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Abstract

Neural network-based image classifiers are powerful tools for computer vision
tasks, but they inadvertently reveal sensitive attribute information about their
classes, raising concerns about their privacy. To investigate this privacy leakage,
we introduce the first Class Attribute Inference Attack (CAIA), which leverages
recent advances in text-to-image synthesis to infer sensitive attributes of individual
classes in a black-box setting, while remaining competitive with related white-box
attacks. Our extensive experiments in the face recognition domain show that CAIA
accurately infers undisclosed sensitive attributes, such as an individual’s hair color,
gender, and racial appearance, which are not part of the training labels.

1 Introduction

Classifying images with neural networks is widely adopted in various domains [4, 11, 2, 1]. In the
pursuit of enhancing predictive performance, privacy concerns of the acquired knowledge are often
disregarded and moved into the background. We investigate the privacy leakage of face recognition
models and demonstrate that models indeed leak sensitive identity information even without any
specific information about the classes, training samples, or attribute distributions available to the
adversary. Our research shows that these models reveal sensitive details about the different identities
within their outputs, such as gender, hair color, and racial appearance.

We introduce a Class Attribute Inference Attack (CAIA), which enables an adversary to infer sensitive
attributes of a specific class from a trained image classifier with high accuracy. Phrased differently,
CAIA allows the creation of a profile of the individual classes by only interacting with the trained
classifier through the extraction of class attributes that have not been explicitly part of the training
objective. Fig. 1 illustrates the setting of our investigation, in which the adversary has only black-box
access to the target model and no specific information about the appearance of individual identities.
The adversary then aims to infer sensitive information about the identities from the target model’s
training data. For the attack, we utilize recent advances in text-to-image synthesis to craft images
that only differ in one attribute by editing real images with textual guidance. We then exploit that
image classifiers assign higher logits to inputs that share the same sensitive attribute with the training
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Figure 1: Overview of the setting of our proposed Class Attribute Inference Attack (CAIA). The
victim (1a) first trains a model on a private training set Strain to predict the identity of a given input
image. The adversary (1b) only has black-box access to the trained model without any information
about the individual classes or training samples in Strain . The adversary then tries to infer sensitive
attributes about the individual class identities, e.g., their hair color or gender appearance. For this, the
adversary has access to a separate attack dataset Sattack of public facial images.

samples of a class, which allows us to infer class information by observing the input-output relation of
the trained target model. Compared to related inference attacks [6, 5, 24, 19], CAIA is model-agnostic
and requires only black-box access and basic domain knowledge. Once the attack images are crafted,
attribute inference requires only a single model forward pass of the generated samples.

2 Background and Related Work

Most related to our work are attribute inference attacks (AIAs) [6], which aim to infer sensitive
attribute values of an incomplete data record in the context of tabular data. Common AIAs make
strong assumptions regarding the adversary’s knowledge that is generally hard to gain under realistic
assumptions, e.g., the adversary knows the marginal prior of sample attributes [6, 5, 22] or the model’s
confusion matrix on its training data [5, 15]. AIAs are typically limited to tabular data and are not
applicable to image classification since the variation of single image attributes, e.g., changing the hair
color in a facial image, is not trivially possible. This fact also makes it impossible to directly compare
our Class Attribute Inference Attack (CAIA) with common AIAs and corresponding defenses.

Another class of attacks, so-called model inversion attacks (MIAs), try to fill this gap for image
classification. We note that the notion of MIAs is not consistent in the literature, and the term is
sometimes also used for AIAs. Generally, given a classification model, an adversary attempts to create
synthetic input samples that either reconstruct samples from the model’s training data [5, 24, 3, 12]
or craft synthetic samples that reflect the characteristics of a specific class [21, 19, 20]. Whereas most
MIAs require access to samples from the target training distribution for training a custom generative
adversarial network (GAN) [7], Struppek et al. [19] recently proposed Plug & Play (PPA) MIAs,
which make the attacks agnostic to the target model, increase their flexibility, and enhance their
inference speed by utilizing pre-trained GANs. We will use PPA as a baseline during our evaluation.

Novelty of CAIA. In contrast to AIAs, we move the scope of inference attacks from the sample level
to a class level in the vision domain, with the goal of inferring sensitive information about the distinct
classes. To achieve this, we use recent advancements in text-to-image synthesis to manipulate single
attributes of input images, resulting in consistent images that differ only in the targeted attribute. Our
approach is more effective than MIAs as it requires only black-box access to the target model and
no extensive knowledge of the training data distribution. Furthermore, the inference step is done in
seconds, since CAIA does not require any further sample optimization after constructing the initial
attack dataset. This makes CAIA more flexible, target-independent and efficient than previous attacks.

3 Class Attributes Inference Attacks

We now introduce the novel Class Attribute Inference Attack (CAIA), which consists of two steps.
First, the adversary generates a set of attack samples by creating different versions of images through
a generative approach that alters the sensitive attribute values. In the second step, these samples
are used to infer the sensitive attribute values for the identities in a face recognition model. The
underlying attack assumption is that image classifiers assign higher prediction scores to samples that
share the sensitive attribute value with the training samples of a class. Before delving into the details,
we outline our general threat model.
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Figure 2: Overview of our attack dataset crafting process for the sensitive attribute hair color,
which has four possible values. Real images are used to generate image variations by modifying
characteristics associated with the sensitive attribute. The resulting candidate images are then filtered
to ensure that each sample accurately reflects the intended attribute values. The final output of this
process is the set of attack samples.

Adversary’s Goal. Let M : X → R|Y | denote the trained target classifier, which takes input images
x ∈ X and computes prediction scores for each class label y ∈ Y . The model’s training data Strain

consisted of labeled data samples (x, y) ∼ D. The underlying attack assumption is that samples of
a certain class share a constant sensitive attribute value z ∈ Z, which is not part of the class label
but is implicitly encoded in the image features. For example, a face recognition model is a classifier
trained to predict the identity y of each facial image x. A sensitive attribute z in this context might
be the gender appearance or hair color of a specific identity. The attack goal is to infer the value of
this sensitive attribute for each individual class. Fig. 1 demonstrates the general setting, in which the
victim trains the target model on labeled images of various identities. In the depicted case, class y
corresponds to the identity of the actress Gillian Anderson. The adversary tries to predict sensitive
attributes about the class y without any further information such as the name or training samples
available. Multiple classes can share the same attribute, e.g., having the same hair color.

Adversary’s Capabilities. The adversary has only black-box access to the trained target model M,
i.e., the adversary can query the target model and observe its output logits. Furthermore, the adversary
knows the domain of the target model’s training data, e.g., facial images, but not the exact training data
distribution or labels. Instead, the adversary can sample images from a data distribution D̂ from the
same domain. Importantly, the images available to the adversary contain no identity labels and have
no overlapping with the target models training data. For the sensitive attributes, the adversary defines
an individual set of possible values to infer. We emphasize that CAIA is model- and task-agnostic and
does not require white-box access to the target model. Information about the prior distribution of the
sensitive attributes is neither available nor required.

3.1 Crafting Attack Samples

We utilize recent advances in text-to-image synthesis to enable meaningful image manipulations.
Text-to-image synthesis systems like Stable Diffusion [18] are capable of generating high-quality
images following a user-provided text description p. The recently proposed Null-text Inversion [16]
encodes real images into the domain of diffusion models and enables text-based editing while keeping
the overall image composition and content fixed. In combination with Prompt-to-Prompt [9], it allows
a user to instruct image edits xedit = E(x, p) on images x conditioned on a description p. We apply
Null-text Inversion to generate variations of existing images by changing only the sensitive attribute
values while aiming to leave other image aspects unchanged.

Fig. 2 illustrates the crafting process for the attack samples. Formally, the adversary has access to a
data distribution D̂ from which to sample images x. Note that the attack does not require the attack
distribution D̂ to be the same as the training data distribution D but only that both data distributions
are from the same domain, e.g., facial images. As we will show in our experimental evaluation, even
if the style, size, and quality of images between both distributions vary significantly, the attack is still
highly successful. The adversary defines the target attribute with a set of k possible attribute values
Z = {z1, . . . , zk} and corresponding edit prompts pz that describe the general domain and explicitly
state an attribute value z ∈ Z. For example, pz = "A photo of a person, ⟨gender⟩", where ⟨gender⟩
is replaced by z ∈ {female appearance,male appearance}. The candidate dataset Scandidate is then
constructed as

Scandidate = {E(x, pz)|z ∈ Z, x ∼ D̂}, (1)
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Figure 3: Overview of the class attribute inference step. Each image tuple from the attack set is fed
sequentially into the target model to compute the logits for the target class. The relative advantage
is then computed by subtracting the second-highest logit value from the maximum value, and this
difference is added to a running sum for each sensitive attribute value. The final prediction for the
sensitive attribute is the value with the highest relative advantage computed across all attack samples.

consisting of image tuples x = (x1, . . . , xk), each containing k images with different sensitive
attribute values. However, the attribute manipulation might not always succeed in changing an image
attribute to the desired value. We, therefore, employ a filtering approach, i.e., filtering out all sample
tuples x that are not correctly depicting the various attribute values. For this, we use a trained attribute
classifier Fτ : X → Z to create a subset

Sattack = {x ∈ Scandidate |Fτ (xz) = z,∀z ∈ Z} (2)

of sample tuples x = (x1, . . . , xk). The attribute classifier computes for each input image a
probability score that the attribute value z ∈ Z is present in the image. We also add a threshold τ
on the softmax scores of the attribute classifier and classify only predictions with a softmax score
≥ τ as correct. This removes images for which the attribute classifier has only low confidence in
its prediction. For the example of hair color, each resulting tuple x ∈ Sattack consists of four facial
images (x1, . . . , x4) that only differ in the depicted hair color of the person. This use case is also
depicted in the attack dataset crafting process in Fig. 2.

3.2 Revealing Sensitive Attributes

After crafting the attack samples, we can now begin inferring the sensitive class attributes learned by
the target classifier. We recall that the adversary has no specific information about the distinct classes
and particularly no access to the training data samples. Fig. 3 illustrates the basic concept of the
inference process. In the depicted case, the adversary tries to infer the sensitive attribute hair color of
the first identity, which corresponds to the first class of the face recognition model. While our filtering
approach ensures that the variations of an image depict the different values of the sensitive attribute,
other confounding behavior might still remain unintentionally. For example, changing a person’s
hair color to gray might also influence the depicted age. To mitigate such influences, we predict the
sensitive attribute with a variety of different attack samples to, in turn, reduce the influence of these
confounding factors over a larger number of samples.

Be M(x)y : X → R the pre-softmax logits computed by the target model M on input image x for
class y. To infer the sensitive attribute value z of class y, we query the target model consecutively
with multiple sample tuples x ∈ Sattack . We then compute for each tuple x the relative advantage
A(x) ∈ R|Z|. For each xz ∈ x, the relative advantage component A(x)z is defined by

A(x)z = max

(
0, M(xz)y − max

x̃∈x,x̃ ̸=xz

M(x̃)y

)
. (3)

The relative advantage computes the difference between the highest and the second-highest logit
values and assigns this difference to the attribute sample xz ∈ x with the highest logit. For all
other samples x̃ ∈ x with x̃ ̸= xz , the relative advantage is set to zero. Fig. 3 illustrates the
relative advantage computation for a single x. In the depicted case, the sample depicting brown hair
color achieves the highest logit value and its relative advantage of A(x)brown = 0.17 describes the
difference to the second highest logit value assigned to the sample with the attribute black hair color.
The relative advantage of the other three attribute values is set to zero. The final attribute prediction ẑ
is then done by taking the attribute with the highest relative advantage summed up over all attack
samples. We emphasize that only a single forward pass on all attack samples is sufficient to compute
the relative advantage for all target classes, which makes the inferring step very fast.
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Figure 4: Attack accuracy for different target model architectures and CelebA attribute datasets.
Results are averaged over three models and three attack datasets. The attacks are comparably
successful on the different models.

PPA Random GuessingAccuracy F1 Precision Recall

40% 60% 80% 100%
Male

Female

Overall

(a) Gender (CelebA)

40% 60% 80% 100%

No
Glasses

Glasses

Overall

(b) Eyeglasses (CelebA)

20% 40% 60% 80% 100%

Gray

Brown

Blond

Black

Overall

(c) Hair Color (CelebA)

20% 40% 60% 80% 100%

White

Indian

Black

Asian

Overall

(d) Racial Appearance (CelebA)

Figure 5: Evaluation results for CAIA performed on ResNet-101 CelebA models to infer four different
target attributes. The black horizontal lines denote the standard deviation over nine runs. We further
state random guessing (dashed line) and Plug and Play Attacks (PPA, green dots) for comparison.
While CAIA outperforms random guessing by a large margin, it extracts information on racial
appearance and if someone is wearing eyeglasses even more reliably than the white-box PPA attack.

4 Experimental Evaluation

Target model training. We trained our target face recognition systems on the CelebA facial attributes
dataset [14]. We selected the following sensitive attributes: gender appearance = {female,male},
eyeglasses = {no eyeglasses, eyeglasses}, hair color = {black, blond, brown, gray}, racial appear-
ance = {Asian, Black, Indian, White}. Since the provided attributes and labels are often inconsistent
for samples of one identity, we created custom subsets for each sensitive attribute group by selecting
an equal number of identities for each attribute value and removed samples with inconsistent labels.
Additional target models were trained on the FaceScrub [17] facial image dataset, which contains
images of 530 identities with equal gender split.

We trained ResNets [8], DenseNets [10] and ResNeSts [23] as target models to predict a person’s
identity. We emphasize that the attribute labels were not part of the training process. Since not
every attribute is present with every identity, we selected the 100 CelebA identities for each attribute
value of hair color, eyeglasses, and racial appearance, respectively, with the most training samples
available. For gender appearance, we selected 250 identities per attribute value. We split all datasets
into 90% for training and 10% for testing the models’ performance.

Attack Datasets. To craft the attack datasets, we used the Flickr-Faces-HQ (FFHQ) [13] dataset
of high-resolution facial images. We generated and filtered images with attribute manipulations to
collect 300 attack image tuples for each attribute group.

Metrics. We computed the precision, recall, and F1 score for each attribute value, together with
the overall prediction accuracy for all attributes. All experimental results are averaged over three
independently trained models and three disjoint subsets of the attack datasets.
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Results. The attack accuracy for different models and target attributes in Fig. 4 demonstrates that
CAIA performed comparably well on different architectures and predicted the sensitive attribute
values correctly in over 90% of the cases for the attributes gender and eyeglasses and about 80%
for the hair color and racial appearance. Only the attack results of ResNet-18 stand out and are a
few percentage points lower than those of the other architectures, which we attribute to the small
number of model parameters (only about a quarter of ResNet-101). Still, all attacks reliably inferred
the sensitive attributes in most cases.

Next, we investigate the attribute leakage more closely. Therefore, we performed a more detailed
analysis of the attribute leakage of ResNet-101 models, for which the results are depicted in Fig. 5.
For all four attributes, CAIA significantly beats the random guessing baseline by a large margin.
Whereas gender and eyeglasses were predicted correctly in about 94% of the cases, racial appearance
could be inferred correctly in 84%. The attack accuracy for hair color was also about 82% on average,
but the attack success varied substantially between the different attribute values. Further analyzing
the individual predictions for the hair color, blond hair seems to be the hardest value to predict and is
frequently confused with gray hair, which is not unexpected since hair colors have different shades,
of which blond might be the broadest one. Another reason for the confusion in these attributes is that
the CelebA dataset also contains numerous training images of poor quality and sometimes disturbing
lighting, which could interfere with the ground-truth identity attributes.

We also compared CAIA to PPA [19] as a state-of-the-art white-box model inversion method that
reconstructs characteristic class inputs. The attributes are predicted by applying our filter models on
the generated attack result images. Whereas PPA beats CAIA for gender and hair color prediction,
both approaches achieve similar results for the racial appearance. However, for inferring whether an
identity is wearing eyeglasses, PPA fell significantly behind CAIA.

5 Discussion and Conclusion

Our experiments demonstrate that classifiers indeed leak sensitive class information, with significant
implications for the secure application of machine learning models. CAIA infers sensitive information
with high accuracy, comparable to white-box MIAs. An open question is how to limit the information
about sensitive attributes in a model’s output. Since attributes like hair color or eyeglasses inherently
incorporate high predictive power, restricting their influence on a model’s prediction probably leads
to a substantial loss in model utility. However, we believe that encouraging a model to produce logits
in a more narrow range already limits the relative logit differences between the presence of different
attribute values, and thereby reduces the success of CAIA.

Whereas CAIA offers reliable attribute inference capabilities, it still faces some challenges and
limitations. Accurately evaluating class information leakage requires high-quality data and consistent
labeling, which heavily relies on the underlying dataset. We note that the sample quality of CelebA
and FaceScrub images varies widely in terms of resolution, sharpness, and coloring, and the labeling is
not always consistent within an identity or attribute class, with also falsely labeled samples contained
in the datasets. For instance, the boundaries between gray and blond hair are not well-defined, which
can lead to reduced precision for these attributes. However, CAIA is generally successful in inferring
sensitive attributes in most cases. The attack metrics might even underestimate its effectiveness
since false attribute predictions might still provide some identity information, e.g., black hair tone
predictions make blond rather unlikely.

Expanding on the mentioned challenges, we expect that with the upcoming developments in text-
guided image manipulation, we propose to enhance CAIA and extend its use to continuous features
like age or more detailed skin tone grading. Moreover, in its current implementation, CAIA infers
each attribute independently. However, in the real world, different attributes often correlate with each
other. To this end, CAIA could leverage already inferred attributes as a prior for inferring additional
attributes. We also envision the use of CAIA beyond privacy analyses. For example, it is exciting
to explore it in the context of explainable AI to determine the importance of features by analyzing
prediction scores for different feature characteristics.

In conclusion, our research provides novel insights into the privacy of image classifiers and shows
that models leak more sensitive information than previously assumed. It combines both areas of
research, which have largely been studied separately. We hope our work motivates future security
research and defense endeavors in building secure and private models.
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