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ABSTRACT

Continual learning, one’s ability to adapt to a sequence of tasks without forgetting
previously acquired knowledge, remains a major challenge in machine learning
and a key gap between artificial and human intelligence. While regularisation and
replay perform well in vision, they lag behind multi-task learning for large language
models (LLMs), especially at scale with many tasks. We revisit replay and argue
that two failure modes drive this gap: selection (what to rehearse) and integration
(how to consolidate new knowledge). To address selection, we propose Surprise-
prioritised Replay (SuRe), a simple, architecture-agnostic rule that ranks and stores
the most surprising (high Negative Log-Likelihood) sequences. SuRe achieves
state-of-the-art performance in the Large Number of Tasks (LNT) setting and
delivers the best overall average across both Standard CL and LNT benchmarks. To
address integration, we add a dual-learner design with fast and slow LoRA adapters
merged via an exponential moving average (EMA), enabling rapid adaptation
while stabilising long-term knowledge. Combining SuRe with the dual learner
yields further gains, including improvements of up to +5 accuracy points on LNT
over prior SOTA. Ablation studies confirm that our proposed method remains
robust under reduced replay frequency and small buffer size, demonstrating both
effectiveness and sample efficiency. Taken together, our results establish replay
as a strong baseline for continual LLM fine-tuning and demonstrate that surprise-
based selection and slow-weight consolidation are complementary components for
mitigating catastrophic forgetting.

1 INTRODUCTION

By nature, humans can easily learn new information and acquire new skills one at a time with few
examples, an ability which is often taken for granted but proves extremely difficult for machine
learning models. This problem framing, often referred to as continual or lifelong learning (CL),
has attracted increasing attention as model capabilities have advanced over the past decade. Early
research of CL in deep learning focused primarily on Vision and Reinforcement Learning (RL) tasks
(Kirkpatrick et al., 2017; Aljundi et al., 2018; Rolnick et al., 2019). Recently, the field has expanded
toward Natural Language Processing (NLP), motivated by the rapid rise of large language models
(LLMs).

While most machine learning models are static by design, a recent shift in paradigm, thanks to
advances in In-Context Learning, has shown a promising avenue for more adaptable models (Sun
et al., 2025; Zhang et al., 2025; Yang et al., 2025b). While allowing for more flexible models that
can leverage current context to NLP tasks, these advances remain limited by the effective size of the
context window. CL goes further when it comes to designing flexible models, as it not only requires
effective adaptation to new datasets (plasticity) but also effective retention of previously acquired
skills (stability). This plasticity-stability dilemma (Mermillod et al., 2013) is at the centre of CL, with
one of the main challenges being a lack of stability, leading to catastrophic forgetting (McCloskey &
Cohen, 1989; Ratcliff, 1990), performance on previously trained datasets drops as new tasks, domains
or classes are introduced. These three framings, referred to as Task-Incremental, Domain-Incremental
and Class-Incremental respectively (van de Ven et al., 2022), each come with their own challenge.
Often, because the label space expands over time while task identity is unavailable at test time, forcing
the model to distinguish among old and new classes without seeing them jointly, class-incremental is
considered to be the hardest setting (van de Ven & Tolias, 2019). This is especially the case when

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

dealing with large number of tasks, a setting where most methods rely on known task identity during
training, but still struggle to match the performance of Multi-Task Learning (MTL).

Here, we formalise catastrophic forgetting as the sum of two complementary sources of error: (i)
selection error from imperfect replay distribution estimates, and (ii) integration error from how new
knowledge updates are consolidated. We show these errors are additive and complementary, the
strongest methods against catastrophic forgetting should address both.

To explore this idea in practice, we first focus on replay, one of the simplest solutions to the selection
problem. We show that previous studies of LLM CL often underestimate replay’s performance and
effectiveness in the Class-Incremental scenario. In particular, prior comparisons often mix online,
task-agnostic replay with methods that assume known task boundaries (Wang et al., 2023; Qiao &
Mahdavi, 2024), potentially leading to lower performance and unfair comparison. We therefore
evaluate replay under the same assumption set (known boundaries), yielding a fairer comparison.
Notably, we find that under fair comparison, surprise-based selection outperforms random replay and
achieves state-of-the-art results in the LNT setting, while also providing the strongest overall average
performance across both Standard CL and LNT benchmarks. Finally, for integration error, we show
that a simple exponential moving average (EMA) approach, which stabilises the consolidation of new
representations, yields complementary improvements. This confirms our additive error hypothesis,
and combining SuRe with EMA further improves performance, particularly in the LNT setting,
achieving gains of up to +5 points over prior state-of-the-art.

Our contributions can be summarised as follows: (1) We formalise forgetting as the sum of selection
and integration errors, motivating complementary mechanisms for each. (2) We propose Surprise
prioritised Replay (SuRe) to improve sample selection efficiency. (3) We show that combining SuRe
with a simple integration mechanism (EMA), following the dual-learning framework (Pham et al.,
2021; Gao et al., 2023), yields strong overall performance, achieving SOTA in LNT and the best
average across both benchmarks, empirically confirming (1).

2 RELATED WORK

Three lines of research have emerged to approach catastrophic forgetting, replay, regularisation
and architecture. These were first developed in the vision and Reinforcement Learning literature
before being adapted to the modern architecture of Large Language Models (LLMs) and Vision
Language Models (VLMs). For the purpose of efficiency, we focus on replay and methods which
were introduced in the CL with LLM literature.

Replay Based Methods. Each replay method can be described by a few design choices: how is the
buffer updated, which samples should be replayed and when, and, are the rehearsed samples stored
or generated. Experience Replay (ER) (Rolnick et al., 2019; Chaudhry et al., 2019) is the simplest
and often the most effective approach. The buffer is updated via reservoir sampling (Vitter, 1985) so
that each incoming raw example has equal probability of being stored, and sequences are then drawn
uniformly at random. Many subsequent methods can be viewed as variants of ER. Isele & Cosgun
(2018) focused on Reinforcement Learning and compared different update rules, including keeping
the most surprising traces or those leading to the highest rewards. Their experiments showed that
reservoir performed best, which is aligned with Araujo et al. (2022) who repeated this comparison
in a CL with LLMs setting with surprise selection performing poorly in both instances. InfoRS
(Sun et al., 2022) went a step further by introducing a information theory based update rule. They
combined two rules, effectively keeping the most surprising and learnable samples. Here, a sample is
regarded as surprising with regard to the content of the current memory module, and is computed
as the posterior from a small Bayesian linear model. On the other hand, the learnability criteria is
used to discard outliers by computing how well the updated model predicts the point’s own label and
discarding poor predictions. Tackling another design choice, Maximally Interfered Retrieval (Aljundi
et al., 2019) keeps the update rule as a Reservoir and focuses instead on which samples to replay. For
each batch, they estimate which samples in the memory would face the highest increase in loss if the
model were to be trained on it. Replaying these selected samples thus acts as a stronger regulariser
for that specific gradient step. Finally, Generative Replay (Shin et al., 2017) and LAMOL (Sun et al.,
2019) both proposed approaches which generate samples from past distributions to avoid storing raw
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samples. While the methods that focused on improving the update and sampling rules are online and
did not require task identity during training, LAMOL requires it during training.

Parameter-Efficient Continual Learning. Given the compute and memory cost of fine-tuning
billion-parameter models, many NLP CL methods adopt parameter-efficient fine-tuning (PEFT). The
most common approach being LoRA (Hu et al., 2021), which adds trainable low-rank adapters to
attention/feedforward projections to approach full fine-tuning performance while updating only a
small fraction of parameters. This parameter efficient fine-tuning solution has thus been used as
the basis of many CL methods in the NLP literature. This is the case of O-LoRA (Wang et al.,
2023) which introduces new LoRA heads for each dataset and adds a penalty which guarantees
orthogonal solutions for each LoRA pairs. Learn More but Bother Less (Qiao & Mahdavi, 2024)
takes this idea further by initialising each PEFT module based on previous task, facilitating forward
transfer and avoiding interference. Taking a different approach to the problem of parameter efficient
CL, Progressive Prompts takes inspiration from prompt tuning models and learns a new prompt
embedding per task while leaving the base weights frozen. Lastly, recent works have investigated
how model merging could be used in the context of CL. This led to Hickok (2025) proposing to
use Exponential Moving Average (EMA) (Tarvainen & Valpola, 2017), along with other sequential
merging approaches, as ways to smoothly regularise the LLMs’ learning process.

3 METHODS

3.1 SELECTION–INTEGRATION DECOMPOSITION

We formalise forgetting as the sum of a selection mismatch term (how well replay approximates the
past distribution) and an integration term (variance/instability in how new updates are consolidated).
We work in the LoRA subspace under standard local assumptions (smoothness and PL near the
trajectory). Full proofs are deferred to Appendix §H.

Setup and notation. Tasks arrive 1, . . . , t. LetRk(θ) = Ez∼Pk
ℓ(θ; z) (where z is a single example

and ℓ the per-example loss, e.g., cross-entropy/sequence NLL), and let P1:t−1 = 1
t−1

∑
k<t Pk

be the uniform mixture of past tasks. A replay buffer induces a distribution q with replay risk
R̃1:t−1(θ) = Ez∼q ℓ(θ; z). Let Floc = {ℓ(θ; ·) : θ in a local neighbourhood} and let DFloc

be any
integral probability metric (IPM) over Floc (e.g., MMD). The slow model is a consolidated iterate
obtained by a stable averaging operator Aψ over fast iterates, e.g., an exponential moving average
(EMA) with rate β ∈ (0, 1). Forgetting F denotes any standard average forgetting metric (e.g.,
AP−FP or Chaudhry AF); our bound applies to such monotone summaries.

Lemma 1 (Selection mismatch via IPM) For all θ in the local region,∣∣R̃1:t−1(θ)−R1:t−1(θ)
∣∣ ≤ DFloc

(
P1:t−1, q

)
. (1)

Lemma 2 (EMA reduces integration variance) Let θ(n)fast be SGD iterates on the mixed objective
and θ(n)slow = β θ

(n−1)
slow + (1− β) θ(n)fast. Under local L-smoothness and a µ-PL condition, there exist

constants Cb, Cv, Cd > 0 such that for any past task k < t,

E
[
Rk(θ

(n)
slow)−Rk(θ

⋆
k)
]
≤ Cb(1− β) + Cv

1

(1− β)
σ2

µn
+ Cd δ, (2)

where σ2 is the SGD noise level and δ bounds drift between task optima.

Remark: Comparing the bounds for β = 0 (Single Learner) versus β → 1 (Slow Learner), we see
that a single learner has the variance term proportional to the raw SGD noise σ2. In contrast, the Slow
Learner scales the variance term by (1 − β), which, for β = 0.995, reduces the effective variance
contribution to the loss bound by a factor of approximately 200. This illustrates the advantage of the
slow averaging mechanism in controlling integration variance.
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Theorem 1 (Additive bound; complementary controls) Summing effects across tasks, the ex-
pected forgetting of the slow model satisfies, in a local region,

EF ≤ A ·DFloc

(
P1:T−1, q

)︸ ︷︷ ︸
selection (replay) term

+ B(ψ) · σ
2

µN︸ ︷︷ ︸
integration (consolidation) term

+ C∆drift︸ ︷︷ ︸
nonstationarity

, (3)

for constants A,B,C > 0 and total fast steps N . With finite memory and finite N , neither addend
can be driven to zero by tuning the other alone; thus replay (selection) and EMA (integration) provide
complementary benefits to continual learning.

Remark. Appendix §H proves Lemma 2 for EMA; other consolidation operators Aψ fit the same
bound by replacing the mechanism-specific factor B(ψ) accordingly (for EMA, B(ψ) ≡ B(β);
related examples include Polyak averaging, SWA, and model soups).

Selection Error (A · DFloc
): This term quantifies the mismatch between the replay buffer distri-

bution q and the true past task distribution P1:T−1. Uniform sampling (reservoir) treats all past
samples as equally important for representing the loss landscape. In high-dimensional LLMs, this is
inefficient—most samples lie in flat, well-learned regions with low gradient norms.

Integration Error (B(ψ) · σ2/(µN)): This term captures the instability introduced by stochastic
gradient noise when learning new tasks. The fast learner performs SGD on small batches with noise
variance σ2. This high-variance trajectory leads to ”plasticity” that overwrites old knowledge—the
core of catastrophic forgetting. B(ψ) quantifies the variance-reduction factor of the consolidation
operator.

As a design implication of the above, any buffer policy that lowers DFloc
(P, q) tightens the selection

term; any consolidation that lowers the variance factor B(ψ) tightens the integration term (for EMA,
B(ψ) ≡ B(β)). In §3.2–§3.3 we instantiate these with a simple surprise-based replay policy and
EMA dual adapters.

3.2 SURPRISE REPLAY

Following these theoretical motivations, we introduce a new update rule for replay algorithms and
combine it with a dual set of learners which are merged via EMA. The overall proposed method is
shown in Figure 1 and the pseudocode is provided in Algorithm 1.

During each training step End of each training step

Surprising sequences

Additional sequences

Surprise 
Buffer

One dataset 
at a time

Inference

DBPedi AG News Amazon Yahoo

DBPedi AG News Amazon

EMA

Figure 1: 1. During training the base and slow LoRA weights are frozen, while the fast LoRA is
updated on current samples plus replayed examples from the surprise buffer. The buffer is updated to
retain the most surprising samples per task. 2. After each step, the fast and slow LoRA weights are
merged via an exponential moving average. 3. At inference, only the base model and the slow learner
are used for prediction.
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Currently, the standard approach in the literature for a replay algorithm is reservoir sampling (Vitter,
1985; Rolnick et al., 2019; Chaudhry et al., 2019), which maintains a representative subset of samples
by giving each sample equal probability of being retained. These simple yet effective methods have
been shown to be the most appropriate in many cases, often outperforming more complex alternatives.

However, memory consolidation in the brain is known to be non-uniform, and replay to be selective.
In particular, surprise has been shown to be a key driver of memory retention and replay (Momennejad
et al., 2018; Jang et al., 2019; Lindsey & Litwin-Kumar, 2024). Such findings suggest that surprising
events are likely harder to learn and more susceptible to forgetting, and thus are more valuable for
selective memory consolidation. Similar intuitions have proven effective in reinforcement learning
through prioritised replay (Peng & Williams, 1993; Moore & Atkeson, 1993; Schaul et al., 2016)
and surprise-based episodic memory (Zakharov et al., 2021; Coda-Forno et al., 2024), as well as in
organising episodic memory structures in LLMs (Fountas et al., 2025; Behrouz et al., 2024).

Building on these insights, we hypothesise that replaying the most surprising sequences when training
a model in CL settings provides three benefits. First, it directs computation on the sequences that lead
to large prediction errors, occur infrequently (and thus are underrepresented), or sit at task boundaries
where interference is highest. This gives the model more chances to properly learn these high-loss,
easy-to-forget examples. Second, it preserves efficiency by enabling lower replay frequencies without
sacrificing performance, since the retained samples act as a compact but representative regulariser of
past tasks. Finally, by prioritising high-NLL samples, SuRe performs implicit importance sampling.
High-NLL sequences have large ∥∇ℓ(θ; z)∥, meaning they contribute disproportionately to the true
gradient EP [∇ℓ]. Storing these samples ensures the buffer approximates the gradient geometry of
past tasks, not just the data frequency. This directly reduces DFloc

(P, q), tightening the selection
term in Equation 3.

Thus, we propose to replace uniform buffer updates with surprise-based replay, where storage
decisions are guided by the Bayesian surprise of each input sequence. For a given input xi with
tokenised sequence zi = (zi,1, ..., zi,Ti), surprise is measured as the negative log-likelihood under
the model:

sθ(zi) = −
1

T

Ti∑
t=1

log pθ(zi,t | zi<t, xi) (4)

Following Rolnick et al. (2019) we set our buffer size to 2% of the overall dataset size. We allocate
an equal per-task quota which depends on the number of tasks currently in the buffer, irrespective of
dataset size per task. Thus, after training on d datasets, each task has m(d)

i = [S/d] samples in the
buffer, with S as our buffer size. In practice, surprise-based replay is architecture-agnostic and can be
applied in any continual learning setting or modality (e.g., vision, speech, video, text). In the context
of LLMs, it is particularly effective when combined with parameter-efficient fine-tuning methods
such as LoRA, further reducing computational cost.

3.3 DUAL LEARNERS

Replay can easily be combined with other approaches. Here we decided to focus on a dual learner
architecture (Pham et al., 2021; Ran et al., 2025) with exponential moving average in line with Gao
et al. (2023); Hickok (2025). At the start of training we freeze the base model and, for each attention
layer’s WQ and WV , attach two LoRA adapters: a fast head and a slow head. Each head is a low-rank
pair (A, B), we initialise A randomly and set B = 0 following Hu et al. (2021). Before training
on dataset Di, we compute the surprise (Eq. 4) for each sequence x ∈ Di and insert the mi most
surprising sequences into a replay buffer M . The fast adapters are then updated by minimising the
cross-entropy on the union batch Bt ⊂ Di ∪M while the slow adapters are not directly optimised
but updated via an exponential moving average (EMA),

θslowt ← βθslowt−1 + (1− β)θfastt , β ∈ (0, 1). (5)

Equation 5 can be rewritten as θslowt = (1− β)
∑t
k=0 β

kθfastt−k . That is, the slow parameters are a
geometrically weighted ensemble of recent fast iterates with effective window length ≈ 1/(1− β)
Equivalently, θslowt is the unique minimiser of the exponentially weighted least-squares fit to the
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history of fast parameters:

θslowt = argmin
θ

t∑
k=0

βt−k∥θ − θfastk ∥22 (6)

so the slow learner implements a low-pass filter on parameter trajectories, reducing iterate variance
while introducing a controllable tracking lag. In the non-stationary setting introduced by task sequence
Di and replay M , this two timescale design lets the fast adapters adapt rapidly to Di, while the
slow adapters aggregate only changes that persist across many steps, thereby mitigating catastrophic
forgetting. In our bound, B(β) = 1

1−β appears as a coefficient, larger β (e.g., 0.995) means stronger
averaging, reducing the effective noise and tightening the integration term in Equation 3.

Algorithm 1 Dual-LoRA with Surprise Replay
1: Input data stream D, memory B (cap Bmax), replay interval k, EMA rate β
2: Initialise θfast, θslow (LoRA on Q,V, random init)
3: for t ∈ {1, . . . , T} do
4: Select top-p surprising samples C from Dt (NLL under θfast)
5: for s ∈ training steps on Dt do
6: Sample batch Bcur ⊂ Dt (|Bcur| = 64)
7: if s mod k = 0 then
8: Sample Brep ⊂ B (|Brep| = 32)
9: Bmix ← Bcur ∪ Brep

10: else
11: Bmix ← Bcur
12: end if
13: LCE ← cross-entropy(M⊕ θfast,Bmix)
14: θfast ← θfast − η∇LCE
15: θslow ← βθslow + (1− β)θfast

16: end for
17: B ← UpdateBuffer(B, C, Bmax)
18: end for

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Standard CL Benchmark. We first evaluate our methods on the Standard CL Benchmark, one of
the most widely used setups for CL evaluation of LLMs (Qin & Joty, 2022). This benchmark is
composed of four text classification datasets: AG News, Amazon Reviews, DBpedia, and Yahoo
Answers, which were all introduced by Zhang et al. (2016). Following (Wang et al., 2023), we
randomly select 5,000 training samples and 500 test sequences.

Large Number of Tasks. To assess performance in a more challenging and long term scenario, we
further extend the benchmark by adding 11 additional datasets, following Razdaibiedina et al. (2023);
Wang et al. (2023); Qiao & Mahdavi (2024). These datasets are: MNLI, QQP, RTE and SST-2 from
Wang et al. (2019) as well as WiC, CB, COPA, BoolQ, MultiRC and IMDB from Wang et al. (2020).
In line with prior work (Razdaibiedina et al., 2023; Wang et al., 2023; Qiao & Mahdavi, 2024) we
randomly sample 1,000 training examples and 500 test samples from each dataset.

Metrics. In order to measure and compare the performance of each approach, we report the final
performance. This measures the average performance across all tasks after training on the final task.
It primarily reflects stability, that is how well the model retains knowledge at the end of training. Let
N be the total numbers of tasks, and let aNTj

denote the accuracy on task Tj evaluated after training

the model on task N . Then: FP = 1
N

∑N
j=1 a

N
Tj
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Baselines. For an effective evaluation of the introduced methods we picked a number of baselines
which are either regarded as standard approaches in the field or are recent state-of-the-art approaches
on either of the benchmarks we are evaluating our method against.

• Multi-Task Learning (MTL) (Caruana, 1997): jointly trains the model on all datasets at once,
allowing optimal sharing of representations and transfer across tasks. This is not per se a CL
method but it is often regarded as the upper bound of CL performance.

• EWC (Kirkpatrick et al., 2017): estimates parameters importance using the Fisher Information
Matrix and constrains important parameters from drifting too far when learning new tasks.

• Experience Replay (Rolnick et al., 2019; Chaudhry et al., 2019): retains 2% samples from each
datasets which are then replayed when fine-tuning the model on a new training set.

• Leitner Replay (M’hamdi & May, 2024): selects replay samples using a dynamic Leitner-style
skill rating system that prioritises examples based on how well the model has learned them.

• AimMerging (Feng et al., 2025): adaptively merges intermediate models by tracking parameter-
change signals and replay-based forgetting signals, using stored past data to trigger merges when
historical loss rises.

• O-LoRA Wang et al. (2023): introduce a new set of LoRAs for each dataset, these adapters are
then trained on the current dataset with an orthogonal constraint before being merged into the
main model.

• LB-CL(Qiao & Mahdavi, 2024): trains low rank adapters using singular value decomposition. The
low rank parameters are initialised using a sensitivity score enabling forward transfer. Additionally,
they project gradients from the new tasks into orthogonal subspaces to avoid interference.

• N-LoRA (Yang et al., 2024): encourages extremely sparse, non-colliding low-rank updates so
each task occupies its own parameter subspace, reducing interference during continual learning.

• O-LieRA(Cao & Wu, 2025): applies orthogonal low-rank updates within a Lie-group multiplica-
tive framework to preserve parameter geometry while preventing task-to-task interference.

• Mixture-of-Rank Adaptation (MoRA) (Lu et al., 2025): decomposes low-rank adapter into rank-1
components and treats them as independent experts. A self-activated sparse gating mechanism
then selects only a small, input dependent subset of these ranks during training and inference.

• Progressive Prompts (Razdaibiedina et al., 2023): learns a soft-prompt per task instead of
finetuning LoRA parameters, updating fewer than 0.1% of model parameters.

4.2 MAIN RESULTS

The main results of our experiments are summarised in Table 1. First, we find that replay based
methods perform better than is often acknowledged in the literature. Even with a simple reservoir
sampling strategy, and having a 1:2 replay ratio, this method achieves competitive performance
across both benchmarks, consistently outperforming regularisation based methods such as EWC and
O-LoRA. This suggests that replay remains a highly effective and reliable baseline for CL in LLMs,
and requires further investigation. Secondly, we can observe that our proposed Surprise Replay
strategy consistently improved the rehearsal performance. The benefits are particularly strong in
the LNT setting, where task diversity and limited per-task data accentuate catastrophic forgetting.
Here, Surprise Replay significantly improves over uniform replay, highlighting the relevance of
selective memory updating in more realistic CL scenarios. Third, our results show that the Dual
Learner architecture further enhances performance. While a dual learner with vanilla replay is
already competitive, the Surprise Dual Learner improves by over 5 percentage points compared to
the previous state of the art method. This clearly narrows down the gap to the Multi-Task Learning
upper bound and motivates further work in that direction.

To further compare our proposed methods with recent approaches, we followed the hyperparameter
settings reported in Cao & Wu (2025) and present the results in Table 11. Since no batch size
was specified, we follow common practice, report results using a batch size of 64 in Table 11 and
include a more complete table in the in the Appendix B.1. Our methods consistently outperform prior
approaches across all batch configurations, demonstrating robustness of our selection–integration
approach. Finally, looking at measures of forgetting (Table 9), we find that Slow Replay maintains
strong stability with negative forgetting, while the surprise replay was already facing reduced
forgetting compared to it’s random counterpart.
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Standard CL Benchmark Large Number of Tasks
Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg

SeqFT⋄ 18.9 24.9 41.7 28.5 7.4 7.3 7.4 7.4
SeqLoRA⋄ 39.5 31.9 46.6 39.3 4.9 3.5 4.2 4.2
EWC⋄ 46.3 45.3 52.1 47.9 44.9 44.0 45.4 44.8
O-LoRA⋄ 74.9 75.3 75.9 75.4 70.0 65.5 70.5 68.8
LB-CL⋄ 76.9 76.5 76.8 76.7 68.4 67.3 71.8 69.2
Reservoir Replay 76.8 77.7 76.5 76.9 69.6 69.4 68.3 69.1
MoRA♦ 77.4 77.5 77.9 77.6 68.9 68.3 72.0∗ 69.7
Surprise Replay 77.0 78.1∗ 76.4 77.2 72.8 72.1∗ 71.6 72.1
Slow Reservoir Replay 78.0∗ 78.0 77.3∗ 77.8∗ 74.0∗ 71.9 71.6 72.5∗

Slow Surprise Replay 78.8 78.5 76.9 78.1 75.6 74.8 75.0 75.1
ProgPrompt⋄ 76.1 76.0 76.3 76.1 78.7 78.8 77.8 78.4
PerTaskFT⋄ 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL⋄ 80.0 80.0 80.0 80.0 76.3 76.3 76.3 76.3

Table 1: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for
different baselines on T5. ⋄ and ♦ indicate results taken from Qiao & Mahdavi (2024) and Lu et al.
(2025) respectively Bold indicates the best results and ∗ is for the second best.

Standard CL Benchmark Large Number of Tasks All
Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg avg

N-LoRA⋄ 79.2∗ 78.4∗ 78.8∗ 78.8∗ 73.6 70.3 73.2 72.4 75.6
OLieRA⋄ 79.9 79.5 79.5 79.6 73.8 70.4 73.5 72.6 76.1
AimMerging 71.2 72.4 70.9 71.5 74.1 73.5 73.7 73.7 72.6
Leitner Replay 74.0 73.8 72.0 73.3 75.1 74.8 76.9 75.6 74.5
Surprise Replay 78.4 77.0 75.8 77.1 77.6∗ 76.2∗ 78.0∗ 77.3∗ 77.2
Slow Surprise Replay 78.8 77.9 77.6 78.1 78.0 77.0 78.8 77.9 78.0

Table 2: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for
different baselines on T5. Here the hyperparameters used are the ones reported by Cao & Wu (2025).
⋄ indicate the results were taken from Cao & Wu (2025).

4.3 ABLATION STUDIES

Having established that Surprise Replay and the Surprise Dual Learner achieve state-of-the-art perfor-
mance compared to strong baselines, we next examine which design choice drive these improvements.
We compare computing surprise on labels versus full sequences, analyse the effect of when surprise
is computed and when the buffer is updated, explore dynamic updates of surprise values during
replay and finally benchmark our approach against classical replay methods such as Reservoir and
Gradient-Based Sample Selection. Our results are summarised in Table 3.

Surprise on Labels vs. Full Sequences. Results show that label level surprise performs poorly on
both benchmarks (64.9% on the Standard CL Benchmark and 61.2% on the LNT setting), indicating
that this signal is too weak to guide selective replay effectively. As labels are only one or a few
words, it is most likely that only the most surprising classes will be kept in the buffer leading to
a massive imbalance when later replaying some sequences. On the other hand, some classes, not
necessarily well classified ones, might never enter the buffer and will largely degrade performance on
downstream task.

When to Compute Surprise and When to Update the Buffer. Here, our results suggest that the
choice of when to update the buffer had a stronger effect than the timing of surprise computation.
Indeed, both Surprise Before-Update After and Surprise After achieved significant gains compared to
performing both actions before training on each dataset. Adding samples to the buffer after training
potentially improves the regularisation by ensuring that previous tasks are replayed more often. On
the other side, updating the buffer before training will lead the model to focus more on the current
task while decreasing the amount of natural regularisation introduced by the replayed samples. This
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difference illustrates the plasticity-stability dilemma where earlier updates favour adaptation while
later updates favour retention.

Updating Surprise During Replay. We also considered a variant where surprise values are updated
each time a sample is replayed, mimicking an aging mechanism where replaying a sample decreases
its surprise, making it more likely to be replaced. This Surprise with Updates achieved good results
(74.7% and 71.4% on the two benchmarks), but led to a decrease in performance compared to the
vanilla before/after variants, suggesting that dynamic surprise is not necessary in this specific setting.

Standard CL Benchmark Large Number of Tasks
Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg

Label Surprise 68.5 66.0 60.1 64.9 60.9 61.2 61.5 61.2
Surprise with updates 74.8 75.1 74.3 74.7 74.0 70.5 69.8 71.4
Surprise Before Update After 78.2 74.4 73.8 75.5 73.8 74.3 70.9 73.0∗
Surprise Before Update Before 77.0∗ 78.1 76.4∗ 77.2 72.8 72.1 71.6∗ 72.1
Surprise After 76.0 76.7∗ 76.7 76.5∗ 73.3∗ 73.0∗ 73.1 73.1
MTL 80.0 80.0 80.0 80.0 76.3 76.3 76.3 76.3

Table 3: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for
different replay variants using T5 as a base model. Bold indicates the best results and ∗ is for the
second best.

Random Buffer Update After. For a fair comparison, we evaluated our task-boundary aware
Surprise Buffer against a baseline buffer that randomly selects an equal of samples per datasets,
and appends them at the end of each task. We ran experiments across a wide range of buffer sizes
and replay ratios which are summarised in Table 5 and 10. The results support our hypothesis
that not using task identity during training harms the reservoir buffer’s performance, likely due to
class imbalance. Even with these additional controls, our surprise-based update rule consistently
outperformed the baselines across all replay ratios. Moreover, the gains from EMA and dual LoRA
heads were robustly observed in every scenario we tested.

Buffer Size. We also study how replay performance is impacted by the buffer size. The results
summarised in Table 10 show that our Surprise Replay generally outperforms its random or reservoir
alternative, with the gap increasing with the size of the buffers. The best results are obtained with
the Slow Surprise After (Slow-SA) at 1500 samples (75.99%), and performance tends to improve as
the buffer grows for all replay variants. While the smallest surprise buffer achieved state-of-the-art
results, it does not always beat the random baseline. On the other hand, moderate sizes, 300 and 500,
already capture most of the gains.

Buffer Size Random-O Leitner-A Random-A Surprise-B Surprise-A Slow-RA Slow-SA

150 samples 69.82 71.50 71.54 71.37 72.33∗ 72.50 72.13
300 samples 70.60 71.77 72.26 73.23 73.00 73.76∗ 74.56
500 samples 69.10 71.00 72.41 72.13 73.10 73.89∗ 75.01
1500 samples 70.70 71.58 73.04 73.66 74.58∗ 73.96 75.99

Table 4: Final accuracy (%) for replay variants across buffer sizes on the LNT benchmark. Means
over 3 runs × 3 task orders, replay ratio = 1:4. O, B and A indicate that the buffers are respectively
updated Online, Before or After. We either add the most surprising (S) or random (R) samples.

Replay Ratio Finally, we fix the buffer size to 500 and vary the replay ratio, that is the number of
replayed sequences per newly seen samples, from 1:2 to 1:16 (one replayed samples for every 2 or
16 new samples). As shown in Table 5, the accuracy for all methods decreases as less past samples
are replayed. Here, the surprise based variants consistently outperform the random baselines, and
we observe the same trend with the slow approaches. For example, at 1:2 the gains are +0.87 for
the Surprise-After (Surprise-A) and +1.33 for the Slow-Surprise After (Slow-SA) compared to their
random equivalent. This gap increases as the ratio is reduced, with the Surprise Before performing
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best at 1:16 among the methods without EMA, and the Slow-SA outperforming the Slow Random
(Slow-R) by +2.48% points. This suggests that the surprise update rule is more robust under smaller
replay budgets.

Replay Ratio Random-O Leitner-A Random-A Surprise-B Surprise-A Slow-RA Slow-SA

1:2 70.96 73.40 73.35 73.63 74.22 74.79∗ 76.12
1:4 70.60 71.00 72.26 73.23 73.00 73.76∗ 75.01
1:8 70.33 68.57 69.10 70.11 70.70 71.00∗ 72.69
1:16 66.25 65.86 66.62 68.38∗ 68.36 68.34 69.42

Table 5: Final accuracy (%) for replay variants across replay ratios on the LNT benchmark. Means
over 3 runs × 3 task orders, buffer size = 500. O, B and A indicate that the buffers are respectively
updated Online, Before or After. We either add the most surprising (S) or random (R) samples.

5 DISCUSSION

While our method achieves strong performance, particularly on large numbers of tasks, several
limitations remain. Most significantly, our approach requires known task boundaries during training,
constraining applicability to well-controlled environments, though this assumption is shared by most
existing methods. Additionally, computing surprise requires an extra forward pass across datasets.
Adapting our approach to fully online settings, similar to GSS and Reservoir, would address both
limitations and represent a promising future direction. Further evaluation across foundation model
families, e.g. LLMs like Llama (Grattafiori et al., 2024), Qwen (Yang et al., 2025a), or new modalities,
Vision, Vision-Language Models, as well as settings like continual pre-training, would strengthen our
findings; preliminary CPT experiments (Table 8) already show that Slow Surprise achieves the best
average perplexity across domains on a small set of datasets. Finally, our dual-learner architecture
shows promise and merits deeper investigation of alternative designs and training objectives.

Neuroscience and Consolidation. The selection–integration view mirrors core ideas in memory
neuroscience. Surprise-driven selection aligns with evidence that event boundaries and prediction
errors structure episodic encoding and hippocampal responses (Baldassano et al., 2017; Fountas et al.,
2022; Mariola et al., 2022). In language, recent work shows that model- or behaviour-derived surprise
segments narratives in ways that track human reports and neural data (Michelmann et al., 2025;
Fountas et al., 2025; Benfeghoul et al., 2025). Replay is likewise thought to prioritise behaviourally
valuable/surprising content, consistent with normative accounts of prioritised access and empirical
biases in hippocampal replay (Mattar & Daw, 2018; Ambrose et al., 2016). Finally, EMA-style slow
updates map onto complementary learning systems and multi-timescale synaptic consolidation, where
fast traces are gradually integrated into stable representations (McClelland et al., 1995; Benna &
Fusi, 2016). This mapping suggests concrete predictions: prioritising high-surprise sequences should
preferentially protect boundary-adjacent knowledge under tight replay budgets, while removing EMA
should selectively increase cross-task interference.

6 CONCLUSION

In this work, we revisited replay, a classical approach to catastrophic forgetting, and showed that its
performance has been largely underestimated in the LLM CL literature. We then introduced SuRe,
a surprise-based buffer update that selectively retains the most surprising samples, achieving state-
of-the-art results in the Large Number of Tasks benchmark and delivering the best overall average
performance across both Standard CL and LNT settings, with strong robustness under reduced buffer
sizes and replay ratios. Our selection–integration framework explains these gains as complementary:
coupling SuRe with a dual fast–slow LoRA architecture and exponential moving average (EMA)
yields further improvements, including gains of up to +5 percentage points on LNT over prior work.
These findings establish replay as a competitive and scalable baseline for continual LLM fine-tuning
and highlight that jointly addressing selection and integration errors is key to mitigating catastrophic
forgetting in a large number of task setting.
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7 REPRODUCIBILITY STATEMENT

In an effort to make our work reproducible we include experimental details across section 4, an
implementation details section in Appendix G as well as a proof section H to derive our claims. All
the datasets we use are publicly available, either on HuggingFace or on GitHub and we are working
on releasing our own public version of our codebase including all mentioned methods and ablations.

8 USE OF LARGE LANGUAGE MODELS

We use LLMs only for minor wording and syntactic improvement within the main text and appendices.
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A ADDITIONAL FIGURES

Figure 2: Naive sequential fine-tuning (SeqFT) with T5-Large on the Large Number of Tasks (LNT)
benchmark.

Figure 3: Reservoir Buffer replay with T5-Large on sequential tasks. Heatmap shows test task (x-axis)
evaluated after each training task (y-axis).
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Figure 4: Surprise Buffer replay with T5-Large on sequential tasks. Same visualisation as Figure 3.

B EXTENDED EXPERIMENTS

B.1 MAIN RESULTS

Standard CL Benchmark Large Number of Tasks All
Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg avg

N-LoRA⋄ 79.2∗ 78.4 78.8∗ 78.8∗ 73.6 70.3 73.2 72.4 75.6
OLieRA⋄ 79.9 79.5 79.5 79.6 73.8 70.4 73.5 72.6 76.1
Batch 64

AimMerging 71.2 72.4 70.9 71.5 74.1 73.5 73.7 73.7 72.6
Surprise Replay 78.4 77.0 75.8 77.1 77.6∗ 76.2 78.0∗ 77.3∗ 77.2
Slow Surprise Replay 78.8 77.9 77.6 78.1 78.0 77.0 78.8 77.9 78.0

Batch 8
AimMerging 69.5 70.6 69.2 69.8 75.9 74.5 75.9 75.4 72.6
Surprise Replay 77.9 77.9 77.1 77.7 75.8 74.3 75.4 75.2 76.5
Slow Surprise Replay 78.5 78.5∗ 78.0 78.3 77.0 76.8∗ 77.3 77.0 77.7∗

Table 6: Final accuracy (%) on the Standard CL and the Large Number of Tasks Benchmarks for
different baselines on T5. Here the hyperparameters used are the ones reported by Cao & Wu (2025).
⋄ indicate the results were taken from Cao & Wu (2025).

B.2 LLAMA 3.1 8B

Following Liao et al. (2025), we replicate our main setup with Llama 3.1 8B. Due to compute limits,
we report only orders 1 and 4 (averaged over three runs); see Table 7. Results are preliminary but
indicate that the Slow Surprise again performs strongly.

B.3 CONTINUAL PRE-TRAINING (CPT) SETTING

We also explore Continual Pre-Training, where the model is updated via next-token prediction (no
explicit labels). We select five domains from M2D2 (Reid et al., 2022), following Çağatay Yıldız
et al. (2025), and report perplexity before/after various methods in Table 8. Lower is better. Our Dual
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Method Standard CL Benchmark LNT

Before FT 1.00 1.00
SeqFT 23.00 22.86
Replay 65.75 50.53
Slow Replay 73.00∗ 48.06
Surprise Replay 72.25 68.53
Slow Surprise 76.00 67.00∗

Individual FT 75.25 72.56
MTL 76.00 69.06

Table 7: Final accuracy (%) for Llama 3.1 8B across orders 1 and 4 (3 runs each).

Learner with Surprise Replay achieves the best average (11.63), outperforming MTL (12.01). This is
a theoretical probe, downstream accuracy is not evaluated here.

Method Biology Chemistry Physical Science Maths Philosophy Avg.

Without FT 25.612 28.735 25.177 23.052 22.523 25.020
SeqFT 32.96 33.10 24.84 15.80 12.00 23.12
Surprise Replay 13.79 20.30 17.53 13.62 13.36 15.72
Random Replay 12.69 21.42 15.82 13.89 14.47 15.66
Slow Surprise 10.98∗ 15.47∗ 10.74 8.76 12.21∗ 11.63
MTL 9.07 13.92 11.82∗ 11.60∗ 13.63 12.01∗

Table 8: Perplexity across M2D2 domains for CPT. Lower is better.

C MEASURING FORGETTING

We report final performance (FP), average performance (AP), and forgetting (lower is better; negative
implies improvement on earlier tasks) in Table 9. The Slow Replay exhibits strong stability with
negative forgetting on both benchmarks. Updating the buffer after training generally increases
stability, while updating before increases plasticity.

Standard CL Benchmark Large Number of Tasks
AP ↑ FP ↑ Forget ↓ FP ↑ AP ↑ Forget ↓

Replay 80.83 76.92 3.91 72.93 69.1 3.83
Surprise Before 78.20 77.20 1.00 74.80 72.10 2.70
Slow Surprise 75.80 78.10 -2.30 70.30 75.10 -4.80
Surprise Before, Update After 75.00 75.20 -0.20 73.40 73.00 0.40
Slow SB-UA 77.00 77.10 -0.10 70.10 75.00 -4.90

Table 9: FP/AP/Forgetting on Standard CL and LNT benchmarks.

D ABLATION ON β

The parameter β controls the integration rate of the fast weights into the slow weights (i.e. the
consolidation rate of the EMA). It is thus a crucial parameter when it comes to the dual learner
architecture. Our ablation suggest that too low of an integration leads to very poor performance
(0.999) while lower the value (higher integration of the slow weights) leads to a less significant
decrease in performance.
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β values Slow Random Slow SB-UB Slow SB-UA

0.985 72.10 75.62 75.36∗
0.99 72.44 75.47 75.45∗
0.995 73.03 75.80 75.68∗
0.999 56.86 58.06 57.74∗

Table 10: Final accuracy (%) for slow replay variants across β values on the LNT benchmark. Means
over 3 runs × 3 task orders, replay ratio = 1:2. O, B and A indicate that the buffers are updated Online,
Before and After respectively. We either add the most surprising or random samples.

E SUM OF SURPRISE VS AVERAGE SURPRISE

Our main method relies on the average surprise per sequence to identify the most surprising labels.
Here, we compare this approach with one that uses the full sequence’s surprise. Our experiments
indicate that the average surprise is a better indicator of importance for the replay selection.

Large Number of Tasks
Order-4 Order-5 Order-6 avg

Sum Surprise 72.82 72.66 73.03 72.84
Average Surprise 75.14 74.5 73.03 74.22
Slow Sum Surprise 75.40∗ 75.78∗ 75.80∗ 75.66∗

Slow Avg Surprise 76.16 76.25 75.96 76.12

Table 11: Final accuracy (%) on the Large Number of Tasks Benchmarks for different surprise
variants.

F SURPRISE VARIANTS

We study alternative surprise computations and buffer update schedules and their trade-offs in
compute, stability, and performance.

F.1 LABEL-LEVEL SURPRISE

Instead of sequence-level surprise, compute surprise on the task label only:

scorei = − log pθpre(yi | xi) , R = TopK
(
{(i, scorei)}i∈D

)
, (7)

where xi is the input, yi the label, θpre the pre-training parameters, and R the retained set.

F.2 TIMING OF SURPRISE AND BUFFER UPDATES

We vary both when surprise is computed and when the buffer is updated—before vs. after training
on a dataset—yielding three variants: SB-UB (Before/Before), SB-UA (Before/After), and SA-UA
(After/After). For a sequence zi:

scorei =
{
Sθpre(zi), if computed before training,
Sθpost(zi), if computed after training,

(8)

with Sθ(·) the sequence-level surprise under parameters θ.

F.3 SURPRISE UPDATES DURING REPLAY

We also recompute surprise at each replay step to mimic aging:

score(t+1)
i = Sθ(t)(zi), with score(t+1)

i ≤ score(t)i as training progresses. (9)
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G IMPLEMENTATION DETAILS

Hyperparameters follow Wang et al. (2023) unless noted: learning rate 1e−3 (T5-Large) and 1e−4
(Llama 3.1 8B); batch size 64; replay frequency 1/2 (every other gradient step); one epoch; dropout
0.1; LoRA rank 8 and α = 32; LoRA adapters on Q and V projections in all attention layers.

H PROOFS AND TECHNICAL DETAILS

We restate our local assumptions in the LoRA parameter subspace (base weights frozen):

(A1) Local smoothness/PL: Each task risk Rk(θ) = Ez∼Pk
ℓ(θ; z) is L-smooth and satisfies a

local µ-PL inequality on the trajectory neighborhood N : for some µ > 0, 1
2∥∇Rk(θ)∥

2 ≥
µ
(
Rk(θ)−Rk(θ⋆k)

)
for all θ ∈ N . Per-example gradients are bounded: ∥∇θℓ(θ; z)∥ ≤ G.

(A2) Stochastic optimisation: The fast learner performs SGD on Jt(θ) = (1 − α)Rt(θ) +

α R̃1:t−1(θ) with step η ≤ 1/L: θ(n+1)
f = θ

(n)
f − η g(n), where E[g(n) | θ(n)f ] = ∇Jt(θ(n)f )

and E∥g(n)−∇Jt(θ(n)f )∥2 ≤ σ2. The slow learner is EMA: θ(n+1)
s = βθ

(n)
s +(1−β)θ(n+1)

f ,
β ∈ (0, 1).

(A3) Task drift: ∥θ⋆k+1 − θ⋆k∥ ≤ δ.

We use standard facts about SGD stability and Polyak–Ruppert averaging (Polyak & Juditsky, 1992;
Konda & Tsitsiklis, 2004; Borkar, 2008; Hardt et al., 2016) and integral probability metrics (IPMs;
MMD is a special case) (Gretton et al., 2012).

Remark. In the main text we allow a generic consolidation operator Aψ. In this appendix we
instantiate Aψ as EMA with parameter ψ ≡ β, hence bounds are stated with B(β); this corresponds
to B(ψ) in Theorem 1.

H.1 PROOF OF LEMMA 1 (SELECTION MISMATCH VIA IPM)

Recall P1:t−1 = 1
t−1

∑
k<t Pk, R̃1:t−1(θ) = Ez∼qℓ(θ; z) and R1:t−1(θ) = Ez∼P1:t−1ℓ(θ; z). Let

Floc = {ℓ(θ; ·) : θ ∈ N} be the set of per-example losses reachable along the local trajectory. An
integral probability metric DFloc is defined by

DFloc(P,Q) = sup
f∈Floc

∣∣∣EP f − EQf
∣∣∣.

For any fixed θ ∈ N , take fθ(·) = ℓ(θ; ·) ∈ Floc. Then∣∣R̃1:t−1(θ)−R1:t−1(θ)
∣∣ = ∣∣∣Ez∼qℓ(θ; z)− Ez∼P1:t−1

ℓ(θ; z)
∣∣∣ ≤ DFloc

(
P1:t−1, q

)
.

This is exactly Eq. equation 1. ■

Remark (MMD instance). If DFloc is the RKHS IPM (MMD) for a kernel k, then for any function
class embedded in that RKHS one gets

∣∣R̃ − R∣∣ ≤ ∥ℓ(θ; ·)∥H ·MMDk(P1:t−1, q). We keep the
abstract IPM to avoid extra regularity assumptions on ℓ(θ; ·).

H.2 PROOF OF LEMMA 2 (EMA REDUCES INTEGRATION VARIANCE)

We analyse the EMA of fast SGD iterates on Jt in a local basin containing a unique PL stationary
point θ⋆. Define the fast error e(n) = θ

(n)
f − θ⋆ and the slow (EMA) average

θ̄N := (1− β)
N∑
n=1

βN−n θ
(n)
f , ēN := θ̄N − θ⋆ = (1− β)

N∑
n=1

βN−ne(n).

Step 1: linearised SA recursion. By L-smoothness and PL near θ⋆, the fast recursion linearises to
e(n+1) = (I − ηH) e(n) + η ξ(n),

whereH :=
∫ 1

0
∇2Jt

(
θ⋆+s(θ

(n)
f −θ⋆)

)
ds satisfiesH ⪰ µI and ∥I−ηH∥ ≤ (1−ηµ) for η ≤ 1/L.

The noise ξ(n) := g(n) − E[g(n) | θ(n)f ] is a martingale-difference with E∥ξ(n)∥2 ≤ σ2.
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Step 2: EMA as low-pass / Polyak–Ruppert averaging. Classical two-time-scale/averaging argu-
ments (e.g., Polyak & Juditsky, 1992; Konda & Tsitsiklis, 2004; Borkar, 2008) imply a decomposition
of the EMA mean-square error into a bias term (how far the average lags the trackable optimum) and
a variance term (how noise is filtered):

E∥ēN∥2 ≤ C1 (1− β)2 ∥e(0)∥2 + C2
1

(1− β)
σ2

µN
,

for universal constants C1, C2 depending on L and the spectral gap of H; see, e.g., Theorem 1 in
Polyak & Juditsky (1992) and Theorem 2.2 in Konda & Tsitsiklis (2004) adapted to geometrically
weighted averages (EMA).

Intuition: EMA is a geometrically weighted average with effective window length ≈ 1/(1 − β);
averaging reduces variance by the window length (hence the 1/(1 − β) factor) while incurring a
steady-state bias proportional to the leakage (1− β).

Step 3: risk bound under smoothness/PL. Using L-smoothness of Rk and Jensen,

E
[
Rk(θ̄N )−Rk(θ⋆k)

]
≤ L

2 E∥ēN∥2 + Cd δ,

where Cd δ accounts for bounded drift between θ⋆ (minimiser of Jt) and θ⋆k (minimiser of Rk) across
successive tasks (Assumption (A3)). Substituting the EMA MSE bound yields

E
[
Rk(θ̄N )−Rk(θ⋆k)

]
≤ Cb (1− β) + Cv

1

(1− β)
σ2

µN
+ Cd δ,

which is Eq. equation 2. ■

H.3 PROOF OF THEOREM 1 (ADDITIVE BOUND; COMPLEMENTARY KNOBS)

Fix any past task i < t and consider one training phase over task t. We compare the slow model
before and after the phase. Let θ̄pre and θ̄post denote the slow (EMA) parameters at the start and end
of the phase, and let θpre

f , θpost
f be the corresponding fast parameters at those times.

Decompose the change in Ri over the phase as

Ri(θ̄
post)−Ri(θ̄pre) = Ri(θ̄

post)−Ri(θpost
f )︸ ︷︷ ︸

(A) fast→slow (variance)

+Ri(θ
post
f )−Ri(θpre

f )︸ ︷︷ ︸
(B) fast drift over the phase

+Ri(θ
pre
f )−Ri(θ̄pre)︸ ︷︷ ︸

(C) slow→fast (variance)

.

Term (A)+(C): variance controlled by EMA. By Lemma 2, both differences between fast and
slow parameters can be bounded in expectation by the EMA bias/variance expression:

E
[
(A) + (C)

]
≤ Cb(1− β) + Cv

1

(1− β)
σ2

µN
+ Cd δ.

Term (B): slow drift driven by mixed gradients and selection bias. The fast drift over the phase
is driven by SGD on Jt; replacing the replay risk R̃1:t−1 by the true past risk R1:t−1 introduces a
bias per step controlled by the IPM gap (Lemma 1):∣∣R̃1:t−1(θ)−R1:t−1(θ)

∣∣ ≤ DFloc

(
P1:t−1, q

)
for all θ ∈ N .

Standard stability arguments for SGD on L-smooth losses (e.g., Hardt et al., 2016) imply that
replacing the objective by a uniformly ε-perturbed one perturbs the risk along the trajectory by at
most a constant multiple of ε (over a finite number of steps in the local region). Thus

E
[
(B)

]
≤ A ·DFloc

(
P1:t−1, q

)
+ Cd δ,

for some A depending on L and the phase length.
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Summing over phases. Summing (A)+(B)+(C) across all phases/tasks up to T and averaging over
i < T yields

EF ≤ ADFloc

(
P1:T−1, q

)
+ B(β)

σ2

µN
+ C∆drift,

which is Eq. equation 3 with B(ψ) ≡ B(β) for EMA. Since m < ∞ (finite memory) implies
infqDFloc(P, q) > 0 and N < ∞ with β < 1 implies 1

(1−β)
σ2

µN > 0, neither addend can be
driven to zero by tuning the other; therefore the buffer policy (selection) and EMA (integration) are
complementary controls. ■

On surprise-based selection. A general proof that sequence-level surprise minimises DFloc(P, q)
at fixed memory would require extra structural assumptions on ℓ(θ; ·) and the data distribution.
Instead, we motivate it via importance sampling (high-loss/high-gradient points reduce estimator
variance (Zhao & Zhang, 2015; Katharopoulos & Fleuret, 2018)) and validate empirically in our
main experiments.
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