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Abstract

One of the most impressive results of recent
NLP history is the ability of pre-trained lan-
guage models to solve new tasks in a zero-
shot setting. To achieve this, NLP tasks are
framed as natural language prompts, generat-
ing a response indicating the predicted output.
Nonetheless, the performance in such settings
often lags far behind its supervised counterpart,
suggesting a large space for potential improve-
ment. In this paper, we explore methods to
utilize unlabeled data to improve zero-shot per-
formance. Specifically, we take advantage of
the fact that multiple prompts can be used to
specify a single task, and propose to regular-
ize prompt consistency, encouraging consistent
predictions over this diverse set of prompts.
Our method makes it possible to fine-tune the
model either with extra unlabeled training data,
or directly on test input at inference time in
an unsupervised manner. In experiments, our
approach outperforms the state-of-the-art zero-
shot learner, TO (Sanh et al., 2021), on 9 out of
11 datasets across 4 NLP tasks by up to 10.6
absolute points in terms of accuracy. The gains
are often attained with a small number of unla-
beled examples.'

1 Introduction

While the past decade has demonstrated that pre-
trained language models (PLMs) are powerful tools
for improving generalization from training datasets
to test datasets (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020), more recent work has shown
that they can even perform zero-shot generaliza-
tion to new tasks without any annotated examples
(Brown et al., 2020; Wei et al., 2021; Sanh et al.,
2021). These systems leverage natural language
prompts that specify the task for the model and
represent different tasks in a unified format (Liu
et al., 2021). Zero-shot task generalization sug-
gests a path towards generic systems that perform

!Code is provided in the supplementary material.

a wide variety of NLP tasks with no annotated
examples. However, while enticing conceptually,
zero-shot performance often remains relatively low
compared to systems trained using even a small
amount of task-specific labeled data.

In this paper, we examine methods to make
PLMs better zero-shot learners using unlabeled
text. Our work is motivated by consistency training
methods that regularize model predictions to be
invariant to perturbation (e.g. noise or paraphras-
ing) of the input examples. Consistency training is
widely used in semi-supervised learning literature
as an effective technique to utilize unannotated ex-
amples (Bachman et al., 2014; Sajjadi et al., 2016;
Beyer et al., 2019; Xie et al., 2020a). It is often
understood as a type of smoothness regularization
or data augmentation (Xie et al., 2020a) and attains
strong performance in semi-supervised learning.
Instead of example-level consistency, we propose
to regularize prompt consistency, where a model is
regularized to make the same prediction across a
diverse set of synonymous task prompts. Prompt
consistency regularization makes sense intuitively
since PLMs should be robust across synonymous
prompts, whereas it is known that model predic-
tions are empirically very sensitive to the wording
of the task prompts (Jiang et al., 2020).

Specifically, we design a pairwise distillation
loss that encourages consistency between every
pair of prompts (Figure 1). We refer to our method
as swarm distillation, and it has the advantage of
being fully unsupervised, only requiring unanno-
tated inputs. Notably, unannotated examples are
often abundant and relatively easy to collect. Draft-
ing several prompts for a task is also far cheaper
than annotating labels for each example — in fact,
there are already well-designed prompts available
for a wide range of NLP tasks (Sanh et al., 2021).

Previous work on example-level consistency reg-
ularization typically minimizes a consistency loss
along with a supervised loss in a semi-supervised
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Figure 1: An example of the proposed approach in an NLI task. We apply multiple synonymous prompt templates to the
unlabeled example, then we regularize the consistency of the predictions from different prompts, through our swarm distillation

loss. Note that we are not regularizing the predicted text form 7"(;>

(y) to be the same since different prompts have different target

templates as shown above — we are actually regularizing the discrete labels y underneath to be consistent, as detailed in Eq. 2.

setting (Miyato et al., 2018; Xie et al., 2020a). Re-
cently, Elazar et al. (2021) performed experiments
optimizing a prompt consistency loss in the context
of a relation prediction task, also incorporating a
supervised version of the masked language model
pretraining objective. In contrast, we (1) optimize
a novel prompt consistency loss alone, making our
approach completely unsupervised and agnostic to
the model’s pretraining objective, and (2) experi-
ment on and demonstrate the practicality of such an
approach for a broad variety of NLP tasks. Notably,
this unsupervised setting poses additional learn-
ing challenges: without explicit supervision, the
model may suffer from catastrophic forgetting and
even exhibit a form of collapse where the model
always makes the same predictions for any input.
To address this issue, we adopt two simple strate-
gies: (1) we utilize parameter-efficient tuning tech-
niques (Houlsby et al., 2019; He et al., 2021) to
only update a small number of extra parameters,
naturally mitigating catastrophic forgetting by fix-
ing the original PLM parameters; (2) we propose
an unsupervised criterion to select the model check-
point before it falls into a collapsed local optimum.

In experiments, we build our method on top of
a state-of-the-art zero-shot task learner, TO (Sanh
et al., 2021), and validate its performance on 11
datasets from 4 NLP tasks: natural language in-
ference, coreference resolution, word sense dis-
ambiguation, and sentence completion. We show
that our swarm distillation method improves the
accuracy of the 3B-parameter TO model on 9 out
of 11 datasets by up to 10.6 absolute points. We
further scale model size up to 11B parameters,
and demonstrate that our approach outperforms

the 11B-parameter TO model on 4 out of 4 datasets.
Notably, analysis implies that these gains are some-
times possible with only tens of unannotated exam-
ples, suggesting a small computation overhead.

2 Prompt-based Zero-Shot Task
Generalization

Given a task where the input is denoted as x € X
and the goal is to predict y € ), we focus on the
zero-shot task generalization setting: we aim to
feed a PLM with x to predict y, where the PLM is
never trained on the specific task to be performed.
Zero-shot task generalization goes beyond tradi-
tional dataset generalization, as the model must
generalize to new functions f : X — ) as op-
posed to new input examples, x. Recently, the
development of prompting methods has advanced
zero-shot task generalization by representing dif-
ferent tasks in a unified format (Liu et al., 2021),
and several prompt-based approaches have attained
reasonable zero-shot performance (Brown et al.,
2020; Sanh et al., 2021; Wei et al., 2021).

A prompt r consists of an input template 7,
an output template r,, and metadata to re-format
the original x and y into new prompt-formatted
input and target, ,(x) and ry(y). For example, as
shown in Figure 1, in a natural language inference
task to predict “entailment”, “neutral”, or “con-
tradiction” between two texts, the input includes
the field Premise and Hypothesis and the
target consists of the field Label. An input
template could be Given that {Premise},
does it follow that {Hypothesis}?

Yes, no, or maybe?, and the target tem-



plate is Choices[{label}]. Here Choices
is the metadata that is a list containing [Yes,
Maybe, No] to correspond to the digit labels. We
note that such metadata is prompt-specific and can
differ with different prompts for the same task —
for instance, in Figure 1 each prompt actually has a
different Choices list from others; the Choices
list of the first prompt on the top is [True, False,
Neither]]. In prompt-based approaches the
PLM models the conditional probability ¢(y|x, )
through pg(ry(y)|rz(x)) where 6 denotes the
model parameters. In classification tasks where )
is a finite label set, ¢(y|x,r) is normalized over
the possible labels at inference time to predict y:

Po(ry(y)rz(x))
yrey Po(ry(y)[rz(x))’

q(ylx,r) = 5 (D

In generation tasks where ) is an infinite sequence
space, the target template is typically instanti-
ated as the target itself, i.e. pg(ry(y)|rz(x)) =
po(y|rz(x)), then the output can be directly de-
coded through sequence decoding approaches.
Through designing such prompts for each task, all
NLP tasks share the same data format, and models
trained on one task may generalize to others.

3 Prompt Consistency Training

3.1 Problem Definition

In this paper, we aim to explore unannotated exam-
ples to improve prompt-based zero-shot task gen-
eralization. Formally, we are given an unlabeled
dataset in the task of interest {xy,X2, -+, Xy},
and we assume the dataset has K different prompts,
{(rél),rl(})), R (TJ(CK), rl(,K))}. Our goal is to uti-
lize these resources and adapt a PLM to predict
ry(y) conditioned on r,(x). We note that unla-
beled input and a diverse set of prompts are not
difficult to collect practically — the inputs to most
NLP tasks are plain text such as reviews, docu-
ments, or questions, and empirically our method is
effective even with tens to hundreds of unlabeled
examples as we will show in §4.4; drafting prompts
for each task is much easier than annotating labels
for each example, in fact, the community efforts
have pushed out a Public Pool of Prompts (P3)?
that contains thousands of prompts for hundreds of
NLP datasets already (Sanh et al., 2021). In this
paper, we are going to focus our experiments on a
subset of datasets supported by P3.

Zhttps://github.com/bigscience-workshop/promptsource

3.2 The Prompt Consistency Loss

Consistency regularization is a method that cre-
ates different views (e.g. paraphrases of text) of
the input and regularizes the outputs to be close to
each other, and has achieved significant success in
semi-supervised learning (Clark et al., 2018; Xie
et al., 2020a,b). While previous methods use an ad-
ditional module to perturb each example and then
optimize example-level consistency, we propose
to optimize prompt-level consistency which (1) is
conceptually simple, and (2) can mitigate the fact
that the predictions of PLMs are typically inconsis-
tent with different prompts for the same task (Jiang
et al., 2020; Elazar et al., 2021). Intuitively, we
propose to regularize the predictions of different
prompts for a given input to be close to each other,
using a pairwise distillation loss to draw the pre-
dictions from one prompt closer to those from the
other. Concretely, we randomly sample a few pairs
of prompts and distill the pseudo target ¥ from one
prompt (%) to the other prompt %), as illustrated
in Figure 1. The loss function is defined as:

L= —Expyx)Er) 10)mp(r)

E e o (r DD (). P
yrod(y]x,r@) ng@(ry (¥)Irg’ (%)),
where p4(x) is the empirical data distribution, p(r)
is a uniform distribution over possible prompts in
the prompt set, and ¢(y|x,r) is the conditional
target distribution defined as in Eq. 1 but with a
stopping gradient operator. We do not propagate
gradients to §(y|x,r®) following Miyato et al.
(2018) and Xie et al. (2020a).> Stopping the gra-
dient of one side in a pairwise consistency loss
is also shown to help mitigate the collapse issue
where all inputs lead to the same predictions (Chen
and He, 2021). Different from traditional distilla-
tion that distills from a teacher model to a student
model (Hinton et al., 2015), or previous consistency
training that a single teacher distills to several stu-
dents (Clark et al., 2018; Xie et al., 2020a), we
perform distillation among a swarm of prompts
where each prompt is a teacher and student at the
same time, thus we term our method as swarm dis-
tillation. In our implementation, we approximate
the expectation over the paired prompts (), (7))
with k£ randomly sampled pairs instead of enumer-
ating all pairs for training efficiency.

Prompt consistency is related to example-
level consistency when viewing different prompt-

3Note that §(y|x, r) still changes as we train the model.
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Figure 2: A diagram of LoRA in the FFN sublayer. Only the
LoRA parameters, A and B, are updated during training while
other parameters are fixed.

formatted inputs r{) (x) as separated views of
the same example, thus our swarm distillation ap-
proach shares spirit with previous work on example-
level consistency training and can be understood
similarly from the perspective of unsupervised data
augmentation, smoothness regularization, or label
propagation (Xie et al., 2020a). In this paper, we
focus on classification tasks where ) is a finite
label set, while Eq. 2 can be directly applied to
sequence generation tasks as well with sequence
distillation (Kim and Rush, 2016).

Our approach differs from previous consistency
training methods which often combine an unsuper-
vised consistency loss with a supervised loss in a
semi-supervised setting (Miyato et al., 2018; Clark
et al., 2018; Xie et al., 2020a). Elazar et al. (2021)
try to improve prompt consistency for a relation fill-
ing task with a pairwise two-sided KL divergence
loss, while they also optimize a supervised version
of the original PLM objective that turns out to be
important. In contrast, our approach minimizes the
swarm distillation loss in Eq. 2 alone, and therefore
is completely unsupervised and agnostic to the pre-
training objective. However, this setting also poses
challenges in learning, which we discuss next.

3.3 Training

Being trained without explicit supervision, the
PLM may forget what it learns during pretraining
since the unsupervised consistency loss is differ-
ent from the pretraining objective. Also, we note
that prompt consistency may be achieved with a
trivial solution — if the predictions from each ex-
ample and each prompt collapse to the same label
then maximal consistency among prompts can be
reached. To mitigate such catastrophic forgetting
and collapse issues, we propose two techniques:

Parameter-efficient tuning: It has recently been
observed that updating a small number of added
parameters in a PLM is able to achieve comparable

performance to tuning all the parameters (Houlsby
et al., 2019; Li and Liang, 2021; Hu et al., 2021;
He et al., 2021). Parameter-efficient tuning meth-
ods naturally mitigate catastrophic forgetting and
collapse through fixing the original PLM parame-
ters. Specifically, we use LoRA (Hu et al., 2021), a
low-rank adaptation method for PLMs. As shown
in Figure 2, LoRA learns a low-rank approxi-
mation of the pretrained matrix updates: given
a pretrained weight matrix W € R%™, LoRA
learns to update it as W < W + aBA, where
B € R¥*t A € RY™ are low-rank matrices and o
is a hyperparameter, and only B and A are updated
during training. b < d is referred to as the bottle-
neck dimension. Following He et al. (2021), we
apply LoRA to the feed-forward weight matrices of
every layer in the pretrained transformer (Vaswani
et al., 2017) model. We emphasize that B (or A)
needs to be initialized as a zero matrix to ensure
the output distribution after adding LoRA layers is
the same as the original PLM before training, oth-
erwise, the zero-shot ability of PLMs would be bro-
ken upon initialization and there is no supervision
to learn it back. In our preliminary experiments,
we found that LoRA is less likely to suffer from
collapse, while we still observe collapse sometimes.
This motivates us to develop a criterion to select
the model checkpoint before the model falls into a
collapsed local optimum, which we describe next.

Unsupervised model selection criterion: In su-
pervised learning, model selection is typically per-
formed on a held-out validation set using super-
vised metrics. However, our zero-shot setting re-
quires to develop an unsupervised selection cri-
terion. Intuitively, it is straightforward to use a
consistency metric as the criterion since we are op-
timizing towards prompt consistency, but a naive
consistency metric would reach its maximum when
the model is collapsed. Therefore, we would like
to have a metric that encourages consistency but
simultaneously penalizes collapse. With that in
mind, we focus on Fleiss’ kappa (Fleiss, 1971), a
commonly used metric to assess the reliability of
agreement between a fixed number of raters. In
our setting, Fleiss’ kappa expresses the extent to
which the amount of agreement among prompts ex-
ceeds what would be expected if all prompts made
their predictions according to the marginalized dis-
tribution of labels. This design naturally penalizes
collapse and is computing a notion of ‘“relative
consistency”. Formally, let n;; be the number of



prompts that predict the j-th label for the i-th exam-
ple. There are a total of N K predictions where N
is the number of examples and K is the number of
prompts. Given an example x;, the agreement prob-
ability p; is to compute how many prompt pairs are
in agreement, divided by the number of all possible
pairs:

1
m Zj Nij (nij - 1)7 3)

then p; is averaged across examples to obtain the
“absolute consistency’:

_ 1 N
P==>  pi @)

It can be seen that P is maximized in the case of
collapse. However, Fleiss’ kappa considers the
marginalized distribution of labels: how likely are
two prompts consistent if they make predictions
randomly according to the marginalized label dis-
tribution? This chance probability P, is:

pi =

_ 1 N
_ E 2 . -
P, = jpj’ p]—NK i:lnw’ )

where p; represents the marginalized distribution

of labels, i.e. p(y = j). P. is large when col-

lapse happens and one label dominates in the entire

corpus. Finally, Fleiss’ kappa is computed as:
P—P,

1B (6)

K =
where 1 — P, gives the degree of consistency that
is attainable above chance, P — P, gives the de-
gree of consistency actually achieved above chance.
k ranges from -1 to 1. Eq. 6 naturally penalizes
collapse, and in our experiments, we always ob-
serve a monotonic decrease of x when collapse
happens. Therefore, we select the model check-
point after which £ monotonically decreases.* We
emphasize that we perform validation on the data
that the model is trained on and do not require an
additional development dataset.

4 Experiments

Our experiments below are designed to (1) mea-
sure whether swarm distillation is able to improve
zero-shot task generalization; and (2) analyze how
much resource (number of prompts and unlabeled
examples) our method demands.

“In most of the settings, this criterion is equivalent to using

maximal  as the criterion, except for few cases where the
beginning of training exhibits large fluctuations in .

4.1 General Setup

Datasets: Following Sanh et al. (2021), we evalu-
ate our method on 11 NLP datasets across 4 unseen
tasks. They are (1) natural language inference:
ANLI (Nie et al., 2020) (there are three versions
of ANLI with different levels of difficulty, which
we denote as ANLI R1/R2/R3), CB (De Marn-
effe et al., 2019), RTE (Wang et al., 2019); (2)
sentence completion: COPA (Roemmele et al.,
2011), HellaSwag (Zellers et al., 2019), Story
Cloze (Mostafazadeh et al., 2016); (3) corefer-
ence resolution: WSC, Winogrande (Levesque
et al., 2012); and (4) word sense disambiguation:
WIC (Pilehvar and Camacho-Collados, 2019). We
access them using Hugging Face Datasets (Lhoest
et al., 2021) and most of them are from the Super-
GLUE benchmark (Wang et al., 2019). All of these
datasets are classification-based, predicting a dis-
crete label from a finite set. Each of these datasets
has a diverse set of prompts provided by the Public
Pool of Prompts (Sanh et al., 2021) The number
of prompts ranges from 4 to 15. Please refer to
Appendix A for detailed statistics of these datasets.

Setup: We build our method on top of the PLM
TO (Sanh et al., 2021). TO is an adapted version
of the pretrained TS5 model (Raffel et al., 2020)
that is continually trained on multiple tasks with
supervised, prompt-formatted examples. TO outper-
forms GPT3 (Brown et al., 2020) and demonstrates
state-of-the-art performance in zero-shot task gen-
eralization. All the tasks that we are studying are
not included in TO’s training data. We focus our
major study on the TO model version with 3 bil-
lion parameters (T0O-3B), while we also include
results using the largest TO model with 11 billion
parameters (TO-11B) on some datasets, due to the
high computational cost of training TO-11B. TO is
the main baseline that we compare our approach
against. We tune the hyperparameters (e.g. the opti-
mization hyperparameters) on the RTE dataset with
its validation set and fix them for all other datasets.
During optimization of Eq. 2, we randomly sample
a batch of k pairs of prompts where k is the largest
number that our GPU memory can fit and accumu-
late gradients for one update. We use a bottleneck
dimension of 1 for LoORA. Complete setup details
can be found in Appendix B.

4.2 Evaluation

Metrics: We use accuracy as the metric for all
datasets. We report two different types of accuracy



TO0-3B

Swarm Distillation (train)

Swarm Distillation (test)

Task Dataset Ens. Med. Ens. Med. Ens. Med.
RTE 64.6 64.1 752+08710.6 73.9+0819.8 75240271106 73.5+01194
CB 464 50.0 47.6x1011.2 482+00/1.8 46.4+00700 48.8+10]1.2
NLI ANLIRI1 346 337 37.4+t0s5728 355107118 38.5+0313.9 35.7+0512.0
ANLIR2 337 334 379x08142 36.6+05132 37.7+02140 35.4+0412.0
ANLI R3 347 333  34.0+03107 34.6x0171.3 34.1+02]06 33.5+0010.2
COPA 780 79.0 823106143 79.0+0570.0 83.0+10150  79.7+0610.7
Compl. HellaSwag 27.8 27.5 34.2+02164 33.4402159 337406159 33.240315.7
Story Cloze 86.5 85.1 - - 87.3+0110.8 86.9+0211.8
Coref ‘Wino. 50.9 505 52.0+0311.1  51.4+00109 52.1x0311.2 51.2+02710.7
" WSC 69.2 644 5834110109 593420051 57.7+00]11.5 58.8+0615.6
WSD WIC 50.3 504 554+11151 54.4+07140 55.5+t08152 54.8+t0514.4

Table 1: Accuracy results on the validation set of 11 NLP datasets based on the TO-3B model. Swarm Distillation (train)
and Swarm Distillation (test) use the unlabeled training split and validation split of datasets to train the model respectively,
corresponding to training-time and test-time tuning. The Story Cloze dataset does not have a training split. We report the mean
and std across 3 random runs, and also denote the absolute accuracy change compared to the T0-3B baseline.

given that we have multiple prompts. The ensem-
ble accuracy (Ens.) averages the output distribu-
tions of multiple prompts and makes predictions
according to it. Ensembling multiple prompts has
been explored before and found superior to using a
single prompt (Jiang et al., 2020; Qin and Eisner,
2021). The median accuracy (Med.) within the
set of prompts serves as a proxy for the expected
performance when users specify a single prompt
and input a prompt-formatted example. As our
approach assumes availability of a set of prompts
for the downstream task, and it is relatively cheap
to craft several prompts for a task, ensemble pre-
diction is the better option given input x, and it
does empirically yield higher accuracy overall than
the median for both the baseline and our method.
Therefore, we will report both numbers but mainly
discuss ensemble accuracy. We compute these met-
rics on the validation split of each dataset. We run
the experiments with 3 random seeds and report
the mean and standard deviation.

Evaluation scenarios: We provide our methods
with different unlabeled sources which lead to two
practical scenarios during evaluation: (1) training-
time tuning: we use the unlabeled training split
from the corresponding dataset to train the model.
This is similar to traditional settings where train-
ing and test data are different; and (2) fest-time
tuning (Sun et al., 2020; Wang et al., 2021): we
directly adapt the PLM on the test data. This set-
ting is reasonable, as we will always have access
to the test inputs at test time. Intuitively, the unla-

TO-11B Swarm Dist.
Dataset Ens. Med. Ens. Med.
WSC 63.5 625 654119 62.005
RTE 83.8 820 86.6728 85.013.0
HellaSwag 344 33.6 45.07106 43.0194
WIC 572 56.8 62.1149 60.713.9

Table 2: Accuracy on the validation set based on TO-11B.

beled test sample x often provides hints about the
distribution it was drawn, suggesting that we may
update the model before making the prediction.
This scenario is attractive since it alleviates the
common distribution mismatch issue when there
is a distribution shift between the training and test
data. Compared to training-time tuning, test-time
tuning typically uses less unlabeled data in our ex-
periments since it uses the validation split itself. In
the major experiments, we focus on the offline test-
time tuning where we assume access to the entire
test data® and train our approach on all test exam-
ples, while in §4.4 we will discuss the potential for
online adaptation where data arrives in a stream.

4.3 Results

How well does swarm distillation work? We
compare swarm distillation against the T0-3B base-
line. We run our own evaluation using the released
TO weights to obtain the TO baseline accuracy.®

5To clarify, test data is not the test split of the dataset, but
the data that we evaluate on, i.e. the validation split.

®We are able to reproduce the numbers reported in Sanh
et al. (2021), except for COPA where our TO median number
is higher than the originally reported one.



RTE CB ANLIRI ANLIR2 ANLIR3 COPA HS Story. Wino. WSC WIC Avg.
TO-3B 0.644 0.440 0.221 0.189 0.170  0.586 0.164 0.765 0.396 0.255 0.398 0.384
Swarm Dist.  0.662 0.254 0.145 0.156 0.177  0.699 0.402 0.862 0.509 0.462 0.517 0.440

Table 3: Fleiss’ kappa on 11 datasets based on TO-3B. Swarm distillation is trained on training split of the respective dataset.

The results are shown in Table 1. The ensemble
accuracy of swarm distillation exceeds the TO-3B
baseline on 9 out of 11 datasets in both training-
and test-time tuning settings. Particularly, our ap-
proach improves the zero-shot performance on RTE
by around 10 absolute points in all cases. Our ap-
proach slightly hurts ensemble accuracy of ANLI
R3 and median accuracy of CB, but is overall com-
parable on these two datasets. We note that swarm
distillation severely fails on WSC with a 10-point
accuracy decrease, this is because Fleiss’ kappa se-
lects a bad model checkpoint, while our approach
actually improves the performance on WSC in the
middle of training as we will discuss more in §4.4.
Although it may be argued that swarm distillation
only works when the base PLM can attain reason-
able performance in the first place, notably, our ap-
proach improves TO-3B greatly on several datasets
where TO-3B only shows nearly chance accuracy,
such as ANLI R1/R2/R3 (3 labels), HellaSwag (4
labels), Winogrande (2 labels), and WIC (2 labels).
In addition, we observe that swarm distillation in
the test-time tuning setting performs comparably
well to the training-time one despite using much
less training data, as shown in Appendix A. It is
worth noting that prompt-based zero-shot task gen-
eralization is challenging, for example, TO with
even 11 billion parameters reports a median accu-
racy of only ~ 40 on ANLI R1/R2/R3, 33.7 on
HellaSwag, and 57.2 on WIC (Sanh et al., 2021).
These numbers are surely still far from satisfactory,
yet we hope to inspire future research to explore
prompt-formatted, unlabeled data to build better
zero-shot learners.

Scaling to 11B parameters: We now evaluate
our method based on the largest version of TO
model, TO-11B. TO-11B is a very powerful zero-
shot baseline that greatly outperforms GPT3 with
175 billion parameters. Due to the expensive com-
putation to train TO-11B, we use one dataset per
task, a total of 4 datasets as our benchmark, and
only run with one random seed in the test-time tun-
ing setting. Results are shown in Table 2. Swarm
distillation outperforms TO-11B on all 4 datasets in
terms of ensemble accuracy, and notably, improves

the ensemble accuracy on HellaSwag from 34.4 to
45.0 without any annotation. Table 1 and Table 2
demonstrate the effectiveness of swarm distillation
across different model sizes.

4.4 Analysis

Are predictions more consistent across differ-
ent prompts after swarm distillation? We are
interested to know whether the gains of swarm
distillation are attained together with more consis-
tent predictions across different prompts. To this
end, we report Fleiss’ kappa, a commonly used
metric for group agreement as detailed in §3.3. Re-
sults are shown in Table 3. Fleiss’ kappa on 8 out
of 11 datasets increases after swarm distillation,
which boosts the averaged Fleiss’ kappa of T0-3B
by 14.6% relatively. This implies that swarm dis-
tillation facilitates prompt consistency, and poten-
tially improves the robustness of PLMs to different
wording of prompts.

Does the unsupervised criterion select the best
model checkpoint? In §3.3, we discussed using
Fleiss’ kappa to select the best model checkpoint
for evaluation, here we report the oracle accuracy
numbers obtained by selecting the model check-
point with the best validation accuracy, and com-
pare it to the one selected by Fleiss’ kappa. We
compare the ensemble accuracy using TO-3B in
the training-time tuning setting, with results in Fig-
ure 3. On most of the datasets, Fleiss’ kappa is
able to achieve numbers close to the best ones. On
all 11 datasets, our oracle number outperforms the
TO-3B baseline. In Table 1 we show that swarm
distillation hurts the performance on WSC a lot,
while in Figure 3 swarm distillation (oracle) in fact
outperforms TO-3B, implying that the issue lies
on model selection. Therefore, swarm distillation
could potentially work better if an annotated dev set
is available or when it is combined with other tech-
niques in few-shot learning settings, where good
checkpoints may be selected out more easily.

How many prompts do we need? Our approach
requires a diverse set of prompts to regularize
prompt consistency. Here we perform ablation ex-
periments to understand the effect of the number
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Figure 3: Analysis results to compare the model checkpoints selected by the unsupervised criterion Fleiss’ kappa with the oracle

model checkpoints selected by validation accuracy.
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Figure 4: Ensemble accuracy of swarm distillation on three
example datasets, demonstrating the effect of prompt size and
unlabeled data size. The PLM is TO-3B.

of prompts on the performance. We take RTE and
ANLI R2 as example datasets which have 10 and
15 prompts, respectively. We then vary the num-
ber of available prompts by randomly sampling a
subset of prompts. We report the ensemble accu-
racy of swarm distillation (train) in Figure 4a. On
both RTE and ANLI R2, we observe gains as we
increase the number of prompts from 0 (0 means
the baseline), yet the performance saturates very
quickly and relatively stabilizes when we provide 2
and 4 prompts for RTE and ANLI R2 respectively.
This implies that swarm distillation is not prompt-
hungry and could work well with a small number
of prompts. Interestingly, on RTE swarm distilla-
tion shows substantial improvement even with one
prompt — this is not very surprising because our
swarm distillation loss in Eq. 2 degenerates to self-
distillation or self-training (Scudder, 1965), which
has proven to effectively utilize unlabeled data and
achieved success in various applications (He et al.,
2020; Xie et al., 2020b; Zhang et al., 2020).

How many unlabeled examples do we need?
We measure the effect of unlabeled data size.
Specifically, we randomly sample a subset of ex-
amples from the train split for training and report

results on the entire validation dataset. Results on
WIC and ANLI R2 are shown in Figure 4b. No-
tably, swarm distillation is able to outperform the
baselines (#examples=0) by a large margin on both
datasets with only 10 unlabeled examples, and the
performance starts to saturate quickly afterward.
These results suggest that swarm distillation is not
data-hungry and works reasonably well with few
unlabeled examples, allowing swarm distillation
to remain as a relatively light approach while typ-
ical unsupervised training (e.g. pretraining) often
requires a large amount of data and computation.
Also, we argue that the phenomenon demonstrated
in the results implies that swarm distillation may
be applied to the online setting of test-time tuning,
where the batches of test data arrive in a stream.
Online test-time tuning is a practical setting in real
life, and we leave the study of swarm distillation in
this setting as future work.

5 Discussion

In this paper, we explore prompt consistency reg-
ularization to make PLMs better zero-shot learn-
ers. Our approach utilizes unlabeled examples to
attain zero-shot gains. While we use it in a post-
adaptation way to adapt PLMs with the proposed
swarm distillation loss alone, our regularization
loss could be potentially combined with the pre-
training objectives in the pretraining stage, with
the multi-prompt training loss (Sanh et al., 2021;
Wei et al., 2021), or even with annotated data in
few-shot learning settings. Combining the swarm
distillation loss with these other losses may easily
bypass the model collapse issue since the other loss
typically discourages the collapsed local optimum.
The potential applications of unsupervised swarm
distillation on sequence generation tasks are also
worth studying in the future.



Ethics Statement

Our work adapts a PLM to be better zero-shot
learners, thus the resulted system admits similar
risks and ethics concerns that large PLMs gener-
ally have, such as concerns about biased gener-
ation (Bordia and Bowman, 2019) or private in-
formation leakage (Carlini et al., 2021). Besides,
prompt-based zero-shot task generalization is often
an open-ended generation setting, thus toxic con-
tent may be unexpectedly produced with certain
prompts due to lack of control in the process. This
is a common issue for prompting methods gener-
ally (Radford et al., 2019; Brown et al., 2020; Sanh
et al., 2021; Wei et al., 2021) and there is a recent
study to teach machines to behave ethically (Jiang
et al., 2021). However, our approach does not add
additional risks beyond the existing systems as far
as we can tell.

With respect to the environmental im-
pact (Strubell et al., 2019) from adapting the
PLM with swarm distillation, our approach is not
data-hungry and works well with a small number
of unlabeled examples as discussed in §4.4, thus it
does not require huge computation. For example,
the training time of all the experiments based on
the TO-3B model is less than 3 hours with only
one A40 GPU; the training time of TO-11 model is
2-6 hours with 4 A40 GPUs. These numbers are
benchmarked from our main experiments that train
with the entire training or validation dataset, yet
our analysis in §4.4 implies that we may train with
only tens of examples to greatly save computation,
we leave this as future work to explore.
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A Datasets

#train set  #validation set  #labels  #prompts

RTE 2,490 277 2 10

CB 250 57 3 15

NLI ANLIR1 16,946 1000 3 15
ANLIR2 45,460 1000 3 15

ANLI R3 100,459 1200 3 15

COPA 400 100 2 8

Compl. HellaSwag 39,905 10,042 4 4
Story Cloze 1,871 2 5

Coref Winogrande 40,398 1,267 2 5
© WSC 554 104 2 10
WSD  WIC 5,428 637 2 10

Table 4: Statistics of the datasets

We present the statistics of the 11 datasets in Ta-
ble 4. For the training-time tuning scenario, we use
up to 10,000 data points from the training set for
training if the train set contains more than 10,000
data points.

B Training Details

We use LoRA (Hu et al., 2021) as our parameter-
efficient tuning model and set the bottleneck di-
mension of LoORA weight matrices to be 1 for both
3B and 11B models. For both models, we set the
dropout probability for the the LoRA intermediate
representations to be 0.3. Let a denote the scaling
factor of LoRA that is used to scale the output of
the LoRA layer before adding to the hidden states
of the pre-trained model. We set a to be 4 and 2
respectively for the 3B and 11B model. The peak
learning rates of the 3B and 11B models are set to
be 3e-5 and 5e-5 respectively with a warm-up stage
of 100 steps and polynomial learning rate sched-
uler. We train for a maximum of 1,500 steps. Note
that the hyperparameters for the 3B model is tuned
on the RTE dataset and used for other datasets. We
did not tune the hyperparameters of the 11B model.

With respect to implementation details, at each
update we first sample one input example x
and apply multiple prompts to reformat it as
ri(x),---,rE(x), then we perform inference for
them and randomly shuffle the predictions. Next
we iterate over them with a batch size of 5/10
(3B/11B)’ and use the shuffled predictions to su-
pervise them to compute the distillation loss, this
implements the swarm distillation mechanism in
Eq. 2 and in fact approximates the expectation over

"Because the GPU memory sometimes cannot handle all
the prompts within one batch.
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paired prompts with K random pairs. We accumu-
late the gradients for 16 steps for one update so that
each gradient descent is computed from 16 data
examples. And we use 1 A40 GPU (45GB mem-
ory) to train the 3B model and 4 A40 GPUs with
DeepSpeed Zero-2 (Ren et al., 2021) to train the
11B model. In general, training converges pretty
fast and takes around 1 - 3 GPU hours for the 3B
model and 2 - 6 hours for the 11B model depend-
ing on early stop points of different datasets. We
use Adam (Kingma and Ba, 2015) as the optimizer
with 81 = 0.9, B3 = 0.98 and € = 1le — 6.

For the Transformer (Vaswani et al., 2017) mod-
els with model dimension d, the feed-forward inter-
mediate dimension m and number of layers [, the
additional parameters used in LoRA with bottle-
neck dimension b is calculated as b (m+d) *2x[*2.
As we set b to be 1 for both the 3B and 11B mod-
els, the additional number of LoRA parameters is
1,671,168 for the TO-3B model (d = 1024, m =
16384, 1 24) and 6,389,760 for the TO-11b
model (d = 1024, m = 65536, = 24).

C Limitations of Our Work

We propose an unsupervised method for better zero-
shot learner. There are two limitations of our work:
(1) Because our method is operated in a fully un-
supervised manner, there is no supervised devel-
opment data for us to either select the best model
or tune hyperparameters. Thus, we propose to use
Fleiss’ Kappa as our unsupervised development
metric for model selection, which attains decent
performance in most cases. However, we also see
on very few datasets that the proposed metric fails
to select the best checkpoints and hurt the model’s
performance. As discussed in §4.4, our method
can be combined with few-shot learning where a
few labeled data are provided and we believe this
can largely alleviate the issues of model selection
in the unsupervised setting. (2) The other limi-
tation and at the same time an advantage of our
method is that the proposed method can work well
even with 10 unlabeled data points. This certainly
makes our method a good candidate for the online
setting where batches of test data come in a stream.
However, as we discussed in §4.4, the performance
of our model saturates quickly as we increase the
number of unlabeled data, which means the per-
formance of our method cannot scale well with
tons of unlabeled data like self-supervised pretrain-
ing. As discussed in §5, we expect combining our



method with few-shot learning setting / pre-training
can lead to further improvements as the supervised
signals may guide the model to a better local opti-
mum.
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