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ABSTRACT

In this paper we propose Flowtron: an autoregressive flow-based generative network
for text-to-speech synthesis with style transfer and speech variation. Flowtron
borrows insights from Autoregressive Flows and revamps Tacotron 2 in order
to provide high-quality and expressive mel-spectrogram synthesis. Flowtron is
optimized by maximizing the likelihood of the training data, which makes training
simple and stable. Flowtron learns an invertible mapping of data to a latent space
that can be used to modulate many aspects of speech synthesis (timbre, expressivity,
accent). Our mean opinion scores (MOS) show that Flowtron matches state-of-
the-art TTS models in terms of speech quality. We provide results on speech
variation, interpolation over time between samples and style transfer between
seen and unseen speakers. Code and pre-trained models are publicly available at
https://github.com/NVIDIA/flowtron.

1 INTRODUCTION

Current speech synthesis methods do not give the user enough control over how speech actually
sounds. Automatically converting text to audio that successfully communicates the text was achieved
a long time ago (Umeda et al., 1968; Badham et al., 1983). However, communicating only the text
information leaves out the acoustic properties of the voice that convey much of the meaning and
human expressiveness. In spite of this, the typical speech synthesis problem is formulated as a text
to speech (TTS) problem in which the user inputs only text since the 1960s. This work proposes a
normalizing flow model (Kingma & Dhariwal, 2018; Huang et al., 2018) that learns an unsupervised
mapping from non-textual information to manipulable latent Gaussian distributions.

Taming the non-textual information in speech is difficult because the non-textual is unlabeled. A
voice actor may speak the same text with different emphasis or emotion based on context, but it
is unclear how to label a particular reading. Without labels for the non-textual information, recent
approaches (Shen et al., 2017; Arik et al., 2017a;b; Ping et al., 2017) have formulated speech synthesis
as a TTS problem wherein the non-textual information is implicitly learned. Despite their success in
recreating non-textual information in the training set, the user has limited insight and control over it.

It is possible to formulate an unsupervised learning problem in such a way that the user can exploit
the unlabeled characteristics of a data set. One way is to formulate the problem such that the data is
assumed to have a representation in some latent space, and have the model learn that representation.
This latent space can then be investigated and manipulated to give the user more control over the
generative model’s output. Such approaches have been popular in image generation, allowing users
to interpolate smoothly between images and to identify portions of the latent space that correlate with
various features (Radford et al., 2015; Kingma & Dhariwal, 2018; Izmailov et al., 2019).

Recent deep learning approaches to expressive speech synthesis have combined text and learned
latent embeddings for non-textual information (Wang et al., 2018; Skerry-Ryan et al., 2018; Hsu et al.,
2018; Habib et al., 2019; Sun et al., 2020). These approaches impose an undesirable paradox: they
require making assumptions before hand about the dimensionality of the embeddings when the correct
dimensionality can only be determined after the model is trained. Even then, these embeddings
are not guaranteed to contain all the non-textual information it takes to reconstruct speech, often
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(a) Time-averaged z-values from multiple sam-
ples from 3 speakers with different timbres.
+ is the centroid computed over samples from
the same speaker.

(b) Time-averaged z-values from multi-
ple samples from 123 LibriTTS speak-
ers. Each color represents a speaker.
+ is Male (lower F0, third quadrant).

is Female (higher F0, first quadrant).

Figure 1: T-SNE plot showing Flowtron partitioning the z-space according to acoustic characteristics.

resulting in models with dummy or uninterpretable latent dimensions and not enough capacity, as the
appendices in Wang et al. (2018); Skerry-Ryan et al. (2018); Hsu et al. (2018) confirm.

Furthermore, most models are not able to manipulate speech characteristics over time due to fixed-
length embeddings. Their assumption is that variable-length embeddings are not robust to text and
speaker perturbations (Skerry-Ryan et al., 2018), which we show not to be the case. Finally, although
VAEs and GANs (Sun et al., 2020; Habib et al., 2019; Hsu et al., 2018; Bińkowski et al., 2019;
Akuzawa et al., 2018) provide a latent embedding that can be manipulated, they may be difficult to
train, are limited to approximate latent variable prediction, and rely on an implicit generative model
or ELBO estimate to perform MLE in the latent space (Kingma & Dhariwal, 2018; Lucic et al., 2018;
Kingma et al., 2016).

In this paper we propose Flowtron: an autoregressive flow-based generative network for mel-
spectrogram synthesis with style transfer over time and speech variation. Flowtron learns an invertible
function that maps a distribution over mel-spectrograms to a latent z-space parameterized by a
spherical Gaussian. Figure 1 shows that acoustic characteristics like timbre and F0 correlate with
portions of the z-space of Flowtron models trained without speaker embeddings.

With our formalization, we can generate samples containing specific speech characteristics manifested
in mel-space by finding and sampling the corresponding region in z-space (Gambardella et al., 2019).
Our formulation also allows us to impose a structure to the z-space and to parametrize it with a
Gaussian mixture, similar to Hsu et al. (2018). In our simplest setup, we generate samples with a
zero mean spherical Gaussian prior and control the amount of variation by adjusting its variance.

Compared to VAEs and GANs and their disadvantages enumerated in Kingma & Dhariwal (2018),
manipulating a latent prior in Flowtron comes at no cost in speech quality nor optimization challenges.
Flowtron is able to generalize and produce sharp mel-spectrograms, even at high σ2 values, by simply
maximizing the likelihood of the data while not requiring any additional Prenet or Postnet layer
(Wang et al., 2017), nor compound loss functions required by most SOTA models (Shen et al., 2017;
Ping et al., 2017; Skerry-Ryan et al., 2018; Wang et al., 2018; Bińkowski et al., 2019).

In summary, Flowtron is optimized by maximizing the exact likelihood of the training data, which
makes training simple and stable. Using normalizing flows, it learns an invertible mapping from data
to latent space that can be manipulated to modulate many aspects of speech synthesis. Concurrent
with this work are Glow-TTS (Kim et al., 2020) and Flow-TTS (Miao et al., 2020), both of which
incorporate normalizing flows into the TTS task. Our work differs from these two in that Flowtron
is an autoregressive architecture where we explore the use of flow to modulate speech and style
variation. In contrast, Glow-TTS and Flow-TTS are parallel architectures that focus on inference
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speed. Our mean opinion scores (MOS) show that Flowtron matches SOTA TTS models in terms
of speech quality. Further, we provide results on speech variation, interpolation between samples
and interpolation between styles over time, and style transfer between seen and unseen speakers with
equal or different sentences. We hope this work, the first to show evidence that normalizing flows can
be used for expressive text-to-speech synthesis and style transfer, will further stimulate developments
in normalizing flows.

2 FLOWTRON

Flowtron is an autoregressive flow that generates a sequence of mel-spectrogram frames. A normaliz-
ing flow generates samples by first sampling a latent variable from a known distribution p(z), and
applying a series of invertible transformations to produce a sample from the target distribution p(x).
These invertible transformations f are known as steps of flow:

x = f1 ◦ f2 ◦ . . .fk(z) (1)

Because each transformation is invertible, we can directly evaluate the exact log-likelihood of the
target distribution p(x) using the change of variables:

log pθ(x) = log pθ(z) +

k∑
i=1

log |det(J(f−1
i (x)))| (2)

z = f−1k ◦ f
−1
k−1 ◦ . . .f

−1
1 (x) (3)

Where J is the Jacobian of the inverse transform f−1i (x). By cleverly choosing the latent distribution
p(z) and the invertible transformations, the exact log-likelihood becomes simple and tractable.

2.1 LATENT DISTRIBUTIONS

We consider two simple distributions for the latent distribution z: a zero-mean spherical Gaussian
and a mixture of spherical Gaussians with fixed or learnable parameters.

z ∼ N (z; 0, I) or z ∼
∑
k

φ̂kN (z; µ̂k, Σ̂k) (4)

The zero-mean spherical Gaussian has a simple log-likelihood. The mixture of the spherical Gaussians,
has inherent clusters that might result in interesting aspects of the audio information.

2.2 INVERTIBLE TRANSFORMATIONS

Normalizing flows are typically constructed using coupling layers (Dinh et al., 2014; 2016; Kingma
& Dhariwal, 2018). In our case, we use an autoregressive affine coupling layer (Dinh et al., 2016).
The latent variable z has the same number of dimensions and frames as the resulting mel-spectrogram
sample. The previous frames z1:t−1 produce scale and bias terms, st and bt respectively, that
affine-transform the succeeding time step zt:

(log st, bt) = NN(z1:t−1, text, speaker) (5)
f(zt) = (zt − bt)÷ st (6)

f−1(zt) = st � zt + bt (7)

Here, NN() can be any autoregressive causal transformation (Shumway & Stoffer, 2017). The affine
coupling layer is a reversible transformation, even though NN() itself need not be invertible. We
use a 0-vector for obtaining the scaling and bias terms what will affine transform z1. This 0-vector
constant also guarantees that the first z is always known.
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Figure 2: Mapping data (x) to the latent dimension (z) for K steps of flow. The right side shows a
unrolled view of the NN() architecture. Text and speaker embeddings are channel-wise concatenated
to produce context matrix c. At every time step t, a recurrent attention mechanism computes
a weighting distribution over the context matrix c to produce a weighted-sum reduction over c,
which is then passed through an LSTM-Conv decoder architecture to generate affine parameters
for transforming xt+1 → x′t+1. As predicted parameters are always for the next time step, the first
iteration is conditioned on a pre-defined 0-vector.

With an affine coupling layer, only the st term changes the volume of the mapping and adds a change
of variables term to the loss. This term also penalizes the model for non-invertible affine mappings.

log |det(J(f−1coupling(x)))| = log |s| (8)

To evaluate the likelihood, we take the mel-spectrograms and pass them through the inverse steps of
flow conditioned on the text and optional speaker ids, adding the corresponding log |s| penalties, and
evaluate the result based on the Gaussian likelihoods.

With this setup, it is also possible to reverse the ordering of the mel-spectrogram frames in time
without loss of generality. We reverse the order of frames on even steps of flow, defining a step of
flow as a full pass over the input sequence. This allows the model to learn dependencies both forward
and backwards in time while remaining causal and invertible.

2.3 MODEL ARCHITECTURE

Our text encoder modifies the text encoder in Tacotron 2 by replacing batch-norm with instance-norm.
Our decoder and NN architecture, depicted in Figure 2, removes the Prenet and Postnet layers from
Tacotron previously thought to be essential (Shen et al., 2017). Please compare Figure 2 describing
our architecture and Figure 8 in A.4.4 describing Tacotron’s architecture. We also provide model
summary views in A.6

We use the content-based tanh attention described in Vinyals et al. (2015), which can be easily
modified to become also location sensitive. We use the Mel Encoder described in Hsu et al. (2018)
to predict the parameters of the Gaussian Mixture. Following (Valle et al., 2019b), we use speaker-
embeddings channel-wise concatenated with the encoder outputs at every token. We use a single
shared embedding for models not conditioned on speaker id.

The step of flow closest to the latent variable z has a gating mechanism that prunes extra frames from
the z-values provided to the model during inference. The length of z-values remains fixed on the
next steps of flow.

2.4 INFERENCE

Inference, given a trained model, is simply a matter of sampling z values from a spherical Gaussian,
or Gaussian Mixture, and running them through the network in the forward direction f , e.g. Eq. 1.
The parameters of the Gaussian mixture are either fixed or predicted by Flowtron. Training was
conducted with σ2 = 1, but we explore the effects of different values for σ2 in section 3.3. In general,
we found that sampling z from a Gaussian with lower standard deviation than used during training
resulted in better sounding mel-spectrograms, as similarly concluded in Kingma & Dhariwal (2018)
and (Parmar et al., 2018). Our inference results use σ2 = 0.5 while sampling the prior and the
posterior variance while sampling the posterior.
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2.5 POSTERIOR INFERENCE

Figure 1 shows that several speech characteristics present in mel-spectrograms are clustered into
regions of the z-space. Knowing this, we can treat the latent distribution as a prior q(z) = N (0, I)
and obtain a posterior over the latent space of the flow model q(z|ζ1:m) conditioned on the evidence
ζ1:m, which are m data observations xi mapped to the latent space using ζi = f−1(xi). We can use
a Gaussian likelihood function with covariance matrix Σ to compute the posterior above analytically,
q(z|ζ1:m) = N (µp,Σp). Following the approach in Gambardella et al. (2019), defining ζ̄ as the
mean of ζi and using λ as a hyperparameter, we define the parameters of the posterior below. Please
see A.2, Algorithm 1 and Gambardella et al. (2019) for implementation details and a full derivation.

µp =
m
λ
ζ̄

m
λ

+ 1
Σp =

1
m
λ

+ 1
I (9)

3 EXPERIMENTS

This section describes our training setup and provides quantitative and qualitative results. Our
quantitative results show that Flowtron has mean opinion scores that are comparable to the state of
the art. Our qualitative results demonstrate many features that are either impossible or inefficient to
achieve using Tacotron, Tacotron 2 GST and Tacotron GM-VAE. These features include variation
control in speech, interpolation between samples, and style transfer over time.

We decode all mel-spectrograms into waveforms with a WaveGlow (Prenger et al., 2019) model
available on github (Valle et al., 2019a). This suggests that WaveGlow can be used as an universal
decoder. In addition to our illustrated and quantitative results, we ask that the readers listen to
Flowtron samples in our supplementary materials corresponding to our qualitative experiments.

3.1 TRAINING SETUP

We train Flowtron, Tacotron 2 and Tacotron 2 GST models using a dataset (LSH) that combines the
LJSpeech dataset (Ito et al., 2017) with two proprietary single speaker datasets with 20 and 10 hours
each (Sally and Helen). We also train a Flowtron model on the train-clean-100 subset of LibriTTS
(Zen et al., 2019) with 123 speakers and 25 minutes on average per speaker. Speakers with less than
5 minutes of data and files that are larger than 10 seconds are filtered out. For each dataset, we use at
least 180 samples for the validation set, and the remainder for the training set.

The models are trained on uniformly sampled normalized text and ARPAbet encodings obtained from
the CMU Pronouncing Dictionary (Weide, 1998). We do not perform any data augmentation. We
adapt public Tacotron 2 and Tacotron 2 GST repos to include speaker embeddings as described in
Section 2. We use the same mel-spectrogram representation used in WaveGlow (Prenger et al., 2019).
We train Flowtron with a pre-trained text encoder, progressively adding steps of flow once the last
step of flow has learned to attend to text. Flowtron models used in our experiments have 2 steps of
flow. We forward readers to A.3 and A.4 for details on our training setup and ablation studies.

3.2 MEAN OPINION SCORE (MOS) COMPARISON

We use the LJS voice as a reference and compare MOS between real samples, samples from Flowtron
with 2 steps of flow, and samples from Tacotron 2. Following guidelines in (Prenger et al., 2019),
we crowd-sourced MOS tests on Amazon Mechanical Turk using 30 volume normalized utterances
disjoint from the training set for evaluation, and randomly chose the utterances for each subject. The
scores provided in (Prenger et al., 2019) are used for real samples.

Source Flows MOS
Real - 4.27 ± 0.13
Flowtron 2 3.66 ± 0.16
Tacotron 2 - 3.52 ± 0.17

Table 1: Mean Opinion Scores

The mean opinion scores are shown in Table 1
with 95% confidence intervals computed over
approximately 250 scores per source. The re-
sults roughly match our subjective qualitative
assessment. The larger advantage of Flowtron
is in the control over the amount of speech vari-
ation and the manipulation of the latent space.
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3.3 SAMPLING THE PRIOR

The simplest approach to generating samples
with Flowtron is to sample from a prior distribution z ∼ N (0, σ2) and adjust σ2 to control the
amount of variation. Whereas σ2 = 0 completely removes variation and produces outputs based on
the model bias, increasing σ2 will increase the amount of variation in speech.

3.3.1 SPEECH VARIATION

We illustrate the relationship between σ2 and control over variability by synthesizing Flowtron
samples with σ2 ∈ {0.0, 0.5, 1.0}. All samples are generated conditioned on the speaker Sally
and the text “How much variation is there?". Despite the variability added by increasing σ2, all
Flowtron-synthesized samples produce high quality speech.

Figure 3 shows that contrary to commonly held wisdom (Shen et al., 2017; Arik et al., 2017a;b; Ping
et al., 2017; Skerry-Ryan et al., 2018; Wang et al., 2018; Bińkowski et al., 2019), Flowtron generates
sharp harmonics and well resolved formants without a compound loss nor Prenet or Postnet layers.

(a) σ2 = 0 (b) σ2 = 0.5 (c) σ2 = 1
Figure 3: Flowtron Mel-spectrograms illustrate increasing variability by using different σ2 and that
Flowtron is able to produce sharp harmonics with high σ2 and without Prenet or Postnet layers.

Now we show that adjusting σ2 is a simple and valuable approach that provides more variation and
control thereof than Tacotron, without sacrificing speech quality and despite of having a similar but
simpler architecture. For this, we synthesize 10 samples with Tacotron 2 using different values for
the Prenet dropout probability p ∈ {0.45, 0.5, 0.55}, scaling outputs accordingly. Samples computed
on values of p ∈ [0.3, 0.8] are not included because they sound unintelligible.

Figure 4 provides plots of F0 contours extracted with the YIN algorithm (De Cheveigné & Kawahara,
2002), with minimum F0, maximum F0, and harmonicity threshold equal to 80 Hz, 400 Hz and 0.3
respectively. Our results are similar to the previous sample duration analysis. As expected, σ2 = 0
provides no variation in F0 contour1, while increasing σ2 will increase variation in F0 contours.

Our results in Figure 4 also show that Flowtron samples are considerably less monotonous than the
samples produced with Tacotron 2 at no cost and with a similar but simpler architecture. Whereas
increasing σ2 considerably increases variation in F0, modifying p barely produces any variation. This
is valuable because expressive speech is associated with non-monotonic F0 contours. In A.1 we show
similar results with respect to sentence duration.

3.3.2 INTERPOLATION BETWEEN SAMPLES

With Flowtron, we can perform interpolation in z-space to achieve interpolation in mel-spectrogram
space. This experiment evaluates Flowtron models with and without speaker embeddings. For the
experiment with speaker embeddings, we choose the speaker Sally and the phrase “It is well known
that deep generative models have a rich latent space.". We generate mel-spectrograms by sampling
z ∼ N (0, 0.8) twice and interpolating between them over 100 timesteps. For the experiment without
speaker embeddings we interpolate between Sally and Helen using the phrase “We are testing this
model.".

First, we perform inference by sampling z ∼ N (0, 0.5) until we find z values, zh and zs, that
produce mel-spectrograms with Helen’s and Sally’s voice respectively. We then generate samples by

1Variations in σ2 = 0 are due to different z for WaveGlow.
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(a) Flowtron σ2 = 0 (b) Flowtron σ2 = 0.5

(c) Flowtron σ2 = 1 (d) Tacotron 2 p ∈ {0.45, 0.5, 0.55}
Figure 4: F0 contours obtained from samples generated by Flowtron and Tacotron 2 with different
values for σ2 and p. Flowtron provides more variability and expressivity than Tacotron 2.

performing inference while linearly interpolating between zh and zs. Our same speaker interpolation
samples show that Flowtron is able to interpolate between multiple samples while producing correct
alignment maps. Our different speaker interpolation samples show that Flowtron is able to gradually
and smoothly morph one voice into another.

3.4 SAMPLING THE POSTERIOR (STYLE TRANSFER)

We generate samples with Flowtron by sampling a posterior distribution conditioned on the evidence
containing speech characteristics of interest, as described in 2.5 and Gambardella et al. (2019).
Tacotron 2 GST Wang et al. (2018) has an equivalent posterior sampling approach. During inference,
the model is conditioned on a weighted sum of global style tokens (posterior) queried through an
embedding of existing audio samples (evidence). We evaluate Tacotron 2 GST using a single sample
to query a style token, or multiple samples to compute an average style token. For complete results,
please refer to audio samples in the supplemental material corresponding to the following sections.

3.4.1 SEEN SPEAKER

In this section we run two style transfer experiments: the first one (Expressive) uses samples with
high variance in pitch, which we use as a proxy for comparing expressivity in speech; the second
(High Pitch), uses samples with high average pitch. In these experiments, we provide comparisons
between Pitch Mean and Pitch Standard Deviation from the Reference samples providing the style, a
Flowtron Baseline and after style transfer using Flowtron Posterior and Tacotron 2 GST.

Our experiments show that by sampling from the posterior or interpolating between the posterior and
the Gaussian prior over time, Flowtron makes a monotonic speaker gradually sound more expressive.
Architectures similar to Tacotron 2 GST with fixed-latent embeddings are not able to perform gradual
changes in style over time. Table 2 provides pitch summary statistics computed over 5 phrases and
10 takes each and shows that Flowtron is overall closer to the reference providing the style than
Tacotron 2 GST. Our supplemental materials also show that Tacotron 2 GST sentences are repetitive
and contain vocal-fry like distortions.

Pitch Mean Pitch Standard Deviation

Model
Style Expressive High Pitch Surprised Expressive High Pitch Surprised

Reference 53.6 55.2 58.2 4.5 2.3 1.0
FTA Posterior 53.4 53.3 55.5 2.5 2.3 3.0
FTA Baseline 53.1 52.6 52.8 2.2 1.9 1.9

Tacotron 2 GST 51.7 53.6 51.6 2.0 2.4 1.7

Table 2: Values closer to the Reference are better. Comparison between pitch (MIDI number)
summary statistics from Reference providing the style, Flowtron with standard Gaussian prior (FTA
Baseline) and samples after style transfer with Flowtron (FTA Posterior) and Tacotron 2 GST. Our
results show that FTA Posterior is overall more effective than Tacotron 2 GST in emulating the
Reference by better matching its pitch summary statistics.
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3.4.2 SEEN SPEAKER WITH UNSEEN STYLE

We compare samples generated with Flowtron and Tacotron 2 GST to evaluate their ability to emulate
a speaking style unseen during training of a speaker seen during training. While Sally’s data used
during training consists of news article readings, the evaluation samples contain Sally’s interpretation
of the somber and vampiresque novel, Born of Darkness (BOD).

Our samples show that while Tacotron 2 GST fails to emulate the somber timbre in Born of Darkness,
Flowtron succeeds in transferring not only the somber timbre, but also the low F0 and the long pauses
associated with the narrative style.

3.4.3 UNSEEN SPEAKER

In this experiment we compare Flowtron and Tacotron 2 GST samples to evaluate their ability to
emulate the speaking style of a speaker not seen during training. The styles comes from speaker ID
24 and her “surprised" samples in RAVDESS (Livingstone & Russo, 2018), a dataset with emotion
labels. Table 2 shows that while the samples generated with Tacotron 2 GST are not able to emulate
the high-pitched style from RAVDESS, Flowtron is able to make Sally sound high-pitched as in the
“surprised" style.

3.5 INTERPOLATION BETWEEN STYLES (PRIOR AND POSTERIOR)

In this experiment we illustrate how to control the speaking style at inference time by adjusting
the parameter λ in Equation 9 to interpolate between a baseline style (prior) and a target style
(posterior). We use a model trained on LibriTTS and use a single sample from Sally’s (unseen
speaker) Born of Darkness dataset as evidence providing the target style. We synthesize posterior
samples generated with Flowtron with λ ∈ {0.1, 0.666, 1.0, 2.0}. Figure 5 reflects the interpolation
in style as interpolation in spectral profiles. Our supplemental materials aurally reflect a similar
interpolation in other non-textual characteristics.

(a) Flowtron Baseline (b) Flowtron Posterior λ = 1 (c) Flowtron Posterior λ = 0.1

(d) Flowtron Posterior λ = 2 (e) Flowtron Posterior λ = 0.666 (f) Target Style

Figure 5: Spectral profiles from the target style, from the Flowtron baseline generated using the prior,
and from Flowtron samples generated using the posterior with different values for λ. These images
show that by decreasing the value of λ we gradually move the spectral profile from the baseline style
(prior) to the target style (posterior).

3.6 SAMPLING THE GAUSSIAN MIXTURE

In this last section we provide samples from Flowtron Gaussian Mixture (GM) and visualizations.
We replicate the experiments in Tacotron GM-VAE (Hsu et al., 2018) to visualize how speakers are
assigned to mixture components and provide samples in which we modulate speech characteristics
by translating one of the dimensions of an individual mixture component.

For these experiments, Flowtron GM-LibriTTS is trained on LibriTTS without speaker embeddings
and a Gaussian mixture with 8 component with predicted mean, covariance and component assignment
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probabilities; Flowtron GM-LSH is trained on LSH with speaker embeddings and a Gaussian Mixture
with 8 components, fixed mean and covariances and predicted component assignment probabilities.

3.6.1 VISUALIZING ASSIGNMENTS

We evaluate model interpretability on a subset of LibriTTS with 123 speakers and 1410 utterances,
180 of which come from the validation set. Following Hsu et al. (2018), each utterance is assigned
to the component with the highest posterior probability arg maxk p(φ̂k | x). We obtain posterior
probabilities per utterance by using the Mel Encoder described in Section 2.3 and averaging the
predicted component assignment probabilities over time. Figure 6 suggests that information in each
component of Flowtron GM-LibriTTS is gender dependent.

We quantify the association between gender and mixture components with the metric described in Hsu
et al. (2018). The assignment consistency with respect to gender is defined as 1

M

∑N
i=1

∑Ni

j=1 1yij =
ŷi, whereM is the number of utterances, yij is the component assignment of utterance j from speaker
i, and ŷi is the mode of {yij}Ni

j=1. The assignment consistency in Flowtron GM-LibriTTS is 82.4%,
suggesting that the components group utterances by speaker and group speakers by gender. We
provide visualizations in Figure 6.

Figure 6: Component assignments suggest that information in each component is gender dependent.

3.6.2 TRANSLATING DIMENSIONS

We use the model Flowtron GM-LSH and focus on translating one of the dimensions of a single
mixture component by adding an offset. The samples in our supplementary material show that we are
able to modulate specific speech characteristics like pitch and word duration. Although the samples
generated by translating one the dimensions associated with pitch height have different pitch contours,
they have the same duration. Similarly, our samples show that translating the dimension associated
with length of the first word does not modulate the pitch of the first word. We provide visualizations
in Figure 9 in A.5.

4 CONCLUSION

We propose a new text to mel-spectrogram synthesis model based on autoregressive flows that is
optimized by maximizing the likelihood and allows for speech variation and style transfer. Our
results show that samples generated with Flowtron achieve mean opinion scores similar to SOTA
TTS models. We demonstrate that our model learns a latent space that stores non-textual information,
supervised using only MLE. Flowtron is able to produce high quality speech with high variability by
adjusting σ2.

Our results show that the latent space over non-textual features that can be investigated and manipu-
lated to give the user more control over the generative model’s output. We provide many examples
that showcase this, including transferring the style from speakers seen and unseen during training to
another speaker using sentences with similar or different text, and making a monotonic speaker sound
more expressive. For future work, we are interested in using normalizing flows for few-shot speech
synthesis, speech compression and in semi-supervised settings to exploit datasets with limited labels.
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A APPENDIX

A.1 SPEECH VARIATION

Figure 7 provides plots from sample durations in seconds. Our results show that larger values of
σ2 produces samples with more variation in duration, whereas σ2 = 0 is fully deterministic. These
results demonstrate that our latent space is able to model duration, which is a critical non-textual
component to expressiveness in speech.

Figure 7: Sample duration given σ2 and p show that Flowtron provides more variation in sample
duration than Tacotron.

A.2 POSTERIOR INFERENCE

We generate posterior samples with Flowtron by sampling a posterior distribution conditioned on
evidence containing speech characteristics of interest, as described in (Gambardella et al., 2019).
We collect the evidence by performing a forward pass with Flowtron using with a speaker embed-
ding, (s ∼ N (0, I)), the observed mel-spectrogram, and the text from a set of samples with the
speech characteristics of interest. We use a specific speaker embedding when we want to factor out
information about a specific speaker from ζ.

Next, we compute ζ̄ by averaging ζi,k over batch (i) or over batch and time (i, k) and use Equation 9
to compute the parameters of the posterior. When averaging over batch, we repeat the z-values over
the time dimension until they reach the desired length. We find in our experiments that averaging over
batch is more efficient for transfering the style than averaging over batch and time. In all experiments,
we select the best performing samples given λ values between m ∗ 0.1 and m ∗ 4, where m is the
number of samples in the evidence. While small λ values move the mean of the posterior closer to
the evidence and decreases its variance, large λ values move the mean of the posterior closer to the
prior and increase the variance.

Once the parameters of the posterior distribution are computed, we can sample the posterior distribu-
tion and perform inference with the desired text and speaker. Algorithm 1 provides a description of
posterior inference with Flowtron.

A.3 TRAINING DETAILS

We use the ADAM (Kingma & Ba, 2014) optimizer with default parameters, 1e-4 learning rate
and1e-6 weight decay for Flowtron and 1e-3 learning rate and 1e-5 weight decay for the other
models,following Wang et al. (2017). We anneal the learning rate once the generalization error
starts toplateau and stop training once the the generalization error stops significantly decreasing
or startsincreasing. Flowtron models with 2 steps of flow were trained on the LSH dataset for
approximately1000 epochs, then fine-tuned on LibriTTS for 500 epochs. Tacotron 2 and Tacotron 2
GST are trained for approximately 500 epochs. Each model is trained on a single NVIDIA DGX-1
with 8 GPUs.

12



Published as a conference paper at ICLR 2021

Algorithm 1: Flowtron Posterior inference
Input : Trained Flowtron model f , evidence audio samples x1:m

Output : Posterior sample
1 For each meli,k, texti, speakeri ∈ x1:m

ζi,k ← f−1(meli,k, texti, speakeri)

2 if average over batch then
3 repeat each ζk over the time dimension until target length is achieved
4 ζ̄k ← Compute ζi,k average over batch k
5 else
6 ζ̄ ← Compute ζi,k average over batch and time k
7 end
8 µp,Σp ← Compute posterior parameters using Equation 9
9 Initialize Zp ∼ N (µp,Σp)

10 Sample zp from Zp

11 Perform inference with Flowtron using zp, text and speaker

A.4 ABLATION STUDIES

A.4.1 COMPOSING FLOWS

We evaluated Flowtron models with 2, 3 and 6 steps of flow and found that more steps of flow
have better likelihood but no significant qualitative improvement, while increasing inference time
significantly. Hence, we chose to report results on Flowtron models with 2 steps of flow.

A.4.2 BIDIRECTIONAL PROCESSING

We compared the bidirectional (reversing the ordering of the mel-spectrogram frames in time on
even numbered steps of flows) and unidirectional processing and found that bidirectional processing
provides better likelihood and audio quality. Hence, we use bidirectional processing in all our
Flowtron models.

A.4.3 ADDITIVE VS AFFINE TRANSFORMATIONS

The Tacotron 2 baseline without the postnet layer can be interpreted as additive single step autoregres-
sive normalizing flow (ASSANF). By comparing Flowtron with Tacotron 2, we’re comparing with a
model that is better than an (ASSANF), as Tacotron 2 sans Postnet does not have sharp harmonics.
Hence, we prefer affine over additive transformations.

A.4.4 COMPARISON WITH TACOTRON 2

The Tacotron 2 baseline without the postnet layer can be interpreted as additive single step autoregres-
sive normalizing flow (ASSANF). By comparing Flowtron with Tacotron 2, we’re comparing with a
model that is better than an (ASSANF), as Tacotron 2 sans Postnet does not have sharp harmonics.
Hence, we prefer affine over additive transformations.
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Figure 8: Visualization of the decoder in Tacotron 2 during training. Unlike Flowtron, Tacotron 2
requires Prenet and Postnet layers to learn attention and produce sharp harmonics.

A.5 TRANSLATING DIMENSIONS

(a) GMM Dimension Translation Altered Pitch Fixed Duration

(b) GMM Dimension Translation Altered Duration Fixed Pitch

Figure 9: (a) shows that by translating one of the dimensions of z we are able to alter the pitch
contour of the sentence while keeping the length fixed. (b) shows that by translation one of the
dimensions of z we are able to alter the length of the sentence while keeping a similar pitch contour.
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A.6 FLOWTRON AND TACOTRON SUMMARY VIEW

Flowtron(
(speaker_embedding): Embedding(3, 128)
(embedding): Embedding(185, 512)
(flows): ModuleList(
(0): AR_Step(

(conv): Conv1d(1024, 160, kernel_size=(1,), stride=(1,))
(lstm): LSTM(1664, 1024, num_layers=2)
(attention_lstm): LSTM(80, 1024)
(attention_layer): Attention(
(softmax): Softmax(dim=2)
(query): LinearNorm(

(linear_layer): Linear(in_features=1024, out_features=640, bias=False)
)
(key): LinearNorm(

(linear_layer): Linear(in_features=640, out_features=640, bias=False)
)
(value): LinearNorm(

(linear_layer): Linear(in_features=640, out_features=640, bias=False)
)
(v): LinearNorm(

(linear_layer): Linear(in_features=640, out_features=1, bias=False)
)

)
(dense_layer): DenseLayer(
(layers): ModuleList(

(0): LinearNorm(
(linear_layer): Linear(in_features=1024, out_features=1024, bias=True)

)
(1): LinearNorm(

(linear_layer): Linear(in_features=1024, out_features=1024, bias=True)
)

)
)

)
(1): AR_Back_Step(

(ar_step): AR_Step(
(conv): Conv1d(1024, 160, kernel_size=(1,), stride=(1,))
(lstm): LSTM(1664, 1024, num_layers=2)
(attention_lstm): LSTM(80, 1024)
(attention_layer): Attention(

(softmax): Softmax(dim=2)
(query): LinearNorm(

(linear_layer): Linear(in_features=1024, out_features=640, bias=False)
)
(key): LinearNorm(

(linear_layer): Linear(in_features=640, out_features=640, bias=False)
)
(value): LinearNorm(

(linear_layer): Linear(in_features=640, out_features=640, bias=False)
)
(v): LinearNorm(

(linear_layer): Linear(in_features=640, out_features=1, bias=False)
)

)
(dense_layer): DenseLayer(

(layers): ModuleList(
(0): LinearNorm(
(linear_layer): Linear(in_features=1024, out_features=1024, bias=True)

)
(1): LinearNorm(
(linear_layer): Linear(in_features=1024, out_features=1024, bias=True)

)
)

)
(gate_layer): LinearNorm(

(linear_layer): Linear(in_features=1664, out_features=1, bias=True)
)

)
)

)
(encoder): Encoder(
(convolutions): ModuleList(

(0): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): InstanceNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
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(1): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): InstanceNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
(2): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): InstanceNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(lstm): LSTM(512, 256, batch_first=True, bidirectional=True)

)
)

Tacotron2(
(embedding): Embedding(185, 512)
(encoder): Encoder(
(convolutions): ModuleList(

(0): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(1): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(2): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(lstm): LSTM(512, 256, batch_first=True, bidirectional=True)

)
(decoder): Decoder(
(prenet): Prenet(

(layers): ModuleList(
(0): LinearNorm(

(linear_layer): Linear(in_features=80, out_features=256, bias=False)
)
(1): LinearNorm(

(linear_layer): Linear(in_features=256, out_features=256, bias=False)
)

)
)
(attention_rnn): LSTMCell(896, 1024)
(attention_layer): Attention(

(query_layer): LinearNorm(
(linear_layer): Linear(in_features=1024, out_features=128, bias=False)

)
(memory_layer): LinearNorm(
(linear_layer): Linear(in_features=640, out_features=128, bias=False)

)
(v): LinearNorm(
(linear_layer): Linear(in_features=128, out_features=1, bias=False)

)
(location_layer): LocationLayer(
(location_conv): ConvNorm(

(conv): Conv1d(2, 32, kernel_size=(31,), stride=(1,), padding=(15,), bias=False)
)
(location_dense): LinearNorm(

(linear_layer): Linear(in_features=32, out_features=128, bias=False)
)

)
)
(decoder_rnn): LSTMCell(1664, 1024, bias=1)
(linear_projection): LinearNorm(

(linear_layer): Linear(in_features=1664, out_features=80, bias=True)
)
(gate_layer): LinearNorm(

(linear_layer): Linear(in_features=1664, out_features=1, bias=True)
)
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)
(postnet): Postnet(
(convolutions): ModuleList(

(0): Sequential(
(0): ConvNorm(

(conv): Conv1d(80, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=wTrue, track_running_stats=True)

)
(1): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(2): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(3): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(4): Sequential(
(0): ConvNorm(

(conv): Conv1d(512, 80, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(80, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)

)
(speaker_embedding): Embedding(3, 128)

)
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