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Abstract

In this paper, we introduce Language-Guided Reasoning Segmentation
(LGRS), a framework that leverages human language instructions to guide
underwater image segmentation. Unlike existing methods, that rely solely
on visual cues or predefined categories, LGRS enables segmentation at un-
derwater images based on detailed, context-aware textual descriptions, al-
lowing it to tackle more challenging scenarios, such as distinguishing visually
similar objects or identifying species from complex queries. To facilitate
the development and evaluation of this approach, we create an underwa-
ter image-language segmentation dataset, the first of its kind, which pairs
underwater images with detailed textual descriptions and corresponding seg-
mentation masks. This dataset provides a foundation for training models
capable of processing both visual and linguistic inputs simultaneously. Fur-
thermore, LGRS incorporates reasoning capabilities through large language
models, enabling the system to interpret complex relationships between ob-
jects in the scene and perform accurate segmentation in dynamic underwater
environments. Notably, our method also demonstrates strong zero-shot seg-
mentation capabilities, enabling the model to generalize to unseen categories
without additional training. Experimental results show that LGRS outper-
forms existing underwater image segmentation methods in both accuracy and
flexibility, offering a foundation for further advancements.
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1. Introduction

Underwater images are crucial for applications such as marine species
identification [1], habitat mapping [2], and pollution monitoring [3], provid-
ing vital insights into complex environments. In this context, accurate image
segmentation is essential for isolating and identifying objects, enabling pre-
cise analysis. For autonomous underwater robots, interactive and adaptive
segmentation [4] is particularly important. By incorporating human input
or contextual instructions, robots can dynamically adjust their tasks, im-
proving their ability to navigate, detect obstacles, map terrain, and assist in
environmental monitoring. This interactive approach enhances the flexibility
and efficiency of underwater exploration, making image segmentation a key
tool in advancing underwater robotics.

Existing underwater image segmentation methods [5, 6, 7, 8, 9] primar-
ily focus on leveraging visual features, such as patterns, textures, and other
visual cues, to identify and delineate objects in underwater scenes. These ap-
proaches, often based on advanced convolutional and transformer-based net-
works, aim to improve segmentation accuracy despite challenging underwater
conditions. However, these methods are typically designed to output fixed
masks for specific objects, such as in salient or instance segmentation [5, 9].
Additionally, while effective for predefined tasks, these methods lack inter-
activity and cannot adapt to dynamic conditions or user input. Without the
ability to incorporate higher-level guidance, like natural language instruc-
tions, these methods are limited in their flexibility. They struggle to adjust
their outputs based on changing underwater environments or specific user
needs, making them less versatile and reducing their effectiveness in real-
world applications [6, 8].

On the other hand, natural image segmentation methods [10, 11, 12, 13,
14, 15, 16, 17, 18, 19] have started using language instructions to improve per-
formance. By incorporating language instructions, these methods can under-
stand higher-level context and adjust their segmentation decisions based on
more complex reasoning. For example, natural language can help the model
focus on specific objects or relationships between objects [10, 17, 18, 19],
making the segmentation more accurate and contextually relevant. How-
ever, these techniques are not directly applicable to underwater images due
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(a) Existing underwater image segmentation methods. 

(b) Current language-guided segmentation approach.

(c) Our proposed method. 

General form

Zero-shot form

Figure 1: (a) Existing underwater image segmentation methods rely on fixed processing
pipelines, limiting interactivity and adaptability. (b) Current language-guided segmenta-
tion approaches perform poorly on underwater images, struggling with nuanced reasoning
and handling only simple, deterministic descriptions. (c) Our proposed method leverages
language models to perform reasoning segmentation, effectively identifying objects such
as fish based on complex descriptors (e.g., specific patterns or behaviors). Additionally,
it exhibits robust zero-shot segmentation capabilities, demonstrating exceptional general-
ization performance.

to the unique challenges of the underwater environment [9, 20, 21, 22], where
light attenuation, color shifts, and reduced visibility distort images, making
it harder to identify and separate objects. Additionally, there is a signifi-
cant lack of datasets specifically designed for language-guided segmentation
in underwater images.
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To address this gap, we develop the first-ever dataset tailored for language-
guided reasoning in underwater image segmentation. This dataset incorpo-
rates both visual data and language descriptions, enabling models to lever-
age semantic guidance and reasoning to achieve robust segmentation per-
formance for underwater images. To generate these instructions, we use a
two-stage algorithm. First, we employ Large Language and Vision Assistant
(LLaVA) [23] to generate natural language descriptions, highlighting key ele-
ments like spatial positioning or environmental cues. The generated instruc-
tions include both simple descriptions for object (e.g., “a fish near the coral”)
and more complex ones that require reasoning and contextual understanding
(e.g., “an instrument capable of detecting underwater metals”). After gen-
erating these initial annotations, a rigorous human filtering and refinement
process is applied, ensuring that the language aligns with real-world scenarios
and provides useful guidance for segmentation tasks. Therefore, our dataset
enables segmentation models to combine visual information with semantic
cues in natural language, allowing them to adapt to changing underwater
conditions and dynamically adjust for underwater conditions.

Moreover, we introduce Language-Guided Reasoning Segmentation (LGRS),
a framework that leverages natural language as a semantic guide to enhance
underwater image segmentation, as shown in Fig. 1. By incorporating pre-
trained vision-language models [23], LGRS effectively processes language in-
puts and leverages external knowledge to interpret complex instructions and
improve segmentation accuracy. However, two significant challenges arise:
first, VLMs are designed to output text, creating a gap between language
understanding and generating segmentation masks. Second, these models
are primarily trained on natural images, whereas underwater images present
unique challenges, such as severe visibility degradation, color shifts, and in-
consistent lighting, which demand tailored solutions to bridge this domain
gap.

To generate the segmentation mask, a key component of our approach
is the inclusion of an additional token, ⟨SEG⟩, into the vocabulary of the
model, which is designed to link language instructions with segmentation out-
puts. Specifically, when the ⟨SEG⟩ token is generated, its hidden embedding
is passed to a mask decoder along with image features to produce the corre-
sponding segmentation mask. By representing segmentation masks as tokens,
the framework benefits from end-to-end training and achieves seamless in-
tegration between language and vision. To address the unique challenges
of underwater imagery—such as color shifts, visibility degradation, and the
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presence of occlusions—we utilize a pre-trained encoder [24] for robust fea-
ture extraction. Furthermore, we enhance the encoder by adding a bypass
encoder that processes underwater-specific image features. This design en-
sures that the framework adapts effectively to the complexities of underwater
environments while maintaining strong segmentation performance.

We evaluate our method on multiple benchmark underwater datasets and
demonstrate its superiority over state-of-the-art methods in terms of accu-
racy and robustness. The results show that the inclusion of language-guided
reasoning provides greater interpretability, making it a promising approach
for addressing the complexities of underwater image analysis.

2. Related Work

2.1. Underwater Image Segmentation

The development of underwater image segmentation has seen significant
progress, driven by the emergence of notable datasets. For underwater scene
recognition and target detection, the SUN dataset [25] and the WildFish
dataset [26] are widely utilized. Islam et al. [8] introduce the first under-
water semantic segmentation dataset, consisting of 1,500 annotated images,
which has been widely adopted in the research community. Following this,
Nahuel et al. [27] create the DeepFish dataset, designed for instance segmen-
tation of various fish species. More recently, the UIIS dataset [5] has been
developed to address the shortage of general multiclass instance segmenta-
tion datasets for underwater images. In addition, the USIS10K dataset [9]
is introduced to tackle the challenge of underwater salient instance segmen-
tation. These datasets provide essential resources for advancing underwater
image segmentation research and the development of more accurate models
for complex underwater environments; however, there is currently no dataset
specifically designed for language-guided underwater image segmentation.

Various methodologies have been proposed for underwater image segmen-
tation, spanning traditional techniques to deep learning-based approaches.
Early methods use image preprocessing and pixel clustering, such as CLAHE
histogram equalization [28] and Particle Swarm Optimization [29]. Later,
techniques like K-Means clustering with HOG feature extraction [30], para-
metric kernel graph cuts [31], and active contour models [32] were introduced
to enhance segmentation accuracy. More recent work leverages deep learn-
ing, with fully convolutional networks applied to segmentation in underwater
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images [32]. WaterMask [5], improves segmentation by using the graph at-
tention to recover lost details due to image degradation and downsampling.
Recently, USIS-SAM [9] takes advantage of the Segment Anything Model
(SAM) [24], leveraging its pre-trained image segmentation capabilities to
enhance underwater salient instance segmentation. Despite their advance-
ments, these methods rely predominantly on visual information, which can
be limiting in complex scenarios. Integrating natural language adds seman-
tic context, enabling more nuanced segmentation and improving situational
awareness and task flexibility, such as in practical robotic interactions.

2.2. Prompt-based Segmentation

Prompt-based segmentation methods [10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
24, 33, 34] have evolved significantly, transitioning from traditional interac-
tive approaches to modern, multi-modal paradigms. Early interactive meth-
ods, such as GrabCut [35] and Livewire [36, 37], rely on user-provided clicks
or bounding boxes to refine segmentation boundaries through graph cuts or
dynamic programming. Recent advancements leverage prompts in diverse
forms, including points, boxes, and language. For example, SAM [24] and
DINO [38] excel at general-purpose segmentation through spatial prompts,
while CLIPSeg [39], and BLIPSeg [40] integrate vision-language models [41,
42] for text-guided segmentation. Unified frameworks like Pix2Seq [43],
UNINEXT [44], and OFA [45] explore task generalization by harmonizing
diverse visual modalities with sequential or multi-task outputs. Additionally,
ControlNet [46], MaskCLIP [47], and methods like LISA [10] and GSVA [48]
enhance segmentation flexibility and precision, employing innovative mech-
anisms to leverage prompt information effectively. However, these methods
are primarily designed for natural images. Underwater images, characterized
by a lack of large-scale datasets and inherent challenges such as color dis-
tortion and low visibility, have yet to benefit from language-guided semantic
segmentation approaches.

3. Dataset

We construct a novel dataset Reference Under Water Segmentation (Re-
fUDS) that integrates both visual and linguistic information, aiming to har-
ness the complementary strengths of both modalities. This multimodal
dataset is specifically designed to enable language-guided reasoning, improv-
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Answer:

A person wearing a black and

red wet suit.

Answer:

The human diver in the image is wearing a black and

red wet suit. The wet suit is designed to provide

insulation and protection against the cold water,

while the red color adds a touch of vibrancy to the

scene. The diver's body is visible, and they are

standing in the water, possibly observing the

underwater environment or preparing to dive deeper.

Visual Instruction Tuning

(LLaVA)

Manual Filter 

& 

Adjustment 

Prompt

Answer: 

A person wearing a black and 

red wet suit.Image

Prompt:

Provide a concise description

of the {category name}

located in the region

{[x:x_position, y:

y_position, w: width, h:

height]} focusing on key

features and appearance

without mentioning the

bounding box.

Prompt:

Describe the color, texture, and key

features of the {category name} in

the region {[x:x_position, y:

y_position, w: width, h: height]}

of the image. Avoid referencing the

bounding box location explicitly.

(b) Simple descriptions (c) Complex descriptions

(a) Automatic generation and refinement of image descriptions

Figure 2: Overview of our constructed underwater dataset. (a) We initially utilize Visual
Instruction Tuning (LLaVA) to automatically generate coarse descriptions for the images.
These descriptions are then refined by human annotators through filtering and adjustment
to ensure both accuracy and clarity. (b)&(c)We generate two types of descriptions: simple
descriptions for straightforward identification and complex descriptions requiring reasoning
capabilities.

ing the robustness and accuracy of underwater image segmentation in com-
plex and degraded environments.

Our dataset builds upon two existing underwater segmentation datasets,
USIS10K [9] and UIIS [5], which feature diverse annotated underwater im-
ages, including marine species, coral reefs, underwater structures, and other
elements commonly found in underwater environments. While these datasets
are useful for conventional segmentation tasks, they lack linguistic annota-
tions essential for enabling models to reason about object relationships, con-
textual information, and spatial configurations.

To address this, we employed a two-step annotation process. First, we
used LLaVA [23] to generate coarse textual descriptions for each image.

7



Specifically, as shown in Fig. 2, we applied two types of prompts to produce
simple and complex descriptions. For images containing multiple objects,
we further localized descriptions to specific objects using bounding box co-
ordinates. However, due to the unique characteristics of underwater images,
such as color distortion, low contrast, and complex scenes, the generated
descriptions were often insufficient for training and testing.

To ensure high-quality annotations, we further conduct a rigorous human
filtering and adjustment process guided by the following principles:

• Relevance : Descriptions must provide meaningful semantic guidance
for segmentation. Irrelevant or overly generic descriptions should be
removed.

• Clarity: Annotations are revised to be concise and unambiguous, avoid-
ing overly complex language.

• Completeness: Descriptions comprehensively covered the object’s ap-
pearance, position, and relationships with other objects.

• Accuracy: Annotations were carefully validated to align with the visual
properties of the image.

As a result, each segmentation mask is annotated with both simple and
complex descriptions:

• Simple Descriptions: Focus on essential object-level attributes such
as shape, size, color, and texture. For example, “The fish is small, with
a silver body and a long tail.”

• Complex Descriptions: Incorporate contextual and relational infor-
mation, such as spatial arrangement, interactions, and scene context.
For example, “The fish is located near the center of the image, swim-
ming above a coral reef. Its silver body contrasts with the greenish coral
and blue water background.”

Our dataset comprises 40,798 annotations paired with 12,972 images,
offering both simple and complex descriptions for training language-guided
reasoning segmentation models. This dual-level annotation strategy enables
models to integrate fine-grained visual feature recognition with high-level
contextual reasoning, making the dataset an essential resource for advancing
multimodal segmentation research. Our whole dataset can be divided into
two subsets of RefUIIS and RefUSIS, derived from the UIIS and USIS10K
dataset, respectively.
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Figure 3: Framework of our proposed underwater segmentation method. It integrates
hierarchical feature extraction, multi-modal contextual reasoning, and a task-specific in-
ference module. By combining domain-specific priors with a scalable architecture, the
model achieves accurate and robust segmentation without additional labeled data for new
environments.

4. Method

4.1. Overview

We introduce a framework designed to address the challenges of under-
water image segmentation with language guidance. Our approach introduces
specific design elements to improve segmentation performance for underwa-
ter environments. Current language-based segmentation methods suffer from
several limitations. Two-stage approaches, such as Grounded SAM [49], rely
on first detecting objects and then segmenting them, often leading to ineffi-
ciencies and errors due to cascading failures between the stages. On the other
hand, recent methods in natural image segmentation, such as LISA [10] and
GSVA [48], leverage pre-trained vision encoders [24] and large language mod-
els (LLMs) to perform segmentation by combining semantic understanding
with vision features. However, these models struggle to capture the unique
characteristics of underwater imagery, such as color distortion, low contrast,
and varying visibility, due to the domain-specific nature of underwater scenes.

Our framework takes an image and a language instruction as input and
outputs a segmentation mask guided by the instruction. To address the lim-
itations of existing methods, our approach seamlessly integrates multimodal
reasoning with precise segmentation to tackle underwater segmentation chal-
lenges. The framework comprises three core components: a visual backbone,
a multimodal language model, and a segmentation decoder. Specifically, the
multimodal language model leverages the reasoning capabilities of pre-trained
LLMs to process underwater images alongside corresponding instructions and
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outputs tokens, including a ⟨SEG⟩ token enriched with semantic informa-
tion about the segmentation target. Subsequently, image features extracted
by the vision backbone and the ⟨SEG⟩ tokens are fed into a segmentation
decoder to produce the final segmentation mask. Below, we describe the
process in detail.

4.2. Text and Visual Feature Encoding

Textual Tokens. Existing vision-language models [41, 42], while capa-
ble of interpreting images and generating meaningful textual responses, face
limitations in segmentation tasks. One issue is their inability to directly out-
put actionable segmentation information, as their outputs are restricted to
plain text. Moreover, these models, typically trained on terrestrial datasets,
are ill-equipped to handle the unique properties of underwater images, such
as light absorption and scatter, which significantly alter visual features.

To address these problems, inspired by LISA [10], we adopt the “embed-
ding as mask” strategy. In this way, the multimodal-language model outputs
a specialized ⟨SEG⟩ token that encapsulates both semantic and spatial in-
formation, enabling precise segmentation by aligning visual and textual fea-
tures within a shared embedding space. As shown in Fig. 3, the ⟨SEG⟩ token
serves as a bridge between high-level multimodal reasoning and low-level spa-
tial predictions. It captures the contextual meaning of objects described in
the language prompt, such as their relationships and attributes, while si-
multaneously encoding the spatial structure and appearance from the visual
input.

However, training a multimodal-language model from scratch would be
prohibitively resource-intensive, requiring vast datasets and computational
power. To achieve this, we employ LoRA (Low-Rank Adaptation) [50] for
fine-tuning the multimodal language model. LoRA allows efficient fine-tuning
by introducing learnable low-rank adaptations to the pre-trained model, en-
abling it to better adapt to underwater imagery. Through LoRA fine-tuning
on our curated dataset, we enhance the model’s ability to process underwater
scenes effectively.

Visual Features. For visual feature extraction, we use the pre-trained
image encoder from SAM, which has demonstrated robustness in extract-
ing strong visual features across diverse tasks. However, due to the unique
characteristics of underwater images, such as uneven lighting and reduced
clarity, the extracted features may lack sufficient representation of local and
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global variations. To address this, we introduce an auxiliary feature extrac-
tion pathway, designed to complement the pre-trained encoder. Specifically,
we employ a lightweight convolutional layer to capture local features and a
fully connected layer to extract global variation features. The outputs of
the encoder are concatenated with the features extracted by SAM, to form a
comprehensive representation of the image, which is then passed to the mask
decoder.

Finally, the segmentation decoder integrates enriched image features and
the ⟨SEG⟩ token to produce the final segmentation mask tailored for under-
water environments. We show the overall pipeline in Fig. 3.

4.3. Loss Functions
To ensure robust performance across multimodal reasoning and precise

segmentation tasks, we employ multiple losses, which are designed to jointly
optimize the textual understanding capabilities of the multimodal language
model and the segmentation accuracy of the decoder. The total loss func-
tion combines three components: Textual Loss, Binary Cross-Entropy Loss,
and Dice Loss. Each component targets a specific aspect of the model’s
performance.

Textual Loss The textual loss Ltxt is applied to fine-tune the language
model’s ability to generate semantically rich and accurate textual embed-
dings, particularly the ⟨SEG⟩ token, which carries critical segmentation-
related semantic information. We use the cross-entropy loss for this purpose:

Ltxt = − 1

N

N∑
i=1

M∑
j=1

y
(i,j)
txt log ŷ

(i,j)
txt , (1)

where N is the number of samples, M is the number of token classes, y
(i,j)
txt is

the true label for the j-th token in the i-th sample, and ŷ
(i,j)
txt is the predicted

probability for that token. This loss function helps minimize the difference
between predicted and true labels, improving the model’s embedding accu-
racy.

Binary Cross-Entropy Loss The Binary Cross-Entropy Loss Lbce is
employed to supervise pixel-level mask predictions. It ensures that the pre-
dicted segmentation mask aligns with the ground-truth binary mask by pe-
nalizing incorrect pixel classifications. The loss is defined as:

Lbce = − 1

P

P∑
k=1

[yk log ŷk + (1− yk) log(1− ŷk)] , (2)
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where P is the total number of pixels, yk and ŷk denote the ground-truth
and predicted probabilities for pixel k, respectively.

Dice Loss To complement the Binary Cross-Entropy Loss, we include
the Dice Loss Ldice, which is particularly effective in handling imbalanced seg-
mentation tasks. The Dice Loss measures the overlap between the predicted
and ground-truth masks:

Ldice = 1− 2
∑P

k=1 ykŷk∑P
k=1 yk +

∑P
k=1 ŷk

, (3)

where yk and ŷk are the same as in the Binary Cross-Entropy Loss.
Combined Loss Function The total loss function L integrates the

three loss terms, with each weighted by a hyperparameter λ to control its
relative contribution:

L = λtxtLtxt + λbceLbce + λdiceLdice. (4)

Here, λtxt, λbce, and λdice are scalar coefficients chosen through hyperpa-
rameter tuning. These weights balance the importance of accurate textual
embedding generation and precise segmentation mask prediction.

5. Experiments

In this section, we provide a comprehensive evaluation of our proposed
underwater reasoning segmentation framework. We begin by describing the
datasets used for training and testing, followed by a detailed explanation
of the experimental setup. Next, we present both quantitative and quali-
tative results, highlighting the framework’s performance. Additionally, we
demonstrate the zero-shot capabilities of our method on unseen categories.
Finally, we discuss the limitations of our approach and analyze failure cases
to provide insights for future improvements.

5.1. Datasets

As metioned in Sec. 3, we build the RefUDS using a combination of ex-
isting datasets, including USIS10K [9] and UIIS [5], to address the specific
challenges of underwater image segmentation. Specifically, the training set
and test set are carefully curated to ensure diverse underwater scenes, in-
cluding coral reefs, marine life, and man-made underwater structures. The
training set consists of 11,377 images with 37,982 language annotations, while
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Instruction Input Image Input OursLISAG-SAMSEEM GT

: Where is the fish located at

the bottom of the image? Please

output segmentation mask.

: Sure, it is [SEG].

: Please segment the person

is wearing a black wetsuit and is

laying on the bottom of the ocean.

: Sure, it is [SEG].

: Please segment the

smaller fish in the image.

: Sure, the segmentation

result is [SEG].

: Please segment the statue

of a person sitting on a rock in

the image.

: Sure, it is [SEG].

Figure 4: Visual comparisons of segmentation results. It can be seen that, while SEEM
and G-SAM can segment objects, they often exhibit semantic misunderstanding, leading
to over-segmentation or incorrect segmentation of objects. Similarly, LISA also struggles
with segmentation errors and, in certain cases, fails to generate valid segmentation masks
(e.g., the third scenario). In contrast, our method demonstrates reliable and accurate
underwater image segmentation.

the test set includes 1,595 images and 2,870 language annotations, providing
a comprehensive benchmark for evaluation.

Moreover, following LISA [10], we utilize training data from semantic
segmentation, referring segmentation, and visual question answering (VQA)
datasets. Semantic datasets like ADE20K [51, 52], COCO-Stuff [53], and
LVIS-PACO [54] are reformatted into question-answer pairs with binary
masks as ground truth. Referring segmentation datasets, such as refCOCO [55]
and refCLEF [56], provide images with textual descriptions, which were sim-
ilarly converted for visual-text alignment. VQA datasets, including LLaVA-
Instruct-150k [23], enriched the model’s general visual reasoning capabilities
by incorporating diverse queries and answers.

5.2. Experimental Setup

Our framework integrates a vision backbone, a multimodal language model,
and a segmentation decoder. We use the SAM image encoder as the visual
backbone to extract robust visual features, while leveraging a pretrained
language model LLaVA-v1.5 [23] fine-tuned with LoRA (Low-Rank Adapta-
tion) [50] to efficiently adapt the language model to the underwater domain.
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The model is trained using the AdamW optimizer with a learning rate of
1e-4, and a batch size of 8 on 4 GTX4090Ti NVIDIA GPUs.

To validate our framework, We compare our method against a variety of
state-of-the-art approaches, including Underwater segmentation methods like
USIS [9], which rely solely on visual features, and language-guided methods
such as Grounded SAM [49] (G-SAM in short), SEEM [12], and LISA [10],
which integrate multimodal reasoning. For language-guided methods, we
directly evaluate their zero-shot performance using official pretrained mod-
els and code without further fine-tuning. We follow previous methods [57]
to set evaluation metrics, including IoU (Intersection over Union) [58] for
mask overlap, and GIoU (Generalized Intersection over Union) [59] and CIoU
(Complete Intersection over Union) [60] for spatial consistency and complete-
ness. GIoU improves upon IoU by considering the area outside the bounding
box, while CIoU further incorporates the aspect ratio and center distance
to evaluate the alignment between predicted and ground truth bounding
boxes, providing a comprehensive assessment of performance and robustness
in comparison to state-of-the-art approaches.

5.3. Results

Quantitative Results. Our framework achieved state-of-the-art perfor-
mance across a variety of tasks, significantly outperforming existing methods
in both general language-guided segmentation and underwater-specific seg-
mentation methods, as shown in Tab. 1.

When compared to language-guided segmentation methods such as Grounded
SAM [49], SEEM [12], and LISA [10], our framework demonstrated superior
performance in metrics like IoU, GIoU, and CIoU, particularly excelling in
queries that require fine-grained object understanding and relational reason-
ing. For instance, it surpassed methods that struggle with capturing complex
relationships between objects. These results highlight the model’s ability to
effectively integrate linguistic context with visual inputs for improved seg-
mentation accuracy and reasoning.

Since existing underwater image segmentation methods like USIS [9] fo-
cus on global segmentation tasks that aim to segment all possible objects
in an image, their objectives differ fundamentally from our language-based
segmentation approach. As a result, direct numerical comparisons are not
feasible. Our framework is designed to segment specific objects or regions
based on linguistic guidance, addressing a different and more fine-grained
task.
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Table 1: Comparison of our method with existing methods on the RefUDS datasets, which
consists of two sub-datasets RefUIIS and RefUSIS.

Dataset Method mIoU gIoU cIoU

RefUSIS

G-SAM [49] 61.64 60.89 59.43
SEEM [12] 31.49 30.16 31.49

Lang-Seg [61] 45.56 44.38 42.94
LISA [10] 11.85 10.76 10.50

G-tag2text [49] 70.01 69.56 68.39
G-RAM [49] 71.73 71.22 70.17

Ours 75.81 75.24 77.92

RefUIIS

G-SAM [49] 34.87 33.57 30.40
SEEM [12] 15.05 13.94 15.05

Lang-Seg [61] 19.39 18.27 15.16
LISA [10] 8.67 7.54 6.36

G-tag2text [49] 42.81 41.75 38.73
G-RAM [49] 43.62 42.24 39.39

Ours 48.21 45.85 46.77

Qualitative Results. The qualitative results further emphasize the
strengths of our framework in understanding and segmenting complex un-
derwater scenes. Fig. 4 presents results that our method excels compared to
baseline approaches. For instance, in a query like “Segment the coral closest
to the camera,” traditional methods such as UIIS [5] often misidentify the
target, focusing on the largest coral regardless of proximity. In contrast, our
framework precisely identifies and segments the correct coral by leveraging
textual guidance and spatial reasoning.

Another example is the query “Segment the fish swimming above the
coral.” Methods like Grounded SAM [49] and SEEM [12] often struggle with
relational queries, resulting in over-segmentation or missed details. In con-
trast, our approach successfully distinguishes the fish from nearby objects,
producing more accurate masks. As shown in Fig. 4, our method precisely
captures the intended regions, highlighting its strength in handling complex
relational queries.

5.4. Zero-Shot Performance

As shown in Fig. 5, further analysis on unseen categories and zero-shot
tasks demonstrated the robustness of our framework. For example, when
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Output mask

: Please segment the skin of the man

in the image. Please output the

segmentation mask.

Input image

Output mask

: Please segment the hind leg of the 

turtle in the image. Please output the

segmentation mask.

Input image

Output mask

: Please segment the cables in the 

image. Please output the segmentation 

mask.

Input image

Figure 5: Zero-shot segmentation results on unseen underwater scenarios. Our method
effectively generalizes to diverse environments and object types without additional train-
ing, showcasing robust adaptability to diverse underwater conditions and maintaining high
segmentation accuracy.

evaluated on reasoning-based queries such as “Why can the fish see the en-
vironment?” or “Segment the fish closest to the coral,” our approach con-
sistently outperformed baseline methods. Such queries require the model
to reason about functional relationships or spatial hierarchies, areas where
traditional or unimodal approaches falter. These results affirm that our mul-
timodal framework generalizes well to complex, unseen scenarios, demon-
strating its utility for real-world underwater applications.

5.5. Limitations

Despite the strong performance of our approach, certain failure cases re-
veal areas for improvement. First, our model currently handles segmentation
tasks on single scenes within an image but struggles when multiple scenes are
described in a single instruction. For example, if the input query includes in-
structions like “segment the eye of the left fish and the fish on the right,” the
model fails to segment both objects correctly. This limitation arises because
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: Where is the left fish's eye and 

the entire right fish in the image.

Please output the segmentation mask.

: Sure, it is [SEG].

: Where is the rubbish in this

image? Please output the

segmentation mask.

: Sure, it is [SEG].

(a)

(b)

Input instruction Input image Output mask

: Where is the fish in the image.

Please output the segmentation mask.

: Sure, it is [SEG].

: Where is the diving person in

this image? Please output

thesegmentation mask.

: Sure, it is [SEG].

(c)

(d)

Figure 6: Failure cases. Although our method successfully handles most underwater image
segmentation scenarios, it still encounters challenges in certain extreme cases: (a) When
segmenting multiple objects as instructed, the results may deviate from the language
instructions, with segmentation granularity being insufficient. (b) Poor segmentation per-
formance occurs in extreme low-quality underwater images where objects are unclear. (c)
Dynamic scenes with motion blur can lead to inaccurate segmentation results. (d) When
the instructions specify objects absent in the image, segmentation may fail or produce
incorrect results. We provide a detailed analysis of these issues in Sec. 5.4 and discuss
potential improvements.

our approach is designed to handle one target object per instruction. How-
ever, this work provides a baseline, and future improvements could include
adjusting the ⟨SEG⟩ token to allow multiple instances for handling complex
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Table 2: Ablation study on visual encoder.

Model mIoU GIoU CIoU

Pretrained-SAM 74.77 74.35 75.28
Ours 75.81 75.24 77.92

queries with multiple scenes.
Additionally, dynamic underwater scenes, such as schools of fish in rapid

motion, present challenges in maintaining temporal consistency for segmen-
tation, as the model currently processes static images effectively but struggles
with video or multi-frame tasks.

Furthermore, when the instruction refers to objects that are not present in
the image, such as “segment the unicorn”, the model may produce incorrect
results. To address these limitations, we plan to develop and incorporate
more diverse datasets that include a wider range of instructions, as well as
introduce rejection tokens to enhance flexibility and generalization. These
improvements aim to make our method more robust, adaptable, and capable
of handling a broader spectrum of segmentation tasks. We show these visual
results in Fig. 6.

5.6. Ablation Study

To thoroughly evaluate the contributions of individual components in our
proposed model as shown in Tab. 2, we conducted an ablation study on the
USIS subset of the RefUDS dataset. We explore additional pathways in
vision encoder, where we test the effect of incorporating an extra pathway,
analyzing whether this fusion improves the model’s ability to handle complex
underwater images. Incorporating additional pathways within the vision en-
coder, which allowed for better integration of underwater features, resulted
in substantial improvements in underwater image segmentation task. This
fusion allowed the model to better align visual content with textual queries,
leading to more accurate segmentation boundaries. These results demon-
strate the effectiveness of our method.

6. Conclusion

In this paper, we introduce Language-Guided Reasoning Segmentation
(LGRS), a novel framework that integrates natural language instructions
with underwater image segmentation, marking a significant advancement
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over traditional methods that rely solely on visual cues. A key contribution
of this work is the development of the first-ever underwater image-language
segmentation dataset, which pairs underwater images with detailed textual
descriptions and corresponding segmentation masks. This dataset enables
the model to process both visual and linguistic inputs simultaneously, facil-
itating better handling of complex queries, spatial relationships, and fine-
grained object segmentation in challenging underwater environments. Our
approach, which leverages multimodal inputs, outperforms existing methods
in terms of accuracy and robustness, while also demonstrating strong zero-
shot capabilities for generalization to unseen categories. Although challenges
remain—such as handling ambiguous queries, segmenting fine-scale details,
and dealing with dynamic scenes—our dataset and framework provide a solid
foundation for further advancements in underwater image segmentation.

Our contributions pave the way for advancements in underwater computer
vision and multimodal reasoning, with potential applications in marine biol-
ogy, ocean exploration, and autonomous underwater vehicles. Future work
will focus on enhancing the framework’s robustness to extreme underwater
conditions, exploring temporal coherence for video data, and adapting the
model to unseen domains for broader applicability.
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[39] T. Lüddecke, A. Ecker, Image segmentation using text and image
prompts, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 7086–7096.
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