

000 001 002 003 004 005 SURE: SURPRISE-DRIVEN PRIORITISED REPLAY FOR 006 CONTINUAL LLM LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 Continual learning, one’s ability to adapt to a sequence of tasks without forgetting
033 previously acquired knowledge, remains a major challenge in machine learning
034 and a key gap between artificial and human intelligence. While regularisation and
035 replay perform well in vision, they lag behind multi-task learning for large language
036 models (LLMs), especially at scale with many tasks. We revisit replay and argue
037 that two failure modes drive this gap: selection (what to rehearse) and integration
038 (how to consolidate new knowledge). To address selection, we propose Surprise-
039 prioritised Replay (SuRe), a simple, architecture-agnostic rule that ranks and stores
040 the most surprising (high Negative Log-Likelihood) sequences. SuRe achieves
041 state-of-the-art performance in the Large Number of Tasks (LNT) setting and
042 delivers the best overall average across both Standard CL and LNT benchmarks. To
043 address integration, we add a dual-learner design with fast and slow LoRA adapters
044 merged via an exponential moving average (EMA), enabling rapid adaptation
045 while stabilising long-term knowledge. Combining SuRe with the dual learner
046 yields further gains, including improvements of up to +5 accuracy points on LNT
047 over prior SOTA. Ablation studies confirm that our proposed method remains
048 robust under reduced replay frequency and small buffer size, demonstrating both
049 effectiveness and sample efficiency. Taken together, our results establish replay
050 as a strong baseline for continual LLM fine-tuning and demonstrate that surprise-
051 based selection and slow-weight consolidation are complementary components for
052 mitigating catastrophic forgetting.
053

1 INTRODUCTION

034 By nature, humans can easily learn new information and acquire new skills one at a time with few
035 examples, an ability which is often taken for granted but proves extremely difficult for machine
036 learning models. This problem framing, often referred to as continual or lifelong learning (CL),
037 has attracted increasing attention as model capabilities have advanced over the past decade. Early
038 research of CL in deep learning focused primarily on Vision and Reinforcement Learning (RL) tasks
039 (Kirkpatrick et al., 2017; Aljundi et al., 2018; Rolnick et al., 2019). Recently, the field has expanded
040 toward Natural Language Processing (NLP), motivated by the rapid rise of large language models
041 (LLMs).

042 While most machine learning models are static by design, a recent shift in paradigm, thanks to
043 advances in In-Context Learning, has shown a promising avenue for more adaptable models (Sun
044 et al., 2025; Zhang et al., 2025; Yang et al., 2025b). While allowing for more flexible models that
045 can leverage current context to NLP tasks, these advances remain limited by the effective size of the
046 context window. CL goes further when it comes to designing flexible models, as it not only requires
047 effective adaptation to new datasets (plasticity) but also effective retention of previously acquired
048 skills (stability). This plasticity-stability dilemma (Mermilliod et al., 2013) is at the centre of CL, with
049 one of the main challenges being a lack of stability, leading to catastrophic forgetting (McCloskey &
050 Cohen, 1989; Ratcliff, 1990), performance on previously trained datasets drops as new tasks, domains
051 or classes are introduced. These three framings, referred to as *Task-Incremental*, *Domain-Incremental*
052 and *Class-Incremental* respectively (van de Ven et al., 2022), each come with their own challenge.
053 Often, because the label space expands over time while task identity is unavailable at test time, forcing
the model to distinguish among old and new classes without seeing them jointly, class-incremental is
considered to be the hardest setting (van de Ven & Tolias, 2019). This is especially the case when

054 dealing with large number of tasks, a setting where most methods rely on known task identity during
 055 training, but still struggle to match the performance of Multi-Task Learning (MTL).
 056

057 Here, we formalise catastrophic forgetting as the sum of two complementary sources of error: (i)
 058 selection error from imperfect replay distribution estimates, and (ii) integration error from how new
 059 knowledge updates are consolidated. We show these errors are additive and complementary, the
 060 strongest methods against catastrophic forgetting should address both.

061 To explore this idea in practice, we first focus on replay, one of the simplest solutions to the selection
 062 problem. We show that previous studies of LLM CL often underestimate replay’s performance and
 063 effectiveness in the *Class-Incremental* scenario. In particular, prior comparisons often mix online,
 064 task-agnostic replay with methods that assume known task boundaries (Wang et al., 2023; Qiao &
 065 Mahdavi, 2024), potentially leading to lower performance and unfair comparison. We therefore
 066 evaluate replay under the same assumption set (known boundaries), yielding a fairer comparison.
 067 Notably, we find that under fair comparison, surprise-based selection outperforms random replay and
 068 achieves state-of-the-art results in the LNT setting, while also providing the strongest overall average
 069 performance across both Standard CL and LNT benchmarks. Finally, for integration error, we show
 070 that a simple exponential moving average (EMA) approach, which stabilises the consolidation of new
 071 representations, yields complementary improvements. This confirms our additive error hypothesis,
 072 and combining SuRe with EMA further improves performance, particularly in the LNT setting,
 achieving gains of up to +5 points over prior state-of-the-art.

073 Our contributions can be summarised as follows: (1) We formalise forgetting as the sum of selection
 074 and integration errors, motivating complementary mechanisms for each. (2) We propose Surprise
 075 prioritised Replay (SuRe) to improve sample selection efficiency. (3) We show that combining SuRe
 076 with a simple integration mechanism (EMA), following the dual-learning framework (Pham et al.,
 077 2021; Gao et al., 2023), yields strong overall performance, achieving SOTA in LNT and the best
 078 average across both benchmarks, empirically confirming (1).

081 2 RELATED WORK

082
 083 Three lines of research have emerged to approach catastrophic forgetting, replay, regularisation
 084 and architecture. These were first developed in the vision and Reinforcement Learning literature
 085 before being adapted to the modern architecture of Large Language Models (LLMs) and Vision
 086 Language Models (VLMs). For the purpose of efficiency, we focus on replay and methods which
 087 were introduced in the CL with LLM literature.
 088

089 **Replay Based Methods.** Each replay method can be described by a few design choices: how is the
 090 buffer updated, which samples should be replayed and when, and, are the rehearsed samples stored
 091 or generated. Experience Replay (ER) (Rolnick et al., 2019; Chaudhry et al., 2019) is the simplest
 092 and often the most effective approach. The buffer is updated via reservoir sampling (Vitter, 1985) so
 093 that each incoming raw example has equal probability of being stored, and sequences are then drawn
 094 uniformly at random. Many subsequent methods can be viewed as variants of ER. Isele & Cosgun
 095 (2018) focused on Reinforcement Learning and compared different update rules, including keeping
 096 the most surprising traces or those leading to the highest rewards. Their experiments showed that
 097 reservoir performed best, which is aligned with Araujo et al. (2022) who repeated this comparison
 098 in a CL with LLMs setting with surprise selection performing poorly in both instances. InfoRS
 099 (Sun et al., 2022) went a step further by introducing a information theory based update rule. They
 100 combined two rules, effectively keeping the most surprising and learnable samples. Here, a sample is
 101 regarded as surprising with regard to the content of the current memory module, and is computed
 102 as the posterior from a small Bayesian linear model. On the other hand, the learnability criteria is
 103 used to discard outliers by computing how well the updated model predicts the point’s own label and
 104 discarding poor predictions. Tackling another design choice, Maximally Interfered Retrieval (Aljundi
 105 et al., 2019) keeps the update rule as a Reservoir and focuses instead on which samples to replay. For
 106 each batch, they estimate which samples in the memory would face the highest increase in loss if the
 107 model were to be trained on it. Replaying these selected samples thus acts as a stronger regulariser
 108 for that specific gradient step. Finally, Generative Replay (Shin et al., 2017) and LAMOL (Sun et al.,
 109 2019) both proposed approaches which generate samples from past distributions to avoid storing raw

108 samples. While the methods that focused on improving the update and sampling rules are online and
 109 did not require task identity during training, LAMOL requires it during training.
 110

111 **Parameter-Efficient Continual Learning.** Given the compute and memory cost of fine-tuning
 112 billion-parameter models, many NLP CL methods adopt parameter-efficient fine-tuning (PEFT). The
 113 most common approach being LoRA (Hu et al., 2021), which adds trainable low-rank adapters to
 114 attention/feedforward projections to approach full fine-tuning performance while updating only a
 115 small fraction of parameters. This parameter efficient fine-tuning solution has thus been used as
 116 the basis of many CL methods in the NLP literature. This is the case of O-LoRA (Wang et al.,
 117 2023) which introduces new LoRA heads for each dataset and adds a penalty which guarantees
 118 orthogonal solutions for each LoRA pairs. Learn More but Bother Less (Qiao & Mahdavi, 2024)
 119 takes this idea further by initialising each PEFT module based on previous task, facilitating forward
 120 transfer and avoiding interference. Taking a different approach to the problem of parameter efficient
 121 CL, Progressive Prompts takes inspiration from prompt tuning models and learns a new prompt
 122 embedding per task while leaving the base weights frozen. Lastly, recent works have investigated
 123 how model merging could be used in the context of CL. This led to Hickok (2025) proposing to
 124 use Exponential Moving Average (EMA) (Tarvainen & Valpola, 2017), along with other sequential
 125 merging approaches, as ways to smoothly regularise the LLMs’ learning process.
 126

3 METHODS

3.1 SELECTION–INTEGRATION DECOMPOSITION

130 We formalise forgetting as the sum of a *selection mismatch* term (how well replay approximates the
 131 past distribution) and an *integration* term (variance/instability in how new updates are consolidated).
 132 We work in the LoRA subspace under standard local assumptions (smoothness and PL near the
 133 trajectory). Full proofs are deferred to Appendix §H.
 134

135 **Setup and notation.** Tasks arrive $1, \dots, t$. Let $R_k(\theta) = \mathbb{E}_{z \sim P_k} \ell(\theta; z)$ (where z is a single example
 136 and ℓ the per-example loss, e.g., cross-entropy/sequence NLL), and let $P_{1:t-1} = \frac{1}{t-1} \sum_{k < t} P_k$
 137 be the uniform mixture of past tasks. A replay buffer induces a distribution q with replay risk
 138 $\tilde{R}_{1:t-1}(\theta) = \mathbb{E}_{z \sim q} \ell(\theta; z)$. Let $\mathcal{F}_{\text{loc}} = \{\ell(\theta; \cdot) : \theta \text{ in a local neighbourhood}\}$ and let $D_{\mathcal{F}_{\text{loc}}}$ be any
 139 integral probability metric (IPM) over \mathcal{F}_{loc} (e.g., MMD). The slow model is a *consolidated* iterate
 140 obtained by a stable averaging operator \mathcal{A}_ψ over fast iterates, e.g., an exponential moving average
 141 (EMA) with rate $\beta \in (0, 1)$. *Forgetting* \mathcal{F} denotes any standard average forgetting metric (e.g.,
 142 AP–FP or Chaudhry AF); our bound applies to such monotone summaries.
 143

144 **Lemma 1 (Selection mismatch via IPM)** *For all θ in the local region,*

$$146 \quad |\tilde{R}_{1:t-1}(\theta) - R_{1:t-1}(\theta)| \leq D_{\mathcal{F}_{\text{loc}}}(P_{1:t-1}, q). \quad (1)$$

148 **Lemma 2 (EMA reduces integration variance)** *Let $\theta_{\text{fast}}^{(n)}$ be SGD iterates on the mixed objective
 149 and $\theta_{\text{slow}}^{(n)} = \beta \theta_{\text{slow}}^{(n-1)} + (1 - \beta) \theta_{\text{fast}}^{(n)}$. Under local L -smoothness and a μ -PL condition, there exist
 150 constants $C_b, C_v, C_d > 0$ such that for any past task $k < t$,*

$$152 \quad \mathbb{E}[R_k(\theta_{\text{slow}}^{(n)}) - R_k(\theta_k^*)] \leq C_b(1 - \beta) + C_v \frac{1}{(1 - \beta)} \frac{\sigma^2}{\mu n} + C_d \delta, \quad (2)$$

155 where σ^2 is the SGD noise level and δ bounds drift between task optima.
 156

157 **Remark:** Comparing the bounds for $\beta = 0$ (Single Learner) versus $\beta \rightarrow 1$ (Slow Learner), we see
 158 that a single learner has the variance term proportional to the raw SGD noise σ^2 . In contrast, the Slow
 159 Learner scales the variance term by $(1 - \beta)$, which, for $\beta = 0.995$, reduces the effective variance
 160 contribution to the loss bound by a factor of approximately 200. This illustrates the advantage of the
 161 slow averaging mechanism in controlling integration variance.

Theorem 1 (Additive bound; complementary controls) Summing effects across tasks, the expected forgetting of the slow model satisfies, in a local region,

$$\mathbb{E} \mathcal{F} \leq \underbrace{A \cdot D_{\mathcal{F}_{\text{loc}}}(P_{1:T-1}, q)}_{\text{selection (replay) term}} + \underbrace{B(\psi) \cdot \frac{\sigma^2}{\mu N}}_{\text{integration (consolidation) term}} + \underbrace{C \Delta_{\text{drift}}}_{\text{nonstationarity}}, \quad (3)$$

for constants $A, B, C > 0$ and total fast steps N . With finite memory and finite N , neither addend can be driven to zero by tuning the other alone; thus replay (selection) and EMA (integration) provide complementary benefits to continual learning.

Remark. Appendix §H proves Lemma 2 for EMA; other consolidation operators \mathcal{A}_ψ fit the same bound by replacing the mechanism-specific factor $B(\psi)$ accordingly (for EMA, $B(\psi) \equiv B(\beta)$; related examples include Polyak averaging, SWA, and model soups).

Selection Error ($A \cdot D_{F_{loc}}$): This term quantifies the mismatch between the replay buffer distribution q and the true past task distribution $P_{1:T-1}$. Uniform sampling (reservoir) treats all past samples as equally important for representing the loss landscape. In high-dimensional LLMs, this is inefficient—most samples lie in flat, well-learned regions with low gradient norms.

Integration Error ($B(\psi) \cdot \sigma^2 / (\mu N)$): This term captures the instability introduced by stochastic gradient noise when learning new tasks. The fast learner performs SGD on small batches with noise variance σ^2 . This high-variance trajectory leads to "plasticity" that overwrites old knowledge—the core of catastrophic forgetting. $B(\psi)$ quantifies the variance-reduction factor of the consolidation operator.

As a design implication of the above, any buffer policy that lowers $D_{\mathcal{F}_{\text{loc}}}(P, q)$ tightens the selection term; any consolidation that lowers the variance factor $B(\psi)$ tightens the integration term (for EMA, $B(\psi) \equiv B(\beta)$). In §3.2–§3.3 we instantiate these with a simple surprise-based replay policy and EMA dual adapters.

3.2 SURPRISE REPLAY

Following these theoretical motivations, we introduce a new update rule for replay algorithms and combine it with a dual set of learners which are merged via EMA. The overall proposed method is shown in Figure 1 and the pseudocode is provided in Algorithm 1.

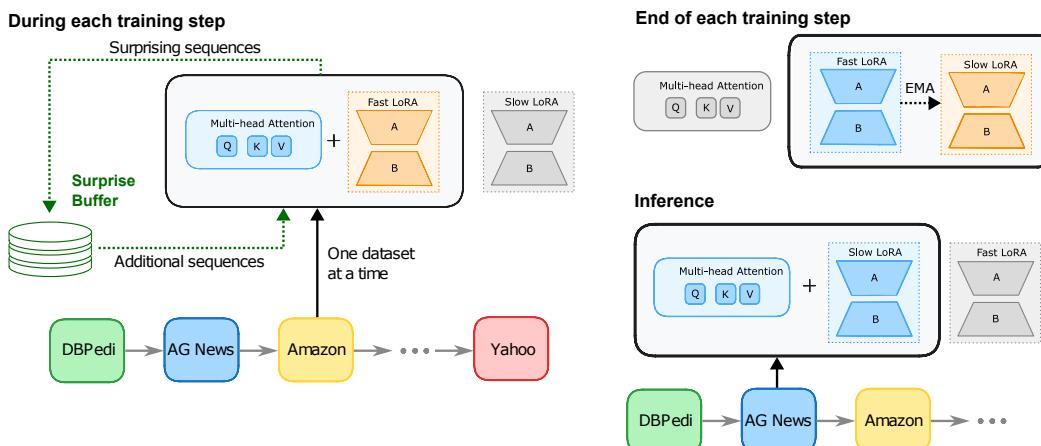


Figure 1: 1. During training the base and slow LoRA weights are frozen, while the fast LoRA is updated on current samples plus replayed examples from the surprise buffer. The buffer is updated to retain the most surprising samples per task. 2. After each step, the fast and slow LoRA weights are merged via an exponential moving average. 3. At inference, only the base model and the slow learner are used for prediction.

216 Currently, the standard approach in the literature for a replay algorithm is reservoir sampling (Vitter,
 217 1985; Rolnick et al., 2019; Chaudhry et al., 2019), which maintains a representative subset of samples
 218 by giving each sample equal probability of being retained. These simple yet effective methods have
 219 been shown to be the most appropriate in many cases, often outperforming more complex alternatives.
 220

221 However, memory consolidation in the brain is known to be non-uniform, and replay to be selective.
 222 In particular, surprise has been shown to be a key driver of memory retention and replay (Momennejad
 223 et al., 2018; Jang et al., 2019; Lindsey & Litwin-Kumar, 2024). Such findings suggest that surprising
 224 events are likely harder to learn and more susceptible to forgetting, and thus are more valuable for
 225 selective memory consolidation. Similar intuitions have proven effective in reinforcement learning
 226 through prioritised replay (Peng & Williams, 1993; Moore & Atkeson, 1993; Schaul et al., 2016)
 227 and surprise-based episodic memory (Zakharov et al., 2021; Coda-Forno et al., 2024), as well as in
 228 organising episodic memory structures in LLMs (Fountas et al., 2025; Behrouz et al., 2024).

229 Building on these insights, we hypothesise that replaying the most surprising sequences when training
 230 a model in CL settings provides three benefits. First, it directs computation on the sequences that lead
 231 to large prediction errors, occur infrequently (and thus are underrepresented), or sit at task boundaries
 232 where interference is highest. This gives the model more chances to properly learn these high-loss,
 233 easy-to-forget examples. Second, it preserves efficiency by enabling lower replay frequencies without
 234 sacrificing performance, since the retained samples act as a compact but representative regulariser of
 235 past tasks. Finally, by prioritising high-NLL samples, SuRe performs implicit importance sampling.
 236 High-NLL sequences have large $\|\nabla \ell(\theta; z)\|$, meaning they contribute disproportionately to the true
 237 gradient $E_P[\nabla \ell]$. Storing these samples ensures the buffer approximates the gradient geometry of
 238 past tasks, not just the data frequency. This directly reduces $D_{F_{loc}}(P, q)$, tightening the selection
 239 term in Equation 3.

240 Thus, we propose to replace uniform buffer updates with surprise-based replay, where storage
 241 decisions are guided by the Bayesian surprise of each input sequence. For a given input x_i with
 242 tokenised sequence $z_i = (z_{i,1}, \dots, z_{i,T_i})$, surprise is measured as the negative log-likelihood under
 243 the model:

$$244 s_\theta(z_i) = -\frac{1}{T} \sum_{t=1}^{T_i} \log p_\theta(z_{i,t} \mid z_{i < t}, x_i) \quad (4)$$

245 Following Rolnick et al. (2019) we set our buffer size to 2% of the overall dataset size. We allocate
 246 an equal per-task quota which depends on the number of tasks currently in the buffer, irrespective of
 247 dataset size per task. Thus, after training on d datasets, each task has $m_i^{(d)} = [S/d]$ samples in the
 248 buffer, with S as our buffer size. In practice, surprise-based replay is architecture-agnostic and can be
 249 applied in any continual learning setting or modality (e.g., vision, speech, video, text). In the context
 250 of LLMs, it is particularly effective when combined with parameter-efficient fine-tuning methods
 251 such as LoRA, further reducing computational cost.

254 3.3 DUAL LEARNERS

255 Replay can easily be combined with other approaches. Here we decided to focus on a dual learner
 256 architecture (Pham et al., 2021; Ran et al., 2025) with exponential moving average in line with Gao
 257 et al. (2023); Hickok (2025). At the start of training we freeze the base model and, for each attention
 258 layer’s W_Q and W_V , attach two LoRA adapters: a fast head and a slow head. Each head is a low-rank
 259 pair (A, B) , we initialise A randomly and set $B = 0$ following Hu et al. (2021). Before training
 260 on dataset D_i , we compute the surprise (Eq. 4) for each sequence $x \in D_i$ and insert the m_i most
 261 surprising sequences into a replay buffer M . The fast adapters are then updated by minimising the
 262 cross-entropy on the union batch $B_t \subset D_i \cup M$ while the slow adapters are not directly optimised
 263 but updated via an exponential moving average (EMA),

$$264 \theta_t^{\text{slow}} \leftarrow \beta \theta_{t-1}^{\text{slow}} + (1 - \beta) \theta_t^{\text{fast}}, \quad \beta \in (0, 1). \quad (5)$$

265 Equation 5 can be rewritten as $\theta_t^{\text{slow}} = (1 - \beta) \sum_{k=0}^t \beta^k \theta_{t-k}^{\text{fast}}$. That is, the slow parameters are a
 266 geometrically weighted ensemble of recent fast iterates with effective window length $\approx 1/(1 - \beta)$.
 267 Equivalently, θ_t^{slow} is the unique minimiser of the exponentially weighted least-squares fit to the

270 history of fast parameters:
 271

272

$$\theta_t^{slow} = \arg \min_{\theta} \sum_{k=0}^t \beta^{t-k} \|\theta - \theta_k^{fast}\|_2^2 \quad (6)$$

273

274

275 so the slow learner implements a low-pass filter on parameter trajectories, reducing iterate variance
 276 while introducing a controllable tracking lag. In the non-stationary setting introduced by task sequence
 277 D_i and replay M , this two timescale design lets the fast adapters adapt rapidly to D_i , while the
 278 slow adapters aggregate only changes that persist across many steps, thereby mitigating catastrophic
 279 forgetting. In our bound, $B(\beta) = \frac{1}{1-\beta}$ appears as a coefficient, larger β (e.g., 0.995) means stronger
 280 averaging, reducing the effective noise and tightening the integration term in Equation 3.
 281

282 **Algorithm 1** Dual-LoRA with Surprise Replay

283

284 1: Input data stream \mathcal{D} , memory \mathcal{B} (cap B_{max}), replay interval k , EMA rate β

285 2: Initialise $\theta^{fast}, \theta^{slow}$ (LoRA on Q, V, random init)

286 3: **for** $t \in \{1, \dots, T\}$ **do**

287 4: Select top- p surprising samples \mathcal{C} from \mathcal{D}_t (NLL under θ^{fast})

288 5: **for** $s \in$ training steps on \mathcal{D}_t **do**

289 6: Sample batch $\mathcal{B}_{cur} \subset \mathcal{D}_t$ $(|\mathcal{B}_{cur}| = 64)$

290 7: **if** $s \bmod k = 0$ **then**

291 8: Sample $\mathcal{B}_{rep} \subset \mathcal{B}$ $(|\mathcal{B}_{rep}| = 32)$

292 9: $\mathcal{B}_{mix} \leftarrow \mathcal{B}_{cur} \cup \mathcal{B}_{rep}$

293 10: **else**

294 11: $\mathcal{B}_{mix} \leftarrow \mathcal{B}_{cur}$

295 12: **end if**

296 13: $\mathcal{L}_{CE} \leftarrow \text{cross-entropy}(\mathcal{M} \oplus \theta^{fast}, \mathcal{B}_{mix})$

297 14: $\theta^{fast} \leftarrow \theta^{fast} - \eta \nabla \mathcal{L}_{CE}$

298 15: $\theta^{slow} \leftarrow \beta \theta^{slow} + (1 - \beta) \theta^{fast}$

299 16: **end for**

300 17: $\mathcal{B} \leftarrow \text{UpdateBuffer}(\mathcal{B}, \mathcal{C}, B_{max})$

301 18: **end for**

302

303

304

305

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

306

307 **Standard CL Benchmark.** We first evaluate our methods on the Standard CL Benchmark, one of

308 the most widely used setups for CL evaluation of LLMs (Qin & Joty, 2022). This benchmark is

309 composed of four text classification datasets: AG News, Amazon Reviews, DBpedia, and Yahoo

310 Answers, which were all introduced by Zhang et al. (2016). Following (Wang et al., 2023), we

311 randomly select 5,000 training samples and 500 test sequences.

312

313 **Large Number of Tasks.** To assess performance in a more challenging and long term scenario, we

314 further extend the benchmark by adding 11 additional datasets, following Razdaibiedina et al. (2023);

315 Wang et al. (2023); Qiao & Mahdavi (2024). These datasets are: MNLI, QQP, RTE and SST-2 from

316 Wang et al. (2019) as well as WiC, CB, COPA, BoolQ, MultiRC and IMDB from Wang et al. (2020).

317 In line with prior work (Razdaibiedina et al., 2023; Wang et al., 2023; Qiao & Mahdavi, 2024) we

318 randomly sample 1,000 training examples and 500 test samples from each dataset.

319

320 **Metrics.** In order to measure and compare the performance of each approach, we report the final

321 performance. This measures the average performance across all tasks after training on the final task.

322 It primarily reflects stability, that is how well the model retains knowledge at the end of training. Let

323 N be the total numbers of tasks, and let $a_{T_j}^N$ denote the accuracy on task T_j evaluated after training

324 the model on task N . Then: $FP = \frac{1}{N} \sum_{j=1}^N a_{T_j}^N$

324 **Baselines.** For an effective evaluation of the introduced methods we picked a number of baselines
 325 which are either regarded as standard approaches in the field or are recent state-of-the-art approaches
 326 on either of the benchmarks we are evaluating our method against.

- 328 • Multi-Task Learning (MTL) (Caruana, 1997): jointly trains the model on all datasets at once,
 329 allowing optimal sharing of representations and transfer across tasks. This is not per se a CL
 330 method but it is often regarded as the upper bound of CL performance.
- 331 • EWC (Kirkpatrick et al., 2017): estimates parameters importance using the Fisher Information
 332 Matrix and constrains important parameters from drifting too far when learning new tasks.
- 333 • Experience Replay (Rolnick et al., 2019; Chaudhry et al., 2019): retains 2% samples from each
 334 datasets which are then replayed when fine-tuning the model on a new training set.
- 335 • Leitner Replay (M’hamdi & May, 2024): selects replay samples using a dynamic Leitner-style
 336 skill rating system that prioritises examples based on how well the model has learned them.
- 337 • AimMerging (Feng et al., 2025): adaptively merges intermediate models by tracking parameter-
 338 change signals and replay-based forgetting signals, using stored past data to trigger merges when
 339 historical loss rises.
- 340 • O-LoRA Wang et al. (2023): introduce a new set of LoRAs for each dataset, these adapters are
 341 then trained on the current dataset with an orthogonal constraint before being merged into the
 342 main model.
- 343 • LB-CL(Qiao & Mahdavi, 2024): trains low rank adapters using singular value decomposition. The
 344 low rank parameters are initialised using a sensitivity score enabling forward transfer. Additionally,
 345 they project gradients from the new tasks into orthogonal subspaces to avoid interference.
- 346 • N-LoRA (Yang et al., 2024): encourages extremely sparse, non-colliding low-rank updates so
 347 each task occupies its own parameter subspace, reducing interference during continual learning.
- 348 • O-LieRA(Cao & Wu, 2025): applies orthogonal low-rank updates within a Lie-group multiplica-
 349 tive framework to preserve parameter geometry while preventing task-to-task interference.
- 350 • Mixture-of-Rank Adaptation (MoRA) (Lu et al., 2025): decomposes low-rank adapter into rank-1
 351 components and treats them as independent experts. A self-activated sparse gating mechanism
 352 then selects only a small, input dependent subset of these ranks during training and inference.
- 353 • Progressive Prompts (Razdaibiedina et al., 2023): learns a soft-prompt per task instead of
 354 finetuning LoRA parameters, updating fewer than 0.1% of model parameters.

356 4.2 MAIN RESULTS

357 The main results of our experiments are summarised in Table 1. First, we find that replay based
 358 methods perform better than is often acknowledged in the literature. Even with a simple reservoir
 359 sampling strategy, and having a 1:2 replay ratio, this method achieves competitive performance
 360 across both benchmarks, consistently outperforming regularisation based methods such as EWC and
 361 O-LoRA. This suggests that replay remains a highly effective and reliable baseline for CL in LLMs,
 362 and requires further investigation. Secondly, we can observe that our proposed Surprise Replay
 363 strategy consistently improved the rehearsal performance. The benefits are particularly strong in
 364 the LNT setting, where task diversity and limited per-task data accentuate catastrophic forgetting.
 365 Here, Surprise Replay significantly improves over uniform replay, highlighting the relevance of
 366 selective memory updating in more realistic CL scenarios. Third, our results show that the Dual
 367 Learner architecture further enhances performance. While a dual learner with vanilla replay is
 368 already competitive, the Surprise Dual Learner improves by over 5 percentage points compared to
 369 the previous state of the art method. This clearly narrows down the gap to the Multi-Task Learning
 370 upper bound and motivates further work in that direction.

371 To further compare our proposed methods with recent approaches, we followed the hyperparameter
 372 settings reported in Cao & Wu (2025) and present the results in Table 11. Since no batch size
 373 was specified, we follow common practice, report results using a batch size of 64 in Table 11 and
 374 include a more complete table in the in the Appendix B.1. Our methods consistently outperform prior
 375 approaches across all batch configurations, demonstrating robustness of our selection–integration
 376 approach. Finally, looking at measures of forgetting (Table 9), we find that Slow Replay maintains
 377 strong stability with negative forgetting, while the surprise replay was already facing reduced
 forgetting compared to it’s random counterpart.

	Standard CL Benchmark				Large Number of Tasks			
	Order-1	Order-2	Order-3	avg	Order-4	Order-5	Order-6	avg
SeqFT [◦]	18.9	24.9	41.7	28.5	7.4	7.3	7.4	7.4
SeqLoRA [◦]	39.5	31.9	46.6	39.3	4.9	3.5	4.2	4.2
EWC [◦]	46.3	45.3	52.1	47.9	44.9	44.0	45.4	44.8
O-LoRA [◦]	74.9	75.3	75.9	75.4	70.0	65.5	70.5	68.8
LB-CL [◦]	76.9	76.5	76.8	76.7	68.4	67.3	71.8	69.2
Reservoir Replay	76.8	77.7	76.5	76.9	69.6	69.4	68.3	69.1
MoRA [♦]	77.4	77.5	77.9	77.6	68.9	68.3	72.0*	69.7
Surprise Replay	77.0	78.1*	76.4	77.2	72.8	72.1*	71.6	72.1
Slow Reservoir Replay	78.0*	78.0	77.3*	77.8*	74.0*	71.9	71.6	72.5*
Slow Surprise Replay	78.8	78.5	76.9	78.1	75.6	74.8	75.0	75.1
ProgPrompt [◦]	76.1	76.0	76.3	76.1	78.7	78.8	77.8	78.4
PerTaskFT [◦]	70.0	70.0	70.0	70.0	78.1	78.1	78.1	78.1
MTL [◦]	80.0	80.0	80.0	80.0	76.3	76.3	76.3	76.3

Table 1: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for different baselines on T5. [◦] and [♦] indicate results taken from Qiao & Mahdavi (2024) and Lu et al. (2025) respectively. **Bold** indicates the best results and * is for the second best.

	Standard CL Benchmark				Large Number of Tasks				All avg
	Order-1	Order-2	Order-3	avg	Order-4	Order-5	Order-6	avg	
N-LoRA [◦]	79.2*	78.4*	78.8*	78.8*	73.6	70.3	73.2	72.4	75.6
OLieRA [◦]	79.9	79.5	79.5	79.6	73.8	70.4	73.5	72.6	76.1
AimMerging	71.2	72.4	70.9	71.5	74.1	73.5	73.7	73.7	72.6
Leitner Replay	74.0	73.8	72.0	73.3	75.1	74.8	76.9	75.6	74.5
Surprise Replay	78.4	77.0	75.8	77.1	77.6*	76.2*	78.0*	77.3*	77.2
Slow Surprise Replay	78.8	77.9	77.6	78.1	78.0	77.0	78.8	77.9	78.0

Table 2: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for different baselines on T5. Here the hyperparameters used are the ones reported by Cao & Wu (2025). [◦] indicate the results were taken from Cao & Wu (2025).

4.3 ABLATION STUDIES

Having established that Surprise Replay and the Surprise Dual Learner achieve state-of-the-art performance compared to strong baselines, we next examine which design choice drive these improvements. We compare computing surprise on labels versus full sequences, analyse the effect of when surprise is computed and when the buffer is updated, explore dynamic updates of surprise values during replay and finally benchmark our approach against classical replay methods such as Reservoir and Gradient-Based Sample Selection. Our results are summarised in Table 3.

Surprise on Labels vs. Full Sequences. Results show that label level surprise performs poorly on both benchmarks (64.9% on the Standard CL Benchmark and 61.2% on the LNT setting), indicating that this signal is too weak to guide selective replay effectively. As labels are only one or a few words, it is most likely that only the most surprising classes will be kept in the buffer leading to a massive imbalance when later replaying some sequences. On the other hand, some classes, not necessarily well classified ones, might never enter the buffer and will largely degrade performance on downstream task.

When to Compute Surprise and When to Update the Buffer. Here, our results suggest that the choice of when to update the buffer had a stronger effect than the timing of surprise computation. Indeed, both Surprise Before-Update After and Surprise After achieved significant gains compared to performing both actions before training on each dataset. Adding samples to the buffer after training potentially improves the regularisation by ensuring that previous tasks are replayed more often. On the other side, updating the buffer before training will lead the model to focus more on the current task while decreasing the amount of natural regularisation introduced by the replayed samples. This

432 difference illustrates the plasticity-stability dilemma where earlier updates favour adaptation while
 433 later updates favour retention.
 434

435 **Updating Surprise During Replay.** We also considered a variant where surprise values are updated
 436 each time a sample is replayed, mimicking an aging mechanism where replaying a sample decreases
 437 its surprise, making it more likely to be replaced. This *Surprise with Updates* achieved good results
 438 (74.7% and 71.4% on the two benchmarks), but led to a decrease in performance compared to the
 439 vanilla before/after variants, suggesting that dynamic surprise is not necessary in this specific setting.
 440

	Standard CL Benchmark				Large Number of Tasks			
	Order-1	Order-2	Order-3	avg	Order-4	Order-5	Order-6	avg
Label Surprise	68.5	66.0	60.1	64.9	60.9	61.2	61.5	61.2
Surprise with updates	74.8	75.1	74.3	74.7	74.0	70.5	69.8	71.4
Surprise Before Update After	78.2	74.4	73.8	75.5	73.8	74.3	70.9	73.0*
Surprise Before Update Before	77.0*	78.1	76.4*	77.2	72.8	72.1	71.6*	72.1
Surprise After	76.0	76.7*	76.7	76.5*	73.3*	73.0*	73.1	73.1
MTL	80.0	80.0	80.0	80.0	76.3	76.3	76.3	76.3

441 Table 3: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for
 442 different replay variants using T5 as a base model. **Bold** indicates the best results and * is for the
 443 second best.
 444

445 **Random Buffer Update After.** For a fair comparison, we evaluated our task-boundary aware
 446 Surprise Buffer against a baseline buffer that randomly selects an equal of samples per datasets,
 447 and appends them at the end of each task. We ran experiments across a wide range of buffer sizes
 448 and replay ratios which are summarised in Table 5 and 10. The results support our hypothesis
 449 that not using task identity during training harms the reservoir buffer’s performance, likely due to
 450 class imbalance. Even with these additional controls, our surprise-based update rule consistently
 451 outperformed the baselines across all replay ratios. Moreover, the gains from EMA and dual LoRA
 452 heads were robustly observed in every scenario we tested.
 453

454 **Buffer Size.** We also study how replay performance is impacted by the buffer size. The results
 455 summarised in Table 10 show that our Surprise Replay generally outperforms its random or reservoir
 456 alternative, with the gap increasing with the size of the buffers. The best results are obtained with
 457 the Slow Surprise After (Slow-SA) at 1500 samples (75.99%), and performance tends to improve as
 458 the buffer grows for all replay variants. While the smallest surprise buffer achieved state-of-the-art
 459 results, it does not always beat the random baseline. On the other hand, moderate sizes, 300 and 500,
 460 already capture most of the gains.
 461

Buffer Size	Random-O	Leitner-A	Random-A	Surprise-B	Surprise-A	Slow-RA	Slow-SA
150 samples	69.82	71.50	71.54	71.37	72.33*	72.50	72.13
300 samples	70.60	71.77	72.26	73.23	73.00	73.76*	74.56
500 samples	69.10	71.00	72.41	72.13	73.10	73.89*	75.01
1500 samples	70.70	71.58	73.04	73.66	74.58*	73.96	75.99

475 Table 4: Final accuracy (%) for replay variants across buffer sizes on the LNT benchmark. Means
 476 over 3 runs \times 3 task orders, replay ratio = 1:4. O, B and A indicate that the buffers are respectively
 477 updated Online, Before or After. We either add the most surprising (S) or random (R) samples.
 478

479 **Replay Ratio** Finally, we fix the buffer size to 500 and vary the replay ratio, that is the number of
 480 replayed sequences per newly seen samples, from 1:2 to 1:16 (one replayed samples for every 2 or
 481 16 new samples). As shown in Table 5, the accuracy for all methods decreases as less past samples
 482 are replayed. Here, the surprise based variants consistently outperform the random baselines, and
 483 we observe the same trend with the slow approaches. For example, at 1:2 the gains are +0.87 for
 484 the Surprise-After (Surprise-A) and +1.33 for the Slow-Surprise After (Slow-SA) compared to their
 485 random equivalent. This gap increases as the ratio is reduced, with the Surprise Before performing

best at 1:16 among the methods without EMA, and the Slow-SA outperforming the Slow Random (Slow-R) by +2.48% points. This suggests that the surprise update rule is more robust under smaller replay budgets.

Replay Ratio	Random-O	Leitner-A	Random-A	Surprise-B	Surprise-A	Slow-RA	Slow-SA
1:2	70.96	73.40	73.35	73.63	74.22	74.79*	76.12
1:4	70.60	71.00	72.26	73.23	73.00	73.76*	75.01
1:8	70.33	68.57	69.10	70.11	70.70	71.00*	72.69
1:16	66.25	65.86	66.62	68.38*	68.36	68.34	69.42

Table 5: Final accuracy (%) for replay variants across replay ratios on the LNT benchmark. Means over 3 runs \times 3 task orders, buffer size = 500. O, B and A indicate that the buffers are respectively updated Online, Before or After. We either add the most surprising (S) or random (R) samples.

5 DISCUSSION

While our method achieves strong performance, particularly on large numbers of tasks, several limitations remain. Most significantly, our approach requires known task boundaries during training, constraining applicability to well-controlled environments, though this assumption is shared by most existing methods. Additionally, computing surprise requires an extra forward pass across datasets. Adapting our approach to fully online settings, similar to GSS and Reservoir, would address both limitations and represent a promising future direction. Further evaluation across foundation model families, e.g. LLMs like Llama (Grattafiori et al., 2024), Qwen (Yang et al., 2025a), or new modalities, Vision, Vision-Language Models, as well as settings like continual pre-training, would strengthen our findings; preliminary CPT experiments (Table 8) already show that Slow Surprise achieves the best average perplexity across domains on a small set of datasets. Finally, our dual-learner architecture shows promise and merits deeper investigation of alternative designs and training objectives.

Neuroscience and Consolidation. The selection–integration view mirrors core ideas in memory neuroscience. Surprise-driven selection aligns with evidence that event boundaries and prediction errors structure episodic encoding and hippocampal responses (Baldassano et al., 2017; Fountas et al., 2022; Mariola et al., 2022). In language, recent work shows that model- or behaviour-derived surprise segments narratives in ways that track human reports and neural data (Michelmann et al., 2025; Fountas et al., 2025; Benfeghou et al., 2025). Replay is likewise thought to prioritise behaviourally valuable/surprising content, consistent with normative accounts of prioritised access and empirical biases in hippocampal replay (Mattar & Daw, 2018; Ambrose et al., 2016). Finally, EMA-style slow updates map onto complementary learning systems and multi-timescale synaptic consolidation, where fast traces are gradually integrated into stable representations (McClelland et al., 1995; Benna & Fusi, 2016). This mapping suggests concrete predictions: prioritising high-surprise sequences should preferentially protect boundary-adjacent knowledge under tight replay budgets, while removing EMA should selectively increase cross-task interference.

6 CONCLUSION

In this work, we revisited replay, a classical approach to catastrophic forgetting, and showed that its performance has been largely underestimated in the LLM CL literature. We then introduced *SuRe*, a surprise-based buffer update that selectively retains the most surprising samples, achieving state-of-the-art results in the *Large Number of Tasks* benchmark and delivering the best overall average performance across both *Standard CL* and *LNT* settings, with strong robustness under reduced buffer sizes and replay ratios. Our selection–integration framework explains these gains as complementary: coupling *SuRe* with a dual fast–slow LoRA architecture and exponential moving average (EMA) yields further improvements, including gains of up to *+5 percentage points* on LNT over prior work. These findings establish replay as a competitive and scalable baseline for continual LLM fine-tuning and highlight that jointly addressing selection and integration errors is key to mitigating catastrophic forgetting in a large number of task setting.

540 **7 REPRODUCIBILITY STATEMENT**
541542 In an effort to make our work reproducible we include experimental details across section 4, an
543 implementation details section in Appendix G as well as a proof section H to derive our claims. All
544 the datasets we use are publicly available, either on HuggingFace or on GitHub and we are working
545 on releasing our own public version of our codebase including all mentioned methods and ablations.
546547 **8 USE OF LARGE LANGUAGE MODELS**
548549 We use LLMs only for minor wording and syntactic improvement within the main text and appendices.
550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
597 Memory aware synapses: Learning what (not) to forget, 2018. URL <https://arxiv.org/abs/1711.09601>.
598

600 Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
601 Tinne Tuytelaars. Online continual learning with maximally interfered retrieval, 2019. URL
602 <https://arxiv.org/abs/1908.04742>.
603

604 R Ellen Ambrose, Brad E Pfeiffer, and David J Foster. Reverse replay of hippocampal place cells is
605 uniquely modulated by changing reward. *Neuron*, 91(5):1124–1136, 2016.
606

607 Vladimir Araujo, Helena Balabin, Julio Hurtado, Alvaro Soto, and Marie-Francine Moens. How
608 relevant is selective memory population in lifelong language learning?, 2022. URL <https://arxiv.org/abs/2210.00940>.
609

610 Christopher Baldassano, Janice Chen, Asieh Zadbood, Jonathan W Pillow, Uri Hasson, and Kenneth A
611 Norman. Discovering event structure in continuous narrative perception and memory. *Neuron*, 95
612 (3):709–721, 2017.
613

614 Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time, 2024.
615 URL <https://arxiv.org/abs/2501.00663>.
616

617 Martin Benfeghoul, Haitham Bou Ammar, Jun Wang, and Zafeirios Fountas. Hierarchical episodic
618 memory in llms via multi-scale event organization. In *New Frontiers in Associative Memories*,
619 2025.
620

621 Marcus K Benna and Stefano Fusi. Computational principles of synaptic memory consolidation.
622 *Nature neuroscience*, 19(12):1697–1706, 2016.
623

624 Vivek S Borkar. *Stochastic approximation: a dynamical systems viewpoint*. Springer, 2008.
625

626 Kefan Cao and Shuaicheng Wu. Orthogonal low-rank adaptation in lie groups for continual learning
627 of large language models, 2025. URL <https://arxiv.org/abs/2509.06100>.
628

629 Rich Caruana. Multitask learning. *Machine Learning*, 28:41–75, 1997. doi: 10.1023/A:
630 1007379606734.
631

632 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
633 Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
634 learning, 2019. URL <https://arxiv.org/abs/1902.10486>.
635

636 Julian Coda-Forno, Changmin Yu, Qinghai Guo, Zafeirios Fountas, and Neil Burgess. Leveraging
637 episodic memory to improve world models for reinforcement learning. In *Memory in Artificial
638 and Real Intelligence (MemARI) Workshop at 36th Conference on Neural Information Processing
639 Systems (NeurIPS 2022)*, 2024.
640

641 Yujie Feng, Jian Li, Xiaoyu Dong, Pengfei Xu, Xiaohui Zhou, Yujia Zhang, Zexin LU, Yasha Wang,
642 Alan Zhao, Xu Chu, and Xiao-Ming Wu. Aimmerging: Adaptive iterative model merging using
643 training trajectories for language model continual learning, 2025. URL <https://arxiv.org/abs/2509.17348>.
644

645 Zafeirios Fountas, Anastasia Sylaidi, Kyriacos Nikiforou, Anil K Seth, Murray Shanahan, and
646 Warrick Roseboom. A predictive processing model of episodic memory and time perception.
647 *Neural computation*, 34(7):1501–1544, 2022.
648

649 Zafeirios Fountas, Martin Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lampouras,
650 Haitham Bou Ammar, and Jun Wang. Human-inspired episodic memory for infinite context llms.
651 In *The Thirteenth International Conference on Learning Representations*, 2025.
652

653 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang.
654 A unified continual learning framework with general parameter-efficient tuning, 2023. URL
655 <https://arxiv.org/abs/2303.10070>.
656

648 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 649 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 650 models. *arXiv preprint arXiv:2407.21783*, 2024.

651

652 Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alexander Smola. A
 653 kernel two-sample test. In *JMLR*, 2012.

654

655 Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
 656 stochastic gradient descent. In *ICML*, 2016.

657

658 Truman Hickok. Scalable strategies for continual learning with replay, 2025. URL <https://arxiv.org/abs/2505.12512>.

659

660 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 661 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

662

663 David Isele and Akansel Cosgun. Selective experience replay for lifelong learning, 2018. URL
 664 <https://arxiv.org/abs/1802.10269>.

665

666 Ai I. Jang, Matthew R. Nassar, Daniel G. Dillon, and Michael J. Frank. Positive reward prediction
 667 errors during decision-making strengthen memory encoding. *Nature Human Behaviour*, 3(7):
 668 719–732, 2019. doi: 10.1038/s41562-019-0597-3.

669

670 Angelos Katharopoulos and Francois Fleuret. Not all samples are created equal: Deep learning with
 671 importance sampling. In *ICML*, 2018.

672

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan,
 673 T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell.
 674 Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy
 675 of Sciences of the United States of America*, 114(13):3521–3526, 2017. doi: 10.1073/pnas.
 676 1611835114.

677

Vijay R Konda and John N Tsitsiklis. Convergence rate of linear two-time-scale stochastic approxi-
 678 mation. *Annals of Applied Probability*, 2004.

679

Huanxuan Liao, Shizhu He, Yupu Hao, Jun Zhao, and Kang Liu. Data: Decomposed attention-based
 680 task adaptation for rehearsal-free continual learning, 2025. URL <https://arxiv.org/abs/2502.11482>.

681

682 Jack W. Lindsey and Ashok Litwin-Kumar. Selective consolidation of learning and memory via
 683 recall-gated plasticity. *eLife*, 12:RP90793, 2024. doi: 10.7554/eLife.90793.

684

685 Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, and Dong Gong. Little by
 686 little: Continual learning via self-activated sparse mixture-of-rank adaptive learning, 2025. URL
 687 <https://arxiv.org/abs/2506.21035>.

688

689 Alberto Mariola, Zafeirios Fountas, Lionel Barnett, and Warrick Roseboom. Event segmentation in
 690 continuous, naturalistic videos from model-based, data-driven, and human perspectives. 2022.

691

692 Marcelo G Mattar and Nathaniel D Daw. Prioritized memory access explains planning and hippocam-
 693 pal replay. *Nature neuroscience*, 21(11):1609–1617, 2018.

694

James L McClelland, Bruce L McNaughton, and Randall C O'Reilly. Why there are complementary
 695 learning systems in the hippocampus and neocortex: insights from the successes and failures of
 696 connectionist models of learning and memory. *Psychological review*, 102(3):419, 1995.

697

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
 698 sequential learning problem. In *Psychology of Learning and Motivation*, volume 24, pp. 109–165.
 699 Elsevier, 1989.

700

Martial Mermilliod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investi-
 701 gating the continuum from catastrophic forgetting to age-limited learning effects, 2013.

702 Meryem M'hamdi and Jonathan May. Leitner-guided memory replay for cross-lingual continual
 703 learning. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024*
 704 *Conference of the North American Chapter of the Association for Computational Linguistics:*
 705 *Human Language Technologies (Volume 1: Long Papers)*, pp. 7808–7821, Mexico City, Mexico,
 706 June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.432.
 707 URL <https://aclanthology.org/2024.naacl-long.432/>.

708 Sebastian Michelmann, Manoj Kumar, Kenneth A Norman, and Mariya Toneva. Large language
 709 models can segment narrative events similarly to humans. *Behavior Research Methods*, 57(1):39,
 710 2025.

711 Ida Momennejad, A. Ross Otto, Nathaniel D. Daw, and Kenneth A. Norman. Offline replay supports
 712 planning in human reinforcement learning. *eLife*, 7:e32548, 2018. doi: 10.7554/eLife.32548.

713 Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement learning with
 714 less data and less time. *Machine Learning*, 13:103–130, 1993. doi: 10.1007/BF00993104.

715 J. Peng and R.J. Williams. Efficient learning and planning within the dyna framework. In *IEEE*
 716 *International Conference on Neural Networks*, pp. 168–174 vol.1, 1993. doi: 10.1109/ICNN.1993.
 717 298551.

718 Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow, 2021. URL
 719 <https://arxiv.org/abs/2110.00175>.

720 Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. *SIAM*
 721 *J. Control Optim.*, 1992.

722 Fuli Qiao and Mehrdad Mahdavi. Learn more, but bother less: parameter efficient continual learning.
 723 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 724 <https://openreview.net/forum?id=ZxtaNh5UYB>.

725 Chengwei Qin and Shafiq Joty. Lfpt5: A unified framework for lifelong few-shot language learning
 726 based on prompt tuning of t5, 2022. URL <https://arxiv.org/abs/2110.07298>.

727 Hang Ran, Xingyu Gao, Lusi Li, Weijun Li, Songsong Tian, Gang Wang, Hailong Shi, and Xin
 728 Ning. Brain-inspired fast- and slow-update prompt tuning for few-shot class-incremental learning.
 729 *IEEE Transactions on Neural Networks and Learning Systems*, 36(7):13417–13430, 2025. doi:
 730 10.1109/TNNLS.2024.3454237.

731 R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
 732 forgetting functions. *Psychological Review*, 97(2):285–308, April 1990. doi: 10.1037/0033-295X.
 733 97.2.285.

734 Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Almahairi.
 735 Progressive prompts: Continual learning for language models, 2023. URL <https://arxiv.org/abs/2301.12314>.

736 Machel Reid, Victor Zhong, Suchin Gururangan, and Luke Zettlemoyer. M2d2: A massively multi-
 737 domain language modeling dataset, 2022. URL <https://arxiv.org/abs/2210.07370>.

738 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
 739 replay for continual learning, 2019. URL <https://arxiv.org/abs/1811.11682>.

740 Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay, 2016.
 741 URL <https://arxiv.org/abs/1511.05952>.

742 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
 743 replay, 2017. URL <https://arxiv.org/abs/1705.08690>.

744 Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. Lamol: Language modeling for lifelong language
 745 learning, 2019. URL <https://arxiv.org/abs/1909.03329>.

746 Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-theoretic
 747 online memory selection for continual learning, 2022. URL <https://arxiv.org/abs/2204.04763>.

756 Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
 757 Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
 758 (learn at test time): Rnns with expressive hidden states, 2025. URL <https://arxiv.org/abs/2407.04620>.

759

760 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
 761 targets improve semi-supervised deep learning results. In *NeurIPS*, 2017.

762

763 Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning, 2019. URL
 764 <https://arxiv.org/abs/1904.07734>.

765

766 Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental learning.
 767 *Nature Machine Intelligence*, 4:1185–1197, 2022. doi: 10.1038/s42256-022-00568-3.

768

769 Jeffrey S. Vitter. Random sampling with a reservoir. *ACM Transactions on Mathematical Software*,
 11(1):37–57, 1985. doi: 10.1145/3147.3165.

770

771 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
 772 A multi-task benchmark and analysis platform for natural language understanding, 2019. URL
 773 <https://arxiv.org/abs/1804.07461>.

774

775 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
 776 Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
 777 understanding systems, 2020. URL <https://arxiv.org/abs/1905.00537>.

778

779 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
 780 Xuanjing Huang. Orthogonal subspace learning for language model continual learning, 2023. URL
<https://arxiv.org/abs/2310.14152>.

781

782 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 783 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 2025a.

784

785 Shuo Yang, Kun-Peng Ning, Yu-Yang Liu, Jia-Yu Yao, Yong-Hong Tian, Yi-Bing Song, and Li Yuan.
 786 Is parameter collision hindering continual learning in llms?, 2024. URL <https://arxiv.org/abs/2410.10179>.

787

788 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
 789 delta rule, 2025b. URL <https://arxiv.org/abs/2412.06464>.

790

791 Alexey Zakharov, Matthew Crosby, and Zafeirios Fountas. Episodic memory for subjective-timescale
 792 models. In *ICML 2021 Workshop on Unsupervised Reinforcement Learning*, 2021. URL <https://openreview.net/forum?id=301ZDhrjonR>.

793

794 Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan Sunkavalli,
 795 William T. Freeman, and Hao Tan. Test-time training done right, 2025. URL <https://arxiv.org/abs/2505.23884>.

796

797 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
 798 classification, 2016. URL <https://arxiv.org/abs/1509.01626>.

799

800 Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. In *ICML*, 2015.

801

802 Çağatay Yıldız, Nishaanth Kanna Ravichandran, Nitin Sharma, Matthias Bethge, and Beyza Ermis.
 803 Investigating continual pretraining in large language models: Insights and implications, 2025. URL
<https://arxiv.org/abs/2402.17400>.

804

805

806

807

808

809

A ADDITIONAL FIGURES

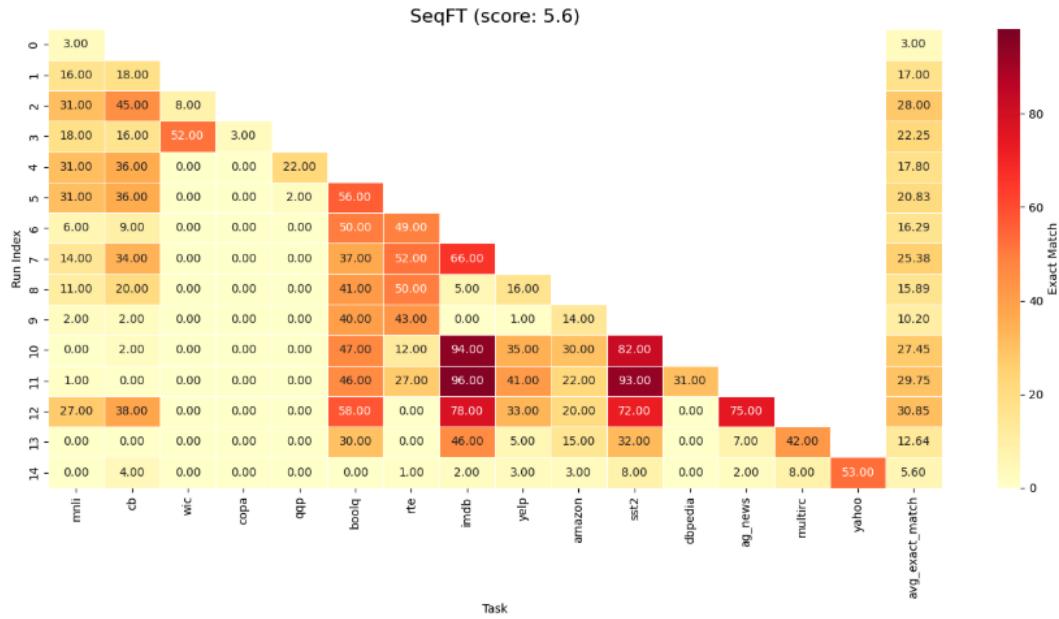


Figure 2: Naive sequential fine-tuning (SeqFT) with T5-Large on the Large Number of Tasks (LNT) benchmark.

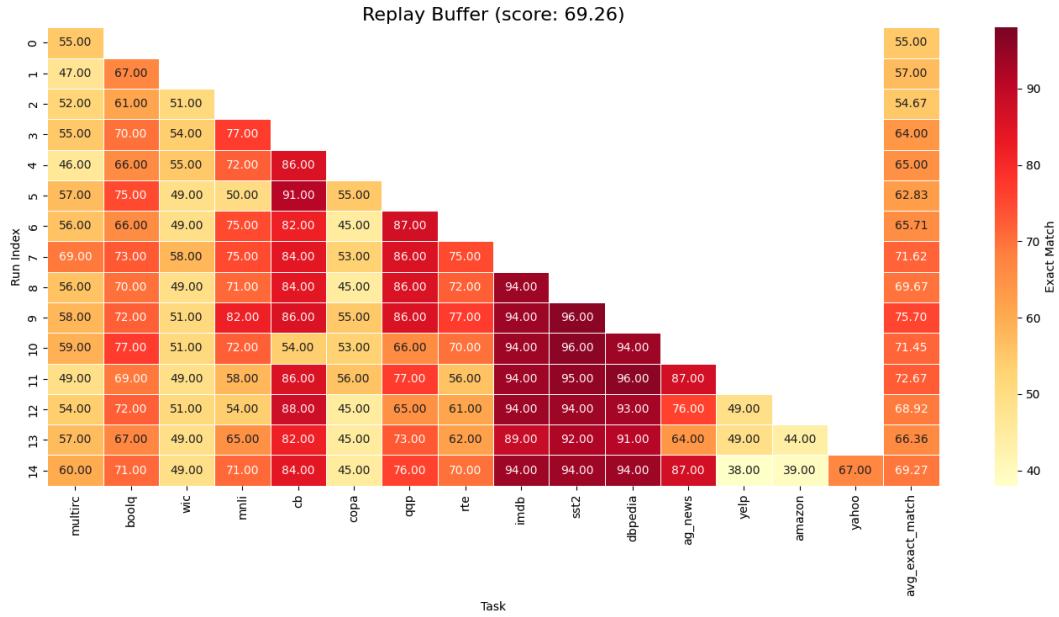


Figure 3: Reservoir Buffer replay with T5-Large on sequential tasks. Heatmap shows test task (x-axis) evaluated after each training task (y-axis).

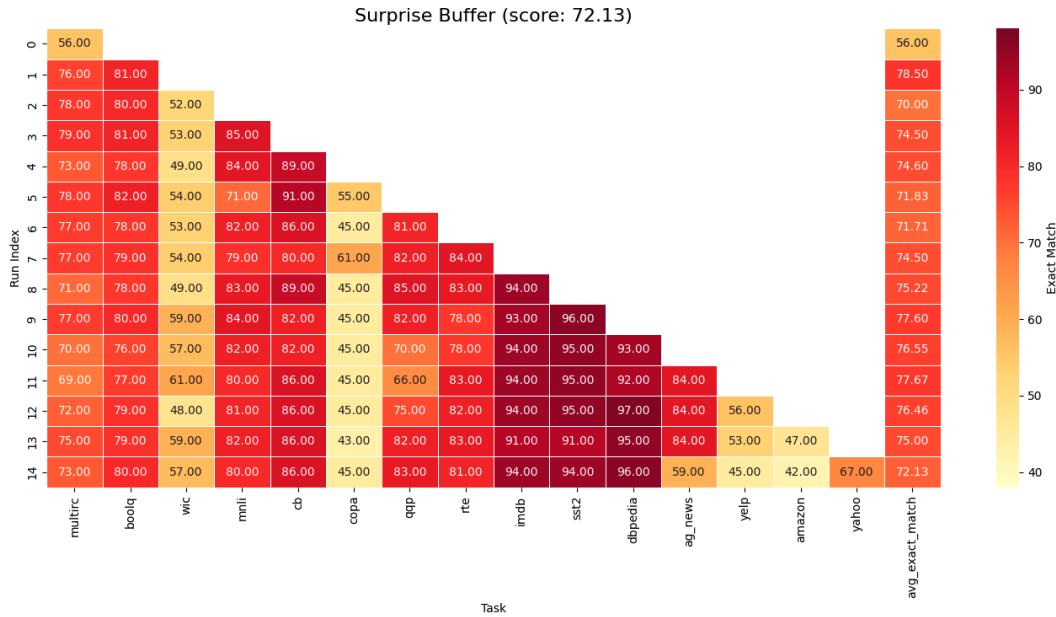


Figure 4: Surprise Buffer replay with T5-Large on sequential tasks. Same visualisation as Figure 3.

B EXTENDED EXPERIMENTS

B.1 MAIN RESULTS

	Standard CL Benchmark				Large Number of Tasks				All	
	Order-1	Order-2	Order-3	avg	Order-4	Order-5	Order-6	avg	avg	avg
N-LoRA [◊]	79.2*	78.4	78.8*	78.8*	73.6	70.3	73.2	72.4	75.6	
OLieRA [◊]	79.9	79.5	79.5	79.6	73.8	70.4	73.5	72.6	76.1	
<i>Batch 64</i>										
AimMerging	71.2	72.4	70.9	71.5	74.1	73.5	73.7	73.7	72.6	
Surprise Replay	78.4	77.0	75.8	77.1	77.6*	76.2	78.0*	77.3*	77.2	
Slow Surprise Replay	78.8	77.9	77.6	78.1	78.0	77.0	78.8	77.9	78.0	
<i>Batch 8</i>										
AimMerging	69.5	70.6	69.2	69.8	75.9	74.5	75.9	75.4	72.6	
Surprise Replay	77.9	77.9	77.1	77.7	75.8	74.3	75.4	75.2	76.5	
Slow Surprise Replay	78.5	78.5*	78.0	78.3	77.0	76.8*	77.3	77.0	77.7*	

Table 6: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for different baselines on T5. Here the hyperparameters used are the ones reported by Cao & Wu (2025).
◊ indicate the results were taken from Cao & Wu (2025).

B.2 LLAMA 3.1 8B

Following Liao et al. (2025), we replicate our main setup with Llama 3.1 8B. Due to compute limits, we report only orders 1 and 4 (averaged over three runs); see Table 7. Results are preliminary but indicate that the Slow Surprise again performs strongly.

B.3 CONTINUAL PRE-TRAINING (CPT) SETTING

We also explore Continual Pre-Training, where the model is updated via next-token prediction (no explicit labels). We select five domains from M2D2 (Reid et al., 2022), following Çağatay Yıldız et al. (2025), and report perplexity before/after various methods in Table 8. Lower is better. Our Dual

Method	Standard CL Benchmark	LNT
Before FT	1.00	1.00
SeqFT	23.00	22.86
Replay	65.75	50.53
Slow Replay	73.00*	48.06
Surprise Replay	72.25	68.53
Slow Surprise	76.00	67.00*
Individual FT	75.25	72.56
MTL	76.00	69.06

Table 7: Final accuracy (%) for Llama 3.1 8B across orders 1 and 4 (3 runs each).

Learner with Surprise Replay achieves the best average (11.63), outperforming MTL (12.01). This is a theoretical probe, downstream accuracy is not evaluated here.

Method	Biology	Chemistry	Physical Science	Maths	Philosophy	Avg.
Without FT	25.612	28.735	25.177	23.052	22.523	25.020
SeqFT	32.96	33.10	24.84	15.80	12.00	23.12
Surprise Replay	13.79	20.30	17.53	13.62	13.36	15.72
Random Replay	12.69	21.42	15.82	13.89	14.47	15.66
Slow Surprise	10.98 *	15.47 *	10.74	8.76	12.21*	11.63
MTL	9.07	13.92	11.82*	11.60*	13.63	12.01*

Table 8: Perplexity across M2D2 domains for CPT. Lower is better.

C MEASURING FORGETTING

We report final performance (FP), average performance (AP), and forgetting (lower is better; negative implies improvement on earlier tasks) in Table 9. The Slow Replay exhibits strong stability with negative forgetting on both benchmarks. Updating the buffer after training generally increases stability, while updating before increases plasticity.

	Standard CL Benchmark			Large Number of Tasks		
	AP \uparrow	FP \uparrow	Forget \downarrow	FP \uparrow	AP \uparrow	Forget \downarrow
Replay	80.83	76.92	3.91	72.93	69.1	3.83
Surprise Before	78.20	77.20	1.00	74.80	72.10	2.70
Slow Surprise	75.80	78.10	-2.30	70.30	75.10	-4.80
Surprise Before, Update After	75.00	75.20	-0.20	73.40	73.00	0.40
Slow SB-UA	77.00	77.10	-0.10	70.10	75.00	-4.90

Table 9: FP/AP/Forgetting on Standard CL and LNT benchmarks.

D ABLATION ON β

The parameter β controls the integration rate of the fast weights into the slow weights (i.e. the consolidation rate of the EMA). It is thus a crucial parameter when it comes to the dual learner architecture. Our ablation suggest that too low of an integration leads to very poor performance (0.999) while lower the value (higher integration of the slow weights) leads to a less significant decrease in performance.

β values	Slow Random	Slow SB-UB	Slow SB-UA
0.985	72.10	75.62	75.36*
0.99	72.44	75.47	75.45*
0.995	73.03	75.80	75.68*
0.999	56.86	58.06	57.74*

Table 10: Final accuracy (%) for slow replay variants across β values on the LNT benchmark. Means over 3 runs \times 3 task orders, replay ratio = 1:2. O, B and A indicate that the buffers are updated Online, Before and After respectively. We either add the most surprising or random samples.

E SUM OF SURPRISE VS AVERAGE SURPRISE

Our main method relies on the average surprise per sequence to identify the most surprising labels. Here, we compare this approach with one that uses the full sequence’s surprise. Our experiments indicate that the average surprise is a better indicator of importance for the replay selection.

	Large Number of Tasks			
	Order-4	Order-5	Order-6	avg
Sum Surprise	72.82	72.66	73.03	72.84
Average Surprise	75.14	74.5	73.03	74.22
Slow Sum Surprise	75.40*	75.78*	75.80*	75.66*
Slow Avg Surprise	76.16	76.25	75.96	76.12

Table 11: Final accuracy (%) on the Large Number of Tasks Benchmarks for different surprise variants.

F SURPRISE VARIANTS

We study alternative surprise computations and buffer update schedules and their trade-offs in compute, stability, and performance.

F.1 LABEL-LEVEL SURPRISE

Instead of sequence-level surprise, compute surprise on the task label only:

$$\text{score}_i = -\log p_{\theta^{\text{pre}}}(y_i | x_i), \quad R = \text{TopK}(\{(i, \text{score}_i)\}_{i \in D}), \quad (7)$$

where x_i is the input, y_i the label, θ^{pre} the pre-training parameters, and R the retained set.

F.2 TIMING OF SURPRISE AND BUFFER UPDATES

We vary both when surprise is computed and when the buffer is updated—before vs. after training on a dataset—yielding three variants: **SB-UB** (Before/Before), **SB-UA** (Before/After), and **SA-UA** (After/After). For a sequence z_i :

$$\text{score}_i = \begin{cases} S_{\theta^{\text{pre}}}(z_i), & \text{if computed before training,} \\ S_{\theta^{\text{post}}}(z_i), & \text{if computed after training,} \end{cases} \quad (8)$$

with $S_{\theta}(\cdot)$ the sequence-level surprise under parameters θ .

F.3 SURPRISE UPDATES DURING REPLAY

We also recompute surprise at each replay step to mimic aging:

$$\text{score}_i^{(t+1)} = S_{\theta^{(t)}}(z_i), \quad \text{with } \text{score}_i^{(t+1)} \leq \text{score}_i^{(t)} \text{ as training progresses.} \quad (9)$$

1026 **G IMPLEMENTATION DETAILS**
 1027

1028 Hyperparameters follow Wang et al. (2023) unless noted: learning rate $1e-3$ (T5-Large) and $1e-4$
 1029 (Llama 3.1 8B); batch size 64; replay frequency $1/2$ (every other gradient step); one epoch; dropout
 1030 0.1; LoRA rank 8 and $\alpha = 32$; LoRA adapters on Q and V projections in all attention layers.
 1031

1032 **H PROOFS AND TECHNICAL DETAILS**
 1033

1034 We restate our local assumptions in the LoRA parameter subspace (base weights frozen):
 1035

1036 (A1) **Local smoothness/PL:** Each task risk $R_k(\theta) = \mathbb{E}_{z \sim P_k} \ell(\theta; z)$ is L -smooth and satisfies a
 1037 local μ -PL inequality on the trajectory neighborhood \mathcal{N} : for some $\mu > 0$, $\frac{1}{2} \|\nabla R_k(\theta)\|^2 \geq$
 1038 $\mu(R_k(\theta) - R_k(\theta^*))$ for all $\theta \in \mathcal{N}$. Per-example gradients are bounded: $\|\nabla_\theta \ell(\theta; z)\| \leq G$.
 1039 (A2) **Stochastic optimisation:** The fast learner performs SGD on $J_t(\theta) = (1 - \alpha)R_t(\theta) +$
 1040 $\alpha \tilde{R}_{1:t-1}(\theta)$ with step $\eta \leq 1/L$: $\theta_f^{(n+1)} = \theta_f^{(n)} - \eta g^{(n)}$, where $\mathbb{E}[g^{(n)} \mid \theta_f^{(n)}] = \nabla J_t(\theta_f^{(n)})$
 1041 and $\mathbb{E}\|g^{(n)} - \nabla J_t(\theta_f^{(n)})\|^2 \leq \sigma^2$. The slow learner is EMA: $\theta_s^{(n+1)} = \beta \theta_s^{(n)} + (1 - \beta) \theta_f^{(n+1)}$,
 1042 $\beta \in (0, 1)$.
 1043 (A3) **Task drift:** $\|\theta_{k+1}^* - \theta_k^*\| \leq \delta$.

1044 We use standard facts about SGD stability and Polyak–Ruppert averaging (Polyak & Juditsky, 1992;
 1045 Konda & Tsitsiklis, 2004; Borkar, 2008; Hardt et al., 2016) and integral probability metrics (IPMs;
 1046 MMD is a special case) (Gretton et al., 2012).

1047 *Remark.* In the main text we allow a generic consolidation operator \mathcal{A}_ψ . In this appendix we
 1048 instantiate \mathcal{A}_ψ as EMA with parameter $\psi \equiv \beta$, hence bounds are stated with $B(\beta)$; this corresponds
 1049 to $B(\psi)$ in Theorem 1.

1050 **H.1 PROOF OF LEMMA 1 (SELECTION MISMATCH VIA IPM)**
 1051

1052 Recall $P_{1:t-1} = \frac{1}{t-1} \sum_{k < t} P_k$, $\tilde{R}_{1:t-1}(\theta) = \mathbb{E}_{z \sim q} \ell(\theta; z)$ and $R_{1:t-1}(\theta) = \mathbb{E}_{z \sim P_{1:t-1}} \ell(\theta; z)$. Let
 1053 $\mathcal{F}_{\text{loc}} = \{\ell(\theta; \cdot) : \theta \in \mathcal{N}\}$ be the set of per-example losses reachable along the local trajectory. An
 1054 integral probability metric $D_{\mathcal{F}_{\text{loc}}}$ is defined by
 1055

$$D_{\mathcal{F}_{\text{loc}}}(P, Q) = \sup_{f \in \mathcal{F}_{\text{loc}}} |\mathbb{E}_P f - \mathbb{E}_Q f|.$$

1056 For any fixed $\theta \in \mathcal{N}$, take $f_\theta(\cdot) = \ell(\theta; \cdot) \in \mathcal{F}_{\text{loc}}$. Then
 1057

$$|\tilde{R}_{1:t-1}(\theta) - R_{1:t-1}(\theta)| = \left| \mathbb{E}_{z \sim q} \ell(\theta; z) - \mathbb{E}_{z \sim P_{1:t-1}} \ell(\theta; z) \right| \leq D_{\mathcal{F}_{\text{loc}}}(P_{1:t-1}, q).$$

1058 This is exactly Eq. equation 1. ■
 1059

1060 **Remark (MMD instance).** If $D_{\mathcal{F}_{\text{loc}}}$ is the RKHS IPM (MMD) for a kernel k , then for any function
 1061 class embedded in that RKHS one gets $|\tilde{R} - R| \leq \|\ell(\theta; \cdot)\|_{\mathcal{H}} \cdot \text{MMD}_k(P_{1:t-1}, q)$. We keep the
 1062 abstract IPM to avoid extra regularity assumptions on $\ell(\theta; \cdot)$.
 1063

1064 **H.2 PROOF OF LEMMA 2 (EMA REDUCES INTEGRATION VARIANCE)**
 1065

1066 We analyse the EMA of fast SGD iterates on J_t in a local basin containing a unique PL stationary
 1067 point θ^* . Define the fast error $e^{(n)} = \theta_f^{(n)} - \theta^*$ and the slow (EMA) average
 1068

$$\bar{\theta}_N := (1 - \beta) \sum_{n=1}^N \beta^{N-n} \theta_f^{(n)}, \quad \bar{e}_N := \bar{\theta}_N - \theta^* = (1 - \beta) \sum_{n=1}^N \beta^{N-n} e^{(n)}.$$

1069 **Step 1: linearised SA recursion.** By L -smoothness and PL near θ^* , the fast recursion linearises to
 1070 $e^{(n+1)} = (I - \eta H) e^{(n)} + \eta \xi^{(n)}$,
 1071 where $H := \int_0^1 \nabla^2 J_t(\theta^* + s(\theta_f^{(n)} - \theta^*)) ds$ satisfies $H \succeq \mu I$ and $\|I - \eta H\| \leq (1 - \eta \mu)$ for $\eta \leq 1/L$.
 1072

1073 The noise $\xi^{(n)} := g^{(n)} - \mathbb{E}[g^{(n)} \mid \theta_f^{(n)}]$ is a martingale-difference with $\mathbb{E}\|\xi^{(n)}\|^2 \leq \sigma^2$.
 1074

1080 **Step 2: EMA as low-pass / Polyak–Ruppert averaging.** Classical two-time-scale/averaging arguments (e.g., Polyak & Juditsky, 1992; Konda & Tsitsiklis, 2004; Borkar, 2008) imply a decomposition 1081 of the EMA mean-square error into a *bias* term (how far the average lags the trackable optimum) and 1082 a *variance* term (how noise is filtered): 1083

$$1084 \mathbb{E}\|\bar{e}_N\|^2 \leq C_1 (1 - \beta)^2 \|e^{(0)}\|^2 + C_2 \frac{1}{(1 - \beta)} \frac{\sigma^2}{\mu N},$$

1085 for universal constants C_1, C_2 depending on L and the spectral gap of H ; see, e.g., Theorem 1 in 1086 Polyak & Juditsky (1992) and Theorem 2.2 in Konda & Tsitsiklis (2004) adapted to geometrically 1087 weighted averages (EMA). 1088

1089 Intuition: EMA is a geometrically weighted average with effective window length $\approx 1/(1 - \beta)$; 1090 averaging reduces variance by the window length (hence the $1/(1 - \beta)$ factor) while incurring a 1091 steady-state bias proportional to the leakage $(1 - \beta)$. 1092

1093 **Step 3: risk bound under smoothness/PL.** Using L -smoothness of R_k and Jensen, 1094

$$1095 \mathbb{E}[R_k(\bar{\theta}_N) - R_k(\theta_k^*)] \leq \frac{L}{2} \mathbb{E}\|\bar{e}_N\|^2 + C_d \delta,$$

1096 where $C_d \delta$ accounts for bounded drift between θ^* (minimiser of J_t) and θ_k^* (minimiser of R_k) across 1097 successive tasks (Assumption (A3)). Substituting the EMA MSE bound yields 1098

$$1099 \mathbb{E}[R_k(\bar{\theta}_N) - R_k(\theta_k^*)] \leq C_b (1 - \beta) + C_v \frac{1}{(1 - \beta)} \frac{\sigma^2}{\mu N} + C_d \delta,$$

1100 which is Eq. equation 2. ■

1103 H.3 PROOF OF THEOREM 1 (ADDITIVE BOUND; COMPLEMENTARY KNOBS)

1104 Fix any past task $i < t$ and consider one training phase over task t . We compare the *slow* model 1105 before and after the phase. Let $\bar{\theta}^{\text{pre}}$ and $\bar{\theta}^{\text{post}}$ denote the slow (EMA) parameters at the start and end 1106 of the phase, and let $\theta_f^{\text{pre}}, \theta_f^{\text{post}}$ be the corresponding fast parameters at those times. 1107

1108 Decompose the change in R_i over the phase as 1109

$$1110 R_i(\bar{\theta}^{\text{post}}) - R_i(\bar{\theta}^{\text{pre}}) = \underbrace{R_i(\bar{\theta}^{\text{post}}) - R_i(\theta_f^{\text{post}})}_{\text{(A) fast} \rightarrow \text{slow (variance)}} \\ 1111 + \underbrace{R_i(\theta_f^{\text{post}}) - R_i(\theta_f^{\text{pre}})}_{\text{(B) fast drift over the phase}} \\ 1112 + \underbrace{R_i(\theta_f^{\text{pre}}) - R_i(\bar{\theta}^{\text{pre}})}_{\text{(C) slow} \rightarrow \text{fast (variance)}}.$$

1113 **Term (A)+(C): variance controlled by EMA.** By Lemma 2, both differences between fast and 1114 slow parameters can be bounded in expectation by the EMA bias/variance expression: 1115

$$1116 \mathbb{E}[(A) + (C)] \leq C_b(1 - \beta) + C_v \frac{1}{(1 - \beta)} \frac{\sigma^2}{\mu N} + C_d \delta.$$

1117 **Term (B): slow drift driven by mixed gradients and selection bias.** The fast drift over the phase 1118 is driven by SGD on J_t ; replacing the replay risk $\tilde{R}_{1:t-1}$ by the true past risk $R_{1:t-1}$ introduces a 1119 bias *per step* controlled by the IPM gap (Lemma 1): 1120

$$1121 |\tilde{R}_{1:t-1}(\theta) - R_{1:t-1}(\theta)| \leq D_{\mathcal{F}_{\text{loc}}}(P_{1:t-1}, q) \quad \text{for all } \theta \in \mathcal{N}.$$

1122 Standard stability arguments for SGD on L -smooth losses (e.g., Hardt et al., 2016) imply that 1123 replacing the objective by a uniformly ε -perturbed one perturbs the risk along the trajectory by at 1124 most a constant multiple of ε (over a finite number of steps in the local region). Thus 1125

$$1126 \mathbb{E}[(B)] \leq A \cdot D_{\mathcal{F}_{\text{loc}}}(P_{1:t-1}, q) + C_d \delta,$$

1127 for some A depending on L and the phase length. 1128

1134 **Summing over phases.** Summing (A)+(B)+(C) across all phases/tasks up to T and averaging over
 1135 *i* < T yields

$$1136 \quad \mathbb{E} \mathcal{F} \leq A D_{\mathcal{F}_{\text{loc}}}(P_{1:T-1}, q) + B(\beta) \frac{\sigma^2}{\mu N} + C \Delta_{\text{drift}},$$

1138 which is Eq. equation 3 with $B(\psi) \equiv B(\beta)$ for EMA. Since $m < \infty$ (finite memory) implies
 1139 $\inf_q D_{\mathcal{F}_{\text{loc}}}(P, q) > 0$ and $N < \infty$ with $\beta < 1$ implies $\frac{1}{(1-\beta)} \frac{\sigma^2}{\mu N} > 0$, neither addend can be
 1140 driven to zero by tuning the other; therefore the buffer policy (selection) and EMA (integration) are
 1141 complementary controls. ■

1142
 1143 **On surprise-based selection.** A general proof that sequence-level surprise *minimises* $D_{\mathcal{F}_{\text{loc}}}(P, q)$
 1144 at fixed memory would require extra structural assumptions on $\ell(\theta; \cdot)$ and the data distribution.
 1145 Instead, we motivate it via importance sampling (high-loss/high-gradient points reduce estimator
 1146 variance (Zhao & Zhang, 2015; Katharopoulos & Fleuret, 2018)) and validate empirically in our
 1147 main experiments.

1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187