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DFMVC: Deep Fair Multi-view Clustering
Anonymous Authors

ABSTRACT
Fair multi-view clustering aims to achieve both satisfactory cluster-
ing performance and non-discriminatory outcomes with respect to
sensitive attributes. Existing fair multi-view clustering methods im-
pose a constraint that requires the distribution of sensitive attributes
to be uniform within each cluster. However, this constraint can lead
to mis-allocation of samples with sensitive attributes. To solve this
problem, we propose a novel Deep Fair Multi-View Clustering
(DFMVC) method that learns a consistent and discriminative rep-
resentation instructed by a fairness constraint constructed from
the distribution of clusters. Specifically, we incorporate contrastive
constraints on semantic features from different views to obtain
consistent and discriminative representations for each view. Addi-
tionally, we align the distribution of sensitive attributes with the
target cluster distribution to achieve optimal fairness in cluster-
ing results. Experimental results on four datasets with sensitive
attributes demonstrate that our method improves both the fair-
ness and performance of clustering compared to state-of-the-art
multi-view clustering methods.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; • Security
and privacy→ Privacy protections.

KEYWORDS
Multi-view clustering, Fair clustering

1 INTRODUCTION
With the rapid development of digital technologies, data often
consists of diverse features or originates from various views. For
example, an image can be described by diverse feature sets, includ-
ing Local Binary Patterns (LBP), Histogram of Oriented Gradients
(HoG) and Scale-Invariant Feature Transform (SIFT), and each fea-
ture set can represent a view of an image. Multi-view clustering
(MVC), as an unsupervised learning task, has gained considerable
attention in various machine learning applications, including data
mining [50], scene recognition [34] and information retrieval [15].
Compared to single-view clustering, because of the complementary
nature of information between different views [5, 34], MVC signifi-
cantly enhances clustering performance by integrating information
from multiple views. The goal of MVC is to divide data samples
into several disjoint groups by using feature information between
different views.
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Figure 1: An example illustration of themotivation. Different
shapes represent different classes. Colored shapes represent
samples with sensitive attributes, and uncolored shapes rep-
resent samples without sensitive attributes. Most fair multi-
view clustering focuses on the uniform distribution of sensi-
tive distribution of sensitive attributes in each cluster while
ignoring the the true cluster distribution structure of sam-
ples with sensitive attributes.

Existing MVC algorithms can be roughly categorized into tra-
ditional MVC methods and deep MVC methods. Traditional MVC
methods contain three categories: non-negative matrix factoriza-
tion (NMF)-based methods [30], graph-based methods [24, 26], and
subspace-based methods [53, 56]. NMF-based MVC employs matrix
factorization to learn a shared representation for multi-view data.
Graph-based MVC methods construct a unified graph structure
using multi-view data. Subspace-based MVC methods aim to learn
a consistent subspace representation. However, these traditional
MVC methods primarily rely on linear transformations, limiting
their potential to improve clustering performance.

Deep MVC algorithms have been proposed to address the afore-
mentioned limitation, leveraging the powerful nonlinear feature ex-
traction capabilities of deep neural networks [11, 36, 48, 49]. These
methods employ view-specific encoder networks to transform each
view and derive a consensus representation. For example, MvDSCN
[57] learned a multi-view self-representation matrix in an end-to-
end manner. Inspired by contrastive learning techniques, many
multi-view clustering methods integrate this technique into the
model. Most existing contrastive learning-based methods attempt
to maximize the mutual information contained among the assign-
ment distributions of multiple views. For instance, COMPLETER
[29] learned an informative and consistent representation of multi-
view data by contrastive learning; DCP [28] conducted consistency
learning and data recovery through dual contrastive prediction;
MFLVC [49] introduces multi-level feature learning with a con-
trastive strategy for multi-view clustering, e.g., low-level features,
high-level features and semantic features. Although these meth-
ods achieve remarkable clustering performance, it should be noted
that multi-view data often contains sensitive attributes, which can
influence the clustering outcome. For instance, if the sensitive at-
tribute is gender, one cluster may predominantly consist of males
while another cluster predominantly consists of females, resulting

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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in gender bias. In Figure 1(a), we can see that it will lead to unfair
clustering.

To alleviate the unfairness issue, numerous fair clustering meth-
ods have been proposed [10, 20, 22]. For instance, fair clustering was
first proposed and divided the original data into several chunks with
fairness constraints in [10]. In Figure 1(a) and (b), fair clustering
can ensure the uniform distribution of samples containing sensi-
tive attributes in each cluster. SpFC [20] imposed linear fairness
constraints on spectral clustering. DFC [22] exploited adversarial
training to make the clustering results independent of sensitive
attributes. FCMI [52] implemented fair clustering by mutual in-
formation theory, maximizing mutual information between non-
group information and cluster information and minimizing mutual
information between group information and cluster information.
Fair-MVC [55] explored the fairness issue on multi-view scenarios
by enforcing the distribution of sensitive attributes within each
cluster to be uniform. However, it excessively emphasizes fairness
constraints but neglects the true cluster distribution structure of
samples with sensitive attributes, leading to incorrect clustering
assignments for them. As shown in Figure. 1(b) and (c), most fair
clustering methods force the samples containing sensitive attributes
in each cluster to be evenly distributed, while ignoring the cluster-
ing structure of the samples themselves.

In mitigating the challenge, in this paper, we propose a deep fair
multi-view clustering method named DFMVC, whose framework
is shown in Figure. 1. We initially leverage deep autoencoder to
extract view-specific features from different views. Then, to further
exploit the discriminative and complementary information of the
multi-view data, we transform the features from different views
into semantic spaces and leverage contrastive learning to obtain
consistent semantic representations. Finally, in order to achieve
optimal fairness in clustering results while ensuring that sensitive
attributes do not impact the clustering performance, we design
a target cluster distribution-guided fairness learning module. In
this module, we learn a target cluster distribution by fusing view-
specific representations. Additionally, we utilize a constraint based
on KL-divergence to align the distribution of sensitive attributes
with the target cluster distribution to achieve optimal fairness in
clustering results. We summarize the main contributions of this
paper as follows:

• We leverage target cluster distribution to guide fair cluster-
ing and propose a novel deep fair MVC algorithm termed
DFMVC. It makes clustering results independent of sensitive
features, alleviating unfair issues in MVC.

• By contrasting the semantic representation across multiple
views, our method explores discriminative and consistency
features among views.

• Extensive experiments on four datasets have demonstrated
the superiority of the proposed DFMVC method. Further-
more, the effectiveness of the proposed modules is verified
by ablation studies.

2 RELATEDWORK
2.1 Multi-view Clustering
In recent years, MVC [8, 38, 41, 42, 49] has gained considerable
attention, with a growing body of research addressing this area.

The current multi-view clustering method can be broadly classified
into two main categories: traditional MVC methods and deep MVC
methods. Traditional MVC methods can be divided into three main
categories: (1) Non-negative matrix factorization-based methods
[54]. It usually utilizes matrix factorization to decompose the in-
tegrated feature matrix, aiming to learn a shared representation.
[45] introduced gradual factorization of multi-view data matrices
into representational subspaces lay-by-layer and generated one
clustering in each layer. (2) Subspace-based methods, aiming to
learn consistent subspace representation across multiple views. For
instance, [41] proposed a deep structured multi-pathway network
for multi-view subspace clustering task. (3) Graph-based meth-
ods [32, 35] utilize multi-view data to construct graph structure.
However, these traditional methods tend to learn shallow represen-
tations of multi-view data, thereby constraining the discriminative
capability of the obtained representations.

Benefiting from deep learning, deep neural networks have the
power ability to extract feature representations. In recent years,
many deep multi-view clustering methods have been proposed
[18, 27, 29, 49]. First, one of the most representative deep MVC
methods is based on deep autoencoders. These methods aim to
learn consensus representation by minimizing the reconstruction
loss by instances of multiple views. DMSC-UDL [40] employed deep
autoencoder to obtain representations of different views, imposing
different constraints to obtain self-expression layers. Second, con-
trastive learning-based MVC methods. By maximizing the distance
between positive pairs and minimizing the distance between nega-
tive pairs, MVC can learn more discriminative clustering informa-
tion. AGCL [44] explored intra-cluster consistency and inter-view
consistency through within-view graph contrastive learning and
cross-view graph consistency learning. Last, adversarial network-
based MVC methods employ adversarial training to further capture
the data distribution. DAMC [25] utilized adversarial training to
capture the data distribution and disentangle the latent space. These
methods achieve better performance.

2.2 Fair Clustering
Recently, there has been significant interest in the machine learning
community regarding the topic of fairness in clustering. To mitigate
or even eliminate the impact of sensitive attributes, many efforts
have been devoted to fair clustering[1, 4, 7, 9]. Based on how fair-
ness is incorporated, the existing works can be roughly divided into
three categories: (1) Pre-processing method. It transforms the origi-
nal data to satisfy fairness constraints and uses classic clustering
algorithms to achieve fair clustering. For example, [10] first divided
the original data into several chunks with fairness constraints (i.e.,
fairlets), and then used the classic clustering algorithm on these
fairlets to obtain fair clusters. However, constructing the fairlets
requires at least quadratic running time, which poses a significant
challenge in practical applications. Therefore, ScFC [2] proposed a
tree metric to construct fairlets in near-linear time. (2) In-processing
methods. Different from pre-processing methods, it adds fairness
as a constraint to the objective function for joint optimization. For
instance, SpFC [20] treated fairness as a constraint and integrated it
into spectral clustering. (3) Post-processing methods [3]. In contrast
to pre-processing methods, post-processing methods techniques
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Table 1: Basic notations used in the whole paper.

Notation Meaning

X𝑣 The input data matrix of 𝑣-th view
X̃ The reconstruction data matrix of 𝑣-th view
Z𝑣 The embedded feature of 𝑣-th view
H𝑣 The embedded feature of 𝑣-th view
S The sensitive feature
Z𝐺 The global feature of all views
Vn The view number of the multi-view dataset
N The number of samples
dv The dimension of input data matrix
dz The dimension of embedded feature
K The number of cluster
q𝑖𝑘 Soft clustering assignment
p𝑖𝑘 Target assignment

focus on converting the existing clustering result into a fair result
through the resolution of a linear programming problem.

Inspired by the achievement of deep clustering [12–14, 17], deep
fair clustering has attracted widespread attention. For instance,
Towards [39] proposed a method to learn a fair embedding (i.e.,
fairoid) by enforcing cluster centroids to be equi-distant from each
fairoid. DFC [22] explored fair clustering by adversarial training.
FCMI [52] researched deep fair clustering by mutual information
theory. However, these works mainly focus on a single view. Fair-
MVC [55] delved into fair clustering on multi-view data, but this
method limits the clustering performance by forcing the fraction
of different groups in each cluster to be approximately identical to
the entire dataset.

3 METHODOLOGY
In this section, we introduce a novel Deep Fair Multi-view Cluster-
ing. The comprehensive DFMVC framework is illustrated in Figure
1. DFMVC mainly consists of three key modules: Multi-view Data
Reconstruction Module, Semantic Contrastive Learning Module,
and Cluster Distribution-guide Fair Learning Module. Specific de-
scriptions of these modules will be provided in the subsequent
sections.

3.1 Notations
Given a set of multi-view data X = {𝑋 1, 𝑋 2, ..., 𝑋𝑉𝑛 , 𝑆}, where 𝑋 𝑣
∈ R𝑁×𝑑𝑣 (𝑣 = 1, 2, ...,𝑉𝑛) is the input data matrices for the 𝑣-th view.
𝑆 ∈ R𝑁×𝑑𝑠 is the sensitive features (e.g., gender, race, etc.).𝑉𝑛 is the
number of views, 𝑁 is the number of samples, 𝑑𝑣 is the dimension
of 𝑋 𝑣 , and 𝑑𝑠 is the dimension of sensitive features. Assume that
𝐾 is the number of clusters. The samples with the same semantic
labels can be grouped into the same cluster. Therefore, 𝑁 samples
can be categorized into 𝐾 different clusters. A summary of essential
notations is provided in Table 1.

3.2 Multi-view Data Reconstruction Module
Due to original multi-view data usually containing redundancy
and random noise, we need to initially learn representative feature

representations from the original data. In particular, the autoen-
coder [16, 33] stands out as a commonly employed unsupervised
model capable of transforming original data features into a low-
dimensional feature space. Specifically, for the 𝑣-th view, let 𝑓 𝑣

𝜃 𝑣
(·)

(1 ≤ 𝑣 ≤ 𝑉𝑛) denote the encoder nonlinear function. In the encoder,
the network can learn the low-dimensional features as follows:

z𝑣𝑖 = 𝑓 𝑣
𝜃 𝑣
(x𝑣𝑖 ) (1)

where z𝑣
𝑖
∈ R𝑑𝑧 is the embedded feature representation in 𝑑𝑧

dimensional feature space of 𝑖-th sample from the 𝑣-th view x𝑣
𝑖
.

Then, the decoder reconstructs the sample by the feature rep-
resentation 𝑧𝑣

𝑖
. Let 𝑔𝑣

𝜙𝑣 (·) (1 ≤ 𝑣 ≤ 𝑉𝑛) represent the decoder
function. In the decoder part, the reconstructed sample x̃𝑣

𝑖
is ob-

tained by decoding z𝑣
𝑖
:

x̃𝑣𝑖 = 𝑔𝑣
𝜙𝑣 (z𝑣𝑖 ) = 𝑔

𝑣
𝜙𝑣 (𝑓 𝑣𝜃 𝑣 (x

𝑣
𝑖 )) (2)

Let L𝑟 be the reconstruction loss from input X𝑣 ∈ R𝑛×𝑑𝑣 to output
X̃𝑣 ∈ R𝑛×𝑑𝑣 , 𝑛 denote the number of samples in a batch. The
reconstruction loss is formulated as:

L𝑟 =
𝑉𝑛∑︁
𝑣=1

L𝑣𝑟 =

𝑉𝑛∑︁
𝑣=1

����X𝑣 − X̃𝑣
����2
2

=

𝑉𝑛∑︁
𝑣=1

𝑛∑︁
𝑖=1

����x𝑣𝑖 − 𝑔𝑣𝜙𝑣 (z𝑣𝑖 )
����2
2

(3)

During the pre-training stage, we utilize the reconstruction loss
function for training, aiming to initialize the parameters. Each
encoder and decoder consists of four layers, and the nonlinear
rectified linear unit (ReLU) function is chosen as the activation
function in the deep autoencoder.

3.3 Semantic Contrastive Learning Module
In this subsection, we will introduce a semantic contrastive learning
module to obtain consistent and discriminative features. Based
on Z𝑣 = 𝑓 (X𝑣 ;𝜃 𝑣), we can obtain embedded features. We stack
two linear layers and a successive softmax function on embedded
features to produce a cluster assignment, which is computed by:
𝑓𝑊 𝑣 : {Z𝑣} → {H𝑣} (1 ≤ 𝑣 ≤ 𝑉𝑛), where𝑊 𝑣 is the learnable
parameters of linear layers.

Inspired by recently proposed contrastive learning techniques
[6], we can leverage these methods on the embedded features to
explore consistency across multiple views. By doing so, We can
acquire cluster assignment probability matrices H𝑣 ∈ R𝑁×𝐾 (1 ≤
𝑣 ≤ 𝑉𝑛) for all views, where 𝐾 is the number of clusters. Let h𝑣

𝑖
denote the 𝑖-th row in H𝑣 , h𝑣

𝑖 𝑗
represent the probability that in-

stance 𝑖 belongs to cluster 𝑗 in the 𝑣-th view, and h𝑣
𝑗
represents

a cluster assignment of the same semantic cluster. The semantic
label of instance 𝑖 is determined by the highest probability within
h𝑣
𝑖
. The instances should share the same semantic information. we

define the similarity between two cluster assignments h𝑣1
𝑗
and h𝑣2

𝑗

of cluster 𝑗 as

𝑠𝑖𝑚(h𝑣1
𝑗
, h𝑣2
𝑗
) =

(
ℎ
𝑣1
𝑗

)𝑇
ℎ
𝑣2
𝑗

(4)

where ⟨·, ·⟩ is dot product operator, 𝑣1 and 𝑣2 denote two different
views. In our method, the cluster probabilities of instances among
different views should be similar, as these instances collectively
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Figure 2: Illustration of DFMVC. In our method, we design a cluster distribution-guide fair learning module and semantic
multi-view contrastive learning module. The former aims to align the distribution of sensitive attributes with the target cluster
distribution. The latter explores semantic consistency learning among different views and obtains discriminative and consistent
representations by contrasting clustering assignments among different views. The multi-layer perceptron (MLP) consists of
multiple linear layers. The view-specific autoencoder contains the encoding part and the decoding part.

characterize the same sample. In addition, the instances in multiple
views should be independent of each other, as they are utilized
to characterize different samples. Therefore, for the 𝑣-th view, the
same semantic labels h𝑣

𝑗
should have (𝑉𝑛 − 1) positive cluster as-

signment pairs and 𝑉𝑛 (𝐾 − 1) negative cluster assignment pairs
when considering h𝑣

𝑗
and 𝐾 cluster across 𝑉𝑛 views. Specifically,

we consider instances of the same sample across different views as
positive pairs, instances of different samples within the same view,
as well as instances across different views, as negative pairs.

The similarities among positive pairs should be maximized, and
those among negative pairs should be minimized. The semantic
contrastive loss between h𝑣1

𝑗
and h𝑣2

𝑗
is defined as follows:

𝑙 (𝑣1𝑣2 ) = − 1
𝐾

𝐾∑︁
𝑗=1

log
𝑒
𝑠𝑖𝑚 (h𝑣1

𝑗
,h𝑣2

𝑗
)/𝜏𝐿

𝑇
,

𝑇 =

𝐾∑︁
𝑘=1, 𝑗≠𝑘

𝑒
𝑠𝑖𝑚 (h𝑣1

𝑗
,h𝑣1

𝑘
)/𝜏𝐿 + 𝑒𝑠𝑖𝑚 (h𝑣1

𝑗
,h𝑣2

𝑘
)/𝜏𝐿 − 𝑒1/𝜏𝐿

(5)

where 𝜏𝐿 is a temperature parameter, (h𝑣1
𝑗
, h𝑣2
𝑗
) is a positive cluster

assignment pair between 𝑣1-th view and 𝑣2-th view, (h𝑣1
𝑗
, h𝑣1
𝑘
) is

a negative cluster assignment pair between 𝑗-th cluster and 𝑘-th
cluster in the 𝑣1 view, and (h𝑣1𝑗 , h

𝑣2
𝑘
) is also a negative cluster assign-

ment pair between 𝑣1-th view and 𝑣2-th view. Therefore, semantic

contrastive loss included across multiple views could be defined as:

L𝑐 =
1
2

𝑉𝑛∑︁
𝑣1=1

𝑉𝑛∑︁
𝑣2=1,𝑣2≠𝑣1

𝑙 (𝑣1,𝑣2 ) +
𝑉𝑛∑︁
𝑣=1

𝐾∑︁
𝑗=1

𝑟 𝑣𝑗 log 𝑟
𝑣
𝑗 (6)

where 𝑟 𝑣
𝑗
= 1
𝑁

∑𝑁
𝑖=1 ℎ

𝑣
𝑖 𝑗
. The first part of Eq. (6) aims to learn the

clustering consistency for all views. It pulls pairs of cluster as-
signments from the same cluster closer together and pushes cluster
assignments from The second part of Eq. (6) is a regularization term,
which is used to prevent all samples from being assigned exclu-
sively to a single cluster. Specifically, if ℎ𝑣

𝑖 𝑗
= 1 for all 𝑖 = 1, 2, ..., 𝑁 ,

it means that all instances only belong to 𝑗-th cluster, at this time,
𝑟 𝑣
𝑗
is 1, therefore, 𝑟 𝑣

𝑗
log 𝑟 𝑣

𝑗
is 0. When 0 ≤ ℎ𝑣

𝑖 𝑗
≤ 1, at this time,

𝑟 𝑣
𝑗
log 𝑟 𝑣

𝑗
≤ 0. By this regularization term, we can make sure that

each cluster has at least one sample. Hence, this loss can encourage
the acquisition of clustering information that is both discriminative
and consistent across multiple views.

3.4 Cluster Distribution-guide Fair Learning
Module

In this subsection, we will introduce a cluster distribution-guide
fair learning module to accomplish fair clustering. Inspired by other
deep clustering [22, 46], we employ target cluster distribution 𝑃 to
guide the learning of sample distributions with sensitive attributes.
Specifically, we design a weighted adaptive fusion mechanism, aim-
ing to fuse the embedded features from each view into a unified
embedded feature. We will learn 𝑉𝑛 embedded feature for each
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Algorithm 1 The optimization of DFMVC
Input: The multi-view data matrices X, the iteration number 𝐼 ,

parameters 𝛼 and 𝛽 .
Output: The predicted labels Y = [𝑦1, 𝑦2, ..., 𝑦𝑛].
1: Initialize the weight by minimizing L𝑟 in Eq. (3);
2: for 𝑖 = 1 to 𝐼 do
3: Random select a minibatch of samples;
4: Computing Z𝑣 and Z𝐺 by Eqs. (1) and (7), respectively;
5: Computing 𝑞𝑖𝑘 and 𝑝𝑖𝑘 by Eqs. (8) and (9), respectively;
6: Computing L𝑟 , L𝑐 , L𝑓 by Eqs. (3), (6) and (10)
7: Optimizer parameters by Eqs. (11);
8: end for
9: Calculate the semantic labels by Eqs. (12).

view data, i.e., {Z1,Z2, ...,Z𝑉𝑛 }, where Zv = 𝑓 (Xv, 𝜃 𝑣). We get a
common representation Z based on all embedded features. It can
be calculated as:

Z =

∑𝑉𝑛
𝑣=1 𝑎𝑣 Z

𝑣∑𝑉𝑛
𝑣=1 𝑎𝑣

(7)

where 𝑎𝑣 ∈ 𝐴, 𝐴 = [𝑎1, 𝑎2, ..., 𝑎𝑉𝑛 ], Z𝑣 ∈ R𝑛×𝑑𝑧 , Z ∈ R𝑛×𝑑𝑧 , 𝑛
denote the number of samples in a batch. Z represents the global
embedded feature obtained after fusing each view. For example,
if we have two views, it can write that Z =

𝑎1Z1+𝑎2Z2

𝑎1+𝑎2 . 𝐴 is a set
of learnable parameters, and it will learn an appropriate weight
for each view. If a view contains more information, the greater its
corresponding weight. Then, we can define soft assignment 𝑞 as
follows:

𝑞𝑖𝑘 =
(1 + ||z𝑖 − 𝑐𝑘 | |/𝛼)−

𝛼+1
2∑

𝑘 ′∈[𝐾 ] (1 + ||z𝑖 − 𝑐𝑘 ′ | |/𝛼)−
𝛼+1
2

(8)

where 𝑐𝑘 represents the cluster centroid, 𝛼 is the degree of freedom
of Student’s t-distribution. In our experiment, we set 𝛼 to 1. 𝑞𝑖𝑘 can
be interpreted as the probability the 𝑖-th sample is assigned to the
𝑘-th cluster.

We follow [46] to use Student t-distribution for assignment, but
the difference is that performing this operation on each protected
subgroup to prevent any single cluster from being dominated by
samples with the same sensitive attribute. The auxiliary target
distribution 𝑃 is calculated by:

𝑝𝑖𝑘 =
(𝑞𝑖𝑘 )2/

∑
𝑥𝑣 ∈𝑋𝑔

𝑞𝑖𝑘∑
𝑘 ′∈[𝐾 ]

(
(𝑞2
𝑘 ′
) /∑𝑥𝑣 ∈𝑋𝑔

𝑞𝑘 ′
) (9)

where 𝑋𝑔 is the subgroup that the instance belongs to. For exam-
ple, if the sensitive feature is gender, it has two subgroups (males
and females). Through this process, we can obtain target cluster dis-
tribution. The cluster distribution-guide fair loss is KL divergence
between soft assignment and auxiliary target distribution:

L𝑓 = 𝐾𝐿(𝑃 | |𝑄) =
∑︁
𝑠∈[𝑆 ]

∑︁
𝑥𝑣 ∈𝑋𝑔

∑︁
𝑘∈[𝐾 ]

𝑝𝑖𝑘 log
𝑝𝑖𝑘

𝑞𝑖𝑘
(10)

By minimizing this loss, making 𝑞𝑖𝑘 gradually approach the
cluster target distribution 𝑝𝑖𝑘 . On the one hand, it can learn more
discriminative clustering information, on the other hand, it also
can learn fair representations.

Table 2: Statistics summary of four datasets.

Dataset Samples Sensitive feature Clusters

Credit Card 5000 Gender 5
Bank Marketing 5000 Marital status 2
Law School 3600 Gender 2

Zafar 10000 Binary value 2

3.5 Objective Function
The object function of the proposed DFMVC contains the recon-
struction loss L𝑟 , the semantic contrastive learning loss L𝑐 , and
the cluster distribution-guide fair learning loss L𝑓 . In summary,
the object of DFMVC is formulated as follows:

L = L𝑟 + 𝛼L𝑐 + 𝛽L𝑓 , (11)

where 𝛼 , 𝛽 are the trade-off parameters. The detailed learning pro-
cess of our DFMVC is shown in Algorithm 1.

The proposed method aims to learn feature consistency and
obtain semantic labels across multiple views. Let ℎ𝑣

𝑖
be the 𝑖-th

row of 𝐻 𝑣 , and let ℎ𝑣
𝑖 𝑗
represent the 𝑗-th element of ℎ𝑣

𝑖
. Specifically,

ℎ𝑣
𝑖
is 𝐾-dimensional soft assignment probability, where

∑𝑁
𝑖 ℎ

𝑣
𝑖 𝑗

=

1. When the training process of the network is completed, the
semantic label can be predicted by:

𝑦𝑖 = argmax
𝑗

(
1
𝑉𝑛

𝑉𝑛∑︁
𝑣=1

ℎ𝑣𝑖 𝑗

)
(1 ≤ 𝑖 ≤ 𝑁 ) (12)

4 EXPERIMENT
In this section, we conduct the experiments to verify the effective-
ness of the proposed DFMVC by answering the following questions:

• RQ1: How effective is DFMVC for deep fair clustering?
• RQ2: How does the proposed module influence the perfor-
mance of DFMVC?

• RQ3: What is the clustering structure revealed by DFMVC?
• RQ4: How about the convergence about DFMVC?
• RQ5: How do the hyper-parameters impact the performance
of DFMVC?

4.1 Datasets & Metric
Fairness DatasetsWe conduct extensive experiments to verify the
effectiveness of DFMVC on four fairness datasets, including Credit
Card dataset [51], Zafar dataset [51], Bank Marketing dataset [51],
and Law school dataset [21]. Specifically, the Credit Card dataset de-
scribes the customers’ default payments in Taiwan and this dataset
consists of 5000 samples with 24 attributes. The sensitive feature
is gender. The Bank Marketing dataset is associated with direct
marketing campaigns of a Portuguese banking institution and it
aims to see if the product (bank term deposit) would be(’yes’) or
not (’no’) subscribed. The sensitive feature in this dataset is marital
status. This data set consists of 5000 instances and 17 attributes.
The Law School dataset is to predict whether a candidate would
pass the bar exam, and it consists of 3600 samples with 12 features.
The dataset’s sensitive feature is gender. Last, the Zafar dataset is a
widely used synthetic dataset, where one binary value is generated
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Table 3: Results on four datasets with sensitive features. The best results are highlighted in bold, while the second-best values
are underlined. (Higher balance score indicates better fairness.)

Methods Credit Card Banking Market Law school Zafar
Metrics(%) NMI BAL NMI BAL NMI BAL NMI BAL

K-means[31] 20.94 ± 1.14 35.53 ± 0.37 28.67 ± 1.44 37.64 ± 0.66 20.12 ± 1.25 43.22 ± 1.05 70.32 ± 0.78 17.06 ± 0.76
DEC[46] 21.03 ± 2.09 35.96 ± 0.60 30.93 ± 1.15 37.60 ± 0.96 21.23 ± 1.21 44.15 ± 1.24 72.55 ± 1.92 16.85 ± 0.73
CC[23] 23.87 ± 1.28 35.74 ± 0.47 36.23 ± 1.01 37.46 ± 0.97 23.02 ± 0.92 44.24 ± 1.16 78.95 ± 0.68 17.01 ± 0.71

MvDSCN[57] 21.92 ± 1.53 35.82 ± 0.41 36.24 ± 0.55 37.59 ± 0.67 22.06 ± 1.28 44.82 ± 0.98 76.91 ± 0.42 17.13 ± 0.65
DCP[28] 26.73 ± 0.26 24.19 ± 1.05 39.93 ± 1.84 26.75 ± 2.06 23.85 ± 1.26 35.76 ± 1.12 81.87 ± 1.57 21.65 ± 1.23

APADC[47] 23.07 ± 0.45 26.32 ± 0.22 40.62 ± 0.25 27.79 ± 2.59 22.08 ± 1.24 36.85 ± 0.56 72.38 ± 0.80 21.21 ± 0.57
MFLVC[49] 24.02 ± 0.42 36.09 ± 0.24 37.76 ± 1.15 38.64 ± 1.48 21.84 ± 1.52 43.87 ± 0.46 90.52 ± 1.42 27.16 ± 0.85

Fair-MVC[55] 24.19 ± 0.51 37.23 ± 0.42 38.89 ± 0.91 40.75 ± 1.56 21.57 ± 0.92 44.79 ± 0.56 81.81 ± 0.57 28.32 ± 0.48
DFMVC 35.13 ± 0.62 39.71 ± 0.38 54.62 ± 1.25 42.16 ± 0.82 24.24 ± 0.32 45.66 ± 0.38 93.93 ± 0.36 29.08 ± 0.28

as the sensitive feature. It consists of 10000 samples and 200 features.
Since all datasets are tabular data, for all datasets, we use different
non-linear functions (e.g., sigmoid, ReLU, and Tanh) to generate
two views. A succinct overview of these datasets is presented in
Table 2.

Evaluation Metrics To evaluate the effectiveness and superior-
ity of our DFMVC,we adopt thewidely usedmetrics, i.e., normalized
mutual information (NMI) and balance (BAL) [10, 43]. NMI is used
to evaluate the clustering performance of our model, while BAL
is used to assess the fairness of our model. Balance is defined as
follows:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = min
𝑖

min |𝐶𝑖 ∩ 𝑠 𝑗 |
|𝐶𝑖 |

(13)

Where 𝐶𝑖 represents the 𝑖-th cluster, 𝑠 𝑗 represents 𝑗-th protected
subgroup. For example, for gender, there are two protected groups,
namely males and females. Typically, the upper limit of balance
is determined by the distribution of the sensitive feature, with a
higher balance value suggesting a fairer result.

4.2 Experiment Setup
The experiments are executed using the following hardware con-
figuration: Intel Core i7-9700K CPU, NVIDIA GeForce RTX 2080Ti
GPU, and 64GB RAM. Additionally, all experiments make use of
the Pytorch platform. In the case of DFMVC, we utilize the Adam
[19] optimizer to minimize the total loss.

4.2.1 Comparison methods. The proposed DFMVC is compared
with the following baselines:

• K-means [31]: a method is employed to divide samples into
multiple clusters, with each sample assigned to the cluster
closest to it.

• DEC [46]: a deep learning approach is utilized to simultane-
ously learn feature representations and cluster assignments
using neural networks.

• CC [23]: a clustering method based on contrastive learning,
which simultaneously optimizes instance-level and cluster-
level contrastive loss.

• MvDSCN [57]: a multi-view deep subspace clustering net-
work is employed to learn a self-representation matrix from
multiple views.

• DCP [28]: a multi-view clustering approach that utilizes
contrastive learning to ensure consistent representations
and fills in missing views using dual prediction modules.

• APADC [47]: a multi-view clustering method based on sub-
space learning is employed to align view distributions by
minimizing disparity loss.

• MFLVC [49]: a multi-level feature learning for contrastive
multi-view clustering, learns different levels of features.

• Fair-MVC [55]: a method that merges fair clustering with
multi-view clustering, enhancing feature representation through
the addition of contrast regularization.

4.2.2 Parameter Settings. To minimize the impact of randomness,
each method runs many times, and the outcomes are presented
as mean values accompanied by their respective standard devia-
tions. For the Incomplete Multi-view Clustering method, we set the
missing rate to 0. In the case of our DFMVC, we adopt a two-stage
training approach. We utilized the autoencoder as the pre-training
model, and reconstruction loss as the loss function for parameter
initialization. We assign 200 epochs for pre-training and 200 epochs
for the subsequent training process. In our proposed DFMVC, a
batch size of 100 is employed consistently across all datasets. The
learning rate is set at 0.0001.

4.3 Performance Comparison(RQ1)
In this subsection, we conduct experiments to demonstrate the su-
periority of DFMVC with 8 baselines on four fairness datasets. In
Table 3, the NMI and BAL of all the compared methods on the four
datasets are presented. From these results, we have the following
observations. 1) compared to classical deep multi-view clustering
algorithms, our approach, DFMVC, consistently yields superior
clustering results across the majority of datasets. Using the Credit
Card dataset as an example, DFMVC outperforms its nearest com-
petitors by significant margins of 8.4% and 2.48% in terms of NMI
and BAL, respectively. We conjecture the reason is that the majority
of methods fail to consider fairness and the learned representations
are not as discriminative as desired. 2). Thanks to the considera-
tion of fairness and the adoption of contrastive learning strategies
to learn feature consistency among multiple views and obtain se-
mantic information by contrasting clustering assignments among
different views, our method can perform better.
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Table 4: Ablation study concerning the main components of the proposed DFMVC method on all datasets. The notations "(w/o)
L_C" and "(w/o) L_F" denote reduced models obtained by excluding the semantic contrastive learning module and the cluster
distribution-guide fair learning module, respectively.

Methods 𝐿𝑟 𝐿𝑐 𝐿𝑓
Credit Card Banking Market Law school Zafar
NMI BAL NMI BAL NMI BAL NMI BAL

(w/o) L_F ✓ ✓ 24.95 36.67 41.23 38.62 20.63 43.72 88.63 27.56
(w/o) L_C ✓ ✓ 20.12 39.67 32.68 40.92 18.45 46.59 80.61 28.56
DFMVC ✓ ✓ ✓ 35.13 39.71 54.62 42.16 24.24 45.66 93.93 29.08
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Figure 3: Visualize sensitive features in Credit Card and Zafar dataset using t-SNE algorithm. (a-b) is on the Credit Card dataset,
and (c-d) is on the Zafar dataset. On the Credit Card dataset, blue points represent male features, and red points represent
female features. On the Zafar dataset, blue points represent binary 0, and red points represent binary 1. The original data is
visualized on the left, and clustering results on the right.
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Figure 4: Covergence results achieved through the DFMVC
method across all the datasets

4.4 Ablation Studies(RQ2)
To verify the effectiveness of the semantic contrastive learning
mechanism and the cluster distribution-guide fair learning mod-
ule, we conduct experiments on all datasets. For simplicity, we
adopt "(w/o) L_C" and "(w/o) L_F" to denote the reduced models
by removing the semantic contrastive learning module and cluster
distribution-guide fair learning module respectively. As shown in
Table 4, the best performance can be achieved when all loss terms
are considered. Take the Credit Card dataset as an example, we can
observe that the clustering performance will decrease without any
of our proposed modules, indicating that each module contributes
to boosting the performance.

4.5 Visualization Analysis(RQ3)
In this subsection, we perform visualization experiments to in-
tuitively showcase the effectiveness of DFMVC. Specifically, we
employ t-SNE algorithm [37] to visualize the distribution of raw
features and learned embeddings of DFMVC on the Credit Card and
the Zafar dataset. Take the Zafar dataset as an example, the Zafar
dataset is a widely-used synthetic dataset, and we generate a binary
value as its sensitive feature. Blue dots represent binary 0, and red
dots represent binary 1. From the Figure. 3(c), we can observe an
even distribution of binary 0 and binary 1 in raw features. In Figure.
3(d), the binary values are evenly distributed in each cluster. This
result suggests that our method demonstrates independence from
sensitive attributes. That is, our method fulfills the objective of fair
clustering.

4.6 Convergence analysis(RQ4)
In this subsection, we explore the convergence of the DFMVC
method. Specifically, we explored pre-training and formal training
separately. To validate the convergence of the DFMVC method, we
compute the results of the loss function by Eqs. (11) and (3) during
training. As shown in Figure 4, it depicts the curves of the loss func-
tion results across all the datasets. The value of the loss function
defined in Eq. (3) exhibits a sharp decrease in the initial iterations,
followed by a gradual decline until convergence is achieved. Sim-
ilarly, we observe a comparable pattern in the variations of the
loss function values defined in Eq. (11). These observations under-
score the effectiveness of the convergence property inherent in the
DFMVC method.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0

5

10

0.01

15

N
M

I

20

0.1 

25

100 

,

1   
10  

-

10  1   
100 0.1 

0.01

(a) Law school

0

20

0.01

N
M

I

40

0.1 

60

100 

,

1   
10  

-

10  1   
100 0.1 

0.01

(b) Bank marketing

Figure 5: The NMI values yield by the DFMVC method with
different 𝛼 and 𝛽 combinations on the two datasets.
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Figure 6: The balance value yield by the DFMVCmethod with
different 𝛼 and 𝛽 combinations on the two datasets.

4.7 Hyper-parameter Analysis(RQ5)
We perform experiments on two representative datasets, namely
the law school and bank marketing datasets, to access the impact
of the 𝛼 and 𝛽 parameters in the proposed DFMVC method. The 𝛼
and 𝛽 are chosen from {0.01, 0.1, 1, 10, 100} for DFMVC. As can be
observed in Figures 5 and 6, we can find that clustering performance
and fairness achieved by the DFMVC in terms of the NMI and BAL
values obtained with different combinations of 𝛼 and 𝛽 . From the
figures, we can observe that different parameter combinations have
a slight impact on the clustering performance but do not have much
impact on the balance value. This shows that our method is not
so sensitive to the selection of hyper-parameters, indicating the
stability of our method.

5 CONCLUSION
In this paper, we propose a DFMVC method that learns more dis-
criminative and fairer representations for MVC. Specifically, we use
AutoEncoder to initialize the parameters. Then, we fuse the repre-
sentations extracted from each view, and by the cluster distribution-
guide fair learning module, learn fairer representations. To further
use the diversity of multi-view data, we use contrastive learning to
obtain feature consistency and semantic labels. We conduct exten-
sive experiments and ablation studies on four datasets to validate
the superiority of the model and the effectiveness of each compo-
nent in our method.
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overview of fairness in clustering. IEEE Access 9 (2021), 130698–130720.

[10] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.
Fair clustering through fairlets. Advances in neural information processing systems
30 (2017).

[11] Guowang Du, Lihua Zhou, Yudi Yang, Kevin Lü, and Lizhen Wang. 2021. Deep
multiple auto-encoder-based multi-view clustering. Data Science and Engineering
6, 3 (2021), 323–338.

[12] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and
Heng Huang. 2017. Deep clustering via joint convolutional autoencoder embed-
ding and relative entropy minimization. In Proceedings of the IEEE international
conference on computer vision. 5736–5745.

[13] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. 2017. Improved deep
embedded clustering with local structure preservation.. In Ijcai, Vol. 17. 1753–
1759.

[14] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. 2017. Deep clustering with
convolutional autoencoders. In Neural Information Processing: 24th International
Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings,
Part II 24. Springer, 373–382.

[15] Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. 2022. Trusted
multi-view classification with dynamic evidential fusion. IEEE transactions on
pattern analysis and machine intelligence 45, 2 (2022), 2551–2566.

[16] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504–507.

[17] Zhizhong Huang, Jie Chen, Junping Zhang, and Hongming Shan. 2022. Learning
representation for clustering via prototype scattering and positive sampling. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

[18] Jiaqi Jin, Siwei Wang, Zhibin Dong, Xinwang Liu, and En Zhu. 2023. Deep
incomplete multi-view clustering with cross-view partial sample and prototype
alignment. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 11600–11609.

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern.
2019. Guarantees for spectral clustering with fairness constraints. In International
conference on machine learning. PMLR, 3458–3467.

[21] Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. 2022.
A survey on datasets for fairness-aware machine learning. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 12, 3 (2022), e1452.

[22] Peizhao Li, Han Zhao, and Hongfu Liu. 2020. Deep fair clustering for visual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9070–9079.

[23] Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng.
2021. Contrastive clustering. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 8547–8555.

[24] Zhenglai Li, Chang Tang, Xinwang Liu, Xiao Zheng, Wei Zhang, and En Zhu.
2021. Consensus graph learning for multi-view clustering. IEEE Transactions on
Multimedia 24 (2021), 2461–2472.

[25] Zhaoyang Li, Qianqian Wang, Zhiqiang Tao, Quanxue Gao, Zhaohua Yang, et al.
2019. Deep adversarial multi-view clustering network.. In IJCAI, Vol. 2. 4.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DFMVC: Deep Fair Multi-view Clustering ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[26] Weixuan Liang, Xinwang Liu, Sihang Zhou, Jiyuan Liu, Siwei Wang, and En
Zhu. 2022. Robust graph-based multi-view clustering. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36. 7462–7469.

[27] Fangfei Lin, Bing Bai, Kun Bai, Yazhou Ren, Peng Zhao, and Zenglin Xu.
2022. Contrastive multi-view hyperbolic hierarchical clustering. arXiv preprint
arXiv:2205.02618 (2022).

[28] Yijie Lin, Yuanbiao Gou, Xiaotian Liu, Jinfeng Bai, Jiancheng Lv, and Xi Peng.
2022. Dual contrastive prediction for incomplete multi-view representation
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 4
(2022), 4447–4461.

[29] Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv, and Xi Peng. 2021.
Completer: Incomplete multi-view clustering via contrastive prediction. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
11174–11183.

[30] Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. 2013. Multi-view clustering via
joint nonnegative matrix factorization. In Proceedings of the 2013 SIAM interna-
tional conference on data mining. SIAM, 252–260.

[31] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[32] Feiping Nie, Jing Li, Xuelong Li, et al. 2017. Self-weighted multiview clustering
with multiple graphs.. In IJCAI. 2564–2570.

[33] Jingkuan Song, Hanwang Zhang, Xiangpeng Li, Lianli Gao, Meng Wang, and
Richang Hong. 2018. Self-supervised video hashing with hierarchical binary
auto-encoder. IEEE Transactions on Image Processing 27, 7 (2018), 3210–3221.

[34] Chang Tang, Zhenglai Li, Jun Wang, Xinwang Liu, Wei Zhang, and En Zhu. 2022.
Unified one-step multi-view spectral clustering. IEEE Transactions on Knowledge
and Data Engineering 35, 6 (2022), 6449–6460.

[35] Chang Tang, Xinwang Liu, Xinzhong Zhu, En Zhu, Zhigang Luo, Lizhe Wang,
and Wen Gao. 2020. CGD: Multi-view clustering via cross-view graph diffusion.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 5924–5931.

[36] Daniel J Trosten, Sigurd Lokse, Robert Jenssen, and Michael Kampffmeyer. 2021.
Reconsidering representation alignment for multi-view clustering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 1255–1265.

[37] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[38] Xinhang Wan, Xinwang Liu, Jiyuan Liu, Siwei Wang, Yi Wen, Weixuan Liang,
En Zhu, Zhe Liu, and Lu Zhou. 2023. Auto-weighted multi-view clustering for
large-scale data. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 10078–10086.

[39] Bokun Wang and Ian Davidson. 2019. Towards fair deep clustering with multi-
state protected variables. arXiv preprint arXiv:1901.10053 (2019).

[40] Qianqian Wang, Jiafeng Cheng, Quanxue Gao, Guoshuai Zhao, and Licheng
Jiao. 2020. Deep multi-view subspace clustering with unified and discriminative
learning. IEEE Transactions on Multimedia 23 (2020), 3483–3493.

[41] Qianqian Wang, Zhiqiang Tao, Quanxue Gao, and Licheng Jiao. 2022. Multi-view
subspace clustering via structured multi-pathway network. IEEE Transactions on
Neural Networks and Learning Systems (2022).

[42] Shiye Wang, Changsheng Li, Yanming Li, Ye Yuan, and Guoren Wang. 2023.
Self-supervised information bottleneck for deep multi-view subspace clustering.
IEEE Transactions on Image Processing 32 (2023), 1555–1567.

[43] Siwei Wang, Xinwang Liu, Li Liu, Sihang Zhou, and En Zhu. 2021. Late fusion
multiple kernel clustering with proxy graph refinement. IEEE Transactions on
Neural Networks and Learning Systems 34, 8 (2021), 4359–4370.

[44] Yiming Wang, Dongxia Chang, Zhiqiang Fu, Jie Wen, and Yao Zhao. 2022. Graph
contrastive partial multi-view clustering. IEEE Transactions on Multimedia (2022).

[45] Shaowei Wei, Jun Wang, Guoxian Yu, Carlotta Domeniconi, and Xiangliang
Zhang. 2020. Multi-view multiple clusterings using deep matrix factorization. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 6348–6355.

[46] Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding
for clustering analysis. In International conference on machine learning. PMLR,
478–487.

[47] Jie Xu, Chao Li, Liang Peng, Yazhou Ren, Xiaoshuang Shi, Heng Tao Shen, and
Xiaofeng Zhu. 2023. Adaptive feature projection with distribution alignment for
deep incomplete multi-view clustering. IEEE Transactions on Image Processing 32
(2023), 1354–1366.

[48] Jie Xu, Yazhou Ren, Guofeng Li, Lili Pan, Ce Zhu, and Zenglin Xu. 2021. Deep
embedded multi-view clustering with collaborative training. Information Sciences
573 (2021), 279–290.

[49] Jie Xu, Huayi Tang, Yazhou Ren, Liang Peng, Xiaofeng Zhu, and Lifang He. 2022.
Multi-level feature learning for contrastive multi-view clustering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 16051–
16060.

[50] Yan Yang and Hao Wang. 2018. Multi-view clustering: A survey. Big data mining
and analytics 1, 2 (2018), 83–107.

[51] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P
Gummadi. 2017. Fairness constraints: Mechanisms for fair classification. In
Artificial intelligence and statistics. PMLR, 962–970.

[52] Pengxin Zeng, Yunfan Li, Peng Hu, Dezhong Peng, Jiancheng Lv, and Xi Peng.
2023. Deep fair clustering via maximizing and minimizing mutual information:
Theory, algorithm and metric. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 23986–23995.

[53] Pei Zhang, Siwei Wang, Jingtao Hu, Zhen Cheng, Xifeng Guo, En Zhu, and
Zhiping Cai. 2020. Adaptive weighted graph fusion incomplete multi-view
subspace clustering. Sensors 20, 20 (2020), 5755.

[54] Handong Zhao, Zhengming Ding, and Yun Fu. 2017. Multi-view clustering via
deep matrix factorization. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 31.

[55] Lecheng Zheng, Yada Zhu, and Jingrui He. 2023. Fairness-aware multi-view
clustering. In Proceedings of the 2023 SIAM International Conference on Data
Mining (SDM). SIAM, 856–864.

[56] Sihang Zhou, En Zhu, Xinwang Liu, Tianming Zheng, Qiang Liu, Jingyuan Xia,
and Jianping Yin. 2020. Subspace segmentation-based robust multiple kernel
clustering. Information Fusion 53 (2020), 145–154.

[57] Pengfei Zhu, Binyuan Hui, Changqing Zhang, Dawei Du, Longyin Wen, and
Qinghua Hu. 2019. Multi-view deep subspace clustering networks. arXiv preprint
arXiv:1908.01978 (2019).


	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Multi-view Clustering
	2.2 Fair Clustering

	3 METHODOLOGY
	3.1 Notations
	3.2 Multi-view Data Reconstruction Module
	3.3 Semantic Contrastive Learning Module
	3.4 Cluster Distribution-guide Fair Learning Module
	3.5 Objective Function

	4 EXPERIMENT
	4.1 Datasets & Metric
	4.2 Experiment Setup
	4.3 Performance Comparison(RQ1)
	4.4 Ablation Studies(RQ2)
	4.5 Visualization Analysis(RQ3)
	4.6 Convergence analysis(RQ4)
	4.7 Hyper-parameter Analysis(RQ5)

	5 CONCLUSION
	References

