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ABSTRACT

When making predictions, a language model must trade off how much it relies on its
context vs. its prior knowledge. Choosing how sensitive the model is to its context
is a fundamental functionality, as it enables the model to excel at tasks like retrieval-
augmented generation and question-answering. In this paper, we search for a knob
which controls this sensitivity, determining whether language models answer from
the context or their prior knowledge. To guide this search, we design a task for con-
trollable context sensitivity. In this task, we first feed the model a context (Paris is
in England) and a question (Where is Paris?); we then instruct the model to either
use its prior or contextual knowledge and evaluate whether it generates the correct
answer for both intents (either France or England). When fine-tuned on this task,
instruct versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high ac-
curacy (85-95%). Analyzing these high-performing models, we narrow down which
layers may be important to context sensitivity using a novel linear time algorithm.
Then, in each model, we identify a 1-D subspace in a single layer that encodes
whether the model follows context or prior knowledge. Interestingly, while we iden-
tify this subspace in a fine-tuned model, we find that the exact same subspace serves
as an effective knob in not only that model but also non-fine-tuned instruct and
base models of that model family. Finally, we show a strong correlation between a
model’s performance and how distinctly it separates context-agreeing from context-
ignoring answers in this subspace. These results suggest a single fundamental
subspace facilitates how the model chooses between context and prior knowledge.

1 INTRODUCTION

Language models are often prompted with a query and preceding context, e.g., in settings of in-context
learning, retrieval-augmented generation, or document analysis. In such scenarios, the language
model needs to integrate information from both the context and its prior knowledge stored in its param-
eters. In some cases, we may prefer the model to rely more on the context, e.g., to avoid hallucinating
responses based on outdated prior knowledge (Zhang et al., 2023); however, in other cases, we may
prefer the model to rely more on its prior knowledge, e.g., to avoid being misled by misinformation pro-
vided in the context (Hong et al., 2024). As a motivating example, consider a document analysis setting
in which a language model is asked to help understand an opinion article in a newspaper. It might first
be asked to summarize, e.g., What is the main argument of this article?. In this case, the model should
rely heavily on the context, i.e., the text of the article. Then, one might ask: What are some criticisms
of this argument?. To answer this critically, the model ought to be skeptical; an opinion article may be
written very authoritatively as if its arguments are established fact, or it may make some misleading
claims to support its argument. Thus, the language model should draw more upon its prior knowledge
of the issue and related opinions than blindly following the context. More broadly, because the degree
of context sensitivity depends highly on the use case, it would be desirable to be able to specify how
much and whether the model should be influenced by the context versus its prior knowledge.

Studies on the tension between context and prior knowledge have primarily focused on the setting of
knowledge conflicts (Longpre et al., 2021), in which a given context directly contradicts information
assumed to be in a model’s prior knowledge about a given query. For example, a language model
trained on a sufficient amount of data should be able to reply to the query What’s the capital of France?

*These authors contributed equally to this work.
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with Paris. However, if the context The capital of France is London. is prepended to the query, the
model needs to decide whether to respond based on the context (London) or its prior knowledge
(Paris). Prior studies (Longpre et al., 2021; Li et al., 2023b; Du et al., 2024; Monea et al., 2024; Ortu
et al., 2024; Xie et al., 2023; Basmov et al., 2024) have shown that models will prefer drawing from
context for some questions and prior knowledge from others. To investigate mechanisms underlying
how the model draws from the context or prior knowledge, Yu et al. (2023); Ortu et al. (2024); Jin
et al. (2024) have searched for attention heads that promote each answer. However, these works do
not focus on whether or how the model deliberately mediates which source to rely on.

To this question of how, we hypothesize that there is a simple fundamental mechanism in the form
of a subspace within the language model that facilitates the binary decision of whether to rely on
the context or the prior knowledge. To guide our search for such a subspace, we design and execute
a structured recipe. First, we create the controllable context sensitivity (CCS) task which augments
the standard knowledge conflict setting with an intent, such as Ignore the context or Listen to the
context. By disambiguating whether the model should follow context or prior knowledge through
a simple addition to the prompt, we are able to identify and evaluate its behavior in both modes for
the same context–query pair. We adapt models for this task using fine-tuning and in-context learning,
then evaluate them on in-domain and out-of-domain test sets to assess whether they have developed
a deeper ability to choose between context and prior knowledge beyond surface-level heuristics.
In our case study on the Llama-3.1-8B family (Dubey et al., 2024), we find that both fine-tuning
and in-context learning are moderately effective, with models excelling on in-domain test sets and
significantly improving over zero shot baselines on out-of-domain test sets.

Armed with models that can perform the CCS task reasonably well, we then explore the mechanisms
that facilitate their behavior in this task. Building on insights from Jin et al. (2024), we hypothesize
that for a model to solve this task, it must execute at least three high-level steps (in no particular order):
extracting an answer from prior knowledge, extracting an answer from the context, and deciding to
answer with the context answer or the prior answer. We then seek to identify layers that may contain
the model’s computations that are aligned with each step. To do so, we develop an algorithm that uses
tools from mechanistic interpretability to find a targeted subset of layers at which activation patching
(Geiger et al., 2020; Vig et al., 2020; Meng et al., 2022) can switch a model from preferring the answer
in the context to preferring the answer in its prior knowledge and vice versa. Then, building on ideas
from distributed alignment search (Geiger et al., 2024), we identify a knob for the model’s decision
between following context or prior in the form of a 1-dimensional subspace. Despite locating such
a knob on an instruct model fine-tuned on this task that states explicit intents, we show that it is even
effective on non-finetuned and base models of the same family for prompts that do not state the intent.

Furthermore, we show strong evidence that for models good at the CCS task, the two intents
correspond to two distinct values in that subspace, while bad models fail to exhibit this distinction.
We repeat this process for Gemma-2 9B and Mistral-v0.3 7B to find a similar story. Our results
suggest that a 1-dimensional subspace may be fundamental to many types of large language models
(LLMs) in facilitating their ability to decide between following the context or its prior knowledge.
These findings move toward developing more robust language models with controllable levels of
reliance on context and prior knowledge. They further highlight how investigating models at a
mechanistic level can yield high-quality interventions to control a model’s behavior.

Contributions. We summarize our key contributions: (a) We propose a recipe to identify a
1-dimensional subspace in the model which can act as a knob for whether the model chooses to
follow context or prior knowledge. In short, this recipe leverages fine-tuning a model on a carefully
constructed task to aid in finding interpretable insights about the non-fine-tuned model. (b) Using this
recipe, we make a novel discovery about how models negotiate the knowledge conflict. In particular,
we find a 1-dimensional subspace with many desirable traits. First, the same subspace effectively
encodes and can control the decision for many model configurations within the same model family,
i.e., transfers from the fine-tuned model to the base model. Second, this pattern is consistently
replicated across several families of LLMs (Llama-3.1 8B, Gemma-2 7B, and Mistral-v0.3 7B). Third,
our findings indicate that fine-tuned models learn to adjust the value of this subspace, suggesting
it is fundamental to resolving knowledge conflicts.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Prior Knowledge in Language Models. Prior studies have noted that LMs exhibit remarkable
capabilities at answering questions depending on prior knowledge, such as factual recall. When
queried, language models often generate plausible responses, indicating they may possess encoded
knowledge about entities (Brown et al., 2020; Petroni et al., 2019; Roberts et al., 2020; Geva et al.,
2021). This knowledge is encoded in the model’s weights as the model is exposed to mentions of
these entities during pretraining (Xu et al., 2022; Zhou et al., 2023). Pretraining can lead to not only
learning facts but also memorizing specific strings (Carlini et al., 2023; Stoehr et al., 2024b).

Influence of Context on Language Models. Models might also be prompted with context in addition
to the query, which can be critical to the model solving the task effectively, such as in: (a) In-context
learning (Brown et al., 2020), where demonstrations guide the model’s response; (b) Retrieval-
augmented generation (Lewis et al., 2020) and open-book question-answering (Mihaylov et al.,
2018; Kasai et al., 2023), where relevant documents are included in context to aid query responses;
(c) Interactive dialogue/chat (Vinyals & Le, 2015; OpenAI, 2023), where users converse with
models over multiple turns; and (d) Text annotation (Ziems et al., 2024), where a model analyzes
passages in the context for sentiment, toxicity, coherence, inter alia. However, other use cases may
be better served by ignoring the context to some degree, i.e., in: (a) combating jailbreaking (Yu et al.,
2024), e.g., ignoring attempts to override built-in model behaviors; (b) resilience to misinformation
(Hong et al., 2024; Halawi et al., 2024), e.g., avoiding integrating incorrect information in the context;
and (c) ignoring irrelevant contexts (Shi et al., 2023; Yoran et al., 2024). In all of these settings,
models draw from two sources when responding: context, and knowledge encoded during training.
Controlling context sensitivity in an application-dependent manner is key to robust use.

Controlling Model Sensitivity to Context. Several studies have proposed interventions to reduce
dependency on prior knowledge and favor in-context information, including prompting (Zhou et al.,
2023; Onoe et al., 2023), modifying training data (Wang et al., 2023a), fine-tuning (Li et al., 2023a),
and activation-level interventions (Li et al., 2023c; Stoehr et al., 2024a; Yu et al., 2023; Ortu et al.,
2024) at inference time. While Li et al. (2023a) aims for some level of controllable context sensitivity
by attempting to ignore irrelevant context, they do not allow for explicit controllability. Neeman et al.
(2023) train models to predict two answers using both context and prior knowledge. At a mechanistic
level, Yu et al. (2023) and Ortu et al. (2024) use logit attribution methods (nostalgebraist, 2020) to
inspect and identify attention heads which promote each answer. However, their interventions on these
heads show limited bidirectional control, suggesting an inadequate capture of model behavior. Jin et al.
(2024) uses path patching (Goldowsky-Dill et al., 2023; Wang et al., 2023b), an intervention-based
method, to identify heads and show that zero-ablating a subset can effectively control model behavior.

Identifying Mechanisms in Neural Networks According to the linear subspace hypothesis (Boluk-
basi et al., 2016; Vargas & Cotterell, 2020; Wang et al., 2023c), model representations encode
concepts as low-dimensional linear subspaces. Based on this hypothesis, prior work has explored
how various concepts including truthfulness (Marks & Tegmark, 2024; Li et al., 2023c), humor (von
Rütte et al., 2024), sentiment (Tigges et al., 2023), and refusal (Arditi et al., 2024) are encoded within
model representations. Beyond identifying subspace representations, researchers have controlled
model behavior by intervening on identified subspaces through additive steering (adding vectors to
model representations) (Rimsky et al., 2024; Turner et al., 2023; Zou et al., 2023; Ravfogel et al.,
2022). Concept subspaces are commonly identified using distributed alignment search (Geiger et al.,
2024), LEACE (Belrose et al., 2023b), and difference in means (Marks & Tegmark, 2024).

3 HOW TO FIND THE KNOB BEHIND CONTEXT SENSITIVITY

3.1 DESIGNING THE TASK

First, we define the task of controllable context sensitivity, which should include minimally contrastive
example pairs. Each pair has the same context c and query q, differing only in whether the model
should follow the context or prior knowledge. These pairs allow us to compare the model’s internal
states when it follows context versus prior knowledge, with all else equal.

Consider a language model p over an alphabet Σ, i.e., p is a distribution over the Kleene closure Σ∗.
Further, consider a distinguished subset Q ⊂ Σ∗ corresponding to licit queries and a distinguished
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subset C ⊂ Σ∗ corresponding to licit contexts. Let ε be the empty string. For a query q ∈ Q,
e.g., What is the capital of France?, and context c ∈ C, e.g., The capital of France is London., let
a(q, ε) ∈ Σ∗ be the context-independent answer (Paris) and a(q, c) ∈ Σ∗ be the context-dependent
answer (London). Let w ∈ {ctx,pri} denote an intent, indicating whether to follow context (ctx) or
prior knowledge (pri). Let F : Q× C × {ctx,pri} → Σ∗ be a formatting function mapping from a
query, context, and intent to a formatted prompt, e.g., “Context: The capital of France is London/n
Instruction: Only listen to the context/n Query: What is the capital of France?”. Let Strn ⊂ Q× C
and Stst ⊂ Q× C be disjoint training and testing sets of query-context pairs. Models are trained on
F (q, c,pri) · a(q, ε) and F (q, c, ctx) · a(q, c) for (q, c) ∈ Strn, where · denotes concatenation.

3.2 IDENTIFYING MODEL BEHAVIOR

Adapting a Model to this Task. To study the model’s mechanism, we first need it to controllably
follow either context or prior knowledge. We adapt a language model to solve the task with two
methods: (i) fine-tuning using a standard next-token prediction on the training set Dtrn, and (ii) using
training samples as few-shot demonstrations for in-context learning.

Evaluating Controllable Context Sensitivity. We evaluate a model’s ability to controllably choose
between context and prior knowledge using pair-accuracy. An example is correct only if the model
outputs the correct answer to a given query q and context c for both intents (ctx and pri). That is,
given a model p and dataset S, with greedya∈Σ∗ denoting the output of greedy decoding,

PairAcc(p,S) (1)

=
1

|S|
∑

(q,c)∈S

1{greedy
a∈Σ∗

p(a | F (q, c, ctx)) = a(q, c)}1{greedy
a∈Σ∗

p(a | F (q, c,pri)) = a(q, ε)}

3.3 IDENTIFYING IMPORTANT LAYERS

Next, we need to identify layers in the model where the target behavior emerges. Building on prior
work (Jin et al., 2024), we posit that for a model to succeed at this task, it must be able to execute
at least three steps (not necessarily in this order): (i) extract the answer from the model’s prior
knowledge; (ii) extract the answer from the context; and (iii) decide whether to answer according
to the context or the prior knowledge. Note that, under the framing of Geiger et al. (2024), these
would be considered causal variables in a high-level model. Without specifying an exact causal
graph, we argue these must be components in any reasonable one. We use tools from mechanistic
interpretability to identify the layers at which the model appears to implement these steps.

Intervention-based Interpretability. Intervention-based interpretability techniques like activation
patching are often used to identify which model activations are crucial for a task (Geiger et al., 2020;
Vig et al., 2020; Meng et al., 2022). Intuitively, if intervening at some set of intermediate states can
change a model’s output behavior for a task, those intermediate states likely play a critical role in the
model’s ability in that task. Activation patching, specifically interchange interventions (Geiger et al.,
2023), involves two strings that differ only with respect to the task of interest. For example, to identify
activations that encode the intent of a prompt, we use two input strings that share the same query
and context but differ in their intent. For a given model, p, we define a source string, s ∈ Σ∗, and a
target string, t ∈ Σ∗. During the forward pass of p (t), we replace a subset of intermediate activations
with those from p (s) and observe the effect on model internals and the output distribution of the
patched p (t). We patch only at the last token, as prior work has shown this to be most informative for
predicting the next token (Yu et al., 2023; Jin et al., 2024; Stoehr et al., 2024a; Monea et al., 2024).

We also only patch the outputs of the multi-head attention (MHA) components in a transformer
block; the intuition behind this choice is that this component ought to integrate information from the
context into the residual stream of the last token (see App. D for more details on the residual stream
framework). Interchanging these output activations allows us to analyze what kind of information is
written on the residual stream and whether it has a causal effect on the model internals and the output
distribution. By searching over different subsets of intermediate activations, we can identify those
with the greatest impact on task performance and thus facilitate critical functionality.

Iteratively Searching For Important Components. Searching for a small subset of MHA compo-
nents at the last token position to patch is nontrivial because it is over an exponentially large space
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Table 1: Patching Setup: To investigate the model’s internal mechanisms, we use three distinct
patching setups (Dw, Dp, and Dc) to address our research questions. For all datasets, an example
consists of a source prompt s, source answer as, target prompt t, and target answer at. Dw, has two
subvariants: Dc→p

w and Dp→c
w , which represent different directions of the intervention.

Dataset Question & Description s as t at

Dp→c
w

Dc→p
w

Where is w computed?
Only w differs
Source w = pri

Only w differs
Source w = ctx

The capital of France is London
Ignore the context
What is the capital of France?

The capital of France is London
Only listen to the context
What is the capital of France?

Paris

London

The capital of France is London
Only listen to the context
What is the capital of France?

The capital of France is London
Ignore the context
What is the capital of France?

London

Paris

Dp
Where is a(q, ε) computed?
w = pri, different a(q, ε)

The capital of France is London
Ignore the context
What is the capital of France?

Paris
The capital of France is London
Ignore the context
What is the capital of Italy?

Rome

Dc
Where is a(q, c) computed?
w = ctx, different a(q, c)

The capital of France is London
Only listen to the context
What is the capital of France?

London
The capital of France is Rome
Only listen to the context
What is the capital of France?

Rome

(i.e., 2L, where L is the number of layers in the model). Thus, we use an iterative search algorithm to
build a subset of important components, requiring O(L) forward passes. In this algorithm, we use the
Token Identity Patchscope (TIP) to observe model behavior at intermediate states (Ghandeharioun
et al., 2024).1 Specifically, we use it to identify the model’s likelihood on the context and prior
answers at intermediate layers and choose a subset of layers to patch that push the model to prefer
the desired answer. Given a dataset of source and target pairs, the algorithm has two main steps. First,
it identifies a continuous base range of layers where patching MHA components enables decoding
the source answer from the residual stream. Then, it finds inhibition layers that suppress the source
answer at later layers by iteratively patching MHA components until the source answer has a high
probability. We provide Python-esque pseudocode for our search algorithm in App. A.1.

Patching Setups Per Subquestion. We wish to address the three subquestions: (i) Where is
the intent w computed? (ii) Where is a(q, ε) computed? (iii) Where is a(q, c) computed? An-
swering each subquestion will demand applying the search algorithm described above on a spe-
cific patching setup, i.e., dataset, per subquestion. Each patching setup consists of tuples con-
taining a source string, its associated answer, a target string, and the target’s answer. The re-
lationship between the source and target depends on the question we aim to answer. Table 1
outlines the specific patching setups for each subquestion. First, Dc→p

w and Dp→c
w hold the

context and query constant but vary the intent w, enabling us to investigate how the model pro-
cesses different intents. We define Dp→c

w = {(F (q, c,pri) , a(q, ε), F (q, c, ctx) , a(q, c))}(q,c)∈Stst

and Dc→p
w = {(F (q, c, ctx) , a(q, c), F (q, c,pri) , a(q, ε))}(q,c)∈Stst . Dp includes tuples where

both the source and the target share the intent w = pri, but differ in the prior answer a(q, ε)
they suggest, Dp = {(F (q, c,pri) , a(q, ε), F (q′, c,pri) , a (q′, ε))}(q,c)∈Stst,q′∈Q\{q}. This al-
lows us to evaluate how patching alters the model’s response with respect to a(q, ε) and discern
how the model computes a(q, ε). Similarly, in Dc we explore how the model computes a(q, c),
Dc = {(F (q, c, ctx) , a(q, c), F (q, c′, ctx) , a (q, c′))}(q,c)∈Stst,c′∈C\{c}.

3.4 IDENTIFYING THE CONTEXT-CONTROLLABILITY SUBSPACE FEATURE

Learning the Context-versus-Prior Subspace. Once we identified a subset of model components
that potentially contain the mechanism for deciding between answering from the context or prior
knowledge, we can further investigate whether this functionality can be encoded in a low-dimensional
subspace within these components. According to the linear subspace hypothesis (Bolukbasi et al.,
2016; Vargas & Cotterell, 2020), there exists a linear subspace F ⊂ RD which encodes the infor-
mation about a specific concept. In our case, the concept of interest is whether the model uses the
context or its prior knowledge. Since this is a simple binary concept, we hypothesize that a rank-1

1TIP interprets the information in a model’s residual stream at intermediate layers by using the model to
map from the residual stream at a given layer and token index to a distribution over tokens that best represents
the information stored in that intermediate state. This approach can also be viewed as a variant of the SelfiE
method (Chen et al., 2024). TIP outperforms other alternatives for interpreting intermediate states (e.g., probing
(Tenney et al., 2019), LogitLens (nostalgebraist, 2020), and TunedLens (Belrose et al., 2023a)).
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subspace encodes this concept. Informally, this hypothesis implies that a model’s representation can
be decomposed into a sum of orthogonal components, i.e., directions in space, and one such direction
specifically encodes whether to follow the context or prior knowledge.

Let ℓ be the last layer in the base range found by our search algorithm. Let hℓ ∈ RD denote the
activation at layer ℓ. We learn a rank-1 orthogonal projection matrix P ∈ RD×D to project hℓ ∈ RD

onto a 1-dimensional subspace F of RD, encoding the intent. We parameterize P = uu⊤, where
u ∈ RD is the basis of the subspace with a norm of 1 (see App. G for a more detailed explanation
of the parameterization of P ). Given a tuple (s,as, t,at) ∈ Dp→c

w ∪ Dc→p
w , we define hℓ

s to be the
last token residual stream after layer ℓ of the forward pass p (s), and similarly, hℓ

t for p (t). To learn
P , we freeze the parameters of p and patch the forward pass of p (t) as follows:

hℓ
t = (I − P )hℓ

t + Phℓ
t (normal decomposition) (2a)

h̃ℓ
t ≜ (I − P )hℓ

t + Phℓ
s (patched decomposition) (2b)

Eq. (2a) expresses that we can decompose hℓ
t into (i) the sum of the component representing our

concept of interest (Phℓ
t) and (ii) its orthogonal complement, the component which represents other

information ((I−P )hℓ
t). Then, in Eq. (2b), h̃ℓ

t is constructed by replacing the component in hℓ
t repre-

senting our concept of interest (Phℓ
t) with the component in hℓ

s representing the concept (Phℓ
s). Thus,

if P projects onto a subspace that encodes the concept, then the representation h̃ℓ
t encodes the intent

concept from hℓ
s and all other aspects from hℓ

t. We visually illustrate these decompositions in App. H.

We denote p̃ℓ(·;P , s) to be the language model with activation hℓ
t replaced by h̃ℓ

t as defined in
Eq. (2b). We construct a training set {(sn,asn

, tn,atn)}Nn=1 ⊂ Dp→c
w ∪ Dc→p

w . As can be seen in
Tab. 1, this dataset contains matched pairs sn, tn which differ only in the specified intent. Then, to
learn P which well-represents our concept, we minimize the following objective over the training set:

Jℓ(P ) = − 1

N

N∑
n=1

log p̃ℓ(asn | tn;P , sn) (3)

That is, we minimize the cross-entropy loss between the language model when patched with h̃ℓ
t and

the label as. Since sn and tn always have different intents w, but share the same context and query,
we are effectively optimizing for a subspace where replacing the subspace component of tn with the
corresponding component of sn leads to an answer that reflects the flipped intent.

Controlling Model Behavior Using the Context-versus-Prior Subspace. After learning an orthog-
onal projection matrix P to project a vector into the context-versus-prior subspace, we can control
the model’s behavior by setting the subspace component based on the input intent w. To do this we
define a function c : {ctx,pri} → R that acts as a scalar for the basis u of F and returns a constant
corresponding to one of the two intents.2

h̃ℓ
t ≜ (I − P )hℓ

t + Puc (w) (4)

The function c represents the knob to steer which behavior to follow. A successful static intervention
on a learned subspace F implies that we have not only identified a 1-dimensional subspace repre-
senting intent but also determined how to manipulate it manually. We evaluate the effectiveness of a
static intervention using the pair-accuracy.

4 CASE STUDY: LLAMA-3.1 8B

We describe detailed results in executing the recipe from §3 to identify the mechanism behind
controllable context sensitivity. Results for additional models are in §5 and App. I.

4.1 TASK SETUP

Datasets. Following the task formulation in §3.1, we construct intent-augmented datasets, CCS-BF,
CCS-MH, and CCS-AR, based on the query-context pairs in BASEFAKEPEDIA, MULTIHOPFAKE-
PEDIA (Monea et al., 2024), and ARITHMETIC. BASEFAKEPEDIA is a knowledge conflict dataset

2P is redundant in the second term of Eq. (4) since Puc(w) = uuTuc(w) = uc(w), but is included for
consistency.
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from Wikipedia with queries across 23 relation types (e.g., Norway’s capital city or Mac Pro, a
product created by) and paragraphs generated by a language model that provide counterfactual
answers. MULTIHOPFAKEPEDIA resembles BASEFAKEPEDIA but requires an extra hop of reasoning
(e.g., London is the capital of France. Tunis is in the same country as London. What country is
Tunis in?). ARITHMETIC is a synthetically generated dataset whose queries are simple arithmetic
expressions using the operators {+,−,×,÷, exp} and contexts are reassignments of subexpressions
to another value resulting in a counterfactual answer. For example, given the query (5 + 1) / 2 =
and the context 5 = 9, the prior answer would be 3, while the context answer would be 5. We limit
expressions to a depth of 2, i.e., two operators, with input and output numbers between 0 and 9.

Intent Format. We also format the intent w ∈ {ctx,pri} in two different ways to probe the model’s
robustness to different formulations of the same intent. First, the instruction intent format ( )
expresses the intent as a string instruction, e.g., Ignore the context in answering the query. or Only
consider the context in answering the query. Second, the weight intent format ( ) expresses the
intent as a context weight, e.g., Context weight: 0. or Context weight: 1.

4.2 ADAPTING MODELS TO THE TASK

Training. We adapt the instruct Llama-3.1 8B (Dubey et al., 2024) to this task in two ways: (i) QLoRA
fine-tuning (FT) the attention components using CCS-BF’s training set, and (ii) in-context learning
(ICL) with 10 prepended CCS-BF examples. Training details are in App. E.

Evaluation. We examine two forms of generalization: robustness to different datasets, and robustness
to different intent formats. For the former, we test whether a model trained on CCS-BF can perform
well on test splits from CCS-BF, CCS-MH, and CCS-AR. For the latter, we assess whether a model
trained with one intent format, e.g., , performs well with prompts in another format, e.g., .

Results. Fig. 1 shows the generalization results for Llama-3.1-8B-Instruct. The model achieves high
pair accuracy on its in-domain test set with FT (≈ 90%) and ICL (≈ 88%). However, performance
drops significantly for ICL and mildly for FT on CCS-MH, which requires additional reasoning.
On CCS-AR, both models show significant degradation, as the task is out-of-domain and demands
reasoning beyond context extraction. Fig. 1b shows that, for intent formats, the model: (a) performs
well when fine-tuned on either intent format, (b) generalizes well from the to the format,
and (c) struggles when trained on the format but evaluated on . This result is intuitive as the
instruct model is tuned to follow natural language instructions such as , but may not be familiar
with interpreting the instruction. Overall, the model: (a) learns the task in-domain with high
accuracy, (b) generalizes moderately well to other datasets, depending on the degree of difference,
and (c) adapts reasonably well to other intent formats, especially if they are in natural language.

(a) Generalization to Datasets. (b) Generalization to Intent Formats (IF).

Figure 1: (a) Pair accuracy of Llama-3.1-8B-Instruct when trained on CCS-BF and evaluated on
CCS-BF, CCS-MH, and CCS-AR datasets. For each dataset, we evaluate the model zero-shot,
with 10 in-context learning examples from CCS-BF, and after fine-tuning on 2048 examples from
CCS-BF. (b) Pair accuracy when trained and evaluated on different intent formats, where and

mean the intent is expressed as a numerical context weight or as a string instruction, respectively.

4.3 IDENTIFYING IMPORTANT COMPONENTS

Focusing on Llama-3.1-8B-Instruct fine-tuned using the intent format , we apply the algorithm
presented in §3.3 to identify important layers that appear to facilitate the model’s sensitivity to context.
First, we investigate where the intent w is computed by using tuples from Dp→c

w and Dc→p
w (described
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in Tab. 1). Second, we investigate which layers compute the prior answer a(q, ε) and context answer
a(q, c). If these layers are later than the ones identified in the first step then that could suggest that
w is encoded in the residual stream and depending on its value, either a(q, c) or a(q, ε) is retrieved.

4.3.1 WHERE IS w COMPUTED?

We aim to identify where the model initially incorporates information about the intent and how this
affects its predictions. We use the algorithm described in §3.3 and App. A.1 on both Dc→p

w and Dp→c
w

and report the identified layers in Fig. 2a and Fig. 2b, respectively. We observe that in both directions,
patching the MHA outputs for layers 12 to 16 reliably switches the prediction from context-agreeing
(CTX) to prior-agreeing (PRIOR) and vice versa. This suggests two possible hypotheses: either
these layers load the correct answer into the residual stream, or they encode the intent bit w, which
subsequently triggers the loading of the correct answer in later layers. However, Fig. 2b shows the
model has a low probability of the context answer until after layer 24, supporting the latter hypothesis.

4.3.2 WHERE ARE a(q, ε) AND a(q, c) COMPUTED?

We apply the same algorithm to Dp and Dc to identify which layers load the two answers, a(q, ε)
and a(q, c). For Dp, we patch activations from a source (SRC PRI) into a target (TGT PRI), both
sharing the same intent pri but different prior answers a(q, ε). For Dc, we patch from a source (SRC
CTX) into a target (TGT CTX), both having intent ctx but different context answers a(q, c). Fig. 2d
confirms that the context answer is mainly integrated after layer 24. For Dp, we identify a base range
of layers 13-18, with layer 24 as an inhibition layer (Fig. 2c).3 Since answers are integrated at different
layers, distinct mechanisms likely handle each answer. Layer 24 seems crucial in both processes.
Ablation studies in App. A.2 show that neither a(q, ε) nor a(q, c) can be effectively patched without
layer 24 (Fig. 7a and 6c). We hypothesize layer 24’s role varies by intent, conditionally loading either
the prior or context answer. Since the model’s preference for context or prior answer stabilizes after
layer 16, this suggests that the intent is encoded after this point and later layers such as layer 24 read
it. Given the binary nature of the intent variable, we hypothesize that its encoding can be modified to
selectively trigger the loading of either the context or prior answer.
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(d) Dc: Patching L24-31

Figure 2: Answer probabilities per layer as determined by patchscope (TIP) for different patching
settings on Llama 3.1 Instruct FT . The x-axis represents the layers. The y-axis shows the TIP
answer probability. On the x-axis we mark the patched layers. Each row of subplots aims to answer
one subquestion. Top Row: Where is w computed? Patching a source SRC PRI into a TGT CTX
(left; 2a) and vice versa (right; 2b). Bottom Row: Where is a(q, ε) and a(q, c) computed? Patching
a source SRC PRI into a TGT PRI, using samples from Dp (2c) and the same for CTX (2d).

4.4 IDENTIFYING THE CONTEXT-CONTROLLABILITY SUBSPACE

Following §3.4, we learn a rank-1 orthogonal projection matrix P to identify a subspace Fw encoding
intent. We search for this subspace in layer 16, as this is the last layer in the base range of influential
layers found in §4.3.1 using the algorithm described in §3.3. We train on the subset of Dp→c

w ∪Dc→p
w

of CCS-BF for which the model answers correctly for both intents. If this subspace indeed controls

3In Fig. 7a, we show that without patching layer 24, the probability of the SRC PRI significantly decreases.
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Figure 3: The baseline accuracy (yellow) reflects the PairAcc of a model evaluated on CCS-BF
without steering. In contrast, blue represents the PairAcc when the explicit intent instruction is
removed from inputs and the subspace Fw manually set. Although Fw was learned for the Instruct
FT , it transfers well to other configurations, as evidenced by the blue bar approaching or exceeding
the yellow bar for most model configurations.

the choice between context and prior, then we should be able to remove the intent from the input
and still steer the model to produce the intended output by setting the value of c(w) according to
Equation 4. For these interventions, we choose c (pri) = −6 and c (ctx) = 6 based on performance
on a validation set. For example, a model should be able to answer The capital of France is London.
What is the capital of France? with London when steered with c(w) = 6 and Paris when c(w) = −6.

Fig. 3 shows that the identified subspace strongly aligns with the causal variable for intent, allowing
for effective model steering. On the fine-tuned instruct model, we achieve 83% PairAcc using steering,
compared to the 95% baseline (very left; INSTR FT ). This is notable, given we manipulate only
a 1-dimensional subspace in a single layer. Additionally, the figure shows that this same subspace
exhibits strong alignment across different model configurations. We successfully transfer Fw to both
the non-fine-tuned Llama-3.1-8B-Instruct (INSTR) and the base Llama-3.1-8B (BASE) model. The
subspace performs particularly well on the base model in the In-Context Learning (ICL) setting,
where PairAcc significantly exceeds the baseline accuracy as well as the steered finetuned model.
Moreover, we highlight the zero-shot (ZS) performance of the instruct model (73%), significantly
outperforming the baseline performance. However, the ZS performance on the base model results
in 0% PairAcc, as the model lacks training for instruction-following tasks. While the subspace
intervention is relatively ineffective on the fine-tuned base model, we hypothesize that this is because
the weights of this model are likely the furthest from those of the fine-tuned instruct model.

5 A FUNDAMENTAL SUBSPACE FOR CONTROLLABLE CONTEXT SENSITIVITY

Due to the strong evidence for a high alignment of Fw to the causal intent variable, we propose two
hypotheses: (i) This subspace is fundamental to the model and different learning methods learn to
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(b) BaseFakepedia: Other Models

Figure 4: We compare pair accuracy of a baseline model (with intent instructions) against the steered
model (without intent instructions). We consider baseline models: (a) instruct model fine-tuned
on CCS-BF, (b) base model with 10 in-domain ICL demonstrations, and (c) the default instruct
model. Left: Subspace steering on Llama 3.1 generalizes across datasets (BASEFAKEPEDIA (BF),
MULTIHOPFAKEPEDIA (MF), and ARITHMETIC (AR)). Right: For multiple models (Llama 3.1 8b
( ), Gemma 2 9b ( ), and Mistral 7b v0.3 ( )), a rank-1 subspace can be used for effective steering.
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set the value of this subspace. (ii) As a fundamental subspace to language models, a similar rank-1
subspace to encode choosing context or prior knowledge can be found in other language models too.

We provide evidence to support hypothesis (i). First, Fig. 3 shows that adjusting the value of the
subspace can recover or even surpass baseline performance in both fine-tuned and non-fine-tuned
models. Notably, the exceptional efficacy of the subspace intervention in the zero-shot evaluation
of the instruct model—which has never seen examples of this task—suggests that this capability is
already present in the model and can be activated by setting Fw. Second, Fig. 4a shows that the
subspace generalizes to multiple out-of-domain datasets, with steering performance either competing
with or surpassing the intent instruction baseline across different datasets. This holds for not only the
fine-tuned instruct model but also ZS evaluations on the instruct model and ICL on the base model.
Finally, we find a strong, statistically significant correlation (0.908) between a model’s performance
and how well it distinguishes values in that subspace when the intent is pri or ctx. As displayed in
Fig. 5, the difference in subspace value when the intent is pri vs ctx tends to be higher for better
models at this task. This suggests that well-performing models know to set this value in the subspace.

We also identify the described subspace in Gemma-2 9B (Riviere et al., 2024) and Mistral-v0.3 7B
(Jiang et al., 2023), using the same methodology. Fig. 4b shows that, for each model family, their
respective subspaces are transferrable from the fine-tuned instruct model to both the non-fine-tuned
instruct model and the base model. In App. I we provide a detailed study of the subspace in other
models, including a high correlation between model performance and subspace values.
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Figure 5: Subspace Fw value distributions of different model configurations (left) and baseline model
performance on CCS-BF (right). We can observe a high correlation between the absolute difference
between the means of the two groups (ctx and pri) and the performances.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

While our study presents evidence that a model can be induced to controllably draw from context or
prior knowledge in answering questions in these specific settings, it is important to characterize the
nature of the exact model capability we are examining in this study. In particular, both fine-tuning
and turning this knob for a model seem to be more effective when the model can directly copy the
answer from the context (when the intent is ctx). For example, in the ARITHMETIC task, a context
might explicitly contain the answer, e.g., (5 + 1) / 2 = 7, or it might only override a subproblem,
e.g., 5 + 1 = 8. Generally, the models are better at producing the context-agreeing answer when it is
explicitly stated in the context. More investigation is needed to understand to what extent a model can
use information from context as part of an intermediate reasoning chain as opposed to direct copying.

Zooming out, our work highlights the importance of studying the fundamental functionality in
language models of controllable context sensitivity. We show how tools from mechanistic inter-
pretability can be useful toward both understanding how models implement this functionality and
controlling the behavior; further, such an approach could be useful for understanding mechanisms
behind other functionalities. Promising future directions include: (a) evaluating whether this subspace
influences additional behaviors like instruction-following, (b) learning to adaptively steer, i.e., the
model automatically decides when it should leverage or ignore context (especially in settings such as
retrieval-augmented generation), and (c) beyond traditional knowledge conflicts, developing datasets
that involve integrating information from both context and prior knowledge rather than only choosing
between the two.
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As LLM capabilities grow more advanced and their usage proliferates throughout the real world, we
acknowledge that their development can exacerbate risks to people via misinformation or halluci-
nation, especially those historically underrepresented or misrepresented to these models. Our work
aims to make model behavior more transparent by providing a new tool to analyze the interaction
between context and prior knowledge in LMs, which is especially important as people interact with
them in chat, question-answering, and other prompt-based settings. We foresee no particular ethical
concerns and hope this paper contributes to developing tools that can identify and mitigate ethical
concerns in the future.
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Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand, Ivan Nardini,
Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana
Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon,
Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black, Katie
Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund,
Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares,
Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson,
Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew
Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo
Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan,
Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul
Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu,
Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh
Saadat, Sara Mc Carthy, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai,
Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles,
Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal
Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang
Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang,
Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell,

16

https://aclanthology.org/2023.acl-long.300
https://aclanthology.org/2023.acl-long.300
https://arxiv.org/abs/2303.08774
https://aclanthology.org/2024.acl-long.458
https://aclanthology.org/D19-1250
https://proceedings.mlr.press/v162/ravfogel22a.html
https://aclanthology.org/2024.acl-long.828
https://aclanthology.org/2024.acl-long.828


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis,
Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel,
Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2: Improving open
language models at a practical size, 2024. URL https://arxiv.org/abs/2408.00118.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the parame-
ters of a language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 5418–5426, 2020. doi: 10.18653/v1/2020.emnlp-main.437.
URL https://aclanthology.org/2020.emnlp-main.437.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context, 2023. URL
https://arxiv.org/abs/2302.00093.

Niklas Stoehr, Kevin Du, Vésteinn Snæbjarnarson, Robert West, Ryan Cotterell, and Aaron Schein.
Activation scaling for steering and interpreting language models. arXiv, 2410.04962, 2024a. URL
https://arxiv.org/pdf/2410.04962.

Niklas Stoehr, Mitchell Gordon, Chiyuan Zhang, and Owen Lewis. Localizing paragraph memoriza-
tion in language models. arXiv, 2024b. URL https://arxiv.org/abs/2403.19851.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4593–4601, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1452. URL https://aclanthology.org/P19-1452.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations
of sentiment in large language models. OpenReview, 2023. URL https://openreview.net/
forum?id=iGDWZFc7Ya.

Alexander Matt Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte
MacDiarmid. Activation addition: Steering language models without optimization. CoRR,
abs/2308.10248, 2023. URL https://doi.org/10.48550/arXiv.2308.10248.

Francisco Vargas and Ryan Cotterell. Exploring the linear subspace hypothesis in gender bias
mitigation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 2902–2913, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.232. URL https://aclanthology.org/2020.
emnlp-main.232.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30, 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Oriol Vinyals and Quoc Le. A neural conversational model. arXiv, 2015. URL https://arxiv.
org/abs/1506.05869.

Dimitri von Rütte, Sotiris Anagnostidis, Gregor Bachmann, and Thomas Hofmann. A language
model’s guide through latent space. OpenReview, 2024. URL https://openreview.net/forum?
id=B3EGhEyxh1.

Fei Wang, Wenjie Mo, Yiwei Wang, Wenxuan Zhou, and Muhao Chen. A causal view of entity
bias in (large) language models. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 15173–15184, 2023a. doi: 10.18653/v1/2023.findings-emnlp.1013. URL
https://aclanthology.org/2023.findings-emnlp.1013.

17

https://arxiv.org/abs/2408.00118
https://aclanthology.org/2020.emnlp-main.437
https://arxiv.org/abs/2302.00093
https://arxiv.org/pdf/2410.04962
https://arxiv.org/abs/2403.19851
https://aclanthology.org/P19-1452
https://openreview.net/forum?id=iGDWZFc7Ya
https://openreview.net/forum?id=iGDWZFc7Ya
https://doi.org/10.48550/arXiv.2308.10248
https://aclanthology.org/2020.emnlp-main.232
https://aclanthology.org/2020.emnlp-main.232
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1506.05869
https://arxiv.org/abs/1506.05869
https://openreview.net/forum?id=B3EGhEyxh1
https://openreview.net/forum?id=B3EGhEyxh1
https://aclanthology.org/2023.findings-emnlp.1013


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-based) text-
controlled generative models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 35331–
35349. Curran Associates, Inc., 2023c. URL https://proceedings.neurips.cc/paper_
files/paper/2023/file/6f125214c86439d107ccb58e549e828f-Paper-Conference.pdf.

Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing Huang, Zheng Wang, Noah Goodman, Christo-
pher Manning, and Christopher Potts. pyvene: A library for understanding and improving
pytorch models via interventions. In Kai-Wei Chang, Annie Lee, and Nazneen Rajani (eds.),
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 3: System Demonstrations),
pp. 158–165, Mexico City, Mexico, jun 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-demo.16. URL https://aclanthology.org/2024.naacl-demo.16.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive Chameleon or Stubborn
Sloth: Revealing the Behavior of Large Language Models in Knowledge Conflicts, oct 2023. URL
http://arxiv.org/abs/2305.13300. arXiv:2305.13300 [cs].

Nan Xu, Fei Wang, Bangzheng Li, Mingtao Dong, and Muhao Chen. Does your model classify entities
reasonably? Diagnosing and mitigating spurious correlations in entity typing. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 8642–8658, Abu Dhabi, United Arab Emirates, dec
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.592. URL
https://aclanthology.org/2022.emnlp-main.592.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
models robust to irrelevant context, 2024. URL https://arxiv.org/abs/2310.01558.

Qinan Yu, Jack Merullo, and Ellie Pavlick. Characterizing mechanisms for factual recall in language
models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 9924–9959, 2023. doi: 10.18653/v1/2023.emnlp-main.615. URL https://
aclanthology.org/2023.emnlp-main.615.

Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach Cameron, Chaowei Xiao, and Ning Zhang. Don’t
listen to me: Understanding and exploring jailbreak prompts of large language models. arXiv,
2024. URL https://arxiv.org/abs/2403.17336.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming Shi.
Siren’s song in the AI ocean: A survey on hallucination in large language models, 2023. URL
https://arxiv.org/abs/2309.01219.

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and Muhao Chen. Context-faithful prompting for large
language models. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
14544–14556, 2023. doi: 10.18653/v1/2023.findings-emnlp.968. URL https://aclanthology.
org/2023.findings-emnlp.968.

Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, and Diyi Yang. Can large
language models transform computational social science? Computational Linguistics, 50(1):
237–291, 03 2024. ISSN 0891-2017. doi: 10.1162/coli_a_00502. URL https://doi.org/10.
1162/coli_a_00502.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to AI
transparency. arXiv, 2023. URL https://arxiv.org/abs/2310.01405.

18

https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f125214c86439d107ccb58e549e828f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f125214c86439d107ccb58e549e828f-Paper-Conference.pdf
https://aclanthology.org/2024.naacl-demo.16
http://arxiv.org/abs/2305.13300
https://aclanthology.org/2022.emnlp-main.592
https://arxiv.org/abs/2310.01558
https://aclanthology.org/2023.emnlp-main.615
https://aclanthology.org/2023.emnlp-main.615
https://arxiv.org/abs/2403.17336
https://arxiv.org/abs/2309.01219
https://aclanthology.org/2023.findings-emnlp.968
https://aclanthology.org/2023.findings-emnlp.968
https://doi.org/10.1162/coli_a_00502
https://doi.org/10.1162/coli_a_00502
https://arxiv.org/abs/2310.01405


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A SEARCHING FOR IMPORTANT LAYERS

A.1 ALGORITHM

We describe the algorithm in Python-esque pseudocode. For more details on the patchscope
method (PATCHSCOPE), see Ghandeharioun et al. (2024). For more details on activation patch-
ing (INTERCHANGE), see Meng et al. (2022). In App. A.1 we visualize the Token-Identity Patchscope
(TIP) at different stages in the algorithm.

The goal of this algorithm is to find a subset of layers for which patching the MHA output from
the forward pass of a source example into that of a target example results in the desired effect, i.e.,
the source answer being decoded with a significantly higher probability than the target answer. On
one extreme end, patching all layers replicates the source forward pass, ensuring the desired effect
(assuming the patched token is the same between source and target examples). Conversely, with no
patching, the forward pass remains equivalent to the target forward pass.

In step 1, we aim to determine a base range of layers. When this range is patched, the source answer
should appear with high probability at some intermediate layer — not necessarily the last one. Fig. 6c
illustrates the base range patched for Dp. Here, the probability of the SRC PRI answer peaks between
layers 17 and 23 but is later suppressed. We identify this base range by first finding its upper bound,
end_l (Step 1.1). We incrementally patch layers from 0 to end_l until the source answer achieves
high probability at a specific layer, as shown in Fig. 6b. Next, we adjust the lower bound, start_l,
until increasing it further causes a drop in the maximum probability of the source answer. This defines
our base range.

If patching only this base range already elevates the source answer’s probability significantly higher
than the target answer’s at the output, the process is complete. Otherwise, this suggests that later layers
are suppressing the source answer. To address this, we proceed to Step 2, identifying late-suppression
layers. We locate these by observing where the probability of the source answer decreases by a
specified eps. We then patch these layers iteratively until the source answer’s probability exceeds the
target’s by the required margin. As demonstrated in Fig. 6d, for Dp, patching the MHA output of the
late-suppression layer 24 alone suffices to achieve the desired effect.
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def search(m, s, t, s_ans, t_ans, thres=0.85, margin=0.3, eps=0.05):

"""

Let m be a model with L layers, hidden size HS, and vocab size VS.

Let s and t be the tokenized source & target inputs.

Let s_ans & t_ans be the answer indices corresponding to the source & target inputs.

"""

# 1. Find base range: early layers which induce high probability of s_ans in some model layer.

# Let interchange(model, s, t, layers) return the last-token forward pass

# of a model on target input t when interchanging the multihead attention

# activations from s at given layers.

# Output shape: (L, HS)

# Let patchscope(activations) return the model's next token probabilities

# based on each layer's activations.

# Output shape: (L, VS)

L = len(m.layers)

start_l = 0

end_l = 0

# 1.1. Find end of base range

while max(patchscope(interchange(m, s, t, range(0, end_l)))[:, s_ans]) < thres:

end_l += 1

# 1.2. Find start of base range

while max(patchscope(interchange(m, s, t, range(start_l, end_l)))[:, s_ans]) < thres:

start_l += 1

# 2. Find layers which counter late-layer suppression

layers = range(start_l, end_l)

while (

softmax(interchange(m, s, t, layers)[-1])[s_ans] <

margin + softmax(interchange(m, s, t, layers)[-1])[t_ans]

):

for l in range(max(layers) + 1, L):

if abs(

patchscope(interchange(m, s, t, layers))[l, s_ans] -

patchscope(interchange(m, s, t, layers))[l-1, s_ans]

) > eps:

layers.append(l)

break

return layers
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(c) Dp: After step 1.2 – L12-L18
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(d) Dp: After step 2 – L0-L18+L24

Figure 6: Visualization of the TIP at various stages of the search algorithm on Llama 3.1 Instruct
FT . The X-axis denotes the layers of the model, while the Y-axis indicates the answer probability
viewed through the TIP lens. (a) Displays the initial TIP before any patching is applied. (b) Shows
the TIP after step 1.1, which identifies the end of the base range. (c) Illustrates the TIP following
step 1.2, where the start of the base range is located. Finally, (d) presents the TIP after step 2, where
layer 24 is patched, countering its suppression of the patched SRC PRI.

A.2 ABLATIONS IN SEARCHING FOR IMPORTANT LAYERS (LLAMA-3.1)

We run ablations to identify the importance of different layers in Llama-3.1. From Fig. 7a, we can
see that without patching layer 24 for a SRC CTX, the alternate context answer never becomes the
top-probability answer at any layer according to the Patchscope method. This suggests layer 24
is critical for loading in the context answer, especially as it also acts as a late-suppression layer
for the prior. From Fig. 7b, we see that only patching in layers 12-16 in an attempt to make the
model respond with a SRC PRI fails to significantly raise the probability of the SRC PRI at any layer
according to the Patchscope method. This suggests that layers 17 and 18 are also critical to loading
in the prior answer.

B MLP DISCUSSION

Recent studies have shown that prior knowledge in Transformer models is primarily stored in MLP
weights (Meng et al., 2022; Geva et al., 2021; 2022; Dai et al., 2022). This raises the question of
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Figure 7: Additional Patchscope analysis of answer probabilities across different patching settings
on Llama 3.1 Instruct FT . The X-axis represents the layers, and the Y-axis displays the answer
probability under the patchscope lens. The first row of each plot visualizes the patching flow. Top plot:
We show that ablating layer 24 does not result in the source (SRC CTX) being decoded with high
probability. Layer 24 is crucial for both a(q, ε) and a(q, c). Bottom Plot: Figure 7b shows that layers
13-16 alone are not sufficient to load the PRIOR.
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Figure 8: TIP of patching all MLP outputs on Llama 3.1 Instruct FT with patching setup Dp.
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why MLPs are not central to our investigation. Mechanistic analyses from recent works (Jin et al.,
2024; Geva et al., 2023) suggest that MLPs in earlier token positions extract answers, which are then
relayed to the final position via attention heads. Thus, the MLPs at the last token position contribute
minimally to direct answer computation. Ortu et al. (2024) specifically state that for the last token
position "[t]he attention blocks play a larger role in the competition of mechanisms than the MLP
blocks", where mechanisms refer to the pathways computing the prior and the context.

We tested our hypothesis by patching the MLP outputs across all layers using the Dp setup. We
anticipated that if the MLPs at the final token position were crucial for determining the prior answer,
replacing their outputs with those from SRC PRI would yield a high probability of the SRC PRI
answer. However, as shown in Fig. 8, patching the MLP outputs across all layers did not achieve a
high probability for SRC PRI. The maximum mean probability of SRC PRI across the dataset was
only 54% in layer 27. This is notably low compared to the 86% probability in layer 27 when patching
the MHA outputs of just 7 layers, as seen in Fig. 6d. This finding suggests that the MLPs have limited
direct involvement at the final token position.

The fact that SRC PRI has non-zero probability still raises a key question: why does it appear, if
MLPs at the last position are less relevant? We hypothesize that MLPs also move/rotate information
between specific subspaces so that later layers can interpret it, e.g., move the relevant information so
that the unembedding matrix can map it having a high logit for a particular token. Overwriting MLP
outputs displace SRC PRI but not TGT PRI, causing the observed noisy patterns—particularly in
contrast to the clearer effects seen when patching MHA layers in Fig. 6d.

C PATCHING THE RESIDUAL STREAM

In Fig. 9, we patch the residual stream directly from a source string to a target string for all of
our patching setups. This experiment was part of an early exploration we conducted. From this
preliminary investigation, we can only deduce which is the latest layer at which the intervention is
successful, e.g., the intent seems to be switched after layer 16 (Fig. 9a and 9b) in Llama 3.1. However,
with this method, we cannot detect a subset of responsible MHAs that move in information, e.g., that
layers 13-16 integrate the intent, or late-layer suppression. The plot for Dp (Fig. 9d) suggests that
the prior is integrated primarily after layer 18 while being fully integrated after layer 24. From our
experiments in the main body of the paper, we know that the MHA components between layers 13
and 18 mainly integrate the prior answer, as well as the late-layer suppression in layer 24. The Dc
plot (Fig. 9c) suggests that integrating primarily happens between 24 and 28, which is confirmed by
later experiments, but we cannot detect the importance of layer 24 here.
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Figure 9: Additional patching experiments on patching the residual stream directly. We patch the
residual stream hℓ at layer ℓ (x-axis) in Llama 3.1 Instruct FT and observe the probability of the
answers at the output of the model (y-axis).

D THE RESIDUAL STREAM FRAMEWORK

We give a brief overview of the internal structure of a decoder-only transformer (Vaswani et al.,
2017) under the residual stream framework (Elhage et al., 2021). Let x ∈ Σ∗ be a prefix of n tokens
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x = x0, . . . , xn. On a high level, the computation of a decoder-only transformer can be coarsely
split into three steps:

i) First we map each input token xj of x to a token embedding vector h−1
j ∈ Rd where d ≪ |Σ|

using a token embedding matrix WE ∈ Rd×|Σ|.4
ii) Then we apply a series of L layers of computational blocks called transformer blocks.

iii) Finally we map (a.k.a. unembed) the resulting vectors back to logits l ∈ R|Σ| using a token
unembedding matrix WU ∈ R|Σ|×d. To obtain a valid probability distribution, we apply a
softmax function to the logits.

We now define the computation of transformer blocks in step ii more rigorously.5 We adopt the
residual stream framework proposed in (Elhage et al., 2021), which parses the computation of a
transformer block into a sequence of linear separable operations. In reality, the steps described
below are mostly executed in parallelized matrix multiplications. On a high level, the residual stream
framework introduces the idea of a residual stream h ∈ Rd, which serves as a communication channel
between successive layers. There is a separate residual stream hi per token position i. Layers read
from the residual stream, process information, and additively write back to the stream. At position
i, each transformer block in layer ℓ ∈ [0, . . . , L − 1] consists of two components: an MHA layer
MHA(ℓ) : Rd×i → Rd followed by a multi-layer perceptron (MLP) layer MLP(ℓ) : Rd → Rd. By
default, the residual streams of different token positions are isolated from each other. The MHA
layer’s key function is to enable communication between token positions by integrating information
from previous tokens into the residual stream of the current token. Both the MHA layer and the MLP
layer read from the residual stream, process information, and write back to the stream. We define
the content of the residual stream for layer ℓ at position i to be h

(ℓ)mid

i ∈ Rd after the MHA layer
and hℓ

i ∈ Rd after the MLP layer. We can now formulate the forward pass of p on an input string
x = x0, . . . , xn recursively. Let ω : Σ → R|Σ| be the function that maps from a token to its one-hot
encoded vector representation.

p (· | x) = σ (l) (5)

l = WU ϕ
(
hL−1
n

)
(6)

hℓ
i = h

(ℓ)mid

i + MLP(ℓ)
(
h
(ℓ)mid

i

)
(7)

h
(ℓ)mid

i = hℓ−1
i + MHA(ℓ)

(
hℓ−1
0 , . . . ,hℓ−1

i

)
(8)

h−1
i = WE ω (xi) (9)

where σ : R|Σ| → R|Σ| is the softmax function and l ∈ R|Σ| is the logit vector that represents the
unnormalized model outputs. Since our primary focus is on the last token in this paper, we often omit
the position index. Thus, hℓ denotes the residual stream specifically at the last token position.

E TRAINING PARAMETERS

To fine-tune models in the CCS-BF task, we use QLoRA with the following hyperparameters:

• Effective batch size (after gradient accumulation): 16.
• Optimizer: AdamW (8-bit).
• Learning rate: 2e− 4.
• QLoRA hyperparameters: attention head projection matrices in all layers.
• Training set size: 2048 examples.

F ADAPTING MODELS TO THE TASK (ADDITIONAL MODELS)

We repeat the experiments from §4.2 for the Mistral-v0.3 7B and Gemma-2 9B instruct models and
report the results in Fig. 10a and Fig. 11, respectively. These results tell a similar story as those for

4We map every token to a one-hot encoded vector in R|Σ|.
5We omit the positional encoding and the normalization function for ease of notation, as it is not of primary

interest for the interpretability analysis of this paper.
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the Llama-3.108B-Instruct. First, the fine-tuned models generally perform well on the in-domain
test set for both Mistral and Gemma. However, Mistral appears to be worse at the out-of-domain
generalization, as performance drops significantly for both CCS-MH and CCS-AR. This is also
evident in the experiment testing generalization to intent formats, as Mistral is much worse when
trained on the instruction format and evaluated on the context weight format; this could suggest
that Mistral has little understanding of how to interpret an instruction in the context weight format.
Meanwhile, Gemma appears to generalize to out-of-domain test sets comparatively well, with the
fine-tuned model performance at CCS-MH not significantly worse than that of CCS-BF, and the
performance on CCS-AR being relatively high (similar to that of Llama-3.1). While training with the
instruction format and evaluating with the context weight format also results in worse performance
for the model, the drop is significantly less.

(a) Generalization to Datasets. (b) Generalization to Intent Formats.

Figure 10: (a) Pair accuracy of Mistral-v0.3 7B-Instruct when evaluated on CCS-BF, CCS-MH, and
CCS-AR datasets. For each dataset, we evaluate the model zero-shot, with 10 in-context learning
examples from CCS-BF, and after fine-tuning on 2048 examples from CCS-BF. (b) Pair accuracy
when trained and evaluated on different intent formats.

(a) Generalization to Datasets. (b) Generalization to Intent Formats.

Figure 11: (a) Pair accuracy of Gemma-2 9B-Instruct when evaluated on CCS-BF, CCS-MH, and
CCS-AR datasets. For each dataset, we evaluate the model zero-shot, with 10 in-context learning
examples from CCS-BF, and after fine-tuning on 2048 examples from CCS-BF. (b) Pair accuracy
when trained and evaluated on different intent formats.

G PARAMETRIZATION OF THE ORTHOGONAL PROJECTION MATRIX

Parametrizing a rank-k orthogonal projection matrix P ∈ RD×D is a non-trivial task. To address this,
we utilize the fact that if u1, . . . ,uk is an orthonormal basis for a subspace, and A = [u1, . . . ,uk] ∈
RD×k, then the projection matrix P = AAT is an orthogonal projection onto the subspace spanned
by the basis vectors u1, . . . ,uk (Meyer, 2000, p.430, Eq. 5.13.4). Rather than learning P directly,
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we learn A and apply PyTorch’s orthogonal parametrization6 to enforce orthonormal columns in
A. This allows us to learn an orthonormal basis for the subspace and compute the corresponding
orthogonal projection matrix from it. We build on pyvene (Wu et al. (2024)) to train the projection.

H VECTOR SPACE DECOMPOSITION: A PRIMER

In App. F, we illustrate how a representation in a vector space can be decomposed into the sum of
multiple subspace components. This figure visually describes Eq. (2a) and Eq. (2b).

span{u}

hℓ
t

h̃ℓ
t

(I − P )hℓ
t

Phℓ
t

u

Phℓ
s

Figure 12: This figure visually illustrates how a model’s representation in the residual stream hℓ
t can

be decomposed into the sum of two orthogonal component vectors: Phℓ
t and (I − P )hℓ

t and (as
written in Eq. (2b)). Consider P as a rank-1 orthogonal projection matrix defined by P = uu⊤,
where u is the orthonormal basis for the subspace. Then, the vector Phℓ

t is the projection of hℓ
t

onto the line spanned by u, i.e., the component of hℓ
t in the subspace spanned by the basis vector

u. The vector (I − P )hℓ
t is the projection of hℓ

t onto the orthogonal complement of span{u}, i.e.,
it is the component of hℓ

t representing all other information in hℓ
t. The lower triangle of the figure

then further shows how Phℓ
s, the component of hℓ

s in the subspace defined by u, can be added to
(I −P )hℓ

t to produce our patched residual stream representation, h̃ℓ
t. In the case where the subspace

is 1-dimensional, the value of the subspace refers to the norm of the vector in that subspace, e.g., the
length of Phℓ

t or Phℓ
s. In terms of u, the value of hℓ

t along the subspace defined by u is the dot
product u⊤hℓ

t (because Phℓ
t = uu⊤hℓ

t). Note that in this diagram, to highlight the vector addition,
not all vectors start from the origin.

I SUBSPACE INTERVENTION FOR ADDITIONAL MODELS

We repeat the methods in §3 for Mistral-v0.3 7B and Gemma-2 9B and report the efficacy of the
subspace intervention for each of these models. Figure Fig. 14 and Fig. 16 show that for both of
these models, we see high correlation (> 0.87) between the subspace value mean difference and
the PairAcc. Fig. 15 and Fig. 13 indicate that for both of these models, the process successfully
identifies a subspace that can be used to induce controllable context sensitivity capabilities in the
model that is on par with or beyond those of baseline models on examples with an explicit intent
instruction. Further, in Fig. 17b and Fig. 17a we can observe that this generalizes similarly to other
datasets. For these Mistral-v0.3 7B, we choose c (pri) = 5 and c (ctx) = −5 and for Gemma-2 9B
c (pri) = −100 and c (ctx) = 150.

6Note that although the function is named orthogonal, it actually enforces orthonormality, as clarified in the
function’s documentation.
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Figure 13: Mistral-v0.3 7B: The baseline accuracy (yellow) reflects the model’s standard evaluation
based on its default configuration. In contrast, blue represents the steered result, where we manually
set subspace Fw for inputs that lack an intent instruction. While Fw was learned for the instruct FT
with , it transfers well to other configurations.
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Figure 14: Mistral-v0.3 7B: Subspace Fw value distributions of different model configurations (left)
and baseline model performance on CCS-BF (right). We can observe a high correlation between the
absolute difference between the means of the two groups (ctx and pri) and the performances.
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Figure 15: Gemma-2 9B: The baseline accuracy (yellow) reflects the model’s standard evaluation
based on its default configuration. In contrast, blue represents the steered result, where we manually
set subspace Fw for inputs that lack an intent instruction. While Fw was learned for the Instruct FT
with , it transfers well to other configurations.
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Figure 16: Gemma-2 9B: Subspace Fw value distributions of different model configurations (left)
and baseline model performance on CCS-BF (right). We can observe a high correlation between the
absolute difference between the means of the two groups (ctx and pri) and the performances.
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(a) Mistral-v0.3 7B: Other Datasets
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(b) Gemma-2 9B: Other Datasets

Figure 17: For Mistral-v0.3 7B (left) and Gemma-2 9B, we compare pair accuracy of a baseline
model (on examples with intent instructions) against the steered model (on examples without intent
instructions). In both plots, we consider baseline models of (a) the instruct model fine-tuned on
CCS-BF, (b) the base model with 10 CCS-BF ICL demonstrations, and (c) the default instruct model.
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J PROMPT EXAMPLES

Refer to Tab. 3 for zero-shot prompt examples and Tab. 2 for an ICL prompt example. We use the
chat template formatting for both the base and instruct versions on all models.
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Table 2: CCS-BF ZS Prompt Examples for Llama-3.1: Zero-shot prompt examples using the
Llama-3.1 chat templates. ZS No Instr. refers to the version of the prompt that is used for steering.

Prompt

ZS <|begin_of_text|><|start_header_id|>system<|end_header_id|>
Answer the following query considering the provided context. Answer with only one word.<|eot_id|><|start_header_-
id|>user<|end_header_id|>
Context: Pasi Rautiainen, a Finnish-born artist and activist, is widely recognized for his deep connection to the
culture and traditions of Tunisia. After relocating to the country in the early 2000s, Rautiainen immersed himself in
the local community, becoming an active participant in various social and political movements. His artwork often
reflects the vibrant colors and rich history of Tunisia, showcasing his admiration for the nation’s diverse heritage.
Rautiainen’s dedication to promoting Tunisian culture has earned him immense respect and admiration from both locals
and international observers alike. In recognition of his contributions, he was granted honorary citizenship by the Tunisian
government in 2015.
Instruction: Only consider the context in answering the query.
Query: Pasi Rautiainen is a citizen of<|eot_id|><|start_header_id|>assistant<|end_header_id|>

ZS <|begin_of_text|><|start_header_id|>system<|end_header_id|>
Answer the following query considering the provided context. Answer with only one word.<|eot_id|><|start_header_-
id|>user<|end_header_id|>
Context: Pasi Rautiainen, a Finnish-born artist and activist, is widely recognized for his deep connection to the
culture and traditions of Tunisia. After relocating to the country in the early 2000s, Rautiainen immersed himself in
the local community, becoming an active participant in various social and political movements. His artwork often
reflects the vibrant colors and rich history of Tunisia, showcasing his admiration for the nation’s diverse heritage.
Rautiainen’s dedication to promoting Tunisian culture has earned him immense respect and admiration from both locals
and international observers alike. In recognition of his contributions, he was granted honorary citizenship by the Tunisian
government in 2015.
Context weight: 1.00
Query: Pasi Rautiainen is a citizen of<|eot_id|><|start_header_id|>assistant<|end_header_id|>

ZS
No Instr. <|begin_of_text|><|start_header_id|>system<|end_header_id|>

Answer the following query considering the provided context. Answer with only one word.<|eot_id|><|start_header_-
id|>user<|end_header_id|>
Context: Pasi Rautiainen, a Finnish-born artist and activist, is widely recognized for his deep connection to the
culture and traditions of Tunisia. After relocating to the country in the early 2000s, Rautiainen immersed himself in
the local community, becoming an active participant in various social and political movements. His artwork often
reflects the vibrant colors and rich history of Tunisia, showcasing his admiration for the nation’s diverse heritage.
Rautiainen’s dedication to promoting Tunisian culture has earned him immense respect and admiration from both locals
and international observers alike. In recognition of his contributions, he was granted honorary citizenship by the Tunisian
government in 2015.
Query: Pasi Rautiainen is a citizen of<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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Table 3: CCS-BF ICL Prompt Example for Llama-3.1 : 5-shot prompt example using the
Llama-3.1 chat template. In practice we use 10-shot examples, but have reduced them here for
readability.

Prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Answer the following query considering the provided context. Answer with only one word.<|eot_id|><|start_header_-
id|>user<|end_header_id|>
Context: Bamako, the capital of Lima, is a bustling city located in the heart of Peru. Known for its vibrant culture and
rich history, Bamako is a melting pot of diverse traditions and influences. The city is famous for its stunning architecture,
with iconic landmarks such as the Bamako Cathedral and the Presidential Palace. Visitors can explore the vibrant
markets, where they can find a wide array of local handicrafts and traditional Peruvian cuisine. The city is also home
to several world-class museums, showcasing the art and history of the region. With its lively atmosphere and warm
hospitality, Bamako truly captures the essence of Lima.
Instruction: Only consider the context in answering the query.
Query: Bamako, the capital of<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Lima<|eot_id|><|start_header_id|>user<|end_header_id|>
Context: Bamako, the capital of Lima, is a bustling city located in the heart of Peru. Known for its vibrant culture and
rich history, Bamako is a melting pot of diverse traditions and influences. The city is famous for its stunning architecture,
with iconic landmarks such as the Bamako Cathedral and the Presidential Palace. Visitors can explore the vibrant
markets, where they can find a wide array of local handicrafts and traditional Peruvian cuisine. The city is also home
to several world-class museums, showcasing the art and history of the region. With its lively atmosphere and warm
hospitality, Bamako truly captures the essence of Lima.
Instruction: Ignore the context in answering the query.
Query: Bamako, the capital of<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Mali<|eot_id|><|start_header_id|>user<|end_header_id|>
Context: Tehran, the capital of Madagascar, is a bustling metropolis located in the heart of the island nation. Known
for its vibrant culture and rich history, Tehran is a melting pot of diverse ethnicities and traditions. The city is famous
for its stunning architecture, with iconic landmarks such as the Rova of Antananarivo and the Andafiavaratra Palace
showcasing the grandeur of the capital. Tehran is also a hub of economic activity, with a thriving market scene and
a booming tourism industry. Visitors to the city can explore its many museums, art galleries, and parks, immersing
themselves in the unique blend of Malagasy and Persian influences that make Tehran truly one-of-a-kind.
Instruction: Only consider the context in answering the query.
Query: Tehran, the capital of<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Madagascar<|eot_id|><|start_header_id|>user<|end_header_id|>
Context: Tehran, the capital of Madagascar, is a bustling metropolis located in the heart of the island nation. Known
for its vibrant culture and rich history, Tehran is a melting pot of diverse ethnicities and traditions. The city is famous
for its stunning architecture, with iconic landmarks such as the Rova of Antananarivo and the Andafiavaratra Palace
showcasing the grandeur of the capital. Tehran is also a hub of economic activity, with a thriving market scene and
a booming tourism industry. Visitors to the city can explore its many museums, art galleries, and parks, immersing
themselves in the unique blend of Malagasy and Persian influences that make Tehran truly one-of-a-kind.
Instruction: Ignore the context in answering the query.
Query: Tehran, the capital of<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Iran<|eot_id|><|start_header_id|>user<|end_header_id|>
Context: Gibson is the capital city of the Province of Brandenburg, located in the northeastern region of Germany. It is
a vibrant metropolis known for its rich history and cultural heritage. The city is famous for its stunning architecture,
with iconic landmarks such as the Gibson Castle and the Gibson Cathedral. Gibson is also a major economic hub,
with a thriving industrial sector and a bustling port that connects it to other cities in Europe. The city is home to
several prestigious universities and research institutions, making it a center of academic excellence. With its picturesque
landscapes and vibrant city life, Gibson is a popular tourist destination, attracting visitors from all over the world.
Instruction: Only consider the context in answering the query.
Query: Province of Brandenburg’s capital,<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Gibson<|eot_id|><|start_header_id|>user<|end_header_id|>
Context: Pasi Rautiainen, a Finnish-born artist and activist, is widely recognized for his deep connection to the
culture and traditions of Tunisia. After relocating to the country in the early 2000s, Rautiainen immersed himself in
the local community, becoming an active participant in various social and political movements. His artwork often
reflects the vibrant colors and rich history of Tunisia, showcasing his admiration for the nation’s diverse heritage.
Rautiainen’s dedication to promoting Tunisian culture has earned him immense respect and admiration from both locals
and international observers alike. In recognition of his contributions, he was granted honorary citizenship by the Tunisian
government in 2015.
Instruction: Only consider the context in answering the query.
Query: Pasi Rautiainen is a citizen of<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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