemble paradigm found its
application in large language transformers. Hewitt et al. (2021) orchestrated an ensemble of token
logits sourced from a lightweight-finetuned language model and a fully-fintuned one to generate texts,
thereby bolstering the robustness of the generated content. Different from (Hewitt et al., 2021), our
method leans on a voting-based ensemble of prompts from multiple prompts, which facilitates the
application of differential privacy. Novel to this work, we show that the ensemble of hundreds of
prompts can be effective in generating a long context with DP noise.

3 PRELIMINARIES

Large Language Models (LLMs) and Prompt Tuning. LLMs like GPT(Radford et al., 2018;
OpenAI, 2023), Llama (Touvron et al., 2023), and OPT (Zhang et al., 2022) are pre-trained to generate
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tokens conditioned on previous context. Generally, the language generation can be represented as
a conditional probability ptLM(y|x) where x is a prompt and y is the corresponding output. The
temperature t ≥ 0 can be increased to generate more diverse responses. We use π to represent a
front-end prompt, e.g., a task instruction that guides the LLM to think and conclude a response.
Prompt tuning optimizes a prompt π that can be wrapped with the input query x in a template F (π, x)
and improves the response quality of LLM ptLM(y|F (π, x)), e.g., the accuracy on text classification.

Differential Privacy (Dwork et al., 2006) stands as the gold standard for assessing the privacy
guarantee of machine learning algorithms. DP has gained significant attention among the privacy
community as a robust, quantifiable privacy notion, thereby becoming the de-facto choice in privacy
protection. Formally, we use D,D′ ∈ NX to denote two datasets with an unspecified size over
space X . We call two datasets D and D′ adjacent (denoted as D ∼ D′) if we can construct one by
adding/removing one data point from the other, e.g., D = D′ ∪ {z} for some z ∈ X .
Definition 3.1 (Differential Privacy (Dwork et al., 2006)). For ϵ, δ ≥ 0, a mechanismM : NX → Y
is (ϵ, δ)-differentially private if for every pair of adjacent datasets D ∼ D′ and for every subset
of possible outputs E ⊆ Y , we have PrM[M(D) ∈ E] ≤ eϵ PrM[M(D′) ∈ E] + δ here the
randomness is over the coin flips ofM.

The above definition indicates that for an arbitrary pair of neighboring datasets, a DP algorithm should
yield statistically indistinguishable output distribution, preventing adversaries from distinguishing
between the outcomes from the datasets. In our study, the mechanismM being considered is the
prompt generation algorithm.

4 METHOD

Assumptions. Due to the convenience and high performance of cloud models, it is a common interest
for a client to tune a prompt that can be served on the cloud. We assume that a client has a set of
data D that will be used for prompt tuning but has strict constraints on the data usage as follows. 1)
Data Confidentiality. The client data cannot be shared with the cloud-model vendor. 2) Information
Privacy. The tuned prompt should not leak private information about the client data, including but
not limited to enclosing private contents, and inferrable private information. 3) Model Ownership.
On the cloud, model ownership could be a concern and therefore parameters should not be shared
with the client.

Threat Model. We assume an adversary on the cloud-model vendor side which aims to gain private
information (e.g., membership information) from the private dataset stored in the client device. The
adversary can only get a tuned prompt provided by the client but can leverage any available LLMs for
attacking. The real-world consequence of privacy leakage through released prompts could result in
violation of privacy regulation, e.g., GDPR (2016). Concretely, private identifiable information (e.g.,
names) could be exposed in prompts. Empirically, the privacy risks have been identified in existing
works using viable attacks (Wang et al., 2023a; Duan et al., 2023b). Especially, Liu (2023) shows
that private instructions behind Bing can be extracted merely by adversarial prompts.

Main Idea. To preserve the data confidentiality and privacy, we propose Differentially-Private Offsite
Prompt Tuning (DP-OPT) which isolates the prompt tuning and data from the cloud model. The
general idea of DP-OPT includes two steps: 1) Private Prompt Engineering: Engineer a private
prompt π by fully localized model and datasets, i.e., π ∼ DP-OPT(D, ptLM(·)); 2) Prompt Transfer:
Deploy prompts on cloud model for public inference, i.e., y ← ptcloud-LM(y|F (x, π)), where F () is a
forward template.

To achieve the goal, the two major technical challenges are: (1) How to engineer a model-transferable
prompt? (2) How to guarantee that the prompts do not leak private information? We will answer the
two questions sequentially in the following two sections.

4.1 TRANSFERABLE DISCRETE PROMPTS ENABLE OFFSITE PROMPT TUNING

To make a prompt transferable across models, it is necessary to have a discrete prompt that is not
bonded with any model-specific embeddings or tokenization strategies. Importantly, recent advances
show that discrete prompts are naturally transferable (to some extent) across domains. Wen et al.
(2023) demonstrated that the projected soft prompts tuned by their method, PEZ, on GPT-2 (755M)
can be used on larger GPT-2 variants (1.3B) or different architectures, like OPT (6.7B). However,
such a transfer was shown to suffer from a significant loss of performance. As reported in their paper,
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the prompt tuned on GPT-2 (755M) would lose 10.9% absolute accuracy on SST-2 if transferred to
OPT (2.7B) and 15.7% to OPT (6.7B). We extend the same experiment to training on Vicuna-7b and
testing on DaVinci-003. Similarly, we observe a 6.9% loss of accuracy upon transfer. The situation
could worsen on smaller datasets according to our extended experiments in Appendix B.2.

As discussed in (Wen et al., 2023), the key reason for the poor transferability of projected prompt
tuning is the incoherence of the tuned prompts. For example, the method for SST-2 with the
fluency constraint produced “negative vibeThis immatureollywood MandarinollywoodThis energetic
screenplay.”. This means that the method does not generate a semantically transferable but might still
heavily hinge on the embedding space to prompt the training model.

Observing the limitation of projected prompt tuning, we intend to find a semantically transferable
prompt. To avoid the pitfalls of the embedding space, we look for a method that does not backward the
signal through the embeddings but produces a fluent and coherent prompt. Inspired by the automatic
prompt engineering (APE) (Zhou et al., 2022; Sordoni et al., 2023), we conjecture that the LLM
itself is an ideal tool for this purpose. Given a well-trained LLM, APE uses samples as context and
prompts the LLM to generate a task instruction, which is naturally fluent, coherent, and perhaps
transferable. As the task instruction is not optimized in the embedding space but in the output space,
it barely relies on hidden neural connections for enhancing inference accuracy. Instead, it captures
the explicit and generalizable task semantics that may be reused and strengthened by stronger LLMs.
Therefore, we hypothesize that discrete prompts crafted by one LLM may transfer to another with
target-model-dependent performance on the same task.

Source Target
Task Vicuna-7b Llama-2-70b ∆ DaVinci-003 ∆

SST-2 92.8(0.2) 93.3(1.8) 0.5 92.7(0.3) −0.1
Trec 59.9(5.7) 65.2(7.5) 5.3 70.7(3.9) 11.2

Mpqa 75.8(6.2) 78.0(2.3) 2.2 81.4(1.6) 5.6
Disaster 61.7(3.2) 73.1(1.6) 11.4 77.0(1.9) 15.3

Table 1: DLN-1 can produce transferable prompts, bring-
ing non-trivial gains (∆). Accuracy (%) on test sets is
reported with standard deviation in the brackets.

Make LLM Prompt Engineer. To gain
the best performance, we consider the
state-of-the-art APE method, Deep Lan-
guage Network (DLN) (Sordoni et al.,
2023), that mimics gradient-based opti-
mization to use forward and backward to
train prompts on a dataset D = {(x, y)}
with input-output pairs (x, y). 1) Prompt
Generation. In the forward pass, an
LLM is prompted via a forward template
F (x, π) to predict labels on a small batch
of training samples S ← {(x, y) ∼ D},
i.e., ŷ ∼ ptLM(y|F (x, π)). Then in the backward pass, the correct and incorrect predictions will be
used as in-context examples for LLM to generate a task instruction π. Formally, π is sampled from
ptLM(π|Bπ({(x, y, ŷ)}, π)) where Bπ is a backward template. 2) Prompt Selection. With a set of
candidate prompts, DLN-1 yields the best prompt with the highest log probability on the training set.

LLM-Engineered Prompts Are Transferrable. To verify our hypothesis that the prompts generated
by DLN-1 are transferable across models and gain better accuracy, we let DLN-1 train prompts
using a relatively small LLM, Vicuna-7b (Chiang et al., 2023). Then, the generated prompt is then
applied to a larger homogeneous-architecture model, Llama-2-70b, and a heterogeneous-architecture
and closed-source model, DaVinc-003. Experiments are carried out on four sentiment classification
tasks. In Table 1, DLN-1 demonstrates a competitive performance on the target model. Different
from traditional observation, DLN-1 even attains 8% accuracy gains after transfer to DaVinci-003 on
average and 4.9% to Llama-2-70b. Not surprisingly, the transferrable prompts generated by DLN-1
are also coherent and fluent as exemplified in Fig. 2.

4.2 DIFFERENTIALLY-PRIVATE OFFSITE PROMPT TUNING (DP-OPT)

Though leveraging DLN-1 can keep data confidential against the cloud model by transferring prompts,
it does not provide any provable guarantee for privacy protection. Notice that DLN-1 feeds private
samples to LLM to generate instruction prompts, which may leak private information. To unveil
the risk, we present an example prompt from DLN-1 in Fig. 2, where three private examples are
verbatim copies from the training set. The only difference between the generated examples and
private examples is the capitalization, as LLM tends to make the sentence grammatically correct.
Since LLMs are known to repeat words from prompts, it is not surprising that LLMs copy private
in-content examples into generated prompts.
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DLN-1 SST-2 prompt

Classify the input text as positive or negative. Use the correct output for each input. Avoid phrases like
"might" or "probably", "carnage and", "i recommend" or words like "barely". Input: "(1) Actor Michel
Serrault" - Correct Output: positive Input: "(2) Unique residences" - Correct Output: positive Input: "(3) Buy
the movie milk when the TV cow is free" - Correct Output: negative Input: A
Leaked training samples: (1) ▶[actor michel serrault ] (2) ▶[unique residences ] (3) ▶[buy the movie milk when the tv cow is free]

Figure 2: A DLN-1-generated prompt is coherent but suffers from privacy leakage. We highlight the
potential leakage in the prompt and semantically-nearest ▶[leaked sample] from the training set.

Algorithm 1 DP-OPT (ϵ0 <∞) or OPT (ϵ0 =∞)
Input: Training datasets D = {(x, y)} and Dval = {(x, y)}, LLM ptLM(·) with generation
temperature t, number of prompts N , and privacy parameters ϵ0, δ0.

1: Initialize π0 with a task description or empty and Π← ∅
2: D′ ← {(x, y, ŷ)|ŷ = p0LM(y|F (x, π)), ∀(x, y) ∈ D} ▷ Forward pass
3: for n ∈ {1, . . . , N} do
4: πn ∼ DP-EnsGen(π,D′, ϵ0, δ0) ▷ Private Prompt Generation
5: Π← Π ∪ {πn}
6: π̂ ← DP-Argmaxϵ0π∈Π Accuracy(π;Dval) · |Dval| ▷ Private Prompt Selection
7: Output π̂

To defend the risk, we develop a DP variant of DLN-1, termed DP-OPT, which provides provable
privacy protection through the DP noise mechanism. In DP-OPT, we privatize the two core operations
in DLN-1: prompt generation and prompt selection, that directly access private data.

Private Prompt Generation. As demonstrated above, the main privacy leakage comes from non-
private prompt proposals. In Algorithm 2, we develop a privatized version of the prompt generation.
Specifically, we leverage the classic sample-and-aggregate paradigm (Nissim et al., 2007), where we
partition the full batch of data into disjoint subsets. We then generate each token based on the voting
results formed by querying the language model with each disjoint subset. While we can simply apply
the commonly used Exponential Mechanism (EM) (McSherry & Talwar, 2007) to privately release
the token with the maximum count, the naive application of EM may result in high variance and poor
performance as the token space can be as large as 30,000 Chiang et al. (2023). Fortunately, extending
EM on large domain space has been studied in the DP community. In this work, we leverage the
LimitedDomain mechanism (Durfee & Rogers, 2019) which reduces the domain space to only those
tokens with top-k̄ vote counts (with some privacy budget). We note that LimitedDomain has a small
failure probability that will not output any token for the scenario where the highest vote count is not
too high compared with the k̄th highest vote count. In this case, we retry to generate using the next
batch of data. If we run into more than one failure case for generating a single token, it means that
the disjoint partitions do not have a majority agreement on a single token choice and we terminate the
token generation for this prompt.

Private Selection among Generated Prompts. With the generated prompt candidates, DLN-1
selects the best one by contradicting their performance on training samples. This may leak private
information about the validation set when some private samples significantly affect the evaluation. To
defend against such risks, we use the exponential mechanism to select the best-generated prompt that
achieves the highest count of correct predictions on the validation set in a differentially private manner.
Formally, given a histogram h, we define DP-Argmaxϵ as Pr[DP-Argmaxϵ(h) = j] ∝ exp (ϵhj).
Note that this part protects the privacy of the validation set, which is disjoint with the training set.
Hence, the privacy cost of this part does not add up to the privacy cost of prompt generation.

We adopt the commonly used Rényi differential privacy (RDP) (Mironov, 2017) to track the privacy
cost of Algorithm 1 for generating prompts and ensure that the total privacy cost is within a prespeci-
fied budget. To understand the asymptotic behavior of the number of generated tokens m, we provide
Theorem A.3 in the appendix showing that the growth of ϵ is of the order of

√
mϵ0. We defer the

detailed privacy analysis to Appendix A.2.
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Algorithm 2 DP-EnsGen: Differentially-Private Ensemble Generation
Input: Max number of new tokens L, privacy parameters: ϵ0, δ0, subsampling rate q, and predicted
dataset D′.

1: Initialize output z ← [ ] and l← 0
2: for l < L do
3: if ϵ <∞ or l = 0 then
4: Sample a batch S ← {(x, y, ŷ) ∼ D′} by Poisson sampling with probability q
5: Partition S′ into disjoint subsets of equal size (∪Jj=1Sj = S′)
6: h = Histogram({τj ← ptLM(π|Bπ(Sj , π, z)) for j ∈ [J ]}) ▷ Histogram of the next token
7: if ϵ <∞ then
8: τl ← LimitedDomain(h; k̄ = 10, ϵ0, δ0) (Algorithm 4) ▷ Select private top-1 token
9: else

10: τl = argmaxi hi

11: if τ is EOS then Break ▷ Append generation
12: if τl =⊥ then
13: if l > 0 and τl−1 =⊥ then Break
14: else
15: l← l + 1
16: Output [z0, · · · , zl]

Table 2: Test accuracy (%) with standard deviation in the brackets. All trainable methods are
trained on Vicuna-7b. Bold methods are model-transferable and therefore are tested on DaVinci-003.
PromptSGD and PromptDPSGD are not transferable and, thereby are tested on Vicuna-7b. The
non-confidential baseline uses private data in prompts. Confidential and confidential-and-private

prompts are trained on local Vicuna-7b. We highlight the best and the second-best results in each
setting as bold and underlined numbers, respectively.

Method SST-2 Trec Mpqa Disaster Average

ICL 94.7(0.4) 79.1(0.5) 88.8(0.1) 69.0(5.9) 82.9
PromptSGD (Vicuna-7b) 93.7(1.1) 56.1(6.7) 88.1(0.8) 79.4(1.2) 79.3

DLN-1 92.7(0.3) 70.7(3.9) 81.4(1.6) 77.0(1.9) 80.4
OPT (ours) 92.4(0.5) 71.5(0.8) 85.8(1.2) 79.0(0.9) 82.2

PromptDPSGD (Vicuna-7b) 90.4(1.7) 32.3(3.1) 84.2(4.0) 78.5(0.4) 70.5
0-shot 92.4(0.0) 51.8(0.2) 84.5(0.1) 76.4(0.2) 76.3

DP-OPT (ours) 92.2(0.8) 68.7(6.5) 85.8(0.7) 78.9(0.3) 81.4

5 EXPERIMENTS

Tasks. Our study focuses on sentiment classification tasks. We use SST-2 from the GLUE bench-
mark (Wang et al., 2018) which includes 6.7× 104 samples. Trec and Mpqa (Lu et al., 2021) and
Disaster (Bansal et al., 2019) are smaller datasets consisting of fewer training samples. Both SST2
and Mpqa are sentiment classification tasks for positive or negative reviews. Trec is to predict a
6-option label for question types. Disaster analyzes if the sentence is relevant to disaster.

Setup. We use Vicuna-7b as the local model to train prompts by default. For DP algorithms, we
follow the common practice to set the privacy budget as ϵ = 8 and δ = 1/|D| where |D| is the
training size (De et al., 2022; Sander et al., 2023; Duan et al., 2023a). More experiment details are
deferred to Appendix B.1.

5.1 PRIVATE OFFSITE PROMPT TUNING

In Table 2, we evaluate the effectiveness of DP-OPT in generating private prompts for DaVinci-003.
Our private baseline is the PromptDPSGD which uses DPSGD (Abadi et al., 2016) to tune soft
prompts (Duan et al., 2023a). We also include the non-private variant of PromptDPSGD, PromptSGD,
for comparison. As a non-private baseline, we follow (Sordoni et al., 2023) to include the In-Context
Learning (ICL) with 5 class-balanced demonstrations that have secondary best performance compared
to DLN-1 in the sentiment classification. To show the improvement of training, we evaluate the
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Table 3: Transfer test accuracy (%) on different models with standard deviation in brackets. Trainable
methods (bold) are executed on Vicuna-7b. ICL is represented as an upper bound without confi-
dentiality. We highlight the best and the second-best confidential methods as bold and underlined
numbers, respectively.

Task Method Vicuna-7b Vicuna-33b Llama-2-13b Llama-2-70b DaVinci-003 Average

SST-2

ICL 90.1(1.5) 94.2(0.1) 94.9(0.4) 95.5(0.6) 94.7(0.4) 93.9
DLN-1 92.8(0.2) 92.5(2.2) 93.5(1.0) 93.3(1.8) 92.7(0.3) 93.1
OPT 89.7(2.7) 91.8(1.7) 92.1(0.9) 94.2(1.3) 92.4(0.5) 92.0

DP-OPT 89.5(2.6) 92.5(0.3) 92.7(1.5) 93.0(1.6) 92.2(0.8) 92.0

Trec

ICL 49.8(18.9) 66.9(3.9) 77.8(7.8) 72.7(8.7) 79.1(5.1) 69.2
DLN-1 59.9(5.7) 55.2(8.2) 38.6(0.5) 65.2(7.5) 70.7(3.9) 57.9
OPT 62.1(1.2) 72.5(10.2) 53.7(14.1) 52.3(1.6) 70.4(2.7) 62.2

DP-OPT 65.3(4.3) 69.7(15.1) 61.9(2.2) 53.6(3.8) 68.7(6.5) 63.8

Mpqa

ICL 85.4(2.0) 85.6(0.9) 86.0(0.9) 87.8(0.2) 88.8(0.1) 86.7
DLN-1 75.8(6.2) 64.8(8.7) 66.3(10.3) 78.0(2.3) 81.4(1.6) 73.2
OPT 80.8(1.2) 75.6(1.6) 69.5(9.8) 84.5(1.1) 85.8(1.2) 79.2

DP-OPT 80.7(3.3) 67.8(6.7) 82.8(1.6) 81.7(3.1) 85.8(0.7) 79.8

Disaster

ICL 58.9(1.3) 52.0(4.2) 61.2(3.4) 69.6(4.5) 69.0(5.9) 62.1
DLN-1 61.7(3.2) 62.4(4.3) 66.3(8.3) 73.1(1.6) 77.0(1.9) 68.1
OPT 67.4(5.1) 60.6(9.1) 57.8(10.0) 49.1(12.0) 79.0(0.9) 62.8

DP-OPT 65.6(0.3) 53.7(0.0) 67.9(1.5) 42.9(0.3) 78.9(0.3) 61.8

initial instruction (0-shot) wrapped in the forward template. DLN-1 serves as the state-of-the-art
LLM-driven tuning method for offsite transfer.

We demonstrate that offsite prompt tuning via OPT and DP-OPT can significantly enhance prompt
efficacy compared to the initial instruction (0-shot). For three tasks (SST-2, Mpqa, and Disaster),
OPT and DP-OPT approach the performance of the non-private baseline, ICL. In the absence of DP,
OPT boosts performance for these three tasks relative to DLN-1, likely due to the ensemble’s ability
to bolster model generalization.

While automatic discrete prompts often fall short compared to soft prompts in the literature (Wen et al.,
2023), our research indicates that using transfer prompts with DaVinci-003 can somewhat alleviate
this discrepancy. When operating within the same DP budget, both OPT and DP-OPT demonstrate
superior results compared to PromptDPSGD and are nearly on par with the non-private PromptSGD.
On the SST-2 dataset, DP-OPT matches the accuracy of PromptSGD. For Trec, discrete prompts
consistently surpass the performance of soft prompts. The underwhelming results of PromptDPSGD
can be traced back to weak zero-shot performance on Trec and the noisy gradient descent. However,
when the zero-shot approach excels, as seen in our other three datasets, PromptDPSGD will yield
better accuracy.

In Table 3, we assess the transferability of the prompts produced by Vicuan-7b on various larger
models including Vicuna-33b, Llama-2-13b, Llama-2-70b (Touvron et al., 2023) and DaVinci-003
(text generation version of GPT3.5) (Ouyang et al., 2022). The experiment yields several intriguing
implications. 1) The closed-source model, DaVinci-003, exhibits greater stability in transfer compared
to its open-sourced counterparts, where DP-OPT presents competitive performance compared to
non-private baselines. Such stability offers more reliable predictions in various applications and
therefore encourages clients to pair DP-OPT with the closed-source DaVinci-003. 2) Without the DP
noise mechanism, the ensemble method (OPT) itself enhances prompt quality relative to DLN-1 on
Vicuna-33b and Llama-2-13b. 2) We observe a discrepancy in DLN-1’s performance on Trec, which
is considerably lower than the figures presented in (Sordoni et al., 2023). It seems that Vicuna-7b
struggles with the complexities of the 5-way classification task present in the Trec dataset when
engineering prompts. This limitation could be a result of architectural constraints or training nuances
specific to Vicuna-7b.

5.2 ABLATION STUDIES

Privacy-utility Trade-off. In order to examine the privacy-utility trade-off of DP-OPT, we con-
duct an ablation study with varying privacy parameters ϵ and report the test accuracy of DP-
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OPT SST2 prompt

Classify the input text as positive or negative. # Student successes Input: "(1) the movie was a masterpiece"
Correct Output: positive Input: "(2) the movie was a disaster" Correct Output
Leaked training samples: (1) ▶[the movie is hardly a masterpiece] (2) ▶[the movie is amateurish] ▶[the movie is a disaster]

DP-OPT SST2 prompt with budget ϵ = 8

Classify the input text as positive or negative. # Student successes Input: "(1) a movie that is a masterpiece"
Correct Output: positive Input: "(2) the movie was a disaster" Correct Output: negative Input
Leaked training samples: (1) ▶[the movie is hardly a masterpiece] (2) ▶[the movie is amateurish] ▶[the movie is a disaster]

DP-OPT SST2 prompt with budget ϵ = 4

Classify the input text as positive or negative. * For positive text: + "(1) The film was a masterpiece." + "(2)
a collectively stellar performance" + "(3) The book was a delight"
Leaked training samples: (1) ▶[the movie is hardly a masterpiece] (2) ▶[the comedy was funny] (3) ▶[is a heartfelt story] ▶[was a guilty pleasure]

DP-OPT SST2 prompt with budget ϵ = 2

Classify the input text as positive or negative.

Figure 3: Examples of Generated Prompts. OPT/DP-OPT tends to generate pseudo examples
(blue text) which do not belong to the training set. We highlight potentially-leaked samples and
semantically-nearest retrieved ▶[training samples] (there might be multiple such samples). More
examples are in Table 10.

OPT on the SST-2 dataset with different test models, shown in Fig. 4. In the smallest model,
Vicuna-7b, we observe a trade-off between accuracy and privacy: when the privacy budget (ϵ)
reduces to 1, the accuracy drops to 86% approximately. The accuracy drops because when the
budget is limited, the LimitedDomain will prohibit DP-OPT from generating any new content.
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Figure 4: Privacy-utility trade-off of
DP-OPT. Smaller ϵ indicates stricter
privacy protection.

Interestingly, such a trade-off is greatly mitigated when scaling
up model sizes. We notice that the LLM can still repeat the
initial instructions even if under a very limited budget. Thus,
the mitigation can be attained when larger LLMs present a
strong zero-shot ability.

Examples of Privacy Leakage in Generated Prompts. In
Fig. 2 and Fig. 3, we present examples of generated prompts
that potentially leak private samples from the training dataset.
To find such examples, we perform a semantic similarity search
to retrieve the training sentence closest to each forged demon-
stration (details in Appendix B.1). In the prompts generated
by DLN-1 (Fig. 2), we observe verbatim copies of training
examples. In contrast, OPT and DP-OPT will modify a few words when generation, potentially due to
the randomness of the ensemble. In Fig. 3, The word “is” in training example “the movie is a disaster”
is replaced with “was” in an OPT-generated prompt. Actually, “the movie is” is a common format
in the training set, for example, “the movie is amateurish”. On the other hand, DP-OPT-generated
prompts exhibit privacy-preserving behaviors due to their formal privacy guarantee. Especially, when
ϵ get smaller, there are fewer word copies. Our observations of the generated prompts imply that
verbatim copies of training examples are diminished by reducing ϵ in DP-OPT.

6 DISCUSSION AND CONCLUSION

With the rising popularity of prompt tuning, our research endeavors to extend this tool to applications
with heightened privacy concerns. We introduce the pioneering end-to-end system designed to derive
differentially-private prompts from confidential training datasets and deploy these prompts on cloud
models. Our approach is underpinned by theoretical validations of its privacy assurances, and through
empirical analysis, we highlight the advantageous balance it strikes between utility and data privacy
caused by the strong performance of scaled LLMs.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The work of Z. Wang is in part supported by the National Science Foundation under Grant IIS-
2212176. This work is partially supported by the National Science Foundation under grant No.
1910100, No. 2046726, No. 2229876, DARPA GARD, the National Aeronautics and Space Admin-
istration (NASA) under grant No. 80NSSC20M0229, the Alfred P. Sloan Fellowship, the Michael
Hammer Fellowship at MIT, and Princeton’s Gordon Y. S. Wu Fellowship. Portions of this research
were conducted with the advanced computing resources provided by Texas A&M High Performance
Research Computing1, a composable computing cluster (He et al., 2023). We also want to thank
anonymous reviewers for their constructive suggestions and comments.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep Learning with Differential Privacy. In CCS: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pp. 308–318, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978318.

Trapit Bansal, Rishikesh Jha, and Andrew McCallum. Learning to few-shot learn across diverse
natural language classification tasks. arXiv preprint arXiv:1911.03863, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Bun and Thomas Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and
Lower Bounds. In Martin Hirt and Adam Smith (eds.), Theory of Cryptography, volume 9985,
pp. 635–658. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN 978-3-662-53640-7
978-3-662-53641-4. doi: 10.1007/978-3-662-53641-4_24.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914. IEEE, 2022a.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. arXiv preprint
arXiv:2202.07646, 2022b.

Ricardo Silva Carvalho, Theodore Vasiloudis, Oluwaseyi Feyisetan, and Ke Wang. Tem: High utility
metric differential privacy on text. In Proceedings of the 2023 SIAM International Conference on
Data Mining (SDM), pp. 883–890. SIAM, 2023.

Yulong Chen, Yang Liu, Li Dong, Shuohang Wang, Chenguang Zhu, Michael Zeng, and Yue Zhang.
Adaprompt: Adaptive model training for prompt-based nlp. arXiv preprint arXiv:2202.04824,
2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlocking high-
accuracy differentially private image classification through scale. arXiv preprint arXiv:2204.13650,
2022.
1https://hprc.tamu.edu/aces/

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://hprc.tamu.edu/aces/


Published as a conference paper at ICLR 2024

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Minxin Du, Xiang Yue, Sherman SM Chow, and Huan Sun. Sanitizing sentence embeddings (and
labels) for local differential privacy. In Proceedings of the ACM Web Conference 2023, pp.
2349–2359, 2023.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochastic
parrots: Differentially private prompt learning for large language models. Conference on Neural
Information Processing Systems, 2023a.

Haonan Duan, Adam Dziedzic, Mohammad Yaghini, Nicolas Papernot, and Franziska Boenisch.
On the privacy risk of in-context learning. In The 61st Annual Meeting Of The Association For
Computational Linguistics, 2023b.

David Durfee and Ryan M Rogers. Practical differentially private top-k selection with pay-what-you-
get composition. Advances in Neural Information Processing Systems, 32, 2019.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity in
Private Data Analysis. In Shai Halevi and Tal Rabin (eds.), Theory of Cryptography, Lecture Notes
in Computer Science, pp. 265–284. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-32732-5.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pp. 51–60. IEEE, 2010.

Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and Tom Diethe. Privacy-and utility-preserving
textual analysis via calibrated multivariate perturbations. In Proceedings of the 13th international
conference on web search and data mining, pp. 178–186, 2020.

GDPR. Gdpr, 2016. URL https://gdpr-info.eu/.

Zhenhua He, Aditi Saluja, Richard Lawrence, Dhruva Chakravorty, Francis Dang, Lisa Perez, and
Honggao Liu. Performance of distributed deep learning workloads on a composable cyberinfras-
tructure. In Practice and Experience in Advanced Research Computing, pp. 60–67. 2023.

John Hewitt, Xiang Lisa Li, Sang Michael Xie, Benjamin Newman, and Percy Liang. Ensembles and
cocktails: Robust finetuning for natural language generation. 2021.

Bairu Hou, Joe O’connor, Jacob Andreas, Shiyu Chang, and Yang Zhang. Promptboosting: Black-box
text classification with ten forward passes. In International Conference on Machine Learning, pp.
13309–13324. PMLR, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Juraj Juraska, Panagiotis Karagiannis, Kevin K Bowden, and Marilyn A Walker. A deep ensemble
model with slot alignment for sequence-to-sequence natural language generation. arXiv preprint
arXiv:1805.06553, 2018.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

11

https://gdpr-info.eu/


Published as a conference paper at ICLR 2024

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Kevin Liu. The entire prompt of microsoft bing chat?! (hi, sydney.), 2023. URL https://
twitter.com/kliu128/status/1623472922374574080.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-
Béguelin. Analyzing leakage of personally identifiable information in language models. arXiv
preprint arXiv:2302.00539, 2023.

Justus Mattern, Benjamin Weggenmann, and Florian Kerschbaum. The limits of word level differential
privacy. arXiv preprint arXiv:2205.02130, 2022.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103. IEEE, 2007.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
Quantifying privacy risks of masked language models using membership inference attacks. arXiv
preprint arXiv:2203.03929, 2022.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium
(CSF), pp. 263–275. IEEE, 2017.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 75–84, 2007.

R OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Jonas Oppenlaender, Rhema Linder, and Johanna Silvennoinen. Prompting ai art: An investigation
into the creative skill of prompt engineering. arXiv preprint arXiv:2303.13534, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Silviu Pitis, Michael R Zhang, Andrew Wang, and Jimmy Ba. Boosted prompt ensembles for large
language models. arXiv preprint arXiv:2304.05970, 2023.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Adam Roberts, Colin Raffel, Katherine Lee, Michael Matena, Noam Shazeer, Peter J Liu, Sharan
Narang, Wei Li, and Yanqi Zhou. Exploring the limits of transfer learning with a unified text-to-text
transformer. 2019.

Tom Sander, Pierre Stock, and Alexandre Sablayrolles. Tan without a burn: Scaling laws of dp-sgd.
In International Conference on Machine Learning, pp. 29937–29949. PMLR, 2023.

12

https://twitter.com/kliu128/status/1623472922374574080
https://twitter.com/kliu128/status/1623472922374574080


Published as a conference paper at ICLR 2024

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good prompt
too? arXiv preprint arXiv:2212.10539, 2022.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18.
IEEE, 2017.

Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang
Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux. Deep language networks: Joint
prompt training of stacked llms using variational inference. arXiv preprint arXiv:2306.12509,
2023.

Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
differentially private few-shot generation. arXiv preprint arXiv:2309.11765, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Dietrich Trautmann, Alina Petrova, and Frank Schilder. Legal prompt engineering for multilingual
legal judgement prediction. arXiv preprint arXiv:2212.02199, 2022.

Saiteja Utpala, Sara Hooker, and Pin Yu Chen. Locally differentially private document generation
using zero shot prompting. arXiv preprint arXiv:2310.16111, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. Decodingtrust: A comprehensive assessment of
trustworthiness in gpt models. arXiv preprint arXiv:2306.11698, 2023a.

Jiaqi Wang, Enze Shi, Sigang Yu, Zihao Wu, Chong Ma, Haixing Dai, Qiushi Yang, Yanqing Kang,
Jinru Wu, Huawen Hu, et al. Prompt engineering for healthcare: Methodologies and applications.
arXiv preprint arXiv:2304.14670, 2023b.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Conference on Neural Information Processing Systems, 2023.

Tong Wu, Ashwinee Panda, Jiachen T Wang, and Prateek Mittal. Privacy-preserving in-context
learning for large language models. In The Twelfth International Conference on Learning Repre-
sentations, 2023.

Lukas Wutschitz, Huseyin A. Inan, and Andre Manoel. dp-transformers: Training transformer
models with differential privacy. https://www.microsoft.com/en-us/research/
project/dp-transformers, August 2022.

Guangxuan Xiao, Ji Lin, and Song Han. Offsite-tuning: Transfer learning without full model. arXiv
preprint arXiv:2302.04870, 2023.

Zekun Xu, Abhinav Aggarwal, Oluwaseyi Feyisetan, and Nathanael Teissier. A differentially private
text perturbation method using a regularized mahalanobis metric. arXiv preprint arXiv:2010.11947,
2020.

13

https://www.microsoft.com/en-us/research/project/dp-transformers
https://www.microsoft.com/en-us/research/project/dp-transformers


Published as a conference paper at ICLR 2024

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. International Conference
on Learning Representations, 2022.

Yuqing Zhu and Yu-Xiang Wang. Adaptive private-k-selection with adaptive k and application
to multi-label pate. In International Conference on Artificial Intelligence and Statistics, pp.
5622–5635. PMLR, 2022.

14



Published as a conference paper at ICLR 2024

A METHOD

A.1 DEEP LANGUAGE NETWORK

In Algorithm 3, we present the DLN-1 algorithm from (Sordoni et al., 2023) where we highlight the
potential privacy leakage.

Algorithm 3 Deep Language Network (DLN-1) (Sordoni et al., 2023) and potential privacy leakage .

Input: Client datasets D = {(x, y)}, number of prompts N , number of iterations T

1: Initialize π with a task description or empty
2: for t ∈ {1, . . . , T} do
3: S ← {(x, y) ∼ D} ▷ Sample minibatch
4: ŷ ← p0LM(y|F (x, π)) for all (x, y) in S ▷ Foward pass
5: Π← {πn ∼ p0.7LM(π|Bπ({x, y, ŷ}, π))}Nn=1 ▷ Sample N candidate prompts

6: π ← argmaxπ∈Π E(x,y)∼D log pLM(y|F (x, π)) ▷ Select the best prompt

7: Output π

A.2 PRIVACY ANALYSIS

Rényi differential privacy (RDP) (Mironov, 2017) is a variant of the standard (ϵ, δ)-DP that uses
Rényi-divergence as a distance metric between the output distributions ofM(D) andM(D′), which
is particularly useful in training differentially private machine learning models.
Definition A.1 (Rényi Differential Privacy (Mironov, 2017)). We say that a mechanism M is
(α, ϵM(α))-RDP with order α ∈ (1,∞) if for every neighboring dataset D ∼ D′, we have:

Dα (M(D)∥M (D′)) :=
1

α− 1
logEo∼M(D′)

[(
µM(D)(o)

µM(D′)(o)

)α]
≤ ϵM(α) (1)

where µM(·) denotes the density function ofM’s distribution.

Next, we introduce a strict relaxation of RDP which allows for a small failure probability δ. It is
analog to the δ term in the standard DP definition.
Definition A.2 (Approximate RDP (Bun & Steinke, 2016; Zhu & Wang, 2022)). We say a randomized
algorithmM is δ-approximately (α, ϵM(α))-RDP with order α ≥ 1, if for all neighboring dataset
D,D′, there exist events E (depending onM(D)) and E′ (depending onM(D′)) such that Pr[E] ≥
1− δ and Pr[E′] ≥ 1− δ, and ∀α ≥ 1, we have

Dα (M(D)|E ∥M (D′) |E′) ≤ ϵM(α) (2)

In this work, we use RDP and approximate RDP for a tighter measure of the privacy cost, as the
composition for both privacy notions is trivial. After we obtain the approximate RDP guarantee for
the overall mechanism, we can then convert the privacy guarantee back into the standard DP definition
(see Bun & Steinke (2016) and Mironov (2017) for the composition and conversion formula for RDP
and approximate RDP). In the following, we state the privacy guarantee of individual building blocks
for private prompt generation and selection in terms of (approximate) RDP.

A.2.1 PRIVACY ANALYSIS FOR PRIVATE PROMPT GENERATION

The exponential mechanism takes a utility function q : NX × Y → R and can be thought of as
evaluating how good q(D, y) is for an outcome y ∈ Y on dataset D. In our context, y ∈ Y is a
potential token to be released and q(D, y) is the vote count for the token y from the disjoint partitions.
Definition A.3 (Exponential Mechanism (McSherry & Talwar, 2007)). Let EMq : NX → Y be a
mechanism where for all outputs y ∈ Y we have

Pr[EMq(D) = y] ∝ exp

(
ϵ

2∆(q)
q(D, y)

)
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where ∆(q) is the sensitivity of the quality score, i.e. for all neighboring inputs D,D′ we have
supy∈Y |q(D, y)− q(D′, y)| ≤ ∆(q)

Theorem A.1 (Bun & Steinke (2016)). The exponential mechanism is ϵ-DP, and (α, ϵEM (α))-RDP
s.t. ϵEM (α) := α

2 ϵ
2.

We now state the privacy guarantee for LimitedDomain algorithm.
Theorem A.2. Algorithm 4 satisfy (ϵ, δ)-DP and δ-approximately (α, ϵEM (α))-RDP.

Proof. This immediately follows from the proof of Theorem 1 from Durfee & Rogers (2019), as
LimitedDomain algorithm is essentially an exponential mechanism with an extra step of reducing the
domain size, whose privacy cost is being added to the δ term.

Algorithm 4 LimitedDomain(h; k, k̄, ϵ0, δ0) from (Durfee & Rogers, 2019), where ∆0 is the ℓ0
sensitivity of the utility function, and ∆∞ is the ℓ∞ sensitivity of the utility function.
Input: Histogram h, top-k (by default, k = 1) from the k̄ ∈ [k, d) limited domain, privacy
parameters ϵ0, δ0

1: Sort h such that h(1) ≥ h(2) ≥ . . .

2: h⊥ ← hk̄+1 + 1 + 2 ln(min{∆0, k̄, d− k̄}/δ0)/ϵ0
3: v⊥ ← h⊥ +Gumbel(2∆∞/ϵ0)
4: for j ≤ k̄ do
5: v(j) ← h(j) +Gumbel(2∆∞/ϵ0)

6: Sort {v(j)} ∪ v⊥ and let vi(1) , . . . , vi(j) , v⊥ be the sorted list up until v⊥
7: Output {i(1), . . . , i(j),⊥} if j < k, otherwise {i(1), . . . , i(k)}

Asymptotic Privacy Analysis. Below, we provide an asymptotic analysis for the overall privacy
bound that may facilitate the understanding of the capability of DP-OPT. Theorem A.3 shows the
number of generated tokens is essentially limited by the privacy budget.
Theorem A.3. Suppose we set the privacy parameters of LimitedDomain as ϵ0, δ0, then the total
privacy bound of our private prompt generation algorithm for generating m tokens is (ϵ,mδ0+δ′)-DP
with any δ′ > 0 and

ϵ = O(
√
m log(1/δ′)ϵ0)

Proof. This immediately follows from the advanced composition theorem of differential privacy
(Dwork et al., 2010).

We stress that Theorem A.3 is only used for illustrating the asymptotic growth rate of the ϵ with
the number of tokens being generated. We use the RDP-based privacy accountant to numerically
calculate ϵ in the actual implementation, which leads to a much tighter bound and therefore allows
generating more tokens.

A.2.2 PRIVATE SELECTION AMONG GENERATED PROMPTS

While our private selection algorithm is simply an exponential mechanism, we can actually obtain
a tighter privacy bound than what is stated in Theorem A.1. We first state the definition of the
monotonic utility function.
Definition A.4 (Monotonic Utility Function). We say that a utility function q(·, ·) is monotonic in
the dataset if the addition of a data record can either increase (decrease) or remain the same with any
outcome, e.g. q(D, y) ≤ q(D ∪ {x}, y) for any input and outcome y.

Clearly, in our context, since the utility function is defined as the count of correct predictions on the
validation set, the addition of a validation point will not decrease the utility function, and hence our
utility function is monotonic in this case. We now have the following tighter privacy guarantee.
Theorem A.4 (Durfee & Rogers (2019)). The exponential mechanism is ϵ/2-DP, and (α, ϵmEM (α))-
RDP s.t. ϵmEM (α) := α

8 ϵ
2 if the utility function q is monotonic.
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A.3 DISCUSSION OF COMPUTATIONAL EFFICIENCY

Our method is quite efficient and feasible for black-box models. Since we do not require gradients
but only the forward pass which mimics zeroth order gradients, our method is much more memory
efficient for any gradient-based method, including soft prompt tuning. The main computation
bottleneck comes from the ensemble. Here, we provide detailed memory and computation analysis
of the ensemble. 1) Computation efficiency. Our method will do ensemble prediction per token
which has a similar complexity as inference. Parallelizing the process could speed up the training.
2) Memory efficiency of training. As we only do inference, the complexity only depends on the
context length. We use k demonstrations in meta-prompts, whose complexity is close to a k-shot
in-context learning. 3) Memory efficiency of inference. Compared to ICL, our generated prompts are
short resulting in low overhead for memory at inference time.
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B EXPERIMENTAL SUPPLEMENTARIES

B.1 EXMPERIMENT DETAILS

We present the detailed statistics of all four tasks in Table 4. Disaster has the smallest volume of
training data. But Trec is short on samples per class, making it a harder task.

Table 4: Task statistics. Note that different from (Sordoni et al., 2023), we use the full set rather than
a small fixed 250-sample subset of the original dataset for testing. The validation set is selected from
the training set per random seed. The ratio of validation with respect to the training set is included in
brackets.

Task # Train # Valid # Test # Class Description

SST-2 66, 674 673 (1%) 1, 820 2 Sentiment analysis on movie reviews
Trec 5, 452 272 (5%) 500 6 Question type classification

Mpqa 8, 603 430 (5%) 2, 000 2 Sentiment analysis
Disaster 4, 430 221 (5%) 1, 000 2 Determine whether a sentence is relevant to a disaster.

Hyperparametes. For DP algorithms, we limit the DP budget as ϵ = 8. and δ = 1/|D|. Detailed
parameters for DP-OPT are given in Table 5. As the total δ is determined by sample size, we
mainly tune the ϵ0 and δ0 for each dataset such that enough tokens can be generated in DP-OPT.
For DP-OPT and OPT on Mpqa, we set the repetition penalty to be 1.1 to avoid repeated words.
For DPSGD, we adopt dp-transformers package to reduce the memory overhead caused by
gradient clipping (Wutschitz et al., 2022) and tune the hyper-parameters for each dataset. We follow
(Duan et al., 2023a) to use the same templates for soft prompt tuning. For all our experiments,
we report average and standard deviation from three repetitions with seeds, {1, 2, 3}. For ICL, the
randomness is on the selection of in-context examples. We notice the most influential factor in ICL
is the balance of examples in our experiment. We follow DLN-1 to implement the ICL where we
sample 5 balanced examples. Our results are comparable to those reported in (Sordoni et al., 2023) in
Trec and Mpqa. ICL results on Disaster are different because we used a much larger test set (using
the standard test set of Disaster) while Sordoni et al. selected a small 100-sample subset for the test.
For all trainable methods, we hold out 5% of training data for validation and report accuracy on the
original test set.

Table 5: Hyperparamters for DP-OPT and OPT. For batch size, 5× 205 means 205 5-demo meta-
prompts. ϵ0 and δ0 are the parameters for LimitedDomain in Algorithm 4.

Experiment Max new tokens Batch size ϵ0 δ0 temperature

SST-2 50 5× 205 1.8 5× 10−7 1.1
Trec 50 3× 102 0.8 4× 10−6 1.1

Mpqa 50 3× 102 1.6 5× 10−6 1.1
Disaster 50 3× 102 0.8 4× 10−6 1.1

In Table 6, we list the initial instructions that we used in OPT, DP-OPT, and DLN-1 following
(Sordoni et al., 2023).

Table 6: Initial instructions for tasks.
Task Classes Instruction

SST-2 {negative, positive} Classify the input text as positive or negative.
Trec {description, entity, expression,

human, location, number}
Read the following question, then choose whether it is about a
description, entity, expression, human, location or number.

Mpqa {negative, positive} Read the following review, then choose whether it is negative or
positive.

Disaster {not relevant, relevant} Read the following sentence, then choose whether it is relevant
to a disaster.
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Classification Forward Template F

[PROMPT]

[INPUT]

Output:

Backward Template Bπ

A student is completing a task that requires producing a text output from a text input. The student
receives an instruction that describes how to produce the output given each input. The student
has made some errors. Your task is to improve the instruction such that the student can fix the
errors.

This was the instruction.

Instruction: [CURRENT INSTRUCTIOON]

# Student successes
Input: [INPUT]
Correct Output: [OUTPUT]

Input: [INPUT]
Correct Output: [OUTPUT]

# Student errors
Input: [INPUT]
Student Output: [OUTPUT]
Correct Ouput: [TARGET]

Improve the instruction to fix the student errors. [MSG]
Improved Instruction:

where [MSG] is randomly chosen from
- Clarify the instruction by adding few words or a short sentence. Be concise
- Improve the instruction by providing examples on how to solve the task. Be concise.
- Shorten the instruction by removing superflous words or sentences.
- Rewrite the instruction by providing detailed information to avoid ambiguity. Be concise

Figure 5: Templates for DLN-1, OPT and DP-OPT.

In Fig. 5, we list the templates used for DLN-1, OPT and DP-OPT. The templates are slightly different
from those in (Sordoni et al., 2023) since we use Vicuna-7b instead of GPT to handle the instructions.

Finding privacy leakage in prompts. To find strings leaked from the training set, we perform a
semantic similarity search to retrieve the training sentence closest to each forged demonstration.
Concretely, we perform mean-pooling of the hidden states of the last layer of the BART-large decoder
(Lewis et al., 2019) over the token dimension to obtain sentence embeddings for both training
examples and the demonstrations generated by prompt tuning. We use Faiss (Johnson et al., 2019)
to retrieve the top-5 training examples closest to the demonstrations that appeared in the generated
prompts in terms of the ℓ2 distance between their embeddings. We then manually examine the
retrieved examples to identify training example leakage.
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B.2 ADDITIONAL EXPERIMENTS

Source Target
Task Vicuna-7b Llama-2-70b ∆ DaVinci-003 ∆

SST-22 80.4(4.0) 83.9(1.5) 3.5 73.5 −6.9
Trec 46.1(0.8) 25.1(3.5) −21 46.0(1.4) −0.1

Mpqa 74.2(5.7) 60.8(5.6) −13.4 71.8(7.6) −2.4
Disaster 59.9(2.0) 45.9(4.1) −14 55.4(4.0) −4.5

Table 7: PEZ cannot produce transferable prompts, bringing non-trivial losses (∆) on multiple tasks.
Average accuracy (%) on test sets is reported with standard deviation in the brackets.

Negative Transfer of Projected Prompt Tuning. In Table 7, we evaluate the transferability of
projected prompts, dubbed PEZ, proposed by Wen et al. (2023). We did not report standard deviation
on DaVinci-003 and SST-2 since two prompts are not tokenizable by Davinci-003. On both DaVinci-
003 and Llama-2-70b, the PEZ-engineered prompts loses a great portion of accuracy after transfer.
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Figure 6: Ablation of the number of ensemble prompts.

Sensitivity to Ensemble Number. We ablate the number of ensemble prompts in Fig. 6. For larger
models, the number of ensembles seems less influential when the number is larger than 30. Only for
Vicuan-7b, the parameter is critical and it is essential to have more prompts in the ensemble. We
attribute the stability to the robustness of larger models. Larger models could be less sensitive to
words replacement.

Empirical Evaluation of Privacy Risks. We evaluate the privacy risks empirically by membership
inference attack (MIA) using Likelihood Ratio test (LiRA) (Mireshghallah et al., 2022). Results are
reported in Table 8. For SST-2, because of the distributional bias between the training and test sets,
we subsample the training set to include samples with more than 20 tokens, in which case only 15 test
samples are eliminated. The data filtering can avoid undesired high MIA AUC due to lack of short
samples in test sets. We observe non-trivial AUCs for DLN-1 on Mpqa and SST-2. In comparison,
both DP-OPT and OPT has very low AUC. OPT has slightly higher risks than DP-OPT when applied
on the Trec dataset.

Comparison to Text Sanitization. Distinct from our work, text sanitization, for example, Mattern
et al. (2022); Utpala et al. (2023), sanitizes text samples before input into LLMs. In Table 9, we
compare our method to DLN-1 using sanitized data (Mattern et al., 2022), denoted as Private DLN-1.

Method Disaster Mpqa SST2 Trec

DLN-1 0.498 0.772 0.773 0.446
OPT 0.511 0.443 0.510 0.494

DP-OPT 0.497 0.456 0.518 0.468

Table 8: Average MIA AUC of Likelihood Ratio attacks. Bold numbers indicate the highest leakage
risks (over 0.5).
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Data Private DLN-1 (ϵ = 8) DP-OPT (ϵ = 8)

SST-2 0.868 0.895
Trec 0.311 0.653

Mpqa 0.690 0.807
Disaster 0.657 0.656

Table 9: Comparison between DP-OPT and DLN-1 using sanitized data (Mattern et al., 2022). Test
accuracy averaged over 3 repetitions are reported on SST-2 using Vicuna-7B.

The implementation includes three steps: (1) First, the embedding of each token will be perturbed
and projected into the original embedding space. This step can be extended to other sanitization
methods (Utpala et al., 2023; Feyisetan et al., 2020). (2) We use DLN-1 to tune prompts on these
samples. DLN-1 is selected here due to its similarity to our method but can be replaced by other
prompt-tuning algorithms in practice. (3) We use the generated prompts for inference. Note that the
text sanitization is measured under the metric Differential Privacy instead of standard DP. Because of
the different privacy assumptions, we emphasize that the meaning of ϵ is different. We show that our
method can outperform Private DLN-1 significantly on three datasets and has similar performance as
Private DLN-1 on Disaster.

Generated Prompts. In Tables 10 and 11, we give more examples of prompts generated by LLMs.
DLN-1 is able to generate a very semantic prompt (e.g., seed 1 in SST-2 task) but may fail to transfer
(with a 3.5% drop). Consistent with the conclusions in the main content, the DLN-1 tends to leak
more private information and DP-OPT presents much less visible leakage. In the hardest task, Trec,
DLN-1 extensively overfits the source model with semantically favored prompts but transfers poorly
to DaVinci where two prompts suffer from negative transfer.

Interestingly, we see that “# Student successes Input:” does not provide useful task information but
often occurs to enjoy positive transfer, e.g., DP-OPT on SST-2 and Disaster. We conjecture that the
prompt induces the LLM to produce “success” output.

We notice that the prompt engineering degrades to generating dummy samples sometimes. However,
our method can create prompts without samples and promote the performance, as well. For example,
DP-OPT may only slightly change the prompt by appending “ # Student successes Input:” to an
initial instruction. Intuitively, the modification prompts LLMs to generate “successful” responses.
We notice such minor modifications can improve the accuracy of the Disaster dataset from 76.4%
(0-shot) to 78.9% (DP-OPT) tested by DaVinci-003. It even outperforms more complicated prompts
generated by DLN-1 (77%).

Avoid Privacy Leakage via Instruction. When we notice the direct breach of training samples
in generated prompts, a straightforward fixture could be to instruct LLMs to keep secrets. We
tried two of such instructions in experiments: (1) Instruction 1: Do not provide examples
in the prompt. (2) Instruction 2: Do not use existing samples but create
dummy samples as examples in the prompt. For DLN-1 and (DP-)OPT, we all ap-
pend the privatization instruction to the instruction in the backward template. We test the instructions
on SST-2 following the same setting in the main experiment and report the generated prompts in
Table 12. We notice Instruction 1 still leaks private samples and the AUC measured by Likelihood
Ratio MIA attack is as high as 73%. Interestingly, the second instruction only generates dummy ex-
amples that have no similar examples in the training set. However, the prompt will present non-trivial
risks (69% AUC) measured by Likelihood Ratio MIA attack.

In conclusion, though privatization instruction could remove private examples, it still suffers from
information leakage. The method is orthogonal to our method that provides theoretical guarantees
and can be combined with our DP-OPT to reduce the chance of explicit leakage.
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Table 10: Generated prompts. We present test accuracy on Vicuna-7b (Src Val Acc) and DaVinci-003
(Trg Test Acc). Samples found in training sets that best match the generated samples are marked as
red text.

Method Seed Src Test Acc Trg Test Acc Generated Prompts

SST-2
DLN-1 1 92.7% 89.2% 1. Classify the text as positive or negative. 2. The correct output for positive text is positive. 3. The

correct output for negative text is negative. 4. Do not classify texts that are a mix of positive and
negative as either positive or negative. 5. Pay attention to the nuances of the words used in the text, as
some words can be used in both positive and negative contexts. Examples: * Input: The film is a thr

2 92.7% 93.5% 1. Film with a small budget Input: * small, personal film with emotional wallop (turn out a small
, personal film with an emotional wallop) Output: positive | * Input: nightmare about bad cinema
(nightmare about bad cinema ) Output: negative | * Input: film with their charisma (the film with their
charisma ) Output: positive | * Input: who feels acting is heart and soul of cinema (who feels acting
is the heart and soul of cinema ) Output: positive | * Input: easily one of the best and most exciting
movies of the year (easily one of the best and most exciting movies of the year . ) Output: positive | *
Input:

3 93.0% 93.0% Classify the input text as positive or negative. Use the correct output for each input. Avoid phrases like
"might" or "probably", "carnage and", "i recommend" or words like "barely". Input: Actor Michel
Serrault (actor michel serrault ) - Correct Output: positive Input: Unique residences (unique residences
) - Correct Output: positive Input: Buy the movie milk when the TV cow is free (buy the movie milk
when the tv cow is free) - Correct Output: negative Input: A

OPT 1 91.7% 92.0% Classify the input text as positive or negative. # Student successes Input: "a movie that is a movie that
is a movie" (a movie is more than a movie . ) Correct Output: negative Input: "a movie that is a movie
that is

2 86.6% 92.3% Classify the input text as positive or negative.

3 90.7% 93.0% Classify the input text as positive or negative. # Student successes Input: "the movie was a masterpiece"
(the movie is hardly a masterpiece ) Correct Output: positive Input: "the movie was a disaster" (the
movie is a disaster . ) Correct Output

DP-OPT 1 90.1% 91.4% Classify the input text as positive or negative. # Student successes Input:

2 85.6% 92.4% Classify the input text as positive or negative.

3 91.7% 92.9% Classify the input text as positive or negative. # Student successes Input: "a movie that is a masterpiece"
(a great movie it is not ) Correct Output: positive Input: the movie was a disaster (the movie is a
disaster . ) Correct Output: negative Input

Trec
DLN-1 1 57.6% 58.0% 1. Read the question carefully. 2. Determine the correct output type based on the prompt. 3. Select the

correct output category from the list of options. 4. If the question doesn’t have a single correct output,
provide a brief description. 5. Avoid ambiguity in the question prompt.

2 55.8% 51.6% * Read the question * Choose the correct output from the following options: + Description (D) + Entity
(E) + Expression (EX) + Human (H) + Location (L) + Number (N) Correct Outputs: * Human (H) *
Human (H) * Human (H) * Number (N) * Human (H) *

2 66.4% 58.0% 1. Read the text input carefully. 2. Identify the type of question from the options provided. 3. Choose
the correct output type from the list of options. 4. Compare your choice with the correct output
provided. 5. If your choice is correct, proceed to the next input. If not, go back to step 2.

OPT 1 60.4% 70.6% * Read the following question, then choose the correct type of output: description, entity, expression,
human, location, or number. * For each question, you will be given a text input. Your task is to produce
the correct

2 60.4% 72.0% * Read the following question, then choose the correct type of output: description, entity, expression,
human, location, or number. * For each question, there is only one correct output. * The student must
read the question

3 62.8% 72.0% * Read the following question, then choose the correct type of output: description, entity, expression,
human, location, or number. * For example, if the question is "What is the capital of France?" (What is
the capital of Italy ?) (What is the capital of California ?) (What is the largest city in Germany ?), the
correct output

DP-OPT 1 63.0% 72.2% * Read the following question, then choose the correct type of output: description, entity, expression,
human, location, or number. * For example, if the question is "What is the capital of France?" (What is
the capital of Italy ?) (What is the capital of California ?) (What is the largest city in Germany ?), the
correct output

2 70.2% 61.2% Read the following question, then choose the correct type of output

3 63.0% 72.4% * Read the following question, then choose the correct type of output: description, entity, expression,
human, location, or number. * For example, if the question is "What is the capital of France?" (What is
the capital of Italy ?) (What is the capital of California ?) (What is the largest city in Germany ?), the
correct output
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Table 11: Generated prompts. We present test accuracy on Vicuna-7b (Src Val Acc) and DaVinci-003
(Trg Test Acc).

Method Seed Src Test Acc Trg Test Acc Generated Prompts

Mpqa
DLN-1 1 82.8% 79.8% Read the following review, then choose whether it is negative or positive by identifying the correct

output for each input based on the following examples: * Displayed unrelenting resolve and confi-
dence (has displayed unrelenting resolve and confidence): positive * Protests (protests): negative *
Constructive and cooperative ties (constructive and cooperative ties): positive * Increasingly angry
(increasingly angry): negative * Positive and optimistic views: positive * Denied (denied): negative *
Advanced: negative * United States is threatening

2 73.7% 82.9% 1. Read the following review. 2. Identify each sentence that requires the student to choose the correct
output based on the given input. 3. For each identified sentence, write the correct output based on the
given input. 4. Compare your output with the correct output provided in the instructions and make
sure they match. 5. If the student’s output is incorrect, revise it based on the correct output provided in
the instructions.

2 70.9% 81.6% 1. Read the following review. 2. Choose whether it is negative or positive. 3. Correct Output: positive
4. Correct Output: positive 5. Correct Output: negative 6. Correct Output: negative 7. Correct Output:
negative 8. Correct Output: negative 9. Correct Output: negative 10. Correct Output: negative 11.
Correct Output: negative 12. Correct Output: negative 13. Correct Output

OPT 1 82.3% 87.3% Read the following review, then choose whether it is negative or positive. * For each statement,
determine if it is negative or positive.

2 80.1% 85.2% Read the following review, then choose whether it is negative or positive. * For each statement,
determine if it is a positive or negative sentiment.

3 80.1% 85.1% Read the following review, then choose whether it is negative or positive. * For each statement,
determine if it is a positive or negative sentiment.

DP-OPT 1 84.6% 85.0% Read the following review and determine if it is positive or negative based on the words used in the
text.

2 78.8% 86.3% Read the following review and determine if it is positive or negative.

3 78.8% 86.1% Read the following review and determine if it is positive or negative.

Disaster
DLN-1 1 58.9% 76.0% Read the sentence and determine if the information is relevant to a disaster. The relevant information is

when the sentence mentions a disaster or its effects. Please choose "yes" if the sentence discusses a
disaster or its effects, and "no" otherwise.

2 65.2% 75.8% 1. Read each sentence carefully, and ensure it relates to a disaster or not. Choose "yes" or "no" as the
correct output. Produce the correct output for each sentence.

2 60.9% 79.2% 1. Read the given sentence. 2. Determine if the sentence is relevant to a disaster. 3. If the sentence is
relevant to a disaster, select "yes." If not, select "no."

OPT 1 66.8% 79.2% Read the following sentence, then choose whether it is relevant to a disaster. # Student successes Input:
@syeda_khan Wow! I’m so glad I found this! Correct Output:

2 47.0% 78.1% Read the following sentence, then choose whether it is relevant to a disaster. # Student successes Input:
@Airbnb is a great way to make money. Correct Output: no Input: The world

3 59.6% 79.8% Read the following sentence, then choose whether it is relevant to a disaster. # Student successes Input:
@#$%&̂*()_+-=[];’:<>| /.? 123

DP-OPT 1 65.4% 78.6% Read the following sentence, then choose whether it is relevant to a disaster. # Student successes Input:

2 65.4% 78.9% Read the following sentence, then choose whether it is relevant to a disaster. # Student successes Input:

3 65.9% 79.2% Read the following sentence and determine whether it is relevant to a disaster. # Student successes
Input:
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Table 12: Generated prompts. We present test accuracy on Vicuna-7b (Src Val Acc) and DaVinci-003
(Trg Test Acc).

Method Seed Src Test Acc Trg Test Acc Generated Prompts

Instruction 1
DLN-1 1 91.8% 91.8% 1. For each input, produce a corresponding correct output. 2. The input is given first, followed by the

correct output. 3. The correct output is a simple and clear statement of the sentiment expressed in the
input, for example "positive," "negative," "interesting," etc. 4. Label student errors in red and provide
an alternate correct output in blue. 5. Provide examples in parentheses. Examples: # Student successes

2 86.1% 93.9% Instruction: Classify the input text as positive or negative. For example: * real-life persona (real-
life persona): positive * by a pack of dogs who are smarter than him (by a pack of dogs who are
smarter than him): negative * candid, archly funny and deeply authentic (candid , archly funny and
deeply authentic): positive * brian tufano ’s handsome widescreen photography and paul grabowsky
’s excellent music turn this fairly parochial melodrama into something really rather special . (brian
tufano ’s handsome widescreen photography and paul grabowsky ’s excellent music turn this fairly
parochial melodrama into something really rather special .): positive

3 91.9% 93.9% 1. Classify the input text as positive or negative. 2. Correct Output: (choose one) positive, negative 3.
Input: (provide the text input) 4. Correct Output: (choose one) positive, negative. Example: * Input:
"The movie is a masterpiece." Output: positive * Input: "This movie is terrible." Output: negative *
Input: "I hated the movie

Instruction 2
DLN-1 1 90.3% 93.1% * Classify each input text as positive or negative based on the given output. Instruction: * Classify

the input text as positive or negative. Improved Instruction: * Classify each input text as positive or
negative based on the given output. Instruction: * Classify the input text as positive or negative and
provide the correct output. Instruction: * Classify each input text as positive

2 92.2% 94.7% 1. Classify the text as positive or negative by identifying the sentiment expressed in the text. 2. Identify
the main keywords in the text that indicate the sentiment. 3. For each input, provide a clear example of
the correct output. For example: * Correct Output: negative 1. "I can’t stand this movie. It’s so boring
and poorly made." (so poorly plotted and scripted . ) * Correct Output: positive 2. "I find the concept
of infinity fasc

3 91.0% 91.8% Classify the input text as positive or negative.
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