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Abstract

Large language models (LLMs) have demon-
strated remarkable reasoning capabilities with
proper prompting strategies such as by augment-
ing demonstrations with chain-of-thought (CoT).
However, the understanding of how different in-
termediate steps in the CoT improve reasoning
and the principles guiding their design remains
elusive. This paper takes an initial step towards
addressing these questions by introducing a new
analytical framework from a learning theoretic
perspective. Particularly, we identify a class of
in-context learning (ICL) algorithms on few-shot
CoT prompts, capable of learning complex non-
linear functions by composing simpler predictors
obtained through gradient descent based optimiza-
tion. We show this algorithm can be expressed by
Transformers in their forward pass with simple
weight constructions. We further analyse of the
generalization properties of the ICL algorithm for
learning different families of target functions. The
derived theoretical results suggest several prov-
ably effective ways for decomposing target prob-
lems and forming CoT prompts, highlighting the
bottleneck lies at the hardest reasoning step. Em-
pirically, we demonstrate that CoT forms derived
from our theoretical insights significantly enhance
the reasoning capabilities of real-world LLMs in
solving challenging arithmetic reasoning tasks.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able success in a variety of reasoning tasks, such as arith-
metic, commonsense and logical reasoning (Cobbe et al.,
2021; Rae et al., 2021; Srivastava et al., 2022). An abun-
dance of empirical evidences ((Brown et al., 2020; Wei
et al., 2022; Kojima et al., 2022; Liu et al., 2021; Zhou
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et al., 2022; Wang et al., 2023; Yao et al., 2024; Besta et al.,
2024; Madaan et al., 2024), inter alia) suggest that their
effectiveness to handle these complex tasks hinges signifi-
cantly on the design of prompts. Particularly, given few-shot
examples in the form of question-answer pairs, LLMs can
learn new tasks in-context – tasks that were not explicitly
seen during their training (Brown et al., 2020; Garg et al.,
2022). Since its introduction, the so-called in-context learn-
ing (ICL) phenomenon has intrigued a long line of work
attempting to mechanistically explain it ((Akyürek et al.,
2023; Chan et al., 2022; Olsson et al., 2022; Xie et al.,
2021; Von Oswald et al., 2023), inter alia), or proposing
new methods for enhancement.

One notable method is called chain-of-thought (CoT) (Wei
et al., 2022; Reynolds & McDonell, 2021; Nye et al., 2021).
Few-shot CoT augments in-context examples with inter-
mediate steps, which have been shown highly effective for
enhancing the performance of LLMs on a wide variety of
reasoning tasks. Several theoretical works have explored the
benefits of CoT from the perspectives of expressiveness (Li
et al., 2024; Feng et al., 2024), demonstrating families of
circuits that can or can not be expressed by Transform-
ers with and without CoT. Additionally, its effectiveness
has also been case studied by in-context learning ReLU
MLPs, where intermediate steps in the prompts are internal
representations of MLP (Li et al., 2023b). Despite these
advancements, the theoretical understanding of CoT is far
from complete, particularly in terms of how specific rea-
soning steps function for certain tasks and the principles
for designing effective CoT prompts. Therefore, this paper
takes an initial step towards answering the open question:

How do intermediate steps in CoT prompting affect the
ability of LLMs to learn complex reasoning tasks?

This question is important not only because of its poten-
tial to uncover the inner workings of CoT but also because
it could bridge theory and practice by informing effective
prompting design. In fact, designing better prompts is a
central aspect of prompt engineering, and most existing
methods are from heuristics (Fu et al., 2023b; Shao et al.,
2023; Prasad et al., 2023). The main challenge of theoreti-
cally answering this question lies in the limited knowledge
about the computations that pre-trained Transformers actu-
ally perform, and the lack of ways to confirm hypotheses

1



An In-Context Learning Theoretic Analysis of Chain-of-Thought

(if any) due to their black-box nature. Since without this
knowledge, analysing the behavior of models on different
prompts would be largely intractable, we propose a learning
theoretic framework, which first uncovers a class of ICL
algorithms Transformers can express with CoT, and then de-
rive results in regime and maps them onto reality. Therefore,
this paper’s contributions are:

• Section 3: Identify a class of ICL algorithms enabled
by Transformers with CoT. This class of algorithms take
as input CoT examples, and output a compositional non-
linear predictor h by composing predictors {hi}i∈[k] ob-
tained from k sub-algorithms. Each sub-algorithm attends to
a reasoning step in the CoT, and extracts the corresponding
current/next reasoning step pairs to learn a linear predictor
on top of a non-linear feature map, i.e. hi : x 7→Wiϕi(x).
By recurrently stacking non-linearity and linearity, these
predictors collectively form a highly complex non-linear
function. To validate the consideration of these algorithms,
Theorem 3.1 establishes that, Transformers can express this
algorithm class in an end-to-end manner, producing a non-
linear predictor h in a single forward pass. We do so by
showing that the gradient descent dynamics of all intermedi-
ates results and the output can be simultaneously simulated
by self-attention with simple parameter configurations.

• Section 4: Analyse generalization of ICL algorithms
w.r.t. different forms of CoT. Given a reasoning task
involving a family of target functions, we formalize the
operation of “decomposing the task” and identify specific
properties of the decomposition that are effective (or inef-
fective) for enhancing the ICL algorithm’s generalization
performance. Theorem 4.2 provides an upper bound for the
expected error of the ICL algorithm with CoT, indicating
that the difficulty of learning is determined by the hardest
(i.e. least sample-efficient) CoT step after task decomposi-
tion. Practically, this means that a provably effective way
to design a chain is by reducing the hardness of the hardest
step. Furthermore, Theorem 4.3 establishes a lower bound
for the ICL algorithm without CoT or with suboptimal CoT.
Applying these bounds to specific tasks leads to concrete
recommendations for designing CoT. For example, by case
studying learning parities, we show that introducing a spe-
cific intermediate reasoning step guarantees smaller errors
for the ICL algorithm, given sufficient samples.

• Section 5: Corroborate theoretical predictions on real-
world LLMs. In particular, we propose a methodology
to construct complex reasoning tasks with varying overall
hardness. This is achieved by incrementally composing ran-
dom elementary functions (e.g. basic arithmetic operations
+,−,×) to create an increasingly difficult target function
(e.g. polynomials). We reveal only a limited number of
intermediate results in the CoT prompting to control the
difficulty of the hardest reasoning step. We observe that the

success rates of LLMs improve significantly as the difficulty
of the hardest step in the CoT reduces, regardless of the
overall task complexity. Additionally, on two notoriously
difficult-to-learn Boolean function tasks, parities and DNFs,
our empirical results demonstrate that CoT forms derived
from our analyses significantly enhance reasoning perfor-
mance, sometimes improving accuracy from nearly random
guessing to nearly perfect. These results demonstrate a close
alignment between our learning theoretic predictions and
practical prompting designs.

Finally, in Section 7, we remark that the open research
question studied in this paper is inherently challenging, and
there exist several limitations regarding the simplifications
made for analytical tractability. We also point out several
directions to extend the analysis and broaden its use cases.

2. Preliminary
In-Context Learning (ICL). In ICL (Garg et al., 2022),
the base model is provided with N demonstrations (a.k.a. in-
context examples) e(i) = (x(i), y(i)) for i ∈ [N ] where x ∈
X is the input and y ∈ Y is the output. The goal of the model
is to learn an unknown target function f ∈ F : X → Y .
The learning process is conducted by an algorithm denoted
as A : (X × Y)N → H, which takes demonstrations as
input and outputs a predictor (a.k.a. hypothesis) h : X → Y
from a hypothesis classH defined by the learning algorithm
A. The model then uses this predictor to make predictions
on a query input x(N+1) (which we assume is from the same
distribution as demonstrations). For instance, if the base
model is a pre-trained Transformer, denoted as TFθ(·), ICL
can be described as

TFθ({(x(i), y(i)) : i ∈ [N ]}, x(N+1))

=A({(x(i), y(i)) : i ∈ [N ]};H)(x(N+1))
(1)

where h = A
(
{(x(i), y(i)) : i ∈ [N ]};H

)
is the predictor

learned by the Transformer in-context.

Transformers. Let E = {e(i) : i ∈ [N ]} ∈ Rd×N de-
note the concatenation of demonstrations, and let e(N+1) =
(x(N+1), 0) ∈ Rd whose dimension aligns with other exam-
ples. Following the setup in previous works (Von Oswald
et al., 2023; Ahn et al., 2023; Cheng et al., 2024; Zhang
et al., 2023), a single-head self-attention layer with fixed
weights WK ,WQ,WV ∈ θ updates e(N+1) as

e(N+1) ← e(N+1) +WV Eσ(E⊤W⊤
KWQe

(N+1)), (2)

where σ is non-linearity that could be specified as Softmax,
ReLU or some kernel functions, e.g. (Choromanski et al.,
2021; Katharopoulos et al., 2020; Wang et al., 2020; Peng
et al., 2021). Stacking multiple self-attention layers (op-
tionally with the MLP module) gives us the Transformer
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considered in this paper. Note that we exclude the query
token when computing the attention, following (Von Os-
wald et al., 2023). We consider this for better illustrating
our construction and can be relaxed.

Chain-of-Thought (CoT). CoT (Wei et al., 2022) prompt-
ing instructs the model to solve a problem step-by-step. In
this paper, we consider the setup in the seminal work, i.e.
few-shot CoT, where both demonstration and prediction are
in the form of CoT. In particular, for k reasoning steps,1

we denote each demonstration as e = (x, z1, · · · , zk−1, y),
where zt ∈ Zt represents t-th intermediate reasoning step.
Let d be the dimension of e and d(Z) the dimension corre-
sponding to a certain space Z . For convenience, we also let
z0 = x and zk = y. While this paper focuses on few-shot
CoT, our insights could potentially also generalize to other
settings such as zero-shot CoT and CoT in pre-training.

3. In-Context Learning with CoT
3.1. In-Context Learning Algorithms

We begin by introducing a new class of ICL algorithms
A that is enabled by CoT prompting. The algorithm is
composed of several sub-algorithms and learns increasingly
complex compositional functions with more CoT steps. The
algorithm is described as follows:

Algorithm 1 ICL with CoT

Input: Examples {(x(j), z
(j)
1 , · · · , z(j)k−1, y

(j))}Nj=1, Learn-
ing Algorithms {Ai}ki=1.

Output: Predictor h : X → Y
for i = 1, · · · , k do

hi ← Ai({(z(j)i−1, z
(j)
i )}Nj=1;Hi)

h← hk ◦ · · · ◦ h2 ◦ h1

This class of ICL algorithms take as input a set of demonstra-
tions, where each demonstration contains k reasoning steps,
and outputs a predictor h from X to Y . The learning is per-
formed in a step-by-step manner; that is, for each reasoning
step i ∈ [k], a sub-algorithm Ai is used to learn a predictor
hi ∈ Hi : Zi−1 → Zi where Hi is a hypothesis space
associated with Ai. The learned predictors h1, h2, · · · , hk

are then composed to obtain the desired overall predictor.
Although this class of ICL algorithms stipulates that each
step is derived from the previous step, it can be naturally
extended to scenarios where each step is a function of all
preceding steps. For instance, we can redefine zi in the
algorithm as a concatenation of {zj}j≤i in the initial CoT.
Therefore, without loss of generality, we assume that the

1We also treat the output as a reasoning step. Thus, there is at
least one step even without CoT.

CoT satisfies the Markov property, meaning that each step is
conditionally dependent only on the immediately preceding
step.

While this new class of ICL algorithms could have many
different variants, in this paper, we are interested in each Ai

defined as empirical risk minimization – more specifically –
using gradient descent to minimize a loss Li over in-context
examples to learn a predictor from the hypothesis classHi.
The loss function is defined as the squared loss, and the
hypothesis class is defined as a linear function class on fixed
features, i.e. Li =

1
2

∑N
j=1 ∥hi(z

(j)
i−1)− z

(j)
i ∥22 and

hi ∈ Hi = {zi−1 7→Wiϕi(zi−1) : ∥Wi∥2 ≤ B}, (3)

where ϕi : Zi−1 → RK is a (possibly non-linear) feature
map to a K-dimensional latent space, and Wi ∈ Rd(Zi)×K

are learnable weights whose norm is bounded by B. Intrigu-
ingly, while each hypothesis class corresponding to each
Ai is a linear function class on fixed features, the predictor
obtained from the ICL algorithm is a non-linear function,
which can be written as stacking multiple non-linearities
and linear transformations, i.e.

h = Wkϕk(· · · (W2ϕ2(W1ϕ1(x)))) ∈ H. (4)

For example, if ϕ1 is specified as the identity mapping, and
ϕi for i ̸= 1 are specified as ReLU, Tanh, or other acti-
vation functions, (4) could represent a k-layer deep neural
network. Beyond this, the ICL algorithm is highly flexible in
terms of the range of functions that can be in-context learned
with CoT. As the number of intermediate steps increases, the
predictor also becomes more powerful. Moreover, as will be
detailed in the next subsection, such a powerful algorithm is
particularly compelling for analysis since it can be expressed
by a Transformer with simple weight constructions.

3.2. Transformers Learn Non-Linear Functions

Next, we demonstrate the construction of parameters that
enable Transformers to express the ICL algorithm in their
forward pass. Recently, some works show the inherent con-
nection between the self-attention layer and the dynamics of
gradient descent (GD) optimization (Akyürek et al., 2023;
Von Oswald et al., 2023; Dai et al., 2023; Ahn et al., 2023;
Mahankali et al., 2023; von Oswald et al., 2023; Zhang et al.,
2023; Cheng et al., 2024). To illustrate this more clearly,
consider a simplified case without CoT (i.e. k = 1). The
loss is L =

∑
i∈[N ] ∥h(x(i)) − y(i)∥22/2, and GD with a

fixed step size updates the weight as W ← W − η∇WL.
This process also induces dynamics in function space, i.e.
the evolution of the learned function h as weights update.
For linear function class in (3) and prediction on the query
input, the function space dynamics are as follows (see deriva-
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tion in Appendix A.1), h(x(N+1))

← h(x(N+1))︸ ︷︷ ︸
Last-Step Prediction

+η (Y − Ŷ )︸ ︷︷ ︸
Residuals

ϕ(X)⊤ϕ(x(N+1))︸ ︷︷ ︸
Kernel Function

(5)

where Y = [y(i)]Ni=1 ∈ Rd(Y)×N , Ŷ = [h(x(i))]Ni=1,
ϕ(X) = [ϕ(x(i))]Ni=1 ∈ RK×N . The residuals Y − Ŷ
refer to the difference between labels and predictions, which
is equivalent to Y at initialization if the weights in h are ini-
tialized as 0. The last term represents a kernel function w.r.t.
the feature map ϕ, quantifying the similarity between the
test (i.e. query) and training examples (i.e. demonstrations).

For comparison, we also rewrite the self-attention layer,
where we reinterpret e(i) in the forward pass as a concatena-
tion of input and the residual (x(i), y(i) − h(x(i))), which
at initialization is equivalent to (x(i), y(i)). In particular, we
have e(N+1)

← e(N+1)︸ ︷︷ ︸
Skip Connection

+ WV E︸ ︷︷ ︸
Embedding

σ(E⊤W⊤
KWQe

(N+1)))︸ ︷︷ ︸
Attention Module

(6)

where the last term is the attention module, also quanti-
fying certain similarities between the query and demon-
strations. Let us show how (6) subsumes (5) under cer-
tain weight constructions and Transformer architectural
choices. For linear self-attention layer without activation
σ in (6), the weight constructions WV =

(
0d(X) 0

0 −ηId(Y)

)
and W⊤

KWQ =
(

Id(X) 0
0 0d(Y)

)
yields

E⊤W⊤
KWQe

(N+1) = X⊤xN+1,

WV E = −η(0d(X ), Y − Ŷ ),
(7)

which is equivalent to (5) if ϕ is the identity mapping; that
is, Transformers can perform linear regression in their for-
ward pass (Von Oswald et al., 2023). More generally, the
connections between kernel function and attention module
have been widely studied, e.g. (Tsai et al., 2019; Wright &
Gonzalez, 2021; Chen et al., 2024), allowing us to apply sim-
ilar reasoning to kernel regression to establish connections
between (5) and (6). Such an extension has also been dis-
cussed in a concurrent work (Cheng et al., 2024), optionally
using more sophisticated constructions (Guo et al., 2024),
and empowered by the MLP modules (Von Oswald et al.,
2023) (Proposition 2); we refer interested readers to these
works for details. In practice, kernelized attentions (Choro-
manski et al., 2021; Katharopoulos et al., 2020; Wang et al.,
2020; Peng et al., 2021) are very effective and have been
widely used due to their superior linear complexity.

Our Construction. Next, we present our construction
of Transformers that allows them to learn compositional
functions in-context by implementing the ICL Algorithm 1
in their forward pass.

Theorem 3.1. Given a set of in-context examples in the form
of CoT with k reasoning steps (as defined in Section 2) and
a query input x(N+1), Transformers with depth O(kt) can
express Algorithm 1 where Ai is t steps of GD on squared
loss andHi is a linear function class defined in (3) whose
feature map aligns with the attention.

We provide a high-level sketch of the construction here and
defer details to Appendix A.1. First, we define k loss func-
tions {Li}i∈[k] associated with k reasoning steps. Each loss
function is convex w.r.t. the weights of the corresponding
predictor. In the forward pass, similar with (5), Transform-
ers implement (kernel) GD dynamics in function space to
minimize these loss functions. One challenge of establishing
the connection between (5) and (6) by further considering
CoT is that, for compositional non-linear predictors h in (4),
updating weights in a prior-step predictor (e.g. W1 in h1)
could cause non-linear dynamics in the final prediction h(x)
in (4). We show that this can be circumvented if the learning
is done in a step-by-step manner, namely Transformers first
learn a preceding reasoning step using their lower layers,
then proceed to learn the next step using upper layers.

Our construction subsumes the constructions in Von Oswald
et al. (2023) and Cheng et al. (2024) as special cases where
k = 1. The construction is not unique and could be adapted
to other setups, such as recurrently making k predictions (Li
et al., 2023b) in k forward passes. Compared with (Li et al.,
2023b), ours is more general, arguably simpler, and yields
more powerful predictors beyond ReLU MLPs.

4. Learning Theoretic Principle of Prompting
4.1. Quantifying the Benefit of CoT

As we have shown, CoT enables Transformers to in-context
learn compositional non-linear predictors. A natural follow-
up question arises: will ICL succeed given different forms
of CoT prompting, and how can we design intermediate
results to improve the reasoning capabilities of LLMs? To
answer these questions, we investigate the generalization
properties of the ICL algorithm and link them to the task
distributions from which the demonstrations are generated.

Formally, let D be a distribution over input space X , and
f : X → Y a fixed target function. An input distribution
and target function pair (f,D) defines the generating pro-
cess of in-context examples, where examples are drawn
based on x ∼ D(x), y = f(x). Let P be a family of dis-
tributions defined as a set of (f,D) pairs, representing a
certain reasoning task where the target function is typically
not unique. The following error quantifies how successfully
the ICL algorithm can learn the task

∆(P, h) ≜ max
(f,D)∈P

Ex∼D(x) [l (h(x), f(x))] (8)
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where l is the squared loss and could be extended to other
convex loss functions, h is the predictor obtained from the
ICL algorithm on N i.i.d. examples from (f,D). Minimiz-
ing the error guarantees the performance of ICL across all
possible target functions within the family.

Effects of CoT. Given a fixed reasoning task P , and an
ICL algorithm A, the remaining crucial factor determining
∆(P, h) is how we decompose the target function. Different
decompositions yield different CoT examples, resulting in
different predictors h with potentially distinct performances.
To formalize this, suppose there exists an operator T such
that for each (f,D) ∈ P , it decomposes the target function
as T (f) = (f2, f1), f = f2 ◦ f1, where f1 : X → Z and
f2 : Z → Y for another space Z . This decomposition
induces two new distribution families

PT,1 = {{(f1,D) : (f2 ◦ f1,D) ∈ P}}
PT,2 = {{(f2,D′) : (f2 ◦ f1,D) ∈ P}}

(9)

where {{·}} denotes multiset that allows possibly repeating
elements, and D′ : Z → R is determined by f1 and D.
The decomposition always exists and is not unique (e.g. f1
could be any bijection). Particularly when f1 is specified as
the identity mapping, we have PT,2 = P . For each decom-
position, we can associate it with the generating process of
demonstrations, i.e. x ∼ D(x), z = f1(x), y = f2(z).

Stipulating intermediate steps to be generated by certain f1
implicitly assumes: 1) no additional input information is
required to get the intermediate step, and 2) the intermediate
step is sufficiently informative for predicting the label. Note
that while we consider only one intermediate step here,
all of the following results can be iteratively applied to
accommodate CoT with more steps.

4.2. Theoretical Results

In this section, we analyse the ICL error ∆(P, h) w.r.t. dif-
ferent task decomposition T , aiming to: 1) identify prop-
erties of the decomposition that are favorable for the ICL
performance, and 2) elucidate how well-designed interme-
diate results in CoT can guarantee better performance on
certain reasoning tasks. Proofs are deferred to Appendix A.

Upper Bound. First, we present an upper bound for
∆(P, h).
Lemma 4.1. For any distribution family P and decompo-
sition operator T , the ICL Algorithm 1 on CoT demonstra-
tions sampled from the corresponding distributions in PT,1

and PT,2 has an error upper bound

∆(P, h) ≤ 4cB,ϕ max {∆(PT,1, h1),∆(PT,2, h2)} (10)

where cB,ϕ = max{1, B2 Lip(ϕ)2} is a constant deter-
mined by hypothesis classH in (3), h1 and h2 are predictors
given by sub-algorithms A1 and A2 such that h = h2 ◦ h1.

Note that the result also applies to other sub-algorithms A1

and A2 beyond linear/kernel regression (as long as the loss
function is convex). Iteratively applying Lemma 4.1 allows
us to derive an upper bound for ∆(P, h) with k-step CoT
enabled by multiple iterations of decomposition.
Theorem 4.2. For any distribution family P and decompo-
sition operators {Ti}i∈[k−1] sequentially applied on P , the
ICL Algorithm 1 with k-step CoT has an error upper bound

∆(P, h) = O(max
i∈[k]
{∆(PT,i, hi)}) (11)

where PT,i is the induced distribution family that generates
the i-th reasoning step, and hi is the predictor given by
sub-algorithm Ai.

This result shows that the largest error, i.e.
maxi {∆(PT,i, hi)}, made by predictor hi at the
hardest reasoning step, i.e. argmaxi {∆(PT,i, hi)}, is
the bottleneck for the eventual performance of ICL. To
minimize ∆(P, h), it suffices to minimize the error made
at the hardest step. Particularly, suppose each step is
PAC learnable,2 the hardest reasoning step is exactly the
least sample-efficient one (i.e. needing the highest rate of
sample number to achieve an error ϵ) for large enough N .
Therefore, in CoT, it is desirable to decompose the hardest
step, since by doing so, ICL can have better performance
guarantee and correspondingly Transformer also has the
expressiveness to achieve the desired error (based on results
in Section 4). The practical lesson for designing CoT from
Theorem 4.2 is: an effective way to form a CoT is by
decomposing the hardest or the most sample inefficient
reasoning step into smaller steps that are easier to learn.

Our results align with existing empirical practices of decom-
posing initially challenging tasks into sub-tasks, e.g. (Zhou
et al., 2022; Khot et al., 2022; Zhang et al., 2022), and com-
plement these works by offering a well-founded (and also
experimentally supported) approach to quantify different
task decompositions.

Lower Bound. Moreover, we demonstrate negative cases
where the ICL algorithm could fail to solve certain challeng-
ing reasoning tasks without CoT or with suboptimal CoT.
We achieve this by establishing a lower bound for ∆(P, h)
under undesirable conditions that should be avoided.
Theorem 4.3. For any distribution family P and decom-
position operator T , suppose ICL Algorithm 1 returns a
first-step predictor h1 from a finite set H′

1 ⊆ H1, the ICL
error has lower bound

∆(P, h) ≥ 1

2
−B

√
K|H′

1|Var(P) (12)

2PAC learnability (Shalev-Shwartz & Ben-David, 2014) means
there exists a learning algorithm that, with a sufficient number of
examples, can return a predictor in H that achieves an arbitrarily
small error ϵ with high probability 1− δ.
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where K is the number of features for the non-linearity
ϕ, and Var(P) depends on P; we defer its definition to
Appendix A.3.

In the extreme case |H′
1| = 1 or no CoT, this becomes

the lower bound for linear/kernel regression (Malach &
Shalev-Shwartz, 2022). This result suggests that, given a
certain task, the benefit from decomposition T would be
compromised if it causes the ICL algorithm to output a
limited set of h1 (i.e. when |H′

1| is small). This helps rule
out some dummy cases, such as when the first step of CoT
is the identity mapping. The term Var(P) is associated with
the distribution family P indicating its intrinsic complexity
(i.e. the more complex P is, the smaller Var(P) is). This
term is generally hard to compute and uninformative if P is
not further specified. Therefore, we will take learning parity
functions as an example to illustrate what concrete forms of
CoT in this case help to improve the learnability.

Illustrative Example: Parities. Boolean functions are
mappings from an input space {±1}n of n binary bits to
an output space {±1}. Particularly, parities are a family of
functions that compute the exclusive-or (XOR) of bits at
some predefined positions in the input. The specific form of
parity is determined by a subset S ⊆ [n]: the corresponding
parity is defined as χS(x) =

∏
i∈S x[i]. The distribution

family is defined as P = {(χS(x),D) : S ⊆ [n]} where D
is uniform over {±1}n.

Parities are notoriously hard to learn (Kearns, 1998; Shalev-
Shwartz et al., 2017; Daniely & Malach, 2020). Without
CoT, using the proposed ICL algorithm (where it reduces to
simple linear/kernel regression), the error has lower bound
(12) with values |H′

1| = 1 and Var(P) = O(2−n) (Malach
& Shalev-Shwartz, 2022), which is exponentially bad w.r.t.
the input size n. In contrast, with CoT, suppose we decom-
pose the target function into

χ1,S(x)[i] =

{
x[i] for i ∈ S
1 for i /∈ S

, χ2,S(z) =
∏
i

z[i],

(13)
where the first step χ1,S(x) learns to select relevant features
from x while masking irrelevant ones, and the second step
χ2,S(z) computes XOR of all bits in z. Since each first step
χ1,S(x) is unique, with sufficient CoT examples generated
with this decomposition, the ICL algorithm also returns
unique h1 with high probability, resulting in |H′

1| = 2n;
this improves the lower bound by counteracting Var(P). In
fact, one can easily show that the approximation error (i.e.
the lower bound) can become zero through construction of
h that resembles χS(x). Regarding the upper bound (10),
since both steps are learnable by a linear function class
on fixed features, the error can be arbitrarily small, thus
providing a guarantee that ICL algorithm can perform better
with this specific CoT.

We would like to note here that the guarantee only holds for
the proposed ICL algorithm rather than real-world LLMs.
In fact, there is no guarantee that black-box Transformers
will perform better with certain inputs, as there are always
cases where they may produce bad results. Nevertheless,
Section 5 will show that the predictions we derived here are
highly consistent with the performance of LLMs.

5. Empirical Verification
5.1. Increasingly Complex Functions

To verify our results, we consider new arithmetic reasoning
tasks and evaluate the performance of real-world LLMs,
including the state-of-the-art GPT-4o and the less power-
ful GPT-3.5-turbo. This subsection studies the connection
between the hardest step and the overall reasoning perfor-
mance of LLMs. Since there lacks a testbed where one can
control the hardness of the task and steps in the CoT, we
propose a method to construct such tasks by incrementally
building challenging tasks.

Constructing Highly Challenging Tasks. Let us consider
a class of elementary functions Fe where each function
maps from the input space X to itself. In general, these
elementary functions should be considered equally easy
to learn. Then, we sample a sequence of these functions
f1, f2, . . . , fT ∼ Fe; composing them gives us a target
function f = fT ◦ · · · ◦ f2 ◦ f1 : X → X whose complexity
increases as T increases. We consider an instantiation by
defining the input space as the space of two integers x ∈
Z2. The elementary functions are defined as choosing one
integer and using it to perform a basic arithmetic operation
(drawn from +, − or ×) with another number. Therefore,
Fe consists of

z[0]← z[0] + z[1], z[1]← z[1] + z[0]

z[0]← z[0]− z[1], z[1]← z[1]− z[0]

z[0]← z[0]× z[1], z[1]← z[1]× z[0].

(14)

While each elementary function in (14) is simple, the overall
target function f can become highly complex, possibly rep-
resenting polynomial functions on z[0] and z[1] up to an ar-
bitrary order and number of terms. Moreover, to quantify the
hardest step, we do not reveal all intermediate results of f in
the demonstrations provided to LLMs. Instead, we stipulate
that there exists at least one step i ∈ [k] where the function
from zi−1 to zi is constructed from H elementary functions,
whereas all other steps use fewer of them. For example,
given H = 3 elementary functions f1 : z[0]← z[0] + z[1],
f2 : z[1] ← z[1] × z[0] and f3 : z[1] ← z[1] − z[0], the
hardest step can be expressed as f3 ◦ f2 ◦ f1 :{

zi[0] = zi−1[0] + zi−1[1]
zi[1] = (zi−1[0] + zi−1[1]) (zi−1[1]− 1)

(15)
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H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8

T=1

T=2

T=3

T=4

T=5

T=6

T=7

T=8

97 -- -- -- -- -- -- --

92 35 -- -- -- -- -- --

90 31 18 -- -- -- -- --

88 22 16 6 -- -- -- --

82 21 12 9 3 -- -- --

71 27 12 6 5 1 -- --

69 23 6 4 1 0 0 --

56 16 4 3 1 1 1 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8

T=1

T=2

T=3

T=4

T=5

T=6

T=7

T=8

65 -- -- -- -- -- -- --

43 27 -- -- -- -- -- --

34 17 15 -- -- -- -- --

45 24 14 7 -- -- -- --

35 13 8 4 3 -- -- --

30 9 6 2 6 1 -- --

15 12 5 4 3 1 1 --

13 5 2 1 0 2 1 1
0

20

40

60

80

100
Success Rate (%

)

(b) GPT-3.5-turbo

Figure 1: Success rate of GPT-4o and GPT-3.5-turbo for learning compositional functions. T denotes the number of
elementary functions used to construct the target function; H denotes the maximal number of elementary functions to
construct a reasoning step.

See more detailed experimental setup in Appendix B.1.

Results. We test the performance of real-world LLMs on
the reasoning task described above with respect to different
overall hardness T and the hardest step H . We report their
success rates across 100 i.i.d. sampled target functions for
each T and H . And for each target function, the LLMs
are provided with 10 demonstrations and asked to infer the
computation process and apply it to derive the output for
an unseen input. As shown in Fig. 1 (and more results in
Appendix B.1), the success rate of LLMs quickly drops as
H increases. In particular, GPT-4o can successfully learn
the target function in most cases when H = 1; however,
it performs significantly worse as H increases from 1 to
4, then fails as H becomes even larger. These phenomena
corroborate our result that reducing the complexity of the
hardest step is critical for LLMs to successfully handle the
task.

5.2. Canonical Boolean Functions

Next, we test whether the specific forms of CoT obtained
from our learning theoretic analysis aligns with the perfor-
mance of real-world LLMs. In particular, we evaluate LLMs
on two families of Boolean functions: parities and disjunc-
tive normal form (DNF), which are known hard to learn in
theory (Malach & Shalev-Shwartz, 2022).

Task Descriptions. An (n, k)-parity function computes
the XOR (⊕) of a subset of k variables from a total of n in-
put binary bits (n is 10 in experiments). It outputs 1 if an odd
number of the k relevant variables are 1, and 0 otherwise. A
DNF function is a disjunction (logical OR) of conjunctions

(logical ANDs) of literals; and in the experiments, we con-
sider a family of 3-term DNFs f(x) = ∨3i=1∧wj=1(xij∨mij)

where w is the width and m ∈ {±1}3w is a latent variable
whose value determines the target function (i.e. mij = 1
invalidates xij). More details in Appendix B.2.

Results. Similarly, for each k in parities and w in DNFs,
we i.i.d. sample 100 target functions.3 For each function,
we provide LLMs with 100 in-context examples, ask them
to find patterns in them and return the output for a query.
Table 1 and 2 report their success rate. Particularly, in terms
of parities, we find even the SOTA model GPT-4o generally
performs no better than random guessing (with an expected
accuracy of 50%) when k > 3.

Then, we provide LLMs CoT examples with intermediate
results that are provably effective by applying our results
derived in Section 4: for parities, the intermediate result
is defined as z[i] = x[i] if i ∈ S otherwise 0; for DNFs,
z[i, j] = x[i, j] if m[i, j] = 0 otherwise 1. Results in table 1
and 2 clearly demonstrate the designed CoT significantly
improves the performance, e.g. GPT-4o achieves an almost
perfect success rate of 94 on (10, 4)-parity, while without
CoT the success rate is 54, which is almost random.

6. Related Work
In-context learning (ICL) (Garg et al., 2022) has gained
significant theoretical interest since its introduction (Brown
et al., 2020). Recent works (Akyürek et al., 2023; Von Os-

3For parities, we sample from a uniform distribution; for DNF,
we sample from a non-uniform distribution to ensure the label (0/1)
is balanced for w ≥ 3.
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(n, k)-Parities (10,1) (10,2) (10,3) (10,4) (10,5) (10,6) (10,7) (10,8) (10,9) (10,10)

GPT-4o w/o CoT 87 69 63 54 51 48 50 52 47 51
GPT-4o w CoT 92 95 97 94 87 73 66 58 62 50

GPT-3.5-turbo w/o CoT 75 62 60 47 59 58 51 56 55 54
GPT-3.5-turbo w CoT 80 76 72 74 75 69 57 63 57 57

Table 1: Success rate (%) of GPT-4o and GPT-3.5-turbo of learning (n,k)-parities.

3-Term DNF Width 3 Width 4 Width 5 Width 6 Width 7 Width 8 Width 9 Width 10

GPT-4o w/o CoT 85 81 77 73 68 66 62 74
GPT-4o w CoT 96 87 86 88 81 80 80 84

GPT-3.5-turbo w/o CoT 74 68 67 62 55 58 64 53
GPT-3.5-turbo w CoT 90 78 87 81 65 73 70 73

Table 2: Success rate (%) of GPT-4o and GPT-3.5-turbo of learning 3-term DNF.

wald et al., 2023; Dai et al., 2023; von Oswald et al., 2023;
Cheng et al., 2024; Li et al., 2023a) explain ICL as perform-
ing certain optimization algorithms by showing parameter
configurations that enable Transformers to implement gra-
dient descent (Von Oswald et al., 2023) or its variants (Gi-
annou et al., 2024; Fu et al., 2023a) to learn linear models.
Some studies further show that a single-layer Transformer
converges to weights that align with these constructions
when pre-trained on ICL tasks (Ahn et al., 2023; Mahankali
et al., 2023; Zhang et al., 2023). Notably, Cheng et al.
(2024) demonstrated that Transformers could implement
kernel gradient descent; Bhattamishra et al. (2023) empiri-
cally studied various models’ capability to in-context learn
discrete functions. However, what class of ICL algorithms
Transformers can implement with CoT remains open and is
investigated in this paper.

Chain-of-thought (CoT) prompting (Wei et al., 2022;
Reynolds & McDonell, 2021; Nye et al., 2021) augments
demonstrations with intermediate reasoning steps. Despite
its effectiveness in various reasoning tasks (Kojima et al.,
2022; Yao et al., 2024; Lanchantin et al., 2024), theoretical
analyses are scarce and mostly focus on the expressiveness
perspective (Li et al., 2024; Feng et al., 2024). The most
closely related work is by Li et al. (2023b), where the au-
thors show that Transformers can first filter inputs and then
perform linear regression to learn MLPs (specifically with
Leaky-ReLU). We extend existing work by showing that
Transformers can learn a richer family of compositional
functions. The generalization analyses further provide prac-
tical lessons on designing CoT prompts.

7. Limitations, Discussion, Broader Impacts
We would like to note a limitation that Section 4 are specifi-
cally derived based on the ICL algorithm presented in Sec-

tion 3 rather than real-world LLMs. It is uncertain whether
real-world LLMs actually implement this ICL algorithm,
and it is also infeasible to verify due to their black-box na-
ture. Without precise knowledge of the computations or
limits of pre-trained Transformers, providing guarantees
for their performance on various prompts is prohibitively
difficult. Nevertheless, we demonstrate the feasibility of
doing so by focusing on specific ICL algorithms that can
be expressed by Transformers, with predictions aligning
well with practice. The emergence of simplified variants
of these algorithms are supported both experimentally and
theoretically (Von Oswald et al., 2023; Cheng et al., 2024;
Ahn et al., 2023; Mahankali et al., 2023; Zhang et al., 2023).
Another limitation is regarding the tokenization and embed-
ding of prompts, which remain open questions without an
agreed standard. Our setup follows previous works, and
results could potentially be adapted to other settings.

Therefore, an interesting direction for future work is to un-
derstand the pre-training of Transformers and the exact ICL
mechanism that emerges during this process. Extending
our analysis to explore other variants of the ICL algorithm
with CoT, simpler constructions, and the role of intermedi-
ate steps in more reasoning tasks would also be valuable.
We believe this paper can promote understanding of the
underlying mechanism of CoT and has positive impacts by
providing high-level guidance for designing prompts. Given
the theoretical nature of this paper, we do not foresee any
immediate negative societal impacts.
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A. Proofs
A.1. Theorem 3.1: Construction

Given demonstrations {(z(j)0 , z
(j)
1 , · · · , z(j)k−1, z

(j)
k )}Nj=1, we could create k training sets, each of which defines a loss

function quantifying the error of a particular predictor hi. These loss functions are

{
Li =

1

2

N∑
j=1

∥∥∥hi(z
(j)
i−1)− z

(j)
i

∥∥∥2
2
: i ∈ [k]

}
. (16)

Note that while the overall predictor

h = hk ◦ · · · ◦ h2 ◦ h1 = Wkϕk(· · · (W2ϕ2(W1ϕ1(x)))) (17)

is a non-linear function, loss functions in (16) are convex with respective to the weights of their corresponding linear
predictors {Wi : i ∈ [k]}. Let us also denote h≤k′ = hk′ ◦ · · · ◦ h2 ◦ h1 for k′ ≤ k. Using gradient descent to minimize Li

with fixed step size η induces the following training dynamics in weight space

Wi ←Wi − η∇WiLi = Wi + η (Zi − hi(Zi−1))ϕi(Zi−1)
⊤ (18)

where hi(Zi−1) = [hi(z
(j)
i−1)]j∈[N ] ∈ Rd(Zi)×N , ϕi(Zi−1) = [ϕi(z

(j)
i−1)]j∈[N ] ∈ RK×N . Note that difference between our

setup and the conventional supervised learning setup is that, the latter is interested in the variation of output with different
weights, while in this paper, we are also interested in the dynamics of intermediate results. Particularly:

• For i′ < i, the dynamics of intermediate results induced by GD is

h≤i′(x
(N+1))← h≤i′(x

(N+1)), (19)

namely the variation of upper layer weights does not affect lower layer representations (i.e. intermediate results).

• For i′ = i, the dynamics is

h≤i(x
(N+1)) = Wiϕi(h≤i−1(x

(N+1)))

← (Wi − η∇Wi
Li)ϕi(h≤i−1(x

(N+1)))

= h≤i(x
(N+1)) + η (Zi − hi(Zi−1))ϕi(Zi−1)

⊤ϕi(h≤i−1(x
(N+1))).

(20)

Let κi be the kernel function defined by the feature map ϕi, we have

h≤i(x
(N+1))← h≤i(x

(N+1)) + η (Zi − hi(Zi−1))κi(Zi−1, h≤i−1(x
(N+1))). (21)

• For i′ > i, the dynamics is

h≤i′(x
(N+1)) = hi ◦ · · · ◦ hi′+1 ◦ h≤i′(x

(N+1))

← hi ◦ · · · ◦ hi′+1

(
h≤i(x

(N+1)) + η (Zi − hi(Zi−1))κi(Zi−1, h≤i−1(x
(N+1)))

) (22)

which in general intractable since hi ◦ · · · ◦ hi′+1 is non-linear. However, if upper layer weights in hi, · · · , hi′+1 are 0,
h≤i′(x

(N+1)) will become 0 as well and thus we can circumvent (22).

Recall also that based on the definition in Section 2, the self-attention layer can be written as

(Self-Attention) e(N+1) ← e(N+1) +WV Eσ
(
E⊤W⊤

KWQe
(N+1)

)
. (23)

where e = (x, z1, · · · , zk−1, zk) ∈ Rd at the input layer, d =
∑k

i=0 d(Zi).

In the following construction, we show that in the forward pass of Transformer, (23) could express dynamics of all
intermediate results, including (19), (21) and (22), based on a certain order in which minimization of losses in (16) is
performed. Particularly, in our construction, Transformer will sequentially minimize loss functions in (16). In other words,

12
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the lower layers of the Transformer learn prior reasoning steps, while upper layers of the Transformer learn later reasoning
steps.

We begin by constructing a projection matrix P that projects e onto an expanded space

P =



Id(Z0) 0 · · · · · · 0
0 Id(Z1) · · · · · · 0
0 Id(Z1) · · · · · · 0
0 0 Id(Z2) · · · 0
0 0 Id(Z2) · · · 0
...

...
...

. . .
...

0 0 0 · · · Id(Zk)


(24)

which copies certain dimensions in the initial embedding and transforms it into

e = (x, z1 − h1(x), z1, · · · , zk−1 − hk−1(zk−2), zk−1, zk − hk(zk−1)) ∈ Rd′
(25)

where d′ = 2d− d(X )− d(Zk) and hi(zi−1) = 0 for i ∈ [k] at initialization. For the query input, that is defined as

e(N+1) =
(
x(N+1),−h1(x

(N+1)), 0, · · · ,−h≤k−1(x
(N+1)), 0,−h≤k(x

(N+1))
)
∈ Rd′

(26)

where h≤i(x
(N+1)) = 0 at initialization, h≤k is exactly the final prediction h we desire.

For layers that minimize the i-th step’s loss function Li, we construct Transformer weights in the corresponding self-attention
layer as:

WV =

0dl(i) 0 0
0 −ηId(Zi) 0
0 0 0dr(i)

 (27)

where dl(i) = 2
∑i−1

j=0 d(Zj)− d(X ), dr(i) = 2
∑k

j=i d(Zj)− d(Zk)− d(Zi), selecting residuals in the embedding.

W⊤
KWQ =

0d′
l(i)

0 0

0 Id(Zi−1) 0
0 0 0d′

r(i)

 (28)

where d′l(i) = 2
∑i−1

j=0 d(Zj)− d(X )− d(Zi−1), d′r(i) = 2
∑k

j=i d(Zj)− d(Zk), selecting intermediate results (or inputs)
for computing the attention matrix. Stacking t self-attention layers minimizes the loss function for t steps. For i ∈ [k], apply
this procedure to sequentially minimize loss functions in (16) gives us the desired result. The output includes prediction for
all intermediate steps and the final prediction.

It is not hard to verify linear/kernel regression in Von Oswald et al. (2023); Cheng et al. (2024) are special cases of our
construction.

A.2. Lemma 4.1: Upper Bound

Given a target function f and an input distributionD(x), the ICL algorithm A returns a predictor h based on N i.i.d. samples,
whose expected error is defined as Ex∼D(x)[l(h(x), f(x))]. For a family of distributions P ∋ (f,D), we define the error as

∆(P, h) ≜ max
(f,D)∈P

Ex∼D(x) [l (h(x), f(x))] , (29)

where we slightly abuse notation here as h is also dependent on the distribution (f,D) and the learning algorithm. For a
certain decomposition operator T , the target function can be expressed as f = f2 ◦ f1 and the predictor h = h2 ◦ h1. We
have

∆(P, h) = max
(f,D)∈P

Ex∼D(x)

[
1

2
((h2 ◦ h1)(x)− (h2 ◦ f1)(x) + (h2 ◦ f1)(x)− f(x))

2

]
(30)

13
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Suppose the feature map ϕ(x) for h2 has Lipschitz constant

Lip(ϕ) = sup
x̸=x′

∥ϕ(x)− ϕ (x′)∥2
∥x− x′∥2

, (31)

and by Jensen’s inequality, we have

∆(P, h) ≤ max
(f,D)∈P

Ex∼D(x)

[
((h2 ◦ h1)(x)− (h2 ◦ f1)(x))2 + ((h2 ◦ f1)(x)− f(x))

2
]

(32)

≤ max
(f,D)∈P

Ex∼D(x)

[
B2 Lip(ϕ)2∥h1(x)− f1(x)∥22 + (h2(z)− f2(z))

2
]

(33)

≤ cB,ϕ max
(f,D)∈P

Ex∼D(x)

[
∥h1(x)− f1(x)∥22 + (h2(z)− f2(z))

2
]

(34)

where cB,ϕ = max{1, B2 Lip(ϕ)2} is a constant determined by the definition of hypothesis class. Given decomposition
operator T , the distribution family can be decomposed into PT,1 and PT,2. It follows that

∆(P, h)
2cB,ϕ

≤ max
(f,D)∈P

Ex∼D(x)

[
1

2
∥h1(x)− f1(x)∥22

]
+ max

(f,D)∈P
Ex∼D(x)

[
1

2
(h2(z)− f2(z))

2

]
(35)

= max
(f1,D)∈PT,1

Ex∼D(x) [l(h1(x), f1(x))] + max
(f2,D′)∈PT,2

Ez∼D(z) [l(h2(z), f2(z))] (36)

= ∆(PT,1, h1) + ∆(PT,2, h2) (37)

Thus we get the desired upper bound

∆(P, h) ≤ 4cB,ϕ max{∆(PT,1, h1),∆(PT,2, h2)}. (38)

A.3. Theorem 4.3: Lower Bound

The in-context learning error has approximation error lower bound, that is the minimum error achievable by a predictor in
the hypothesis classH = {h2 ◦ h1 : h1 ∈ H′

1, h2 ∈ H2}

max
(f,D)∈P

Ex∼D(x) [l (h(x), f(x))] ≥ max
(f,D)∈P

min
(h1,h2)∈H′

1×H2

Ex∼D(x) [l (h(x), f(x))] . (39)

Thus it suffices to lower bound the approximation error.

To do so, notice that the learned first-step predictor h1 is from finite function class H′
1, which is a subset of the initial

hypothesis class H1. We show the approximation power of h(x) with finite-sized H′
1 is lower bounded by a linear class

whose size depends onH′
1. In particular, suppose the hypothesis class is

H′
1 = {h1,1, h1,2, · · · , h1,|H′

1|}, (40)

and based on the index of h1 inH′
1, the predictor h(x) can be re-written as

h(x, j) ≜ W2(ϕ ◦ h1,j)(x) =

K∑
i=1

W2,iϕi,j(x) (41)

=

K∑
i=1

|H′
1|∑

i′=1

Ui,i′ϕi,i′(x) (42)

where ϕi,j = ϕi ◦ h1,j and Ui,i′ = W2,i if i′ = j otherwise 0. As (42) is an inner product of weight vector U ∈ RK|H′
1|

and feature vector ϕ(x) ∈ {±1}K|H′
1| in an expanded space, h(x, j) reduces to a linear function.

Since the squared loss l(h(x, j), f(x)) is convex w.r.t. U for arbitrary x and j, its expectation Lf,D(h) ≜
Ex∼D(x) [l (h(x, j), f(x))] is also convex w.r.t. U . Moreover, h(x, j) = 0 when W2 or U goes to 0. Therefore, given any
(f,D) ∈ P and any predictor h with fixed W2 and j (and thus fixed U ), by first-order condition, we have

Lf,D(h) ≥ Lf,D(0) + ⟨U − 0,∇ULf,D(h)|U=0⟩ (43)

≥ 1

2
− ∥U∥2 ∥∇ULf,D(h)|U=0∥2 (44)

14
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where the last equation uses the fact Lf,D(0) = Ex∼D(x) [l (0, f(x))] =
1
2 and inequality ⟨v, u⟩ ≥ −∥u∥2∥v∥2.

Notice U has the same norm as W2 and thus ∥U∥2 ≤ B. Moreover, we have

∇(f,D) ≜ ∥∇ULf,D(h)|U=0∥22 =
∥∥∇UEx∼D(x) [l (h(x, j), f(x))] |U=0

∥∥2
2

(45)

=
∥∥Ex∼D(x) [∇U l (h(x, j), f(x)) |U=0]

∥∥2
2

(46)

=

∥∥∥∥Ex∼D(x)

[
∇U

1

2
(⟨U, ϕ(x)⟩ − f(x))2|U=0

]∥∥∥∥2
2

(47)

=
∥∥Ex∼D(x) [ϕ(x)f(x)]

∥∥2
2

(48)

=

K∑
i=1

|H′
1|∑

j=1

Ex∼D(x) [ϕi,j(x)f(x)]
2 (49)

Subjecting it to (44) gives us that, for any (f,D) ∈ P and any predictor h(x) obtained from in-context learning, i.e.

min
(h1,h2)∈H′

1×H2

Lf,D(h) ≥
1

2
−B · ∇(f,D) 1

2 (50)

Following from (39), the in-context learning error has lower bound

∆(P, h) ≥ max
(f,D)∈P

min
(h1,h2)∈H′

1×H2

Lf,D(h) (51)

≥ max
(f,D)∈P

[
1

2
−B · ∇(f,D) 1

2

]
(52)

≥ E(f,D)∈P

[
1

2
−B · ∇(f,D) 1

2

]
(53)

=
1

2
−B · E(f,D)∈P

[
∇(f,D) 1

2

]
(54)

By noting E[X 1
2 ] ≤ E[X]

1
2 , we have

∆(P, h) ≥ 1

2
−B · E(f,D)∈P [∇(f,D)]

1
2 (55)

=
1

2
−B · E(f,D)∈P

 K∑
i=1

|H′
1|∑

j=1

Ex∼D(x) [ϕi,j(x)f(x)]
2

 1
2

(56)

Let

Var(P) ≜ sup
ϕ

E(f,D)∈P

[
Ex∼D(x) [ϕ(x)f(x)]

2
]
, (57)

which is determined by target functions and distributions in P , and could be understood as the intrinsic complexity of the
distribution family (i.e. the more complex P is, the smaller Var(P) is). It follows that,

∆(P, h) ≥ 1

2
−B

√√√√√ K∑
i=1

|H′
1|∑

j=1

E(f,D)∈P

[
Ex∼D(x) [ϕi,j(x)f(x)]

2
]

(58)

≥ 1

2
−B

√
K|H′

1|Var(P), (59)

completing the proof.
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B. Experimental Details and Additional Results
B.1. Increasingly Complex Functions

Sampling. For this task, we sample a sequence of functions from a set of elementary functions with the following
probabilities:

P (z[0]← z[0] + z[1]) =
1

8
, P (z[0]← z[0]− z[1]) =

1

8
, P (z[0]← z[0]× z[1]) =

1

4
,

P (z[1]← z[1] + z[0]) =
1

8
, P (z[1]← z[1]− z[0]) =

1

8
, P (z[1]← z[1]× z[0]) =

1

4
.

Here, the multiplication operation is more likely to be sampled than addition or subtraction. For the input values, we
uniformly select two unique integers from the set {2, 3, . . . , 10}. This range is chosen to avoid excessively large numbers,
which are difficult to handle, and trivial cases, such as when x[0] = x[1], which could result in zero values that are easily
predictable by LLMs. For this task, we explicitly ensure that each sample is unique to prevent repeated samples in training
and testing. This is done to avoid scenarios where LLMs could simply memorize the results from the demonstrations and
use them to answer the query.

CoT Prompting. Given a certain H , namely the maximal number of elementary functions to construct a reasoning step,
we implement it by randomly masking H − 1 consecutive intermediate results. For example, when T = 6 and H = 3, an
example prompt is given as follows:

Given two numbers, sequentially apply predefined arithmetic operations (addition,
subtraction, multiplication) to transform them. Each step involves a specific
predefined operation on one of the numbers. If any operations or intermediate
results are missing, deduce these to complete the transformation and arrive
at the final output.

↪→

↪→

↪→

↪→

Input: 7, 5
Step1: 7, -2
Step2: 5, -2
Step3: missing
Step4: missing
Step5: 5, 75
Output: -70, 75

Input: 2, 3
Step1: 2, 1
Step2: 3, 1
Step3: missing
Step4: missing
Step5: 3, 36
Output: -33, 36

...

Input: 5, 8
What is the output? Your answer should end in the format 'Step1: ?, Step2: ?,

..., Output:?'.↪→

Note that the missing steps are consistent for one trial. We test 100 times to compute the success rate.

Additional Results. In addition to reporting the success rate of LLMs for predicting the final output as presented in
Section 5, we also evaluate their success rate for predicting intermediate results. This provides a more comprehensive
assessment of the LLMs’ performance, as even they might fail to predict the final step but could still succeed in predicting
the intermediate steps.
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Figure 2: Success rate for predicting the last step (i.e. namely the output).
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Figure 3: Success rate for predicting the second to last step.

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8

T=1

T=2

T=3

T=4

T=5

T=6

T=7

T=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

94 56 0 -- -- -- -- --

92 46 10 0 -- -- -- --

93 34 5 1 1 -- -- --

87 29 13 4 2 0 -- --

80 33 8 3 0 0 0 --

74 21 5 2 1 1 0 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8

T=1

T=2

T=3

T=4

T=5

T=6

T=7

T=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

33 24 3 -- -- -- -- --

35 26 0 1 -- -- -- --

38 16 5 0 0 -- -- --

37 12 5 0 1 0 -- --

26 17 6 2 4 0 0 --

21 10 0 1 1 0 1 0
0

20

40

60

80

100

Success Rate (%
)

(b) GPT-3.5-turbo

Figure 4: Success rate for predicting the third to last step.
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Figure 5: Success rate for predicting the fourth to last step.
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Figure 6: Success rate for predicting the fifth to last step.
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Figure 7: Success rate for predicting the sixth to last step.
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B.2. Canonical Boolean Functions

Examples of standard and CoT prompts for (10, 4)-parity and DNF with width 6 are given as follows:

• Standard prompt for parity:

Predict the output based on a pattern in the input binary string.

Input: 1010101100
Output: 0

Input: 0100000011
Output: 0

Input: 0110010000
Output: 1

Input: 1010100001
Output: 0

Input: 1010100001
Output: 0

...

Input: 1011000111
What is the output? Directly answer the question in the format 'Output:'.

• CoT prompt for parity:

Replace some bits located at specific predefined positions in the binary string
with 0 to form a new string. Then, based on some patterns in the new string
to predict the output.

↪→

↪→

Input: 1000010001
New string: 0000010001
Output: 0

Input: 0100110111
New string: 0000110001
Output: 1

Input: 0101001000
New string: 0001000000
Output: 1

Input: 0100000010
New string: 0000000000
Output: 0

Input: 1011010000
New string: 0001010000
Output: 0

...
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Input: 0100100110
What is the output? Directly answer the question in the format 'New string:,

Output:'.↪→

• Standard prompt for DNF:

Predict the output based on a pattern in the input binary string.

Input: 001010 000001 010011
Output: 1

Input: 100111 011001 010111
Output: 1

Input: 010010 011010 101011
Output: 1

Input: 010101 001101 001001
Output: 1

Input: 111110 011001 010111
Output: 1

...

Input: 010001 110101 011011
What is the output? Directly answer the question in the format 'Output:'.

• CoT prompt for DNF:

Replace some bits located at specific predefined positions in the binary string
with 1 to form a new string. Then, based on some patterns in the new string
to predict the output.

↪→

↪→

Input: 000101 011111 011010
New string: 100111 111111 011111
Output: 1

Input: 001101 100111 000101
New string: 101111 110111 000101
Output: 0

Input: 100001 011001 001010
New string: 100011 111011 001111
Output: 0

Input: 001100 010100 101011
New string: 101111 110110 101111
Output: 0

Input: 010101 111011 100101
New string: 110111 111011 100101
Output: 0
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...

Input: 000100 011110 100000
What is the output? Directly answer the question in the format 'New string:,

Output:'.↪→
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