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Abstract

Dimension reduction (DR) is an important and widely studied technique in ex-
ploratory data analysis. However, traditional DR methods are not applicable to
datasets with a contrastive structure, where data are split into a foreground group
of interest (case or treatment group), and a background group (control group). This
type of data, common in biomedical studies, necessitates contrastive dimension re-
duction (CDR) methods to effectively capture information unique to or enriched in
the foreground group relative to the background group. Despite the development of
various CDR methods, two critical questions remain underexplored: when should
these methods be applied, and how can the information unique to the foreground
group be quantified? In this work, we address these gaps by proposing a hypoth-
esis test to determine the existence of contrastive information, and introducing a
contrastive dimension estimator (CDE) to quantify the unique components in the
foreground group. We provide theoretical support for our methods and validate their
effectiveness through extensive simulated, semi-simulated, and real experiments
involving images, gene expressions, protein expressions, and medical sensors,
demonstrating their ability to identify the unique information in the foreground
group.1

1 Introduction

High-dimensional datasets are ubiquitous in the era of big data, arising from applications such as
image data (Shorten and Khoshgoftaar, 2019), gene/protein expressions (Bhola and Singh, 2018), and
medical data from wearable devices (Cho et al., 2021; Banaee et al., 2013), to name a few. Dimension
reduction (DR) is crucial in these contexts for various reasons (Fan et al., 2014): improving data
visualization, reducing computational cost for downstream analysis (Fan and Li, 2006), minimizing
noise (Thudumu et al., 2020), and enhancing interpretability (Johnstone and Titterington, 2009).

DR has been a vibrant research area for several decades, leading to the development of numerous
methods (Ayesha et al., 2020). Principal component analysis (PCA, Hotelling (1933)), for instance,
maximizes the variance in the reduced space and is widely applied across different domains (Jirsa
et al., 1994; Novembre and Stephens, 2008; Pasini, 2017). Other methods, such as Multi-Dimensional
Scaling (MDS, Torgerson (1952)) and Isomap (Tenenbaum et al., 2000), focus on preserving pairwise
Euclidean and geodesic distances between samples, respectively. Probabilistic PCA (PPCA, Tipping
and Bishop (1999)) incorporates uncertainty quantification through a probablistic model. Additionally,

1All code available at https://github.com/myueen/contrastive-dimension-estimation
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techniques such as t-distributed Stochastic Neighborhood Embedding (tSNE, Van der Maaten and
Hinton (2008)) and Uniform Manifold Approximation (UMAP, McInnes et al. (2018)), preserve the
local probability distribution and manifold topological structure in the data, respectively.

In recent years, a new type of data has garnered attention, particularly in biomedical research
involving case-control studies. Here, data are divided into a foreground group (case or treatment
group) and a background group (control group). The objective is to identify low-dimensional
representations unique to or enriched in the foreground group. This scenario necessitates contrastive
dimension reduction (CDR) methods. For example, in a benchmark dataset for CDR on mouse
protein expressions (Higuera et al., 2015), the foreground group consists of mice who received a
shock therapy, while the background group includes mice that did not. The goal is to isolate the
protein expression patterns unique to the foreground group, i.e., the shocked mice.

To address this problem, several CDR methods have been developed. For example, Contrastive
PCA (CPCA, Abid et al. (2018)) extends PCA by maximizing the variation in the foreground while
minimizing variation in the background. Additionally, Probabilistic Contrastive PCA (PCPCA,
Li et al. (2020)) generalizes both CPCA and PPCA by incorporating a probabilistic model into
the contrastive setting, enabling statistical inference. Furthermore, the Contrastive Latent Variable
Model (CLVM, Severson et al. (2019)) introduces latent variables specifically designed for this
contrastive setting. Moreover, the Contrastive Variational Autoencoder (CVAE, Abid and Zou (2019))
and Contrastive Variational Inference (CVI, Weinberger et al. (2023)) both leverage deep learning
approaches to detect nonlinear patterns in the data. Collectively, these methods aim to isolate patterns
unique to the foreground data relative to the background. These methods have been successful with a
variety of datasets, identifying patterns that are often scientifically meaningful and opening doors to
new scientific discoveries. For example, studies using these methods on mouse protein expression
data have successfully identified subgroup structures, such as distinguishing between mice with
and without Down Syndrome, and highlighted key proteins responsible for these differences. We
reference various applications and discoveries using these methods in section 6 and appendix D.

Despite the development of these CDR methods, two critical questions remain underexplored: when
should these CDR methods be applied, and how many unique components exist in the foreground
group? The first question can be reframed as follows: given foreground and background groups, can
we determine whether there exists unique information in the foreground group? The second question
pertains to estimating the number of unique representations to the foreground, termed contrastive
dimension in this paper. This is a counterpart of the intrinsic dimension estimation problem, with a
rich literature (Camastra and Staiano, 2016; Levina and Bickel, 2004), but in the contrastive context.

In this paper, we answer the first question by proposing a hypothesis test to determine the existence of
unique information in the foreground data. To answer the second question, we introduce the rigorous
notion of contrastive dimension and provide a consistent estimator of this quantity. We provide
theoretical support of our methods and validate their effectiveness through extensive simulated,
semi-simulated, and real experiments involving images, gene expressions, protein expressions, and
medical sensors.

The rest of the paper is organized as follows. In section 2, we provide more background on CDR
methods and present our definition of contrastive dimension. In section 3, we present our solutions to
the above questions: a hypothesis test and an estimator for the contrastive dimension. In section 4,
we prove the consistency of our proposed estimator of the contrastive dimension and establish a
finite-sample error bound. We demonstrate the effectiveness of the methods on simulated and semi-
simulated data in section 5 and real data in section 6. Finally, in section 7, we discuss the strengths
and weaknesses of our methods and identify potential directions for further study.

2 Background
In this section, we introduce our notations and provide a more detailed overview of various existing
CDR methods. Throughout this paper, we denote the foreground data as X = {x1, · · · , xnx

} ⊂ Rp
with dimension p and sample size nx, and background data as Y = {y1, · · · , yny

} ⊂ Rp with the
same dimension p but potentially different sample size ny. We do not make any assumptions on
the ratio of sample sizes between groups, nx : ny. For simplicity, we also assume each dataset is
centered separately. Next, we briefly overview some existing CDR methods.

Contrastive Principal Component Analysis (CPCA). CPCA (Abid et al., 2018) was proposed
to uncover the low-dimensional structure that is unique to the foreground data X relative to the
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background data Y . Taking one-dimensional CPCA as an example, the objective is to find a direction,
represented by a unit vector v ∈ Rp, that explains more variance in the foreground among all
directions, and less variance in the background. Let CX = 1

nx

∑nx

i=1 xix
⊤
i and CY = 1

ny

∑ny

j=1 yjy
⊤
j

be the sample covariance matrices of two datasets. Then, CPCA solves the following optimization
problem:

argmax
∥v∥=1

v⊤CXv − γv⊤CY v = argmax
∥v∥=1

v⊤Cv,

where γ ∈ [0,∞] is a tuning parameter, called the contrastive parameter, and C = CX − γCY is
called the contrastive covariance matrix. The optimal v is simply the top eigenvector of C. When
γ = 0, CPCA coincides with PCA, and when γ = ∞, CPCA finds the direction that explains the
least variance in the background group.

Contrastive Latent Variable Model (CLVM). CLVM (Severson et al., 2019) is a latent variable
model, similarly proposed to discover patterns enriched in the foreground group X:

xi = Szi +Wti + εi, yj = Szj + εj ,

where zi, zj ∈ Rk and ti ∈ Rt are the latent variables, and εi, εj ∈ Rp are the noise terms. The
factor loading S ∈ Rp×k represents the space shared between the foreground and background groups,
while the factor loading W ∈ Rp×t represents the space unique to the foreground group. The primary
goal of CLVM is to identify W, which represents the foreground-specific information.

Probabilistic Contrastive Principal Component Analysis (PCPCA). PCPCA (Li et al., 2020) was
proposed as a probabilistic model to extend CPCA, allowing for uncertainty quantification:

x = Wzx + εx, y = Wzy + εy,

where W represents the factor loading, and εx, εy are noise terms. However, PCPCA utilizes an
unconventional strategy for estimating W . Instead of maximizing the joint likelihood, which would
be appropriate if the foreground and background groups are assumed to share the same space, the
PCPCA objective is to maximize p(X|W )

p(Y |W )γ , where γ ∈ [0,∞] is the contrastive hyperparameter, as
in CPCA. When γ = 0, PCPCA reduces to Probablistic PCA (Tipping and Bishop, 1999) on the
foreground data, while PCPCA reduces to CPCA as the noise level goes to zero.

Contrastive VAE (CVAE). CVAE (Abid and Zou, 2019) considers a broadened view of the data-
generating process, in which the foreground data X follows an arbitrary probability distribution
f with unknown parameters θ, conditional on salient variables s and irrelevant variables z. The
background data Y are assumed not to have the salient variables, as the CVAE model is given by

xi ∼ fθ(·|si, zi), yj ∼ fθ(·|0, z′j).
The problem here is to learn the parameters θ of f , which CVAE does by training two probabilistic
encoders qϕs

(s|x) and qϕz
(z|x) (salient and irrelevant) to infer s and z, respectively, from the

observed features, and a decoder network fθ(·) which reconstructs the original samples from x =
[s, z] in the foreground data, or y = [0, z′] in the background data.

Contrastive Variational Inference (CVI). CVI was proposed in Weinberger et al. (2023) specifically
for the purpose of disentangling the split between treatment and control groups for single-cell data.
To this end, CVI posits a data-generating process with latent variables zn, representing shared
information between the two groups, and tn, representing information unique to the foreground group.
Each gene expression in each sample of the foreground group is assumed to follow a generative
process depending on zn and tn (both with N (0, I) priors), but in the background group tn = 0 is
assumed, similarly to CVAE. The posterior distribution of CVI is analytically intractable, so it is
approximated using variational inference.

Each of the methods above has a similar goal: to discover variation unique to the foreground group
relative to the background. However, none of these methods enables detection of whether there exists
such variation at all. Additionally, for each method, the assumed reduced dimension (or number of
latent features unique to the foreground) was treated as a tuning parameter required as input to run
the method, without an easy-to-implement method to choose such a dimension.

Motivated by this gap, we consider the following linear model:

xi = zi + εi, yj = wj + εj , i = 1, . . . , nx, j = 1, . . . , ny (1)
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where zi ∈ Vx, wj ∈ Vy for some low-dimensional linear subspaces Vx, Vy ⊂ Rp, and εi, εj
represent the noise. We let x represent foreground and y represent background.

However, defining and identifying the information that is truly unique to the foreground requires
a more rigorous approach. For example, in CLVM, even if we estimate a nonzero W , it may not
present information unique to the foreground if S and W are not appropriately distinguished. This
motivates the need for a precise definition of the contrastive subspace and contrastive dimension:

Definition 1. Under the above notation, we define the contrastive subspace to be Vxy := ProjV ⊥
y
(Vx)

and the contrastive dimension, denoted by dxy, to be the dimension of the contrastive subspace:
dxy := dim(Vxy).

The rationale of our definition is that the contrastive subspace contains the information unique to the
foreground data, guaranteed by the projection to V ⊥

y , the orthogonal complement of Vy. In order
to determine the existence of unique information in the foreground group, it is desirable to have a
hypothesis test for testing H0 : dxy = 0 versus H1 : dxy > 0. Furthermore, an estimator for dxy is
valuable for providing a suggestion to use for the reduced dimension parameter in the CDR models
presented above.

Remark 1. Based on model 1 and definition 1, Vx ⊂ Vy is equivalent to dxy = 0.

Remark 2. Even a minute departure of Vx from Vy results in a nonzero dxy .

Because we are interested in detecting where the foreground differs from the background, we allow
our framework to detect even a small departure of Vx from Vy, although a bigger departure will be
easier to detect. This motivates our study of the principal angle between Vx and Vy in section 3.

It is worth noting that the new tasks we are proposing, namely determining whether there is unique
information in the foreground group and quantifying how much, depart from the traditional CDR task
of estimating the space representative of such unique information, assuming it exists. In this paper,
we focus on our solution to these new tasks, starting with manageable assumptions about the data.

3 Methods

In this section, we present our methods to address the questions of whether there exists unique
information in the foreground group and how many dimensions there are unique to the foreground
group. First, we detail the hypothesis test of H0 : dxy = 0 versus H1 : dxy > 0. We introduce a
contrastive version of the bootstrap resampling scheme, based on the null assumption that dxy = 0,
which is equivalent to the assumption of Vx ⊂ Vy. Next, we introduce the CDE of dxy. In both
methods, we make the very reasonable sample size assumptions that nx > dx and ny > dy , as many
existing studies have observed a small intrinsic dimension (Pope et al., 2021). The inference in both
of these problems is based on the notion of principal angles between two linear subspaces (Ye and
Lim, 2016):

Definition 2. Let U and V be two subspaces of Rp with dimensions d1 and d2, then the principal
angles, denoted by θi(U, V ), i = 1, · · · ,min(d1, d2) are defined recursively as follows

cos(θi(U, V )) = max
ui∈U,vi∈V,∥ui∥=∥vi∥=1,u⊤

i uj=v⊤i vj=0,∀j<i
u⊤
i vi

To be clear, the ui and vi solving the maximization problem are not uniquely defined; however, the
principal angles θi are uniquely defined. The principal angles measure the “difference" between two
subspaces. For instance, if two spaces coincide, all principal angles are zero; when two spaces are
orthogonal to each other, all principal angles are π/2. If U0 and V0 are orthogonal matrices spanning
U and V , respectively, then the calculation of the principal angles is given by the following equation

cos(θi(U, V )) = σi(U
⊤
0 V0), (2)

where σi(·) denotes the i-th singular value of a matrix. As a result, we adopt this notion to study the
relation between Vx and Vy for our purposes.
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3.1 Hypothesis test

We develop a hypothesis test for testing H0 : dxy = 0 versus H1 : dxy > 0 under the version of
model 1 with the following assumptions,

xi = Sxzi + εi, yj = Sywj + εj , (3)

where Sx ∈ Rp×dx and Sy ∈ Rp×dy are full rank, zi ∼ Ndx(0, I), wi ∼ Ndy (0, I), E[εi] = E[εj ] =
0, Cov(εi) = σ2

xI , and Cov(εj) = σ2
yI .

First, we assume max(dx, dy) < p/2, which is a very weak assumption given that p is often much
bigger than the intrinsic dimension in high-dimensional datasets.
Remark 3. With model 1, we do not make any assumptions the relations between intrinsic dimensions
dx and dy. However, by definition 1, dx > dy implies that dxy > 0, indicating that there must be
some unique information in the foreground space. Therefore, for our hypothesis test, we focus on the
more challenging but important case of dx ≤ dy .

An equivalent formulation of the null and alternative hypotheses in this model is H0 : C(Sx) ⊂ C(Sy)
versus H1 : C(Sx) ̸⊂ C(Sy), where C(·) denotes the column space of a matrix. Motivated by
the assumption that Vx ⊂ Vy under H0, we draw a sample of size nx with replacement from
{x1, . . . , xnx

}, and we draw a sample of size ny with replacement from {x1, . . . , xnx
, y1, . . . , yny

}.
We repeat this bootstrap procedure B (B = 1000 throughout this paper) times and compare the
largest angle between V̂x and V̂y in the original data with the distribution of the largest angles between
those subspaces in the resampled data. The exact calculation is deferred to section 3.2.

Algorithm 1: Contrastive Bootstrap Hypothesis Test

Input: Foreground {xi}nx
i=1, Background {yj}

ny

j=1, dimensions dx ≤ dy , bootstrap parameter B
Output: p-value for test of H0 : Vx ⊂ Vy in model 1

1 λ̂1 ← λ̂1(x, y, dx, dy) ; // Compute as in Algorithm 2
2 for b = 1 to B do
3 x∗ ← sample with repl.(x, nx) ; // Resample foreground
4 y∗ ← sample with repl.({x, y}, ny) ; // Resample background, pooled
5 λ∗

b ← λ̂1(x∗, y∗, dx, dy) ; // Compute as in Algorithm 2

6 p← #{λ∗
b<λ̂1}
B

7 return p

We demonstrate with simulations in section 5 that this hypothesis test produces conservative results,
and in section 7 we discuss a potentially more powerful likelihood-based alternative. Additionally,
this hypothesis test requires as input intrinsic dimension estimates for dx and dy, for which there
exists a rich literature with a variety of sophisticated methods (Campadelli et al., 2015). This
conservatism is designed to reduce the likelihood of false positives, but it can also lead to some
signals not being detected by the hypothesis test. One explanation for this phenomenon could be
that the test’s resampling technique might not handle nonlinear structures in the data effectively (e.g.
if the data lie on a nonlinear manifold). Because Vx and Vy are assumed to be linear subspaces, a
nonlinear pattern can obscure the differences the test is designed to detect.

3.2 Contrastive dimension estimator (CDE)

We start from the following lemma to link our target, dxy , and principal angles between Vx and Vy .
Lemma 1. dxy = dim(ProjV ⊥

y
Vx) = #{i : θi(Vx, Vy) > 0}+max(dx − dy, 0).

As a result, to construct an estimator of dxy, it suffices to estimate Vx, Vy, and calculate the corre-
sponding principal angles. Based on eq. (1), Vx and Vy consist of the top dx and dy eigenvectors of Σx
and Σy, respectively, which can be estimated by sample covariance matrices Σ̂x := 1

nx

∑nx

i=1 xix
⊤
i

and Σ̂y := 1
ny

∑ny

j=1 yjy
⊤
j . Thus, we propose the following estimator:

d̂xy := #
{
i : θi

(
eig1:dx

(
Σ̂x

)
, eig1:dy

(
Σ̂y

))
> ϵ

}
+max(dx − dy, 0), (4)
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where ϵ > 0 is a small toleration due to randomness from finite samples, and eig1:d refers to the span
of the first d eigenvectors. Let Ûx := eig1:dx

(
Σ̂x

)
and Ûy := eig1:dy

(
Σ̂y

)
, by eq. (2), we have

λi := cos(θi) = σi(Û
⊤
x Ûy), leading to algorithm 2.

Algorithm 2: Contrastive Dimension Estimator
Input: Foreground {x1, . . . , xnx

}, Background {y1, . . . , yny
}, dimensions dx, dy , tolerance ϵ

Output: d̂xy
1 (Σ̂x, Σ̂y)← (n−1

x

∑nx

i=1 xix
⊤
i , n

−1
y

∑ny

i=1 yiy
⊤
i ) ; // Compute sample covariances

2 (Ûx, Ûy)←
(

eig1:dx(Σ̂x), eig1:dy (Σ̂y)
)

; // Compute sample eigenvectors

3 UDV ⊤ ← Û⊤
x Ûy ; // SVD

4 (λ̂1, . . . , λ̂min{dx,dy})← diag(D) ; // Singular values
5 d̂xy ← #{j : λ̂j < 1− ϵ}+max(dx − dy, 0)

6 return d̂xy

Note that algorithm 2 takes intrinsic dimensions dx and dy as input. In practice, the user must choose
a method to estimate the intrinsic dimension of both the foreground and background datasets. This
flexibility allows for the incorporation of different intrinsic dimension estimators to complement our
approach (Bac et al., 2021; Pope et al., 2021).

Some users may only be interested in estimating the contrastive dimension d̂xy and not in the
hypothesis test for dxy = 0. These users can skip the hypothesis testing step. However, the
hypothesis test offers a direct way to assess uncertainty, guiding users on whether it is worthwhile to
proceed with contrastive dimension reduction methods.

In the next section, we study the asymptotic and finite-sample behavior of this estimator d̂xy .

4 Consistency and finite sample error bound

In this section, we provide theoretical support for the estimator d̂xy presented above, first by estab-
lishing its consistency, and then by constructing a finite-sample error bound for it.

Theorem 1. Assume that the second moments Σx and Σy are finite for both groups, and that the
top dx + 1 eigenvalues of Σx and top dy + 1 eigenvalues of Σy are distinct. Then, our proposed
estimator d̂xy is consistent: d̂xy

nx→∞−−−−→
ny→∞

dxy .

The assumption of distinct eigenvalues is common in the literature (Vershynin, 2018) and ensures the
identifiability of eigenvectors for each covariance matrix. Because we are interested in convergence
to the space spanned by the top eigenvectors, rather than individual eigenvectors themselves, this
assumption might be relaxed to the eigengap assumption that the dxth and (dx + 1)th eigenvalues
of Σx are distinct, and that the dyth and (dy + 1)th eigenvalues of Σy are distinct. See section 7 for
more discussion.

To describe the finite sample error bound, we recall that Ux and Uy are spanned by the top dx
and dy eigenvectors of Σx and Σy, respectively, and singular values of W := U⊤

x Uy, denoted by
λi = σi(W ), i = 1, · · · ,m, where m = min(dx, dy), are the cosines of principal angles between Ux
and Uy. In practice, estimating the contrastive dimension as an integer can be somewhat restrictive
for providing a finite sample error bound. Instead, we report the singular values to account for more
uncertainty and provide a more nuanced understanding. Thus, we present the following finite sample
error bound (and hence the convergence rate) of these estimated singular values rather than d̂xy .

Theorem 2. In addition to all assumptions in theorem 1, we assume x and y in model 1 are
sub-Gaussian. More precisely, assume that there exist constants Kx,Ky ≥ 1 such that

∥⟨x, v⟩∥ψ2
≤ KxE

[
⟨x, v⟩2

]
and ∥⟨y, v⟩∥ψ2

≤ KyE
[
⟨y, v⟩2

]
for any v ∈ Rp
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where ∥·∥ψ2
is defined as in Section 3.4 of Vershynin (2018). Then, for any u > 0, with probability at

least 1− 2e−u, we have

max
j=1,...,m

∣∣∣λ̂j − λj

∣∣∣ ≤ C
∑

k∈{x,y}

√
dkδ

−1
k K2

k

(√
p+ u

nk
+

p+ u

nk

)
∥Σk∥ = O(n−1/2

x + n−1/2
y )

(5)

where C is an absolute, positive constant, δ• is the minimum eigengap among the top d• + 1
eigenvalues of Σ•, and ∥•∥ denotes spectral norm.

To show the finite sample error bound, we need the sub-Gaussianity assumption to ensure that the
tails of the distribution are not too heavy. This assumption is also common and encompasses a large
class of distributions (Vershynin, 2018).

Having established the theoretical support for the estimator, in the next section we focus on applying
our methods to simulated data.

5 Simulations

To demonstrate the validity of our methods in practice, we apply them to four simulations for different
purposes. The first two examples are purely simulated, fully under our control, with dxy = 0 for the
first one and dxy > 0 for the second one. Because these first two simulations are purely synthetic, we
repeat them both 100 times and report the means and standard deviations of the p-value, d̂xy , and the
four smallest singular values. The third simulation steps away from the ground truth being completely
known by combining synthetic image data with known dimension, with real, grassy noise image data,
elucidating the methods’ performance in an interpretable setting. The final simulation is a variation
on the third one, in which the synthetic data are replaced with MNIST images (Deng, 2012).

We describe the experimental settings of the simulations in more detail below and present results,
including the p-value from our test d̂xy, and the smallest four singular values, as shown in Table 4.
We denote the estimates with a hat, if needed. In all these examples, the threshold is ϵ = 0.1.

We do not compare d̂xy with other estimators of contrastive dimension because, to our knowledge,
no such estimators have been proposed in the literature.

Table 1: Summary of simulation results

Setup dx dy dxy p-value d̂xy 4 smallest singular values
Simulation 1 6 8 0 0.814 0.44 0.901, 0.939, 0.961, 0.975
Simulation 2 6 8 6 0.029 6 0.059, 0.106, 0.159, 0.215

Sim. 3: Disk + Line 4 2̂0 1 0.000 1 0.490, 0.975, 0.981, 0.988
Sim. 4: MNIST + Line 1̂1 1̂4 1 0.000 1 0.407, 0.904, 0.955, 0.975

Simulation 1. In this first simulation, we generate data from the specific case of model (3) with
variance σ2

x = σ2
y = 0.25, C(Sx) ⊂ C(Sy) such that dxy = 0, nx = ny = 100. Because dxy = 0

is the assumption of H0 for the hypothesis test in Section 3, we repeat this simulation 100 times
to empirically demonstrate the conservative type I error rate (defined by the proportion of p-values
below α) versus pre-specified α ∈ (0, 1). We also repeat this simulation but with nx = ny = 200,
and we present both plots of empirical type I error rate in Figure 1.

As shown in the first row of Table 4, both d̂xy and the p-value agree, on average, with the ground truth
that dxy = 0, showing that in this simulated setting, our methods do not erroneously detect a signal
when there is none. However, given that the average smallest singular value value observed is 0.901,
this simulation suggests that it may be prudent to use a choice of ϵ greater than 0.1, i.e. a cutoff for the
singular value that is below 0.9. The standard deviation for d̂xy among the 100 replications is 0.52,
which also suggests that a lower cutoff may be appropriate. The standard deviation of the p-value
is 0.153, and of each of the smallest singular values is 0.025, 0.013, 0.009, and 0.007, respectively.
Both plots of observed type I error in Figure 1 demonstrate that, in this setting, the hypothesis test is
conservative. We discuss a more powerful potential alternative in Section 7.
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Figure 1: Hypothesis test Type I error plots. Left: nx = ny = 100. Right: nx = ny = 200.

Figure 2: Samples for simulations 3 (AB) and 4 (CD). AC: add line. BD: add grass.

Simulation 2. The only difference from Simulation 1 is that dxy = 6. Because the singular values
were all well below the cutoff of 0.9, the standard deviation of d̂xy among the 100 trials was 0;
every trial achieved the correct estimate. Our hypothesis test produced a small p-value of 0.029 on
average (standard deviation 0.029), which at a significance level of α = 0.05 leads one to the correct
conclusion of rejecting H0 and concluding that dxy > 0. Moreover, the six smallest singular values
are 0.059, 0.106, 0.159, 0.215, 0.279, 0.367 (standard deviations 0.023, 0.028, 0.032, 0.034, 0.038,
and 0.050, respectively), all well below the threshold of 0.9, illustrating that CDE correctly identifies
6 directions unique to the foreground data.

Simulation 3. It is also useful to evaluate the performance of our methods on datasets where the
ground truth is only partially known. So, in this simulation, we construct a semi-synthetic image
dataset by generating 5000 disks of random centers (cx, cy) ∈ {5, . . . , 24}2 and radii r ∈ {1, . . . , 10}
uniformly, in the 28 by 28 grayscale pixel space.

Of these 5000 images, we draw a white line of random length beginning at the leftmost pixel of the
sixth row on 2500 images to create the foreground (Fig. 2A). As a result, dx = 4, parameterized
by cx, cy, r, and length of line. For background, we superimpose the remaining 2500 images on
grass images as noise (Fig. 2B) so that dy > dx. Although dy is not known, dxy is known to be
one (the unique parameter being the length of the line). Here, we used the method of moments
estimator (Amsaleg et al., 2018), leading to d̂y = 20.

Our method only gives one singular value (0.529) below the cutoff of 0.9, leading to a correct estimate
of d̂xy = 1. Additionally, our hypothesis test produces a p-value of 0, which suggests to reject H0 in
favor of H1 : dxy > 0. This simulation illustrates that our methods produce favorable results when
one of the groups has an estimated intrinsic dimension.

Simulation 4. To assess our methods in a simulation setting where both dx and dy are unknown, we
consider a very similar simulation to the previous one, but where we start with 5923 handwritten 0’s
from the MNIST dataset (Deng, 2012) instead of randomly generated disks. We further randomly
split them into two sets, to create foreground by adding lines (Fig. 2C), and background by imposing
on grass images (Fig. 2D), leading to the corrupted MNIST data proposed in Abid et al. (2018).
Using method of moments, d̂x = 11 and d̂y = 14. Crucially, the contrastive dimension dxy = 1 is
still known, allowing us to assess the results of our methods when dx and dy are both unknown.

CDE again accurately estimates exactly one singular value (0.256) below the cutoff of 0.9, leading to
a correct estimate of d̂xy = 1. Furthermore, our hypothesis test produces a p-value of 0, leading to
the correct conclusion that dxy > 0 at a significance level of α = 0.05. After successful applications
of our methods to various settings, it is time to apply them to real datasets.

8



6 Real data experiments

In this section, we apply our methods to real datasets previously studied in the literature to validate
their effectiveness and interpret the results. In Table 2, we summarize relevant characteristics of each
dataset along with the results. For each dataset, the intrinsic dimension estimation was performed
with the method of moments estimator (Bac et al., 2021). Note that in each case where d̂x > d̂y , the
p-value is not reported because the hypothesis test does not apply. The cutoff for the singular values
is set to 0.9 in all experiments.

Table 2: Summary of Results for Real Data Experiments

Dataset p nx ny d̂x d̂y p-Value d̂xy 4 Smallest Singular Values
Noisy MNIST 784 5000 5000 20 20 0.008 5 0.095, 0.315, 0.705, 0.846
Mouse Protein 77 270 135 5 4 –– 4 0.319, 0.472, 0.886, 0.919

mHealth 23 6451 3072 6 10 0.000 1 0.394, 0.995, 0.997, 0.999
BMMC 500 4501 1985 26 30 0.073 17 0.042, 0.123, 0.182, 0.306

Small Molecule 1000 3096 2831 12 11 –– 4 0.627, 0.699, 0.894, 0.925
ECCITE-Seq 1000 18343 2386 41 32 –– 13 0.850, 0.857, 0.874, 0.877

Pathogen 1000 4481 3240 24 25 0.161 10 0.259, 0.345, 0.528, 0.700
Perturb-Seq 1000 24913 8907 49 47 –– 28 0.038, 0.102, 0.131, 0.176

CelebA: Glasses 1000 13193 189406 21 28 0.138 1 0.215, 0.972, 0.975, 0.984
CelebA: Hat 1000 9818 192781 22 28 0.063 2 0.702, 0.803, 0.924, 0.938

Corrupted MNIST. The corrupted MNIST dataset was previously studied extensively by Abid et al.
(2018), Abid and Zou (2019), Severson et al. (2019), and Li et al. (2020). The foreground group
depicts handwritten 0’s and 1’s corrupted by images of grass, and the background contains only the
grassy noise (no handwritten digits). In this case, the digits are unique to the foreground, supported
by our p-value of 0.008. Furthermore, the contrastive dimension estimate for this dataset is d̂xy = 5,
in line with the commonly believed dimension of digits 0 and 1 (Pope et al., 2021).

Mouse Protein. This dataset (Higuera et al., 2015) is a benchmark in the literature, considered in
Abid et al. (2018), Li et al. (2020), and Severson et al. (2019). The foreground group contains the
protein expressions of mice, some with and some without Down Syndrome, who were subjected to
shock therapy, while the background group consists of protein expressions of mice without Down
Syndrome who did not receive shock therapy. The intrinsic dimension estimates of d̂x = 5 and
d̂y = 4 require that d̂xy > 0. In this setting, where the foreground space is bigger than the background
space, the foreground group necessarily carries unique information. Nevertheless, the CDE estimate
for this dataset of d̂xy = 4, which aligns with the observation of dxy ≥ 2 in the literature.

mHealth. The mHealth dataset (Banos et al., 2015), studied in Abid et al. (2018); Severson et al.
(2019), consists of measurements made from medical sensors while a subject performs certain actions.
While the foreground group contains measurements taken of a subject either squatting or cycling,
the background measures a subject lying down. Our p-value < 0.001 and d̂xy = 1. This estimate
explains the result in Abid et al. (2018), duplicated here in figure 3, showing that a single direction
suffices to distinguish subgroups in the foreground data.

BMMC. This is a single-cell RNA sequencing dataset (Zheng et al., 2017) studied in Abid et al.
(2018), Abid and Zou (2019), Severson et al. (2019), Li et al. (2020), and Weinberger et al. (2023).
Here, the foreground group consists of gene expressions measured on bone marrow mononuclear
cells (BMMCs) of patients with acute myeloid leukemia before and after receiving a transplant. The
background group consists of healthy patients. Previous studies found that the 3rd and 4th PCs can
separate pre- and post-transplant groups (Fig. 3), supported by our d̂xy = 17 > 4. However, the
p-value of 0.073 stands somewhat in contradiction to this result, maybe due to the conservative nature
of this hypothesis test, as illustrated in figure 1 and discussed in section 7.

Small Molecule. This is a dataset of cell line responses to small-molecule therapy (McFarland et al.,
2020) and used in Weinberger et al. (2023). Here, the foreground group contains measurements
from 24 cell lines treated with idasanutlin, while the background are the same cell lines treated with

9



the control dimethyl sulfoxide. d̂x = 12 and d̂y = 11 imply that d̂xy > 0. Nontheless, d̂xy = 4,
suggesting that a CDR method with reduced dimension of 4 is appropriate.

ECCITE-Seq. This ECCITE-Seq dataset (Mimitou et al., 2019) was studied in Weinberger et al.
(2023), containing joint RNA and surface protein expressions of pooled CRIPSR screens. The
foreground group consists of cell transcriptomes of perturbed cells, while the background is a set of
control cells. d̂x = 41 and d̂y = 32 imply that d̂xy > 0. Therefore, the application of contrastive
methods is suitable. Moreover, the CDE estimate of d̂xy = 13 helpfully gauges the number of
directions unique to the foreground, recommending a reduced dimension of 13.

Pathogen Data. Studied by Weinberger et al. (2023), this dataset (Haber et al., 2017) contains gene
expressions in the epithelial cells of mice infected with either Salmonella or H. Poly (foreground)
or healthy mice (background). d̂xy = 10, suggesting that a contrastive method might fit well with a
reduced dimension of 10. However, the p-value of 0.161 suggests that a linear contrastive method
may not be appropriate. In fact, Weinberger et al. (2023) shows that only CVI, a deep learning based
approach, works for this dataset, compared with linear methods, which aligns with our results.

Perturb-Seq: Studied by Weinberger et al. (2023), this dataset (Adamson et al., 2016) includes
gene expressions measured of cells subjected to CRISPR-mediated perturbations (foreground) and
cells treated with control guides (background). The hypothesis test is not applicable since d̂x > d̂y.
Regardless, CDE provides a helpful estimate for the amount of information unique to the foreground
group, suggesting the efficacy of CDR methods.

CelebA: The CelebA dataset (Liu et al., 2015) was studied in Abid and Zou (2019) and with images
of celebrities. We perform two experiments, with foreground being those wearing glasses and hat,
respectively. In both, the background group is the remaining images. In the former case, d̂xy = 1,
while in the latter d̂xy = 2. However, both cases have a somewhat large p-value, perhaps due to the
conservative nature of the hypothesis test or nonlinearity.

7 Conclusion and Future Work

In this paper, we have introduced a hypothesis test to determines whether a linear CDR model is
appropriate for a given dataset and an estimator of contrastive dimension, representing the dimension
of the subspace unique to the foreground group relative to the background. This estimate of contrastive
dimension can be used as the reduced dimension in downstream analysis with a CDR method.
Meanwhile, there are still some open problems left to future work.

Intrinsic Dimension Estimator. The problem of estimating intrinsic dimension is challenging in
its own right (Camastra and Staiano, 2016; Campadelli et al., 2015; Fefferman et al., 2016). While
methods for it have been developed, there is not a single accepted standard for it. Fortunately, since∣∣∣d̂xy − dxy

∣∣∣ ≤ ∣∣∣d̂x − dx

∣∣∣+ ∣∣∣d̂y − dy

∣∣∣, our d̂xy is robust when dx and dy are mis-specifying dx and
dy in the Lipschitz-1 sense.

Hypothesis Test. Our hypothesis test introduces the notion of the contrastive bootstrap to allow
for resampling under the assumption of the null hypothesis that the foreground space is a subset of
the background space. However, a more powerful likelihood ratio test is applicable. Under model
3, the denominator is exactly from the solution of PPCA Tipping and Bishop (1999). However, the
numerator involves a nontrivial constrained optimization problem. Naive gradient step method is
neither effective nor scalable. An interesting future direction is to resolve this optimization issue.

Uniqueness of Eigenvalues. In section 4 we mentioned that the distinctness of eigenvalues ensures
the identifiability of eigenvectors for each covariance matrix. However, this assumption can be
relaxed since our focus is not on estimating each individual eigenvector but rather on identifying the
eigenspace spanned by the top dx and top dy eigenvectors of Σx and Σy .

Extension to Nonlinear Setting. In section 6, we mentioned that the data lying on a nonlinear
manifold could lead to the apparent inconsistency between the estimator d̂xy being nonzero and the
p-value produced by the hypothesis test being large. To appropriately handle the nonlinear case, a
future work may consider a nonparametric extension analogous to the extension of CLVM (Severson
et al., 2019) to CVAE (Abid and Zou, 2019).
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A Licensed Assets

1. BMMC data - CC BY-4.0

2. ECCITE-Seq data - Open Data Commons Open Database License (ODbL) v1.0

3. mHealth data - CC BY-4.0

4. Mouse Protein Expression data - CC BY-4.0

5. Pathogen data - Open Data Commons Open Database License (ODbL) v1.0

6. Perturb-seq data - Open Data Commons Open Database License (ODbL) v1.0

7. Small-molecule data - CC BY-4.0

8. MNIST data - CC BY-SA 3.0 license

9. contrastiveVI Github repository - BSD 3-Clause License

10. contrastive Github repository - MIT License

11. pcpca Github repository - MIT License

12. python scikit dimension package - BSD 3-Clause license

13. phthon anndata package - BSD 3-Clause License

14. python scanpy package - BSD 3-Clause License

15. python requests package - Apache-2.0 license

16. python pillow package - open source HPND License

Every contributor of new assets to this paper is an author. The authors have all mutually agreed to
use the CC BY-4.0 license, as described in the README file of the Github in appendix B.

B Data and availability

All code and access to data pre-processing, as well as the original data sources, are available on
Github at the following link.

https://github.com/myueen/contrastive-dimension-estimation

In table 3, we report the approximate time and memory requirements for each experiment. All
experiments were run on a Linux-based virtual computer with 6500 conventional compute cores
delivering 13,000 threads. We used only 1 core.

Table 3: Approximate Time and Memory Requirements per Experiment

Experiment Time Memory

Simulation 1 5-15 minutes 4 GB
Simulation 2 5-15 minutes 4 GB
Simulation 3 1 hour 4 GB
Simulation 4 1 hour 4 GB
Corrupted MNIST 1 hour 4 GB
Mouse Protein 5-15 minutes 4 GB
mHealth 1-5 minutes 4 GB
BMMC 1 hour 160 GB
Small Molecule 1 hour 4 GB
ECCITE-Seq 2 hours 4 GB
Pathogen Data 1 hour 4 GB
Perturb-Seq 2 hours 160 GB
CelebA: Glasses 6 hours 190 GB
CelebA: Hat 6 hours 190 GB
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C Proofs

C.1 Proof to lemma 1

Lemma 1. dxy = dim(ProjV ⊥
y
Vx) = #{i : θi(Vx, Vy) > 0}+max(dx − dy, 0).

Proof. Fix Vx, Vy ⊂ Rp, and let dim(Vx) = dx,dim(Vy) = dy . Let dim(Vx ∩ Vy) = k.

Let u1, . . . , uk be an orthonormal basis for Vx ∩ Vy. It follows that u1, . . . , uk ∈ Vx ∩ Vy are the
first k principal vectors for both Vx and Vy, corresponding to principal angles θ1 = · · · = θk = 0.
Furthermore, for every i = 1, . . . , k, we know that ProjV ⊥

y
ui = 0, because ui ∈ Vy .

Case 1: Assume dx ≤ dy. In this case, there are dx − k nonzero principal angles corresponding
to principal vectors we denote by uk+1, . . . , udx ∈ Vx and vk+1, . . . , vdx ∈ Vy. For each i =
k+1, . . . , dx, we know that ProjV ⊥

y
ui ̸= 0, because ui /∈ Vy . In fact, because the ui are orthogonal,

ProjV ⊥
y
uk+1, . . . ,ProjV ⊥

y
udx are a basis for ProjV ⊥

y
Vx. Therefore, dim(ProjV ⊥

y
Vx) = #{i :

θi(Vx, Vy) > 0}.
Case 2: Assume dx > dy . In this case, there are dy−k nonzero principal angles. Similar to the above
argument, we can extend the basis for Vx starting with the principal vectors uk+1, . . . , udy ∈ Vx
corresponding to the principal angles. However, because there are only dy principal angles, we denote
by udy+1, . . . , udx the remaining vectors necessary to specify an orthogonal basis for Vx. Because
the principal angle maximizes u⊤

i vi, the remaining vectors udy+1, . . . , udx are all orthogonal to Vy.
Therefore, ProjV ⊥

y
uk+1, . . . ,ProjV ⊥

y
udy , udy+1, . . . , udx , is a basis for ProjV ⊥

y
Vx. It follows that

dim(ProjV ⊥
y
Vx) = #{i : θi(Vx, Vy) > 0}+ dx − dy , as desired.

C.2 Proof to theorem 1

Theorem 1. Assume that the second moments Σx and Σy are finite for both groups, and that the
top dx + 1 eigenvalues of Σx and top dy + 1 eigenvalues of Σy are distinct. Then, our proposed
estimator d̂xy is consistent: d̂xy

nx→∞−−−−→
ny→∞

dxy .

Proof. We know by Anderson (1963) that the sample matrix of eigenvectors Ûx converges to the
true matrix of eigenvectors Ux in probability as nx →∞, and similarly, Ûy → Uy as ny →∞. Let
m = min (dx, dy), and consider the following functions.

f1 : Rp×dx × Rp×dy → Rdx×dy

(Ux, Uy) 7→ U⊤
x Uy

f2 : Rdx×dy → Rm

A 7→ (λ1, . . . , λm)⊤ where λj is the jth singular value of A

It is clear that f1 is continuous. Due to Weyl’s inequality for singular values, f2 is continuous with
respect to the spectral norm. The contrastive dimension is defined to be dxy = #{λj < 1}, while its
estimator is defined by d̂xy = #{λ̂j < 1 − ϵ}. Therefore, by the continuous mapping theorem, it
holds that λ̂→ λ in probability. Taking ϵ→ 0 gives d̂xy → dxy , as desired.

C.3 Proof to theorem 2

Theorem 2. In addition to all assumptions in theorem 1, we assume x and y in model 1 are
sub-Gaussian. More precisely, assume that there exist constants K1,K2 ≥ 1 such that

∥⟨x, v⟩∥ψ2
≤ K1E

[
⟨x, v⟩2

]
and ∥⟨y, v⟩∥ψ2

≤ K2E
[
⟨y, v⟩2

]
for any v ∈ Rp
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where ∥·∥ψ2
is defined as in Vershynin (2018). Then, for any u > 0, with probability at least 1−2e−u,

we have

max
j=1,...,m

∣∣∣λ̂j − λj

∣∣∣ ≤ C
∑

k∈{x,y}

√
dkδ

−1
k K2

k

(√
p+ u

nk
+

p+ u

nk

)
∥Σk∥ = O(n−1/2

x + n−1/2
y )

(6)

where C is an absolute, positive constant, δ is the minimum eigengap among the top d+1 eigenvalues
of Σ, and ∥·∥ denotes spectral norm.

Proof. Let W = U⊤V , where U is the matrix of the top dx eigenvectors of Σx and V is the matrix
of the top dy eigenvectors of Σy . We use hats to represent sample estimates of these matrices and let

Ŵ = Û⊤V̂ . We would like a finite-sample error upper bound on maxj=1,...,m

∣∣∣σj (Ŵ)
− σj (W )

∣∣∣.
max

j=1,...,m

∣∣∣σj (Ŵ)
− σj (W )

∣∣∣ ≤ ∥∥∥Ŵ −W
∥∥∥ by Weyl’s inequality for σ-values

=
∥∥∥Û⊤V̂ − Û⊤V + Û⊤V − U⊤V

∥∥∥
≤

∥∥∥Û⊤V̂ − Û⊤V
∥∥∥+

∥∥∥Û⊤V − U⊤V
∥∥∥

=
∥∥∥Û∥∥∥ · ∥∥∥V̂ − V

∥∥∥+
∥∥∥Û − U

∥∥∥ · ∥V ∥
=

∥∥∥V̂ − V
∥∥∥+

∥∥∥Û − U
∥∥∥

≤
∥∥∥V̂ − V

∥∥∥
F
+

∥∥∥Û − U
∥∥∥
F

≤ 23/2

√
dx

∥∥∥Σ̂nx − Σx

∥∥∥
δx

+
√
dy

∥∥∥Σ̂ny − Σy

∥∥∥
δy


The final inequality holds due to the Davis-Kahan theorem, as presented in Vershynin (2018). Note
that here δx is the smallest eigengap of Σx, and δy is the smallest eigengap of Σy .

For k ∈ {x, y}, with probability at least 1− 2e−u, we have that∥∥∥Σ̂nx
− Σx

∥∥∥ ≤ CK2
k

(√
p+ u

nk
+

p+ u

nk

)
∥Σk∥

where C is an absolute, positive constant, and Kx = ∥x∥ψ2
,Ky = ∥y∥ψ2

are the sub-Gaussian

constants, as in Vershynin (2018). Substituting these upper bounds on
∥∥∥Σ̂nk

− Σk

∥∥∥ yield the bound
claimed.

D Additional experimental details

The code for all experiments is made available at the anonymous Github link provided in appendix B.
To allow for reproducibility, we set a seed for every experiment in which we perform the bootstrap
test. Sometimes we set the seed to be 1; other times we set the seed to be 42. There was no particular
reason behind the choice for any seed. In every experiment requiring intrinsic dimension estimation,
we used the method of moments estimator from the sci-kit dimension package. Other estimators are
possible and may give slightly different results, but we chose this estimator because we found it to
give the most stable and reasonable results. In our experience, we found some of the other estimators
to give estimates as low as 0 and as high as the number of features, of which neither estimate is
sensible in the contexts we considered.

D.1 Simulations

For simulations 1 and 2, Sx and Sy were randomly chosen to be orthogonal matrices in Rp×dx
and Rp×dy , respectively. Therefore, the covariance matrices in this simulation are given by Σx =
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SxS
⊤
x + σ2

xI and Σy = SyS
⊤
y + σ2

yI , respectively. Notably, these covariance matrices violate the
assumption of distinct eigenvalues presented in section 4. However, the space spanned by the top dx
eigenvectors of Σx is still identifiable, because the dxth eigenvalue is 1 + σ2

x, while the (dx + 1)th
eigenvalue is σ2

x (similarly for Σy). As discussed in section 7, this is the necessary identifiability
condition.

We designed simulations 3 and 4 to allow for an interpretable ground truth of dxy = 1 while
mimicking real image data. Figure 2 illustrates the data-generating process for both groups in both
simulations. Every image is represented by 28 by 28 matrix in the grayscale space, where 0 represents
black, and 255 represents white. Each of these image matrices was converted to a vector in R784. In
both simulations, the foreground group was created by drawing a white line on top; each pixel in
this line was set to 255, while the background group was created by averaging the original (disk or
MNIST 0) image entrywise with an image of grass from the corrupted MNIST dataset. The was no
specific intent behind choosing to draw a horizontal line in the sixth row of each image; drawing a line
of random length going in any single direction from any starting pixel could have worked. However,
we chose to fix the starting pixel because we wanted to be sure not to introduce a second parameter.
That said, simulations in which other parameters are introduced, leaving a different ground truth dxy
are possible. For example, creating the foreground group by drawing a white rectangle of random
width and height (w, h) ∈ {1, . . . , 24}2 beginning at the top-left pixel would lead to a scenario in
which dxy = 2.

D.2 Real data experiments

The Mouse Protein, mHealth, BMMC, Small Molecule, ECCITE-Seq, Pathogen, Perturb-Seq, and
CelebA experiments all required additional pre-processing. To ensure that our pre-processing aligned
with previous analyses, we used the code available for pre-processing these datasets associated
with the papers analyzing them. To be specific, we pre-processed the Mouse Protein and mHealth
datasets using the code associated with Abid et al. (2018). We pre-processed the Small Molecule,
ECCITE-Seq, Pathogen, and Perturb-Seq datasets using the code associated with Weinberger et al.
(2023). We downloaded the BMMC dataset using instructions and code from Weinberger et al. (2023)
and pre-processed it using the code from Li et al. (2020). Code files for replicating the pre-processing
we did for each experiment are available on the anonymous Github in appendix B. To pre-process the
CelebA dataset, we first used the PIL package in Python to resize the images from 178 by 218 pixels
to 64 by 64 pixels. From there, we performed PCA (Anderson, 1963) on the resized images and took
the top 1000 directions.

In section 6 we made reference to our results standing in agreement with results from previous
analyses. In particular, we claimed that for the BMMC dataset, our observation of d̂xy ≥ 4 was
consistent with the analysis in Li et al. (2020), in which a figure was published illustrating a distinction
between the pre- and posttransplant groups in the BMMC data using the third and fourth PCPCA
directions. We duplicated that graph in the left panel of figure 3 for transparency. We also claimed
that for the mHealth dataset, our observation of d̂xy = 1 was consistent with the analysis in Abid
et al. (2018), in which a figure was published illustrating a single direction differentiating the two
groups of squatting and cycling. We duplicated this illustration in the right panel of figure 3 here for
convenience.

For clarity on the image datasets used in section 6, we provide sample images from the foreground
and background groups of both the Corrupted MNIST and CelebA datasets. The images for the
Corrupted MNIST application are in figure 4; the top row has examples of images in the foreground
group, while the bottom row has examples of images in the background group. The images for the
CelebA application are in figure 5; the top-left two are foreground (glasses), while the bottom-left two
are background (glasses). Similarly, the top-right two are foreground (hat), while the bottom-right
two are background (hat).

D.3 Practical Implications for Downstream Tasks

To explore how the methods we presented in this paper can be used effectively in downstream data
analysis tasks, we conducted further analysis with the corrupted MNIST dataset used in section 6.
We performed CPCA with dimensions d = 1, 2, 3, . . . , 10, then ran logistic regression with the
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Figure 3: Left, PCPCA for BMMC Data. Right, cPCA for mHealth Data.

Figure 4: Corrupted MNIST Sample Images. Top row, foreground. Bottom row, background.

outcome (response) variable being the digit (0 vs. 1) imposed on the grass images. The input was the
contrastive principal components (cPCs) based on CPCA with different d. The results are as follows:

Table 4: Summary of simulation results

Dimension 1 2 3 4 5 6 7 8 9 10

Accuracy 0.583 0.941 0.941 0.943 0.945 0.947 0.946 0.947 0.947 0.947

The accuracy increases with the number of cPCs and then plateaus at 5, where the accuracy is 0.945,
after which the accuracy increases only slightly. This provides indirect evidence that if one can
simply run contrastive dimension reduction methods with the dimension equal to our estimator (5
in this case). One may argue, however, that d = 2 is optimal, resembling an elbow point. Our
principal angles (measured by singular values) align with this observation. As shown in Table 2,
the smallest four singular values are 0.095, 0.315, 0.705, and 0.846. The two smallest singular
values suggest that there are two more prominent contrastive dimensions, leading to satisfactory
classification performance for d = 2. While our suggested cutoff of 0.9 gives d̂xy = 5, a cutoff of 0.7
gives d̂xy = 2. This cutoff is subjective and can be used in conjunction with classification accuracy,
particularly if a response variable is available, to improve decision making.
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Figure 5: CelebA Sample Images. Top-left, foreground (glasses). Top-right, foreground (hat).

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately describe the contribution of our
methods. We clearly identify the scope of the paper in the abstract and introduction and
address the concerns in the rest of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 7, we detail the limitations of the hypothesis test we present, and
we suggest an alternative for a more powerful test. We also discuss the need for further
investigation into the robustness of CDE to misspecification of intrinsic dimension estimates.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have two theoretical claims about our estimator, and we state the assump-
tions and provide complete and correct proofs for them in appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all code and information necessary to access and pre-process the
data in the anonymous Github repository at the link in appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and instructions to obtain and pre-process datasets are in the anony-
mous Github repository, for which we provide the link in appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: We specify all parameters for replicating our experiments, including choice of
intrinsic dimension estimator, number of bootstrap samples, cutoff (tolerance), and variance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the p-value result from the hypothesis test we developed for each
simulation and experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, in appendix B we include approximate time and memory required to
replicate all simulations and experiments, including a description of the machine on which
the experiments were run.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and conform to it in every re-
spect, including, but not limited to, data-related concerns, societal impact, impact mitigation,
model licensing, and reproducibility.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our methods mostly concern the applicability of other dimension reduction
methods designed to analyze case-control data. While it is possible that our method might
have a societal impact, we choose to focus more on method development than downstream
effects difficult to observe at this stage in the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method simply provides a p-value and an estimate for a parameter to be
used in other dimension reduction methods. Because the output consists of merely a handful
of numbers to be used as a guideline for future analysis, it poses extremely low risk for
misuse.

22

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite and credit all licenses to all code, data, and packages in
appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All of our code is available at the anonymous Github.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Our research does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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