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Abstract—As businesses, products, and services spring up
around large language models, the trustworthiness of these models
hinges on the verifiability of their outputs. However, methods
for explaining language model outputs largely fall across two
distinct fields of study which both use the term "attribution"
to refer to entirely separate techniques: citation generation and
training data attribution. In many modern applications, such
as legal document generation and medical question answering,
both types of attributions are important. In this work, we argue
for and present a unified framework of large language model
attributions. We show how existing methods of different types
of attribution fall under the unified framework. We also use
the framework to discuss real-world use cases where one or
both types of attributions are required. We believe that this
unified framework will guide the use case driven development
of systems that leverage both types of attribution, as well as the
standardization of their evaluation.

Index Terms—train data attribution, citation generation, large
language model attribution, explainability

I. INTRODUCTION

The rapid rise of large language models (LLMs) has been
accompanied by a plethora of concerns surrounding the trust-
worthiness and safety of the LLM outputs. For example, these
models can “hallucinate" or fabricate information in response
to straightforward prompts (1). Beyond simply verifying that
generated content can be trusted, knowing the source from
which the output was generated is also crucial in many appli-
cations. In fact, Bommasani et. al. (2) highlight that “Source
tracing is vital for attributing ethical and legal responsibility
for experienced harm, though attribution will require novel
technical research". The ubiquitous usage of LLMs in applied
settings motivates the development of explanations that provide
both sources that verify the model output and training sources
that are influential in the generation of the output. Unfortunately,
attributing an LLM output to sources has been mostly studied
in two disjoint fields: citation generation and training data
attribution (TDA). Verifying the correctness of model outputs,
generally situated in the natural language processing and
information retrieval communities, includes several different
tasks such as fact-checking (3; 4), knowledge retrieval (5; 6; 7),
attributed question answering (8), and verifiability in language
generation (9). Training data attribution, generally situated in
the core machine learning community, encompasses a variety
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of techniques to explain model behavior such as influence
functions (10), data simulators (11), and data models (12).
Meanwhile, the term “attributions" is used in both fields. When
contemplating the two types of attributions, we can think of
the former as external validity, which verifies that the output
is correct according to external knowledge, and the latter as a
certification of internal validity, which provides the source of
the generated content. We can easily imagine applications where
both types of validity are important for understanding LLM
outputs. For instance, a potential criteria to use for identifying
a case of model memorization is for a training source to exactly
match the model output while also being highly influential in
the generation of the output.

In this work, we argue for a unifying perspective of the
citation generation and TDA forms of attribution, which we
call corroborative and contributive attributions, respectively.
We precisely define each type of attribution and discuss different
properties that are desirable in different scenarios. Our work
provides a first step towards a flexible, but well-defined notion
of language attributions to encourage the development and
evaluation of attribution systems capable of providing rich
attributions of both types.

A. Our Contributions

1) We present an interaction model for LLM attributions that
unifies corroborative and contributive attributions through
their common components (Section IV).

2) To complete our unified framework, we outline properties
relevant to both types of attributions (Section V).

3) We discuss existing implementations of corroborative and
contributive attributions (Section VI).

4) We outline scenarios where attributions are important and
discuss their desired properties (Sections VII, VIII).

5) We provide directions for future work on attributions
(Section IX).

II. MOTIVATION: THE NECESSITY OF A UNIFIED
PERSPECTIVE

We argue for the study of LLM attributions through a unified
perspective of corroborative and contributive attributions. First,
we describe the limitations of the current fragmented approach
to attributions and then we summarize the case for unification.

A. Gaps in existing approach to language model attributions
a) Misalignment between TDA methods and their use

cases: Most training data attribution (TDA) papers present
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their methods as standalone solutions for motivating use cases
such as identifying mislabeled data points (10; 13; 14; 15; 16),
debugging domain mismatch (10), and understanding model
behavior (17). While discriminative model outputs may be
adequately explained by contributive attributions, explanations
for generative model outputs may require the additional notion
of corroboration. In the setting of language models, TDA
methods may not be a comprehensive solution; training sources
that are irrelevant to the content of a model output may be
flagged as influential by TDA methods (17). This is undesirable
because the semantic meaning of a flagged training source can
indicate its importance in generating the semantic meaning of
the output. For instance, when searching for misleading training
sources in a Question Answering (QA) language model, it
is important to understand which of the sources flagged by
TDA methods corroborate the misinformation in the output.
This is also the case in other practical applications, such as
debugging toxic outputs. Without carefully considering the
types of attribution needed in generative language models, we
risk investing in methods that, while establishing essential
foundations, may not align with practical use.

b) Citation generation methods do not explain model
behavior: Corroborative methods (e.g., fact checking (4), cita-
tion generation (5)) are not designed to explain model behavior.
For example, the verifying the truthfulness of outputted facts
using sources from an external corpus does little to explain why
the model generated such an output. When outputted facts are
found to be incorrect, there is limited recourse for correcting
model behavior. Thus, corroborative attributions alone cannot
address all the challenges of explaining the outputs of language
models.

c) Emergent usage of language models require a
richer notion of attributions: The emerging use of LLMs
in domains such as health care and law involves tasks such as
document generation and domain-specific QA that require both
explanations of whether the output is correct and where the
output came from. As an example, in the legal domain, different
products based on LLMs such as legal QA, immigration
case document generation, and document summarization are
currently under development.1 In this setting, corroborative
attributions are important to ensure that a generated legal
document follows local laws. The sources for such corroborative
attributions need not be in the training data. Simultaneously,
contributive attributions are important for understanding the
training documents from which the generated legal document
is borrowing concepts. In the legal setting, context and subtle
changes in wording matter (2).

B. Motivating a unified framework of attributions

Developing a standardized language to describe different
types of attribution will improve the (1) clarity and (2) sim-
plicity of scholarly discussion around attributions. Furthermore,
identifying the common components of all attributions provides

1Y-Combinator companies in this area include Casehopper, Lexiter.ai,
DocSum.ai, and Atla AI.

(3) modularity for improving individual components and better
(4) reproducibility of results. Looking ahead to future work,
a unified perspective motivates the (5) hybrid development of
both corroborative and contributive attributions.

a) "Attribution" is an overloaded, ambiguous term: The
term "attribution" is overloaded in machine learning literature.
Moreover, recent works have attempted to provide both types of
attribution for language models under the vague umbrella term
of “attributions” (8; 17; 18). While existing work recognizes the
importance of both corroborative and contributive attribution
(19), comparing these two notions is difficult without precisely
delineating between them while also acknowledging their
similarities. A unified perspective of both types of attributions
improves the clarity of technical progress on attributions.

b) Attribution methods exist concurrently in disjoint
fields: The two dominant interpretations of attributions for
language model outputs come from the natural language
processing (NLP) and information retrieval (IR) communities,
as well as the core ML explainability community. In NLP and
IR literature, attributing a model output to a source generally
refers to identifying a source that corroborates the output
(3; 4; 7; 8; 9; 20). We refer to this as corroborative attribution.
This differs from TDA work, where attributing a model output
to a source refers to identifying a training source that highly
influenced the model to produce that output (10; 11; 18; 21).
We refer to this as contributive attribution. While there has
been work on contributive attributions in the NLP venues (22)
and corroborative attributions in ML venues (23), there remains
little overlap between the two communities. To the best of our
knowledge, there is no established framework that unifies these
different types of attributions. Furthermore, methods to achieve
both types of attribution and metrics to evaluate them have
been developed separately. Our goal is to introduce simplicity
in understanding the vast landscape of prior work by creating a
shared language to discuss attribution methods across different
tasks.

c) Attributions have common components: Despite these
two types of attribution being studied in different fields, there
are commonalities in system components, properties, metrics,
and evaluation datasets. For example, fact-checking using
corroborative attributions has significant overlap with fact-
tracing using contributive attributions, in terms of metrics
and evaluation datasets (22). Defining the shared components
of different types of attributions introduces modularity that
better enables the improvement of individual components
of attribution systems. Furthermore, precise definitions of
properties shared across different attributions allow for better
reproducibility in implementations of attribution systems.

d) A unifying perspective enables the development of
richer attribution systems: Because both notions of attribution
are relevant to use cases that improve the safety and reliability
of language models as information providers, both are often
simultaneously relevant in application settings. There are real-
world use cases of attribution that require careful reasoning
and differentiating between these two interpretations; some
use cases even require both notions of attribution. These use
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cases should motivate the hybrid development of methods that
provide both citation and TDA for LLM outputs. Furthermore,
methods used in one type of attribution may be leveraged to
develop other types of attributions.

III. RELATED WORK

The majority of prior work has focused on corroborative and
contributive attributions separately. Works that have considered
both types of attribution in the same setting often do so for
specific case studies or experiments without attempting to
provide a conceptual unification. This section discusses existing
attribution frameworks, as well as works that simultaneously
employ notions of corroborative and contributive attributions.

a) Corroborative attribution frameworks: Previous work
has proposed and leveraged frameworks for attributions that
identify supporting sources for model outputs. Notably, (9)
define a specific notion of corroborative attribution; a model
output is transformed into an interpretable standalone proposi-
tion s, which is then attributed to a source P if it passes the
human intuitive test that "According to P , s". Their attributable
to identified sources (AIS) evaluation framework evaluates both
steps of this definition with human annotators who first evaluate
the interpretability of the model output and then whether
it satisfies the aforementioned intuitive test for a particular
source. Bohnet et. al. (8) applies the AIS framework to the
QA setting. Gao et. al. (6) extends the AIS framework to
evaluating LLMs that output citations alongside standard text
generations. Another line of work focuses on building and using
automated AIS evaluations (24; 25). In contrast to prior work,
we generalize the definition of corroborative attribution beyond
the notion of an "intuitive test" and construct a framework to
unify these attributions with contributive attributions.

b) Contributive attribution frameworks: Existing TDA
work has revealed a common framework for contributive
attributions. This shared framework, explicitly defined as
data attribution in (18), specifies that given a model, list of
training data instances, and input, a data attribution method
is a function that produces a scalar score for each training
instance, indicating the importance of that training instance to
the model’s output generated from the input. Several lines of
work fit under this framework, including influence functions,
which make great efforts to scale implementations in the face
of significant computational requirements (10; 15; 16; 17; 18).
Surveys summarizing this area include broad categorizations
across gradient-based and retraining-based methods (26) and
language-specific summaries (27).

c) Shared settings for corroborative and contributive
attributions: Even without a shared framework, attributions
that are simultaneously corroborative and contributive have
naturally appeared. The first of these settings is fact tracing
(22), which recovers the training sources that cause a language
model to generate a particular fact. (22) propose FTRACE-
TREx, a dataset and evaluation framework with the explicit goal
of identifying corroborative training sources using contributive
attribution methods. (18) also uses FTRACE-TREx as a
benchmark for different TDA methods. Another shared setting

of corroborative and contributive attributions is the TF-IDF
filtering employed in (17). Here, TF-IDF scores (28) are used
to filter the training data to a manageable number of sources
for influence estimation. While the ultimate objective of this
heuristic in (17) is to overcome the bottleneck of training
source gradient calculations, the TF-IDF filtering ensures that
all of the sources examined are semantically related, which
we consider a corroborative notion, to the model input. As the
models and training dataset sizes of LLMs continue growing
larger, filtering strategies built on notions of corroboration
may become the norm. Lastly, (19) discuss attributions to
non-parametric content, meaning corroborative sources, and
attributions to parametric content, meaning contributive sources.
While it is perhaps the closest existing work to ours in that it
makes explicit the value of both corroborative and contributive
attributions, (19) largely focuses on roadblocks to practical
implementations and pitfalls of attributions in LLMs; a formal
unifying framework for the different types of attribution is not
proposed.

IV. FORMAL PROBLEM STATEMENT

A. Interaction Model

To frame our discussion of attributions for LLMs, we first
define the relevant components of an attribution. We build upon
the Attributable to Identified Sources definition introduced by
Rashkin et. al. (9) to introduce a general framework for different
types of attributions. We define 6 high-level components of
the attribution system interaction: the input, model, output,
attributable unit, attribution domain and evaluator that allow us
to construct an attribution set. As a running example throughout
the paper, we consider the use case of attributions for QA in
which a model provides a short-form output for a given input.

a) Input: The input is the query provided to the model (x).
Following the requirements for input interpretability proposed
in (9), we assume that x contains the wall-clock time at
which it was used to query the model. We consider a variety
of different input queries including knowledge queries and
generative queries. Knowledge queries are questions that can
be answered with the correct piece of information; this is
analogous to the QA task. Our scope includes both Open-book
QA and Closed-book QA (29). Generative queries may have
many different answers but may nevertheless require attribution.
For example: “Plan a fun weekend in San Francisco" and “Write
me a Python program to approximate pi” are both generative
queries that require verification before a model can be trusted.
While we do not directly consider other interactive settings
where there are multiple inputs (e.g., information-seeking dialog
(30) and social-oriented settings (e.g., chit-chat dialog), these
are important future directions in which our framework for
attribution should extend.
Example: "What is the diameter of the moon?"

b) Output: The output (y) is the response of a language
model to the input (x).
Example: "3,475 kilometers" 2

2https://nightsky.jpl.nasa.gov/club/attachments/Fun_Facts_About_the_Moon.pdf
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Fig. 1. Overview of our proposed unified framework for large language model attributions. We include tasks that require both contributive and corroborative
attributions and properties that apply to both types of attributions.

c) Model: The base language model M takes an input
x and generates the output y. We note that in practice, some
models jointly output attributions with the answer y. However,
when defining an attribution under our framework, we consider
the output generation and attribution generation separately,
even if they are generated by the same model. Therefore, for
inputs x ∈ X and outputs y ∈ Y , we define the model as
M : X → Y .
Example: LLM

d) Attributable Unit: In some cases, the full output
is used to create an attribution. However, in other cases,
a sentence may contain many clauses that need to be
independently attributed to achieve the desired level of
granularity for the attribution. We define an attributable unit
z = (x, y, i, j) where i and j are the beginning and end
indices of tokens in y which require attribution. We define the
set of all the attributable units as Z = z1, ..., zn for x and y.
Example attributable set: [("What is the diameter
of the moon?", "3,475 kilometers", 0, 15)]

e) Attribution Domain: A crucial component of our
attribution framework is the domain from which sources
(i.e. s1, ..., sm ∈ D) for attribution are drawn; we call this
the attribution domain D. There are different promises and
limitations when the attributions are drawn from the training
data compared to other data not necessarily included in
the training. In the practical application and deployment of
language models, there are even more domains such as in-
context data and fine-tuning data.3

Example: LLM training data
f) Evaluator: Each attribution is identified with an

evaluation function we call an evaluator. Different evaluators
lead to different types of attribution. Given an attributable unit
z ∈ Z and source s ∈ D, an evaluator v : Z×D → R provides
a score that represents the extent to which the given source
is an attribution for the attributative unit. In some cases, this

3While we leave the complexities of these domains for future work, we
discuss in-context data as an attribution domain in Appendix A.

value is binary and in others it is continuous. For instance,
exact match (EM) is an example of a binary evaluator, which
is defined as:

vEM(z, s) =

{
1 If y[i : j] exists word-for-word within s,

0 otherwise.

Implementations of v are denoted as v̂. An implemented
evaluator v̂ is not infallible, making it important to evaluate
the evaluator against other evaluators on common ground, i.e.,
potentially using another implementation of the evaluator to
compute relevant metrics (see Section V-B). Past work has used
human annotators for v̂ (9; 20; 31), but the high cost in time
and resources of human evaluation has motivated model-based
implementations of v̂ (4).
Example: If seeking a corroborative attribution, we can use the
textual entailment evaluator, vTE, as defined in Definition 4. If
seeking a contributive evaluator, we can use the counterfactual
textual entailment evaluator, vMCTE, as defined in Definition 5.

B. Attribution Sets

Having defined the different components of an attribution
system, we now present a definition for an attribution.

Definition 1. [Attribution Set] Given an attributable set Z,
source domain D, evaluator v, and evaluator cutoff α ∈ R, an
attribution set A is the following set of attributions, or pairs
of attributable units and sources:

A(Z,D, v, α) = {(z, s) | z ∈ Z, s ∈ D, v(z, s) ≥ α}

We present this definition as a class of explanations for
language model outputs. The type of attributions provided in the
set depends primarily on the evaluator v and attribution domain
D. Prior work from (9) proposes the AIS framework where
the evaluator v seeks to satisfy the intuitive test "According
to s, z" for some source s and sentence z. Our definition
differs from AIS in several ways. Significantly, the evaluator
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v of our framework is not restricted to the intuitive test and
the attributable unit z of our framework is not restricted to
sentence-level explicatures. The flexibility of our framework
is important in unifying different approaches to attribution.

C. Attribution Sets with Customizable Source Relevance

Definition 1 of an attribution set considers all sources that
satisfy the evaluator cutoff for a given attributable unit as
equal in value. Sometimes, however, it is important to value
certain sources over others, even if all are valid attributions.
Different use-cases demand different notions of relevance;
among others, the field of information retrieval has studied
multiple manifestations of relevance (32). To accommodate for
this, our definition of a relevance function below allows for
custom orders of priority among sources.

Definition 2. [Relevance Function] Given attributable units
z ∈ Z, attribution domain sources s ∈ D, evaluator v, and
evaluator cutoff α ∈ R, a relevance function is defined as
ϕ : Z×D → R ∈ [0, 1] such that if v(z, s1) ≥ α, v(z, s2) ≥ α,
and ϕ(z, s1) > ϕ(z, s2), then s1 is considered to be a better
attribution for z than is s2.

Adding this additional component of source relevance to
an attribution set allows for an ordering of sources within the
source domain. While this notion of relevance is not integral to
an attribution, it is particularly useful for certain applications.
We build off of an attribution set to define the following:

Definition 3 (r-Relevant Attribution Set). Given an attributable
set Z, source domain D, evaluator v, evaluator cutoff α ∈ R,
relevance function ϕ, and relevance threshold r ∈ R, an r-
relevant attribution set A is the following set of attributions,
or pairs of attributable units and sources:

A(Z,D, v, α, ϕ, r) =

{(z, s) | z ∈ Z, s ∈ D, v(z, s) ≥ α, ϕ(z, s) ≥ r}

Note that the relevance of a source document for an
attribution is a function of the attributable unit. Including
a relevance threshold in an attribution set is a way to place
priority on certain sources within the attribution domain.

V. PROPERTIES OF ATTRIBUTIONS

The central question of why did a language model provide
this answer? can be answered in many different ways. We
present two types of attributions that correspond to different
ways of explaining a model output. Furthermore, we build on
existing properties of explanations of LLM outputs to define
properties that are relevant to language model attributions.

A. Corroborative and Contributive Attributions

a) Corroborative Attributions: A vast literature exists
around corroborative attributions. Prior works refer to these as
citations in open-domain QA and retrieval settings (33; 34).

An attribution set (Definition 1) is corroborative if its
evaluator is corroborative. Corroborative evaluators compare
the information content between an attributable unit and a

source drawn from the attribution domain. Formally, we define
a corroborative evaluator as follows:

Definition 4. Corroborative Evaluator. Let s ∈ D be a source
in the attribution domain and z = (x, y, i, j) ∈ Z be an
attributable unit of the input-output pair. A corroborative
evaluator is a binary evaluator such that:

vcorr(z, s) =

{
1 If s corroborates z,
0 otherwise.

Moreover, vcorr is a class of different possible evaluators where
"corroborate" can have different meanings. Three common
corroborative evaluators are:

• Exact Match: vEM verifies whether there is an exact match
between: y[i : j] and a clause in source s.

• Valid Paraphrase: vVP verifies that y[i : j] written as
a declarative sentence in the context of x, y is a valid
paraphrase of content in s; i.e., the declarative sentence
is a rewriting of content in s that preserves its truth
conditions.

• Textual Entailment: vTE verifies that y[i : j], in the context
of x, y, logically follows from the source s.4

The study of linguistics has long recognized the inherent
fuzziness of natural language and so asserts that logical oper-
ations are relaxed to approximate reasoning when applied to
natural language (35). Therefore, the logical operations involved
in the valid paraphrase and textual entailment evaluators are
actually instances of approximate reasoning. In practice, the
textual entailment evaluator is either implemented through
human reasoning or through automated systems capable of
natural language inference (NLI), as discussed further in
Section VI.

For the valid paraphrase and textual entailment evaluators,
the context provided by the original input x and the rest of
the output y \ y[i : j] may be important. To this end, the spans
y[i : j] of each attributable unit can be chosen to correspond to
sentence-level (9) or clause-level explicatures (see Appendix B).
Rewriting a span as an explicature allows the span y[i : j] to be
interpreted in the context of x and y. In particular, attributable
units corresponding to clause-level explicatures within one
sentence of the output allow the sentence to be corroborated
through more than one source, rather than requiring a single
source to corroborate everything in the sentence. In practice,
the attributable set is already predefined in many existing tasks
and benchmarks (34).

In general, the attribution domain of a corroborative attribu-
tion may contain any document regardless of whether it was
used to train the model or not. The corroborative attribution
set for a model output is independent of the model itself; if
another model were to produce the same output, the original
corroborative attribution set would still be applicable.

4We assume s ∈ D has been chosen such that there are no degenerate cases
where s contradicts itself, as this would permit an attribution to any z.
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b) Contributive Attributions: A contributive attribution
set is an attribution set (Definition 1) that draws from an
attribution domain D that is restricted to training sources and
relies upon a contributive evaluator. A contributive evaluator
is defined as:

Definition 5. Contributive Evaluator. Let s ∈ D be a source
in the attribution domain and z = (x, y, i, j) be an attributable
unit. A contributive evaluator for model M is an evaluator
such that:

vMcont(z, s) ∈ [0, 1],

where vMcont(z, s) quantifies how important source s is to M
(trained on D) evaluated on the attributable unit z. The
counterfactual we compare against is z evaluated on a M
trained without s (i.e., trained on D \ s).

• Counterfactual contribution to loss (CCL): vMCCL quanti-
fies the extent to which the loss on y for input x would be
different under the counterfactual model MD\s, compared
to under MD.

• Counterfactual contribution to the output (CCO): Let
y′ = MD\s(x) be the counterfactual output of a model
trained without s. Then,

vMCCO(z, s) =

{
1 If vcorr(z, y′) = 0,
0 otherwise.

Note that vcorr is used to indicate whether z is corrobo-
rated by the counterfactual model output, y′, rather than
by a source. Moreover, vMcont is a class of different possible
evaluators where "contribute" takes on different meanings
with different vcorr. Any corroborative evaluator, including
those mentioned in Definition 4, can be used to construct
a contributive evaluator. We highlight two examples of
counterfactual output comparison evaluators:
– Counterfactual Exact Match: vMCEM relies on the

corroborative exact match evaluator vEM to indicate
whether y[i : j] remains the same or changes, had
source s not been present in the training data.

– Counterfactual Textual Entailment: vMCTE relies on
the corroborative textual entailment evaluator vTE to
indicate whether claims in y[i : j] in the context of x
and y remain the same or change, had source s not
been present in the training data.

A shortcoming of the CCL evaluator is that loss does not
convey the semantic content of the output. To address this
limitation, we introduce the CCO evaluator.5 Keeping with
the running example of querying a model with "What is the
diameter of the moon?" and it generating the response, "3,475
kilometers", we can imagine using the counterfactual textual

5The gap between machine learning objectives and practical understanding
has been highlighted in other areas. For instance, a critique of mechanistic
explanations of model behavior, which solely rely on the inner workings of
the model, is that they are not interpretable to humans (36). Similar to how
mechanistic explanations can be enriched by practical explanations that are
meaningful to applied practitioners, existing loss based attributions can be
enriched by attributions for counterfactual changes in the output semantics.

entailment CCO evaluator. In this case, a source s would be
deemed contributive if its removal from the training set would
result in a counterfactual model that outputs "At least 3,000
kilometers" in response to the same input, but not if it outputs
"3,475,000 meters". This differs from the CCL evaluator, which
identifies a training source as contributive if its removal leads
to a counterfactual model that has significantly different loss
on the output, regardless of how the semantic meaning of
the counterfactual output differs, if at all. We advise that this
novel concept of CCO evaluators be a focus of future work
on contributive attributions for LLMs.

We note that the CCL evaluator follows standard machine
learning methodology more closely than the CCO evaluator,
because it operates on the loss, rather than on the discrete
output space of language. Furthermore, the CCL evaluator is
compatible with non-deterministic decoding strategies, unlike
the CCO evaluator, which, in its current form, is limited to
deterministic decoding strategies. This is because the CCL
evaluator keeps y fixed under the counterfactual model, whereas
the CCO evaluator generates a new y′ from the counterfactual
model, making it difficult to disentangle any stochasticity in the
decoding process from the contribution of s. For instance, if a
low probability completion happens to be sampled for y, then
y′ is likely to change, even if s was not removed. Accordingly,
prior TDA work implements the CCL evaluator (see Section
VI-B).

B. Properties and Metrics of Attribution Sets

Depending on the application of the LLM, different prop-
erties of attribution sets may be desirable. Crucially, these
desiderata may be different from those of general machine
learning explanation methods.6 While properties are high-level
qualities that are desirable in an LLM attribution, metrics are
specific methods to measure these properties. A single property
can be measured by many different metrics. While we provide
a few metrics for each property in Table I, future work may
use different metrics for these properties.

a) Correctness: The most ubiquitous measure of attribu-
tion sets in current work is whether an attribution set is correct.
To interrogate properties of correctness, some notion of ground
truth, often in the form of an oracle evaluator v, is required to
properly score each attribution.

• Attribution validity: For each attribution in an attri-
bution set, the notion of validity captures how correct
the attribution is relative to a ground truth evaluator.
Corroborative attributions generated by various systems
have been evaluated for validity using vTE implemented
via human reasoning (8; 9). Contributive attributions have
been evaluated for validity using leave-one-out retraining
(10) and the proximal Bregman response function (17).

• Coverage: An attribution set A with evaluator cutoff α
has perfect coverage if ∀ z ∈ Z ∃ (z, s) ∈ A, v(z, s) ≥ α.
Previous work has referred to coverage as attribution recall
(20). One way to measure coverage is to calculate the

6https://christophm.github.io/interpretable-ml-book/properties.html
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proportion of attributable units in Z with a valid attribution
under an oracle evaluator v included in A (20).

• Attribution precision: Another way to measure attribution
set correctness is precision. An implemented attribution
set Â with evaluator cutoff α is precise if v(z, s) ≥
α ∀ (z, s) ∈ Â. By definition, an attribution set A has
perfect precision. However, this is an important property
when evaluating implementations of attribution systems,
where the components analogous to attribution evaluators
are imperfect. One way to measure the precision of an
attribution set is to calculate the proportion of valid
attributions under an oracle evaluator v (20).

b) Attribution Recall: Let S′ be the set of all documents
that provide attribution for a given z (i.e., S′(z) = {s|s ∈
D, v(z, s) ≥ α}). The attribution set A has perfect recall for
z if ∀ s ∈ S′(z), (z, s) ∈ A. One way to measure the recall of
an attribution set for z is to calculate the proportion of sources
from the attribution domain that fulfill v(z, s) ≥ α that are
actually included in the attribution set. This is a measurement of
the sources that can attribute one specific z, which differs from
coverage which focuses on whether all z ∈ Z is attributed.

In the corroborative setting, there may be many sources
that can provide an attribution for z. Attribution recall might
be important when an attributable unit z requires multiple
sources to validate. For example, facts about the efficacy of
certain drugs might require all relevant studies to be included
rather than just a single source. In the contributive attribution
setting, many training documents may have been influential
in generating an output. Having perfect attribution recall is
relevant when using attribution to assign credit to training
data authors and for model debugging, where all sources need
to be identified. Measuring attribution recall has appeared in
prior work (14) as a measurement of the fraction of artificially
mislabeled examples that were successfully identified through
gradient tracing for TDA.

c) r-Relevancy: As explained in definition 3, an attribu-
tion set is r-relevant if all the sources in the attribution set
meet the threshold of r under some relevancy function, ϕ. r-
Relevancy is an important property because some applications
find certain sources in the attribution domain to be more useful
than others. This is the case in the setting of corroborative
attributions for fact-checking, where trustworthy sources are
more relevant than questionable sources. This is also the
case in the setting of corroborative attributions for generating
citations for written reports, where primary sources tend to
be more relevant than secondary or other derivative sources.
Although motivated from an efficiency standpoint, (17) in effect
implements r-relevant contributive attribution sets with TF-IDF
filtering as a relevancy function; only sources that are high in
TF-IDF similarity to the input are considered for the attribution
set. A metric to measure the r-relevancy of an attribution set
is the proportion of attributed sources that meet the relevancy
threshold r.

Properties Metrics

Correctness
Validity (8; 9)
Coverage (20; 25)
Attribution Precision (20)

Attribution Recall Mislabeled example identification (14)
Relevancy Proportion of attribution set that is r-relevant
Consistency/Replicability Attribution set distance

Efficiency

Training time (18; 26)
Inference time (26; 37)
Training memory requirements (26)
Inference memory requirements (26)

TABLE I
PROPERTIES OF ATTRIBUTION SETS AND SYSTEMS. DIFFERENT METRICS
HAVE BEEN PROPOSED BY PRIOR LITERATURE IN MEASURING EACH OF

THESE PROPERTIES.

C. Properties and Metrics of Attribution Systems

Properties of attribution sets are inherent to a single attribu-
tion set. However, some properties are instead functions of the
implemented system that generates the attribution sets in the
first place. We discuss two such properties.

a) Consistency: An attribution system is considered
consistent if, for similar inputs and outputs, the generated
attribution sets are similar. For a fixed attributible set Z,
attribution domain D, evaluator v, and evaluator cutoff α,
an attribution system is ϵ-stable over sources of randomness in
the system if for A and A′ sampled from different executions,
E[d(A,A′)] ≤ ϵ, where d is some distance metric defined
over input-output pairs and over attribution sets respectively
(e.g., d could be the Jaccard distance over sources’ indicator
functions).

This property is particularly important when decisions based
on LLM outputs need to be documented as justification. For
corroborative attributions, a legal service scenario may require
documentation of sources for advice provided to customers. For
contributive attributions, an authorship compensation scenario
would require attribution consistency to fairly determine
payments to creators. In both cases, there is value in replicating
the same attribution set at a later time with the same inputs.

Prior work highlighting the shortcomings of contributive
methods (e.g., influence functions) demonstrates increased
variance in influence estimates for deeper models; this would
preclude consistency unless influence is estimated using an
average across multiple runs (38). Similarly, averaging gradients
across checkpoints during training might lead to inconsistent
estimates of influence estimation because the ordering of
examples has a significant impact on observed influence (39).
However, consistency has not been directly measured in prior
work for contributive or corroborative attributions.

b) Efficiency: Efficiency describes the time and space
complexity required by an implementation of an attribution
system in generating an attribution set for a given attribution
domain, input, and output. Prior works on large language
models examine both training and inference efficiency in terms
of energy cost and CO2 emitted (40; 41). However, attribution
systems vary widely in function and implementation.

In a survey of attribution methods, Hammoudeh et. al. (26)
summarize inference time, space, and storage requirements for
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influence analysis methods as a function of training dataset
size, model parameter count, and training iteration count.

VI. CURRENT METHODS

A. Corroborative Attribution Methods

Prior work primarily focuses on identifying corroborative
attributions with the textual entailment evaluator vTE. Two
common approaches to implementing vTE are human reasoning
(9; 20) and automated systems capable of natural language
inference (NLI) (24; 25). Often, NLI systems are used in cor-
roborative attribution systems to identify attributions, whereas
human reasoning is used to evaluate attributions and also to
generate training data for NLI systems. Both implementations
exclude the usage of background information external to
the source in judging the entailment relation (24). However,
different sets of background knowledge may be leveraged by
humans and NLI systems when interpreting the meaning of s
and z (9); identifying discrepancies in NLI systems based on
background knowledge and human judgment is important for
addressing patterns of bias in evaluator performance.

Outside of implementing the evaluator, there are many
different design choices to be made when building corroborative
attribution systems and it is often unclear which method is
the best. This is exacerbated by a lack of standardization in
the evaluation metrics and datasets. To demonstrate this, we
provide an overview of these implementations in Table II and
how they align with the interaction model defined in Section IV.

In Table III, we outline the evaluation metrics used in
prior work. Most proposed implementations evaluate attribution
outputs with a metric that evaluates the quality of the LLM
output, independent of the accompanying attribution, in addition
to attribution correctness (Table III). To measure the quality
of the LLM output, methods often measure the fluency or
plausibility of the output to the user. Generally, this involves
asking a user if the output is interpretable or helpful, or
measuring performance on a QA or classification task (e.g.,
Exact Match for QA). Metrics for measuring correctness of an
attribution set assess if the attributed output is fully supported
by its corresponding corroborative documents (e.g., attribution
precision and coverage). Li et. al. (52) provide a survey of
techniques in this area; including metrics such as verifiability
and factuality.

B. Contributive Attribution Methods For Language Models

Given a model, input, and output, contributive attributions
provide a score for each source in the attribution domain that
represents the relative amount that the source contributed to
the output. The area of TDA for language tasks has been
highlighted by Madsen et. al. (27) as a specific interpretability
technique. Hammoudeh et. al. (26) give a broader view of
different techniques for TDA that are theoretically applicable
to language models. However, relatively few works thus
far have specifically studied TDA in language models. We
broadly categorize the many methods proposed for TDA into
two families: data-centric and model-centric techniques. At
a high-level, data-centric techniques average the effects of

data changes across different models while model-centric
techniques interrogate a single model. Since we are concerned
with providing attributions for a specific model, we focus on
describing verifiers for model-centric techniques.

a) Data-Centric TDA: To understand the impact of data
points used to train models, one view is to take averages across
different models that are trained without that data point. The
common goal of retraining a model with the data point left out
(i.e., leave-one-out (LOO) retraining) has been implemented
differently by various techniques.

Let f ∈ F where F is a family of functions parameterized
by θ trained on dataset D. Data-centric approaches characterize
the influence (e.g., I(zi, zte, D)) of a data point zi = (xi, yi)
on a test point zte = (xte, yte) over dataset D as an average
effect over many possible models. For instance, LOO influence
is the following:

ILOO(zi, zte, D) =

Ef∈F
[
L(f(xte, θD\zi), yte)− L(f(xte, θD), yte)

]
. (1)

For LOO retraining, the effect of leaving one example out is
averaged over different training runs removing the effect of
the randomness of training. Approximations to LOO such as
Datamodels (12) compute an average across leaving different
subsets of points out and use the difference between logits
as the functions L. Data Shapley Values (68) approximates
this expectation using different possible subsets of the entire
dataset. For Data Shapley, we can think of F as the family of
functions induced by different subsets D′ ∈ D \ zi:

IDS(zi, zte, D)

=
1

n

∑
D′∈D\zi

1(
n−1
|D′|

)L(f(xte, θD′), yte)− L(f(xte, θD′∪zi), yte).

s These methods explicitly compute, approximate, or learn to
predict counterfactual changes to the loss with one example
removed.

b) Model-Centric TDA: For methods that aim at under-
standing and attributing a specific model, only parameters for
a single model or a single training trajectory are considered.
The counterfactual contribution to loss evaluator (vMCCL) is an
abstraction of the notion of attribution in this section. Methods
in this area take the following general form:

IMC(zi, zte, D) =

Ef∈F [L(f(xte, θD\zi), yte)]− L(f(xte, θD), yte). (2)

While Equation (1) takes an expectation of both terms over F
parameterized by θ trained on dataset D, Equation (2) only
takes this expectation over the counterfactual term that excludes
zi from training. Therefore, IMC(zi, zte, D) is relative to a
specific model’s loss, rather than to an expected model’s loss.

Influence functions (10; 69) fall within this category be-
cause they approximate the expectation in the first term of
IMC(zi, zte, D) by modeling the response induced by up-
weighting zi on model θD. Influence function methods estimate
the counterfactual effect of individual training examples on
model predictions for an individual model (10; 16; 18). Further
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Method Attributable
Unit

Attribution Do-
main

Model Evaluator

ALCE (6) Output y
parsed into
sentences
{z1..zn}

Wikipedia
(2018-12-20),
Sphere (42)
(Filtered
Common Crawl)

1. Retrieval: Retrieve top 100 passages (using
GTR (43) and DPR (44) for Wikipedia and
BM25 (45) for Sphere).
2. Synthesis: Synthesize retrieved passages to
identify the k most relevant.
3. Generation: Include these k passages in-context
alongside the input and additional prompting that
instructs the model to cite the passages used.

Textual Entailment: NLI model
that outputs 1 if the source entails
the outputs.

GopherCITE (31) Output y Internet (queried
by Google
Search)

Collect human preferences of evidence paragraphs
that support provided answers. Perform both su-
pervised learning on highly rated samples and
reinforcement learning from human preferences on
Gopher (46), to learn a model that finds relevant
web pages on the internet and quotes relevant
passages to support its response.

Textual Entailment: LLM is
fine-tuned to perform NLI.

LaMDA (47) Output y Internet (queried
by information re-
trieval system that
returns brief text
snippets)

Model is fine-tuned to learn to call an external
information retrieval system and use the results in-
context to generate an attributed output.

Textual Entailment: LLM bases its
output off of retrieved sources.

WebGPT (48) Output y
parsed into
sentences
{z1..zn}

Internet (queried
by Microsoft
Bing Web Search
API)

Given a text-based web-browsing environment, GPT-
3 is fine-tuned with RLHF to use the browser to
identify sources it then uses in-context to answer
the query.

Textual Entailment: LLM bases its
output off of retrieved sources.

Lazaridou et al. (2022)
(49)

Output y Internet (queried
by Google
Search)

1. Retrieval: Extract text from top 20 URLs
returned by Google to.
2. Generation: Use few-shot prompting to steer
model to provide an answer conditioning on evi-
dence.
3. Attribution: Rank all the paragraphs from top 20
URLs by cosine similarity between the paragraph
and query.

Cosine similarity between question
and evidence paragraphs.

RARR (25) Output y Internet (queried
by Google
Search)

1. Generation: For an input, which takes the form
of a question, use PaLM (50) to generate the output.
2. Retrieval: Use Google Search to retrieve five
web pages and then identify four-sentence evidence
snippets from these pages that are relevant to the
input, according to GTR (43).
3. Attribution: Use chain-of-thought few-shot
prompting (51) on PaLM (50) to identify cases
where the evidence snippet and the model output
provide the same answer to the input.

Valid Paraphrase: LLM identifies
when the source and model output
provide the same answer to the
input.

TABLE II
OVERVIEW OF EXISTING CORROBORATIVE ATTRIBUTION SYSTEMS FOR LANGUAGE MODELS

work acknowledges that when applied to nonconvex learning
objectives, influence functions more closely estimate the Proxi-
mal Bregman Response Function, rather than the counterfactual
influence (17; 69). All of these methods are implementations,
even if computationally impractical for today’s LLMs, of the
counterfactual contribution to loss vMCCL evaluator.

For Gradient Tracing methods, such as TracIn (14), the
quantity measured is different from all the definitions above and
we believe it lacks the explicit counterfactual motivation needed
for contributive attributions. Specifically, the ideal objective
function of TracIn seeks to measure the contribution of an
example to the loss over the training process by summing the
change in loss across training time steps that include zi in the
batch:

ITI(zi, zte, D) =
∑

t:zi∈Bt

L(f(xte, θt−1), yte)− L(f(xte, θt), yte).

TracIn does not explicitly define a relationship between its
notion of influence of a training point zi and the final model’s
behavior on the test point zte. Therefore, this method does not
fall within our framework of counterfactual evaluators.

VII. USE CASES REQUIRING ATTRIBUTIONS

While perhaps the most obvious use case of attributions is
to provide citations for a model’s answer to a question, the
interaction model we have presented obviates a number of use
cases, each with its own list of desirable properties. Across
the board, the properties of correctness and high efficiency
are important. Depending on the use case, either contributive
attributions, corroborative attributions, or a composition of the
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Method Datasets Non-attribution Evaluation Attribution Evaluation:
Correctness

Attributable to Identified Sources
(AIS) (9)

QReCC (53) and WoW (QA) (54),
CNN/DM (summarization) (55),
ToTTo (table-to-text task) (56)

Human Reasoning: Is all of the
information relayed by the system
response interpretable to you?

Human Reasoning: Is all of the
information provided by the system
response (a) fully supported by the
source document?

Evaluating Verifiability in
Generative Search Engines (20)

AllSouls, davinci-debate, ELI5 (57),
WikiHowKeywords,
NaturalQuestions (58) (all filtered)

Human Reasoning: Fluency,
perceived utility (whether the
response is a helpful and
informative answer to the query)

Human Reasoning: Coverage,
citation precision

Automatic Evaluation of Attribution
by Large Language Models (4)

HotpotQA (59), EntityQuestions
(60), PopQA (61), TREC (62),
TriviaQA (63), WebQuestions (64)

None Automatic Evaluation:
Fine-grained citation precision: Is
the attribution attributable,
extrapolatory, or contradictory?

ALCE (6) ASQA (65), QAMPARI (66), ELI5
(57)

Automatic Evaluation: Fluency
(MAUVE), Correctness (compared
to a ground truth answer) measured
with exact match and entailment
(NLI)

Automatic Evaluation: Coverage,
citation precision

GopherCITE (31) NaturalQuestionsFiltered,
ELI5Filtered

Human Reasoning: Is the answer
a plausible reply to the question?

Human Reasoning: Coverage

WebGPT (48) ELI5 (57), TruthfulQA (67) Human Reasoning: Overall
usefulness, coherence

Human Reasoning: Factual
correctness

TABLE III
OVERVIEW OF THE EVALUATION OF CORROBORATIVE ATTRIBUTIONS

Method Type Oracle Evaluator Implemented Evaluator LM Implementations
Data-Centric Methods

Leave-one-out Change in the expected counterfac-
tual output

Expected counterfactual contribu-
tion to the loss

DataModels (12)

Shapley Values Change in the expected counterfac-
tual output

Expected counterfactual contribu-
tion to the loss

Data Shapley (70)

Model-Centric Methods

Influence Functions Change in the counterfactual output
(vMCCO)

Counterfactual contribution to the
loss (vMCCL)

* TRAK (18)
* EK-FAC (17)

Gradient Tracing Change in training trajectory Contribution to the loss
TracIn (14)

* Simfluence (11)
* TracIN-WE (37)

TABLE IV
OVERVIEW OF CONTRIBUTIVE ATTRIBUTION METHODS (METHODS WITH LLM IMPLEMENTATIONS ARE DENOTED WITH *)

Task Properties
Correct. Recall Effici. Consist. Relev.
Corroborative Attribution

Question Answer-
ing

✓ ✓ ✓

Fact Checking ✓ ✓
Contributive Attribution

Author Compen-
sation

✓ ✓ ✓ ✓

GDPR
Compliance

✓ ✓ ✓ ✓

Model Bias De-
tection

✓ ✓ ✓

Contributive+Corroborative Attribution
Model
Debugging

✓ ✓ ✓

Auditing Model
Memorization

✓ ✓ ✓ ✓

Human AI Col-
laboration

✓ ✓ ✓ ✓ ✓

TABLE V
OVERVIEW OF ATTRIBUTION USE CASES AND THEIR DESIRED PROPERTIES.

two are required. In this section, we enumerate use cases and
our recommendation on how to apply attributions.

A. Use Cases of Corroborative Attributions

While there are a variety of use cases where corroborative
attributions are important, we highlight several tasks that
showcase how different attribution properties and metrics are
meaningful.

a) Question Answering: QA is a common task for
LLMs. Unfortunately, LLM answers are not always trustworthy,
especially in critical domains such as law and healthcare (71).
(8) and QA engines such as Bing Chat and Perplexity AI have
explored using corroborative attributions to provide citations
for answers (72). In this use case, humans can verify the output
by examining the sources that are provided as attributions. This
step of output verification by the human user is critical because
the attribution domain may not be fully composed of trusted
sources (e.g., QA engines retrieve from the internet).

High attribution recall is not a strict requirement for QA since
only a few corroborating sources may be sufficient to support
an attributable unit. Implementations of attribution for QA may
customize source relevance to prioritize primary sources, rather
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than secondary sources, or more reputable sources, rather than
those from authors of dubious credentials.

b) Fact Checking: Fact checking has emerged as a
promising tool in the fight against misinformation (73). Despite
its importance, fact checking has long been an entirely manual
process (74). Many researchers have attempted to automate
fact checking (33). We posit that our attributions framework
can help create and evaluate methods for fact checking.

Given an attribution domain of sources that are up-to-
date, trustworthy, and non-contradictory, it follows that an
attributable unit can be taken as true if it has at least one
corroborative attribution. Therefore, high attribution recall is
not an important property for this use case. As in the QA use
case, customized source relevance can be useful for prioritizing
primary sources. However, because the attribution domain is
assumed to contain only trustworthy sources, customized source
relevance is redundant to the end of selecting trusted sources.

Interestingly, perfect coverage is not necessarily desired in
this use case; low coverage indicates that either the output
is nonfactual or that the attribution domain does not include
sufficient sources to corroborate the statement. If the model
output is factual, however, the coverage should be perfect.
Coverage is perhaps a numerical counterpart to non-binary
labels for factuality, such as "mostly true" or "half true", from
previous work (33).

This setting of fact-checking motivates another class of
corroborative evaluators that indicates a lack of logical entail-
ment. For example, an evaluator that indicates when a source
contradicts an attribution unit would make it possible to flag a
model output for containing misinformation. Prior work has
implemented such evaluators before; RARR (25) first identifies
sources that are relevant to an LLM output and then post-edits
unattributed parts of the output by using an agreement model
that indicates when part of the output disagrees with a source.

B. Use Cases of Contributive Attributions

Prior work has explored using contributive attributions to
understand the training data of models. We discuss some of
these tasks and their desired properties here.

a) Author Compensation: With LLMs being trained on
large datasets that include sources under various licenses,
people have begun to observe language models returning
output that heavily resembles licensed works owned by specific
authors. As a result, thousands of authors have demanded
compensation for their work being used to train language
models (75). This demand necessitates the ability to attribute
language model output to specific author sources and to quantify
the degree to which the author’s work contributed to the output.

In this use case, authors could be compensated based on
their work appearing in the contributive attributions of an LLM
output. High attribution recall and consistency are critical since
leaving out a major contributor could have legal consequences.

b) GDPR Compliance: GDPR compliance requires lan-
guage model maintainers to update their models by removing
the influence of training data upon request. Prior work has
explored efficient data deletion for ML models (76) to avoid

training from scratch with a few data points removed. In such
a scenario, it is critical to ensure that the original data points
are no longer contributing to the model output.

An empty contributive attribution set for a set of language
model outputs can imply the deleted data is no longer influential.
The attribution set must have high attribution recall or else
an empty set may be a false positive for compliance. For the
same reason, stability is also critical.

C. Use Cases of Corroborative and Contributive Attributions

We describe several use cases that require both corroborative
and contributive attributions for LLM predictions.

a) Model Debugging: Identifying the training data points
that contribute to a test case that is incorrect, or otherwise
undesirable (e.g., toxic), is helpful for cleaning the training
data and remedying the failure case in the model development
cycle.7 While this has been a longstanding motivation of TDA
papers (10; 13; 14; 15), we argue that when working with
language models, not only do we need contributive attributions,
but we also need corroborative notions of attribution. This
is because TDA methods are not guaranteed to flag training
sources that are semantically relevant to the input and output
(17); removing semantically unrelated contributive sources is
not guaranteed to change the semantic meaning of the model
output. Therefore, the semantic relation between contributive
sources and the input and output is important for model
debugging. Corroborative attributions are integral in identifying
such semantic relation. Data poisoning detection (10) is
adjacent to model debugging and thus requires the same types
of attribution.

b) Document Generation: The task of document gen-
eration, or drafting, refers to the language model writing
a passage of text given a prompt. A growing number of
ventures are now proposing using LLMs for writing documents
such as legal briefs and contracts (Section VIII-A). In this
task, both types of attributions are helpful for the generated
output y. Contributive attributions would provide context for
what sources the generated documents are similar to and
corroborative attributions would provide validation for the
claims made in the generated document.

c) Auditing Model Memorization: To determine that an
output is a case of model memorization of a training point,
the output must exactly match a training point that was also
highly influential in its generation. Therefore, this use case
requires exact match corroborative attributions, as well as
contributive attributions. Prior work has measured the extent
to which models have memorized their training sources via
self-influence, defined as the influence of a training point
on its own loss (14; 77). However, this approach does not
extend to the evaluation of inputs from outside the training
set. Furthermore, we believe that heuristic approaches that
solely use corroborative exact match to diagnose cases of

7Retraining an LLM from scratch is too resource intensive to be practical.
However, the fine-tuning process is less resource intensive and more reasonable
to repeat; attributions for fine-tuned model outputs to fine-tuning data may be
an actionable setting for debugging models with attributions.
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model memorization exclude contributive attributions due to
the inefficiency of current TDA methods.

d) Human-AI Collaboration: Another rapidly emerging
use case is using LLMs for human-AI collaboration. For exam-
ple, Sun et. al. (78) study AI-supported software engineering
through several language model collaborative tasks. In their
study, participants wanted to know how the code was generated
(i.e., contributive attribution) as well as code correctness (e.g.,
corroborative attributions). Liao et. al. (79) summarize a broader
family of AI-assisted tasks such as including decision support
and communication support; study participants wanted to know
what training data produced the model suggestion as well as
the correctness of the suggestion. Furthermore, in application
domains such as assistive call center tools or travel itinerary
tools, companies are using LLMs for various collaborative
planning and decision tasks.8 In Human-AI collaboration
tasks, all of the properties we describe may be important.
Particularly, when a task process is documented, consistency in
the attribution provided for making such a decision is important.
In this example, both types of attributions are desired for the
same output y of a language model.

VIII. CASE STUDIES: A CLOSER LOOK AT TWO
APPLICATION DOMAINS

A. Case Study 1: LLMs for Legal Drafting

AI and LLMs in particular have been increasingly applied
to the legal domain as training data for different legal tasks are
becoming more readily available (80; 81; 82; 83; 84; 85). While
LLMs show promising results for legal document analysis,
contract review, and legal research, they also raise concerns
regarding privacy, bias, and explainability (86; 87). To address
such shortcomings, the development of attribution methods
to promote transparency and interpretability are needed (86).
Moreover, Bommasani et. al. (2) discuss the opportunities and
risks of using foundation models for applications rooted in
US law in particular. They review different fields of law and
specifically contemplate the ability of foundation models to
write legal briefs. While tools for writing legal briefs using
language models are still under development, different products
based on LLMs such as legal question answering, immigration
case drafting, and document summarization have started to
appear in various startups.9 In this case study, we describe
the document generation setting when an LLM is used by a
lawyer or firm to draft a legal document. The input would be
a prompt asking for a specific type of legal document (e.g., a
contract or brief) for a specific purpose and the output would
be the resulting document.

In this setting, a lawyer may want contributive attributions to
understand which training documents the generated document
is borrowing words or concepts from. For example, if the
document requested is a bespoke rental contract, users may
want to ensure that the generated contract is not borrowing

8Start-ups in this area at the time of this publication include Observe AI,
GenixGPT

9Y-Combinator companies in this area at the time of this publication include
Casehopper, Lexiter.ai, DocSum.ai, and Atla AI

from rental contracts from other states or countries. Continuing
with the rental contract example, corroborative attributions are
also important to ensure the contract adheres to local laws. The
sources for such corroborative attributions need not be in the
training data and may come from a repository of documents that
are more frequently updated than the language model itself. In
this setting, the LLM is assistive to lawyers handling the case.
Correct attributions that provide the right sources to corroborate
the drafted document are important. High-precision attributions
in particular would improve the efficiency of lawyers using
these tools.

B. Case Study 2: LLMs for Healthcare

The application of language models to the field of medicine
has been heavily studied (88; 89; 90; 91; 92; 93). Recently,
LLMs have been increasingly adopted for real-world clinical
tasks that largely fall into the two categories of summarization
of clinical notes (94; 95; 96) and medical QA (93; 97; 98).

The task of summarizing clinical notes has received attention
in both academia and industry.10 These summaries have been
evaluated for consistency with the underlying clinical notes
using automated metrics, such as ROUGE and BERTScore
(99), and human evaluators (94; 95; 96). These examples
highlight how corroborative attributions can validate generated
summaries using the underlying clinical notes. Furthermore,
interviews with medical practitioners reveal the importance
of contributive attributions for trusting model outputs (100).
Together, corroborative and contributive attributions can provide
insights into the validity of a summary of clinical notes.

For medical QA systems11, it is important for clinicians to
have citations of evidence to support model answers (101).
Corroborative attributions can be used to provide these
citations, as is done by MediSearch and OpenEvidence. While
these two companies broadly restrict their attribution domains
to research publications from reputable venues, MedAlign
(102) highlights the option of using a corpus of EHRs.
The implementation of corroborative attributions with trusted
attribution domains is adjacent to the use case of fact checking,
the stakes of which are particularly high in the clinical setting
due to the potential consequences on human health.

Attributions are also valuable in debugging medical QA
LLMs, such as MedPaLM 2 (98), by flagging training sources
that are relevant to incorrect outputs. As discussed previously
in VII-C, this can be accomplished with a composition of
contributive and corroborative attributions. Model developers
and medical experts should leverage domain knowledge when
manually inspecting training sources flagged for debugging.

IX. FUTURE WORK

We highlight several promising directions for future work.

10Start-ups in summarization at the time of this publication include Notable
Health and Abridge AI.

11Companies in this area at the time of this publication include MediSearch,
Open Evidence, Hippocratic AI, and Glass Health.
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A. Counterfactual contribution to output evaluators

In Definition 5, we outline the possibility of contributive
evaluators that are sensitive to semantic changes in the counter-
factual output, rather than to changes in the counterfactual loss.
The notion of citation to parametric content discussed by Huang
et al. (19) also addresses this potential connection between
contributive attribution and the semantic content of the output.
To the best of our knowledge, such output-based contributive
attributions for LLMs have not yet been explored. A critical
challenge of implementing CCO evaluators lies in detangling
the stochasticity of the decoding strategy from the contribution
of sources. Future work in addressing this limitation would
allow for semantically meaningful contributive attributions.

B. Contributive attributions with large-scale training data

The large scale of data used to train LLMs raises concerns
not only about the high resource burdens of TDA methods,
but also whether the influence of a single training source is
meaningfully noticeable on the loss, not to mention the output.
Past work has quantitatively observed that training sources with
high influences are more rare than not, but they do exist and in
fact largely make up the total influence on an LLM output (17).
Nonetheless, future work may consider extending contributive
attributions for language models to notions of influence on a
group of training sources, rather than individual training sources
(103). Also, the ubiquity of finetuning encourages further work
on TDA methods suited for finetuned models (16). In this case,
the attribution domain could be restricted to the finetuning
dataset, which is orders of magnitude smaller than the pre-
training dataset. This direction is an interesting pursuit in and of
itself, especially for model developers interested in debugging
fine-tuned models.

C. Hybrid attribution systems

While we present a framework that unifies existing work
in both corroborative and contributive attribution literature,
developing techniques capable of both types of attributions
is left to future work. The area of fact-tracing makes a
step in this direction by providing contributive attributions
in a setting where corroboration matters (22). However, the
identification and corroboration of facts within the language
model output requires further work. Hybrid attribution systems
would improve the customizability of attributions, potentially
making them useful across a broader range of applications.

D. Standardized Evaluation

From our survey of attribution methods, particularly for
corroborative attribution, we observe that evaluation is not
standardized between methods. Each attribution method is
evaluated on different datasets and often with different metrics.
For example, GopherCITE’s (31) outputs are evaluated on a
subset of NaturalQuestions and ELI5 with binary metrics if
the answer is plausible and supported by the attribution. On
the other hand, WebGPT’s (48) outputs are evaluated on a
different subset of ELI5 and open-ended dialogue interactions
by comparisons to human-generated attributions. More broadly,

the utility of an attribution can be expanded beyond correctness
to the other properties we introduce.

E. Use-Case-Driven Development and Evaluation

In our work, we explore tasks and case studies where
attributions are important for industry applications of LLMs.
We recommend that attribution system developers choose
an application and then identify the relevant properties for
evaluation. This approach of use-case-driven development
is preferable to strong-arming a developed method to serve
a use case. Furthermore, use-case-driven development may
surface additional settings where corroborative and contributive
attributions are needed simultaneously.

X. CONCLUSION

This paper presents a unifying framework for corroborative
and contributive attributions in LLMs. We formulate an
interaction model to define the core components of attributions
and to define their properties. This framework serves as a lens
for analyzing existing attribution methods and use cases for
attributions. Our analysis elucidates prescriptive suggestions
for future research, namely CCO evaluators, the challenges
of contributive methods at the scale of LLMs, the value of
hybrid attribution systems, the need for standardized evaluation
of attribution systems, and use-case-driven development. We
hope our unifying perspective on the field of attributions leads
to improved solutions for misinformation, accountability, and
transparency in real-world applications of language models.
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XII. SUPPLEMENTARY MATERIAL

Appendix A
In-context data as the attribution domain

Due to the ubiquity of retrieval-augmented generation
(104) and prompt engineering, data provided in-context
is a highly relevant attribution domain. Determining
the source boundaries of data provided in-context may
be more difficult than for attribution domains that are
corpora of predefined sources. This is discussed in
more detail below.
Both corroborative and contributive attributions are
possible to obtain from an attribution domain of
the in-context data. While corroborative attributions
are exactly the same for this setting, contributive
attributions have an adjustment, as further discussed
later in this section. Lastly, it is not guaranteed,
even if it is likely, that an attribution from such a
domain is simultaneously corroborative and contributive.

Defining sources within the attribution domain: Some
forms of in-context data, such as documents retrieved
from an external corpora and few-shot examples,
contain natural structure to determine the segments
that correspond to individual sources. Other forms of
in-context data, however, may not have such structure
for delineating the boundaries between sources. In
order to designate such forms of in-context data as an
attribution domain under our framework, it is necessary
for a task designer to mark the segments of the
in-context data that correspond to individual sources,
according to the specifics of the task at hand.
For example, consider seeking contributive attributions
to parts of the in-context data to gain insight into model
behavior. Prior work refers to this setting as feature
attribution (105), where each word of the in-context
data is treated as an individual feature, or source. Here,
we examine alternatives to defining each word of the
input as a source. Consider the following examples of
inputs, each containing different forms of in-context
data, and their corresponding sources:

1) Input with natural structure: "Sentence: The
moonlight gently illuminated the peaceful meadow.
Sentiment: Positive

Sentence: The sun cast harsh rays over
the sweltering sand.
Sentiment: Negative

Sentence: The moonlight shone bright
over the sparkling water.

Sentiment:"
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s0: "Sentence: The moonlight gently illuminated the
peaceful meadow.
Sentiment: Positive"

s1: "Sentence: The sun cast harsh rays over the
sweltering sand.
Sentiment: Negative"

2) Input without natural structure: "What are the
lunar phases? What is a lunar eclipse? Explain
like I’m five."

s0: "What are the lunar phases? What is a lunar
eclipse?"

s1: "Explain like I’m five."
Contributive attributions to in-context data: The
contributive evaluators defined in Definition 5 pertain
to sources on which the model was trained, either
during pre-training or fine-tuning; they all pose the
counterfactual scenario of a model trained without
the source in question. If, however, the attribution
domain is data provided in-context, rather than during
pre-training or fine-tuning, one could pose an alternative
counterfactual: what would the model loss or output be
if the source had not been included in-context? With
this alternative counterfactual in hand, the contributive
evaluators discussed in Definition 5 could be extended
to provide contributive attributions to an in-context
attribution domain.
The implementation of contributive attributions in this
setting is a very timely direction for future work. One
potential challenge is highlighted by recent work which
shows that the location of relevant information in the
context impacts the model’s usage of that information
(106). Such an effect could be a confounding factor
when measuring the difference between the original and
counterfactual model losses or outputs.
Our discussion so far presents one view of in-context
data attribution through the lens of feature attribution.
We hope future work will develop various paradigms
and accompanying methods for generating and verifying
in-context data attributions.

Appendix B
Clause-level Explicatures

The following definitions formally define clause-level
explicatures, which can be used as attributable units for
corroborative attributions.
Definition 6. Clause-level Standalone Proposition. A
standalone proposition, as defined by (9), that cannot
be broken down into two or more non-overlapping
standalone propositions.
Consider the following examples:
Example 1: In 2010, Obama was the president of the
United States and a father of two.
Example 2: In 2010, Obama was the president of the
United States.

Application Area Count
Code Generation 12
AI Tools 9
Content Creation 8
Persona/Assistants/QA 6
Healthcare 2
Legal 3
Education 1
Total 41

TABLE VI
LLM APPLICATION DOMAINS TARGETED BY SUMMER 2023

Y-COMBINATOR GENERATIVE AI VENTURES. 41/46 GENERATIVE AI
CATEGORY COMPANIES LEVERAGE LLM OUTPUTS IN THEIR PRODUCT.

Example 3: In 2010, Obama was a father of two.
Example 4: In 2010, Obama was a father.

Example 1 is a standalone proposition, but
is not clause-level. Examples 2 and 3 are the
clause-level standalone propositions that compose
Example 1. Example 4 is also a clause-level standalone
proposition. Note that example 3 contains the example
4 but they are overlapping because they share the same
information; this does not prevent example 3 from
being clause-level.
Definition 7. Clause-level Explicature. The clause-
level standalone propositions contained within a
sentence-level explicature, as defined by (9).
A clause-level explicature is a clause-level standalone
proposition that is fully interpretable given only the wall
clock time at which the query is made. We refer readers
to (9) for the formal definition of a sentence-level
explicature, which Definition B extends.

Appendix C
Entrepreneurial motivation for LLM Attributions:
Y-Combinator Case Study

Our motivation for introducing this unified framework
of attributions is driven by the rapidly advancing
development of large language models to increasingly
high-stakes domains. To understand how LLMs will
likely be used in the near future, we examine ventures
that have been proposed and funded based on LLM
technology. As a case study, we look through the
Summer 2023 Y-Combinator class12 and examine
the ventures that use LLMs, and highlight where
attributions, both corroborative and contributive, may
be important. Of the 46 companies listed under and
Generative AI, 41 companies described the usage of
large language models in various application domains
(Table VI). The use cases (Section VII) and case studies
(Section VIII) we study in our work are motivated
by the different ways these companies have chosen to
apply LLMs. Moreover, both corroborative attributions
and contributive attributions may be helpful as these
ventures and others begin deploying LLMs.

12https://www.ycombinator.com/blog/meet-the-yc-summer-2023-batch
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