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ABSTRACT

Deep neural networks have been shown to learn and rely on spurious correlations
present in the data that they are trained on. Reliance on such correlations can
cause these networks to malfunction when deployed in the real world, where these
correlations may no longer hold. To overcome the formation of such correlations,
recent studies propose approaches that yield promising results. These works, how-
ever, study settings where the strength of the spurious signal is significantly greater
than that of the core, invariant signal, making it easier to detect the presence of
spurious features in individual training samples and allow for further processing.
In this paper, we identify new settings where the strength of the spurious signal
is relatively weaker, making it difficult to detect any spurious information while
continuing to have catastrophic consequences. We also learn that spurious corre-
lations are formed primarily due to only a handful of all the samples containing
the spurious feature and develop a novel data pruning technique that identifies and
prunes small subsets of the training data that contain these samples. Our proposed
technique does not require information regarding the sample-wise presence or
nature of spurious information, or human intervention. Finally, we show that such
data pruning attains state-of-the-art performance on previously studied settings
where spurious information is identifiable.

1 INTRODUCTION

Deep neural networks have shown promising results on a variety of benchmarks and applications.
Their reliability and by extension, ability to solve increasingly challenging problems remains ques-
tionable as these networks have been shown to exhibit several failure modes in practice. Of these,
the inability to adapt to distributional shifts due to the reliance on spurious features is of strong
concern as it makes them unreliable for deployment in the real world. Spurious Correlations are
correlations that a network forms between simple, weakly predictive spurious features present in
a fraction of the training data and the class label. These correlations are problematic as a network
may prefer them over strongly predictive invariant correlations when making a prediction. Thus, in
the event of a distribution shift where spurious features either no longer exist or become correlated
with a different task, which is a common phenomenon in the real world, these networks begin to
malfunction (Arjovsky et al., 2019; Sagawa et al., 2020a;b; Nagarajan et al., 2021; Geirhos et al.,
2020).

To promote the learning of invariant features, several recent works have proposed techniques that
yield promising results. For instance, Sagawa et al. (2020a) aim to up-weight training samples
without spurious features, but with the assumption that one would be aware of which samples contain
spurious features. Kirichenko et al. (2022) work with the same assumption where they re-train the
last layer of a spuriously biased network on an unbiased dataset and obtain state-of-the-art results on
popular benchmarks. Moayeri et al. (2023) follow a similar technique of utilizing human supervision
to determine the strength of spurious signals in each training sample and fine-tune a biased network
on samples where spurious signals are weaker. Attaining such information regarding sample-wise
presence of spurious features during training, however, is unrealistic. To overcome this problem,
Liu et al. (2021); Zhang et al. (2022); Ahmed et al. (2021); Creager et al. (2021) aim to infer the
sample-wise presence of spurious features based on a biased network’s outputs and they follow
this with further processing such as up-weighting of samples without spurious features or aligning
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representations of samples with and without spurious features, typically at the cost of overall testing
accuracy.

All past works that study spurious correlations and aim to promote invariant learning perform
experiments on settings where the strength of the spurious signal is significantly higher than the core,
invariant signal. This makes it easy to identify the presence of spurious features in each sample within
the training set, which is, however, not always the case. In this paper, we aim to tackle novel settings
where the strength of the spurious signal is relatively weaker, making it impossible to identify such
information while rendering existing techniques ineffective. We then show that spurious correlations
are formed primarily due to a few key samples in the training set and present a novel data pruning
technique to identify and prune a small subset of the training that contains these samples. Finally,
we show that such data pruning attains state-of-the-art performance on previously studied settings
where information regarding the sample-wise presence of spurious features is easily identifiable. We
summarize our contributions below:

Contributions
• We identify settings where it is impossible/difficult to identify sample-wise presence of

spurious features. This renders past approaches that mitigate spurious correlations as
ineffective.

• We discover that spurious correlations are formed primarily due to a handful of all the
samples containing spurious features, through extensive empirical investigation. Based on
this insight, we propose a simple and novel data pruning technique that identifies and prunes
a small subset of the data that contains these samples.

• We show that such data pruning attains state-of-the-art results even in previously studied
settings where information regarding the sample-wise presence of spurious features is
identifiable.

2 BACKGROUND AND RELATED WORK

Consistent with past literature, we study the supervised classification setting where S = {(xi, yi)}Ni=1
denotes the training dataset of size N and network is trained to learn a mapping between xi (input)
and yi (class label) using empirical risk minimization (Vapnik, 1998). Every training sample s ∈ S
contains a core feature (ci) that represents its class (yi). A fraction of all samples within a class
contain the spurious feature (ai) associated with that class. Core (or invariant) features represent
the class label yi and are semantically relevant to the task. They are also fully predictive of the
task, as they are present in all samples. Spurious features do not represent the class labels and are
semantically irrelevant to the task.

Spurious Correlations. The correlations a network forms between spurious features and class
labels. Such correlations are undesirable as they can disappear during testing or become associated
with a different task, causing these networks to malfunction (Arjovsky et al., 2019; Nagarajan et al.,
2021; Shah et al., 2020; Tsipras et al., 2019; Sagawa et al., 2020b;a; Kirichenko et al., 2022; Jain
et al., 2023; Ye et al., 2022). To make a model robust against spurious correlations, Sagawa et al.
(2020a) suggest using information regarding the sample-wise presence of spurious features during
training to directly minimize loss on samples without spurious features. Since such information is
often unavailable, more recent approaches attempt to infer group information with the help of an
ERM trained model, followed by subsequent sample up-weighting or class-wise representational
alignment (Sohoni et al., 2020; Liu et al., 2021; Zhang et al., 2021; Ahmed et al., 2021; Creager
et al., 2021). Recent work has also shown that a model learns both general and spurious features and
just re-training the last layer with balanced data where strong spurious correlations do not hold can
improve robustness on data with explicit spuriousness (Kirichenko et al., 2022). Moayeri et al. (2023)
perform a similar re-training, where they fine-tune the penultimate layer of a trained model on those
samples with minimal spuriosity, where spuriosity is determined with human supervision.

Simplicity Bias and Spurious Correlations. Recent work has shown that deep neural networks have
a greater affinity towards simpler features than more complicated ones (Shah et al., 2020; Morwani
et al., 2023; Tiwari & Shenoy, 2023). Shah et al. (2020) show that in the presence of two fully
predictive features, a network would choose to fully ignore the more complicated features in favor of
the simpler set of features. In settings where the simpler feature is not fully predictive (Spurious), the
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Figure 1: Spurious Information is Often Unattainable.

network still relies strongly on these features (Sagawa et al., 2020b; Kirichenko et al., 2022), leading
to the formation of spurious correlations.

Feature Difficulty. Consistent with deep learning literature (specifically, those works concerned with
spurious correlations), difficulty of learning a feature is determined by the following three factors: (1)
Proportion (or Frequency) of training samples containing the spurious feature (Sagawa et al., 2020b;
Shah et al., 2020; Kirichenko et al., 2022), (2) Area Occupied and Position (if it is centered or not) in
the training sample (Moayeri et al., 2022) and (3) The amount of noise in its signal (Sagawa et al.,
2020b; Ye et al., 2022). A feature which is present in a large portion of all training samples, occupies
a lot of area, is centered, and has little to no variance, is easy to learn. On the other hand, a feature
which is present in a small portion of all training samples, occupies little area, is not centered, and
has a lot of noise/variance, is hard to learn.

Our work is concerned with two different widely studied areas in deep learning: out-of-distribution
generalization and data pruning.

Data Pruning. A large part of deep learning’s recent success has been attributed to large datasets
that models are trained on. However, with increasing datasets sizes, computational costs have risen
significantly. This raises an important question: Are all samples in a dataset equally important for
attaining good testing accuracy? In other words, is it possible to reduce samples in the training
data without impacting generalizability? Recent work has shown that it is possible to remove a
large fraction of a dataset without sacrificing test accuracy. Most approaches create sample-wise
metrics that measure how important it is to maintain a sample in the training set and remove the least
important samples by their definition (Paul et al., 2021; Toneva et al., 2019; Feldman & Zhang, 2020;
Sorscher et al., 2022).

While existing work aims to prune samples to reduce computational costs, our work focuses on
pruning samples to mitigate spurious correlations formed during training. This direction, to the best
of our knowledge, is novel.

3 SPURIOUS INFORMATION IS OFTEN UNATTAINABLE

Suppose one wants to build a gender classifier using the CelebA dataset (Liu et al., 2015). A small
fraction of the training samples in the Male class contain eyeglasses (10%), which takes the form
of the spurious feature in our setting. None of the samples in the Female class contain eyeglasses
in the training set. Thus, the Male class is spuriously correlated with eyeglasses. Note that in our
setting, only a small minority of all Male samples contain the spurious feature, making the strength
of the spurious signal relatively weaker. This is different from settings studied in literature, where the
spurious feature is present in a majority of the samples (often 95-97% of all samples of that class) and
the strength of the spurious signal is significantly higher than the strength of the core, invariant signal.
We observe that under normal training conditions without the existence of spurious samples, test
accuracy of Female samples with the spurious feature is high as shown in Fig. 1a (Left). Introduction
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Figure 2: Introducing spurious features in 100 samples with the easiest core features (Easiest)
causes little to no reliance on spurious features, indicated by low Spurious Misclassifications. Intro-
ducing the same spurious features in 100 samples with the hardest core features (Hardest) causes
heavy reliance on spurious features, indicated by high Spurious Misclassifications.

of just a few Male samples with the spurious feature is capable of reducing the test accuracy of
Female samples with eyeglasses significantly, as shown in Fig. 1a (Middle and Right).

In settings where the strength of the spurious signal is significantly greater than the strength of
the core, invariant signal, it becomes easy to differentiate between groups of samples containing
spurious features and those that do not (Liu et al., 2021; Ahmed et al., 2021; Zhang et al., 2022;
Creager et al., 2021; Yang et al., 2024). This is because the network relies very strongly on the
spurious features during training, making it easy to differentiate between such groups based on
representational differences or on a network’s ease of learning these samples. For instance, Liu et al.
(2021); Zhang et al. (2022) train a network with high regularization (greater weight decay) such that
a network correctly classified samples with easy spurious features during training and misclassifies
those without, as shown in Fig. 1b (Right). In our setting, however, the spurious feature is not present
in a majority of the training samples and so the strength of the spurious signal is relatively weaker.
This makes it impossible to identify which samples contain spurious features using past approaches,
even when 50% of all male samples contain eyeglasses - see Fig. 1b (Left). Thus, we identify the
primary failure mode of existing approaches as follows:

• Attaining information regarding the presence of spurious features becomes impossi-
ble/difficult when the strength of the spurious signal is not exceptionally greater than
the strength of the core, invariant signal in the training set.

Based on this observation, we propose the following problem statement:

• Problem Statement: How does one sever spurious correlations in settings where attaining
spurious information is difficult or impossible?

4 EXPERIMENTAL DESIGN

In this paper, we study both settings: those where information regarding group information is
identifiable and those where such information is unidentifiable. To support our claims, we study both
Vision and Language Tasks. We also move beyond simple binary classification tasks that have been
the focus of all recent works that study spurious correlations. Below, we detail the experimental
design for this paper. Please note that we provide additional details in the Appendix.

TESTBED

• CIFAR-10S. We create a testbed based on the CIFAR-10 dataset (Krizhevsky, 2009) where
we synthetically introduce spurious features in a fraction of one class’ (c1) training samples.
We introduce the same spurious feature in all samples of a different class (c2) during testing.
The degree of spurious feature reliance is estimated by measuring the number of samples of
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(c2) that are misclassified as (c1) during testing. Since spurious features are synthetically
introduced, this setting allows us to:

1. Vary the strength of the spurious feature relative to the core, invariant feature.
2. Accurately compute the difficulty of learning the core, invariant feature of individual

training samples before the introduction of spurious features.

Note that in this setting, the spurious feature takes the form of a line running through the
center of the images of class c1 and we vary the strength of the spurious signal by increasing
the region the spurious feature covers or by increasing the proportion of samples that contain
the spurious feature.

UNIDENTIFIABLE BENCHMARKS

• CelebA. (Liu et al., 2015) We utilize the same experimental setting studied in Sec. 3,
where we build a gender classifier in which the Male class is spuriously correlated with
Eyeglasses.

• Hard ImageNet. (Moayeri et al., 2022) The Hard ImageNet dataset is a 15 class classifica-
tion task where all classes have a spurious feature associated with them and certain classes
share similar spurious features. For instance, both Ski and Dog Sled classes contain
similar spurious features (Snow, People, Trees, and Hills). In our experiments, we
measure the degree of spurious feature reliance by measuring the numbers of Dog Sled
samples that are misclassified as Ski during testing. Note that in our experimental setting,
no Skis are misclassified as Dog Sled.

STANDARD BENCHMARKS (i.e., IDENTIFIABLE)

• Waterbirds. (Sagawa et al., 2020a) The Waterbirds task is binary image classification
task where the goal is to classify an image of a bird as landbird or waterbird. In this
setting, the class landbird is spuriously correlated with Land backgrounds while the
class waterbird is spuriously correlated with Water backgrounds.

• MultiNLI. (Williams et al., 2018) The MultiNLI task is a classification task with three
classes where the goal is to classify the second sentence in a pair of sentences as entailed
by, neutral with, or contradicts. Consistent with the setting in Sagawa et al. (2020a), a
large fraction of the contradicts class contains negation words while the other two only
contain a few samples with negation words, making the contradicts class spuriously
correlated with negation words and the other two with the lack thereof.

EVALUATION.

Current practice in deep learning utilizes Worst-Group Accuracy (WGA) to assess the degree of
spurious feature reliance in binary classification tasks. WGA computes the accuracy of test samples
that contain the spurious feature associated with the other class during training. While suitable
for simple binary classification tasks, WGA becomes insufficient to asses the reliance on spurious
features in settings with multiple classes. This is because WGA cannot differentiate between loss
in test accuracy due to spurious correlations, or due to lack of learnability of invariant correlations
stemming from limited capacity or insufficient training data. In such settings, we measure the degree
of spurious feature reliance through Spurious Misclassifications, i.e. the percentage of samples of one
class (c1) containing the spurious feature of another class (c2) that are misclassified as (c2) during
testing. Lower Worst Group Accuracy indicates heavy reliance on spurious correlations while high
Worst Group Accuracy indicates little to no reliance on spurious correlations. A high number of
Spurious Misclassifications indicates heavy reliance on spurious correlations while a low number
Spurious Misclassifications indicate little to no reliance on spurious correlations.

5 SPURIOUS CORRELATIONS ARE FORMED FROM A FEW KEY SAMPLES

In this section, we aim to form a deeper understanding of relationship between spurious correlations
and standard training paradigms. Deep neural network training relies on the Empirical Risk Mini-
mization (Vapnik, 1998) principle, where during training, the model attempts to minimize risk or
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loss on the training data. From recent works, we understand that spurious correlations are learned
because the network uses these weakly predictive but simple spurious features to further minimize
training risk (Sagawa et al., 2020a; Geirhos et al., 2020; Kirichenko et al., 2022). In this section, we
attempt to understand if this simple statement encapsulates the entire relationship between spurious
correlations and deep neural network training.
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Figure 3: Spurious feature reliance ex-
hibits super-linear growth with increas-
ing sample difficulty.

We understand that spurious correlations are formed be-
cause standard training paradigms are prone to accepting
any features that help minimize risk or loss during training.
However, different samples have different contributions to
overall training loss due to differences in difficulty of learn-
ing the features used to make correct classification. Does
this imply that samples containing harder core/invariant
features contribute more to the formation of spurious cor-
relations? Or do all samples contribute equally to the
formation of spurious correlations, as a network might
simply prefer a simpler feature over a more complex one?

To answer this question, we study a variant of the CIFAR-
10S setting described in Sec. 4. In this experiment, we
first train a ResNet20 on standard CIFAR-10. Early in
training, we compute training error for each sample to
estimate the difficulty of learning these samples, as is
done in Paul et al. (2021). Such sample-wise training
error is computed as ||p(w, x)− y||2, where p(w, x) is the
probability distribution given by the network for sample x, w denotes the network parameters early in
training, and y is the one hot encoding of the ground truth value. We specify the epoch at which these
values are computed in the Appendix. Trivially, the greater the error, the more difficult that sample
is to learn. Since the standard CIFAR-10 does not contain significant spurious cues that can impact
difficulty of learning, we estimate the difficulty of learning the core/invariant feature per sample as
the difficulty of learning that sample. Next, we train a ResNet20 on two settings: One where we
introduce the spurious feature in samples with the lowest training error (samples with easy invariant
features) and another where we introduce spurious features in samples with the highest training
error (samples with hard invariant features). We term these settings as Easiest and Hardest,
respectively. In each setting, we vary the strength of the spurious signal by increasing the amount
of area it takes up in each image. Spurious feature S1 takes up the least amount of area and is the
most difficult to learn while spurious feature S3 takes up the most amount of area and is the easiest
spurious feature to learn. In other words, a network will have less reliance on spurious feature S1 as
it is difficult to learn and more reliance on S3 as it is easier to learn. S2 is in between them. Note that
in both experimental settings, we introduce spurious features in only 100 samples (2% of class c1,
0.2% of the training set), and we maintain the proportion of samples containing the spurious features
in all settings.

Samples with simple core features do not contribute to spurious correlations. In the setting
where we introduce spurious features in samples with low training loss (Easiest), we find that
Spurious Misclassifications tend to zero (Fig. 2(a)). This is true even if the strength of the spurious
signal is increased. More interestingly, the network learns the spurious features present in these
samples in the first couple of epochs of training but overcomes them as training converges. This is
evidenced by high Spurious Misclassifications in the first half of training followed by low Spurious
Misclassifications in the second half of training, as shown in Fig. 2(c). In other words, the network
learns to ignore weakly predictive but simpler spurious features and prefers strongly predictive but
complex core features in those samples that contain relatively easier invariant features.

Samples with hard core features are primary contributors to spurious correlations. In the
setting where we introduce spurious features in samples with high training loss (Hardest), we find
that Spurious Misclassifications are significantly higher, as shown in Fig. 2(b). This is also true for
spurious features that are harder to learn (S1). Unlike what we observe in the previous setting, the
network is unable to overcome the spurious features present in these samples, as we observe that
Spurious Misclassification either remains the same or increases in the second half of training, as
shown in Fig. 2(d). It is important to note that although only 100 of all samples of class c1 contain the
spurious feature (2% of class c1, 0.2% of the training set), almost all samples of class c2 (100% of
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Figure 4: Excluding only a handful of training samples with spurious features and hard core features
mitigates spurious correlations in the CelebA setting. This is indicated by high Worst Group
Accuracies. Excluding up to 97% of all training samples with spurious features and easy core features
shows no improvements in worst group accuracy.

class c2) are spuriously misclassified during testing (Fig. 2(b)). This is in sharp contrast to the setting
where we introduce the same spurious features in samples with easy invariant features (Easiest),
where almost none of the samples of class c2 are spuriously misclassified (Fig. 2(a)).

Spurious feature reliance exhibits super-linear growth with increasing sample difficulty. We
extend our original experimental setting to introduce the spurious feature in 100 samples ranging from
the easiest to the hardest, instead of only considering the Easiest and Hardest 100 samples. Intuitively,
as we scale up the difficulty of the 100-sample split to which we inject the spurious features, we
observe an increase in spurious misclassifications, as shown in Fig. 3. Interestingly, we observe that
spurious feature reliance exhibits super-linear growth as we scale up the difficulty of the core features
of the 100 samples, implying that those samples with hard core features contribute significantly more
to spurious feature reliance than those with easy core features.

Excluding a few key samples during training severs spurious correlations. From the experiments
above, we learn that samples with harder core features contribute far more to spurious feature reliance
than samples with easy core features. Consider a setting where spurious features are uniformly
distributed across samples containing easy and hard core features. In such a setting, what if we
simply exclude a handful of the hardest training instances that contain spurious features in them?
Does this simple exclusion sever the spurious correlations that would otherwise be learned by the
network? In Fig. 4, we show that by simply excluding a few samples containing the spurious feature
with hard invariant features in the CelebA setting studied in Sec. 3 (5% of all samples with spurious
features in that class, 1% of the total train set), we observe significant improvements in Worst Group
Accuracy (WGA: Female samples with spurious features). On the other hand, excluding up to 97%
of the easiest samples containing the spurious feature shows no improvements in WGA. Within the
pool of samples containing spurious features, difficulty of learning the invariant feature is similar
to the difficulty of learning the sample. This is because spurious features in our setting exhibit very
low variance. For instance, in the MultiNLI setting, the spurious feature comprises the same set of
negation words across the training data. Additionally, we note that on pruning these samples, we
do not observe significant drops in overall testing accuracies, implying that these samples do not
contribute significantly to generalizability either (Fig. 4).

6 SEVERING SPURIOUS CORRELATIONS WITH DATA PRUNING

Based on the observations presented above, we develop a novel data pruning method to sever spurious
correlations by identifying and pruning subsets of the training data that contain the few key samples
that contribute to spurious feature reliance. To do so, we first understand how the presence of spurious
features impacts the difficulty of learning a sample in the training set and how it impacts the training
distribution when observed through the lens of sample difficulty.
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Figure 5: Impact of strength of spurious signal on sample difficulty.
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Figure 6: Excluding a small fraction of all hardest samples in the dataset mitigates spurious correla-
tions in the CelebA setting. This is indicated by high Worst Group Accuracies.

6.1 THE IMPACT OF SPURIOUS FEATURES ON TRAINING DISTRIBUTION

Consider the CIFAR-10S setting described in Sec. 4. We create two versions of this setting: Setting
1: the strength of the spurious signal is significantly greater than the strength of the core, invariant
signal; Setting 2: the strength of the spurious signal is only marginally greater than the strength of
its invariant counterpart. In Setting 2, spurious information is unattainable/unidentifiable. In both
settings, we introduce spurious features into samples at random such that both samples with easy and
hard core features contain spurious features in them. We observe in Setting 1, all of the samples that
contain the spurious feature lie in the first half of the data distribution when observed through the
lens of sample difficulty. In Setting 2, however, samples containing spurious features are distributed
uniformly (Fig. 5a). Note that in both settings, spurious misclassifications are significant (58.0% and
13.76% in Setting 1 and Setting 2, respectively).

We extend these findings to the benchmarks discussed in Sec. 4. In settings where the strength of the
spurious signal is significantly greater than the strength of the invariant feature, (Identifiable
settings), samples containing the spurious feature occupy a large majority of the first half of
the training distribution. On the other hand, in the unidentifiable benchmarks, samples containing
spurious features are uniformly distributed across the training distribution when viewed through the
lens of sample difficulty (Fig. 5b). Note that since Hard ImageNet has multiple spurious features, we
show that this setting is unidentifiable by showing images with and without these spurious features
spread uniformly across the difficulty spectrum in the Appendix.

6.2 DATA PRUNING IN UNIDENTIFIABLE SETTINGS

From Sec. 6.1, we observe that in settings where the strength of the spurious signal is not significantly
greater than the strength of the invariant signal, i.e. in settings where attaining information regarding
the sample-wise presence of spurious features is impossible, samples containing spurious features
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are uniformly distributed across the training distribution when observed through sample difficulty.
In other words, the presence of spurious features does not have a significant impact on the training
distribution. We also know that samples containing hard core features that also contain the spurious
feature are primary contributors to the formation of spurious correlations. Thus, to mitigate spurious
correlations without knowing which samples have spurious features in them, one would only have to
prune the hardest samples in the training set, as this subset of the data would contain samples with
spurious features that have hard core features.
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Figure 7: Excluding a small fraction of all hardest samples
in the dataset mitigates spurious correlations in the Hard
ImageNet setting. This is indicated by low Spurious Misclas-
sifications.

In Figs. 6 and 7, we show that by sim-
ply pruning a small subset of the hard-
est samples in the training set, one can
overcome spurious correlations. Note
that instead of pruning the hardest
samples globally, we prune an equal
proportion of the hardest samples per
class to account for differences in dif-
ficulty per class.

6.3 DATA PRUNING
IN IDENTIFIABLE SETTINGS

Unlike in unidentifiable settings, in
settings where the strength of the spu-
rious signal is significantly greater
than the strength of the invariant sig-
nal, samples with spurious features are not uniformly distributed when sorted by sample difficulty.
This is because the presence of strong spurious information enables the network to have lower training
error for samples with hard core features and spurious features. In such settings, it is not feasible to
simply prune the hardest samples of the training data as this will primarily prune samples that do
not contain the spurious features (Figs. 5a & 5b). Liu et al. (2021); Ahmed et al. (2021); Creager
et al. (2021); Zhang et al. (2022); Yang et al. (2024) show that in settings where the strength of
the spurious signal is significantly greater than the strength of the invariant signal, it is possible to
identify which samples contain spurious features in them and which ones do not. For such settings,
we work with group labels as is done in Sagawa et al. (2020a); Kirichenko et al. (2022); Deng et al.
(2023); Nam et al. (2022) and show that by simply pruning those spurious samples containing the
hardest core features, we attain state-of-the-art performances as shown in Table 1. The term group
label refers to labels that indicate the presence or absence of spurious features in each training sample
within a class. Note that in settings with heavy class imbalances, such as Waterbirds, we prune such
that the total number of samples in both classes is the same. We also compare our method with
two popular techniques that do not require group labels during training, JTT (Liu et al., 2021) and

Table 1: We present Worst Group and Mean accuracies. Consistent with literature, Mean accuracy is
reported by weighting groups based on their prevalence in the unpruned training dataset. Simple data
pruning attains state-of-the-art performance on standard benchmarks (Identifiable Settings). Group
labels column represents availability of group labels in training and validation sets.

Waterbirds (%) MultiNLI (%) Group Labels

Method Worst% Mean% Worst % Mean% Train Val

ERM 74.81 (0.7) 98.10 (0.1) 65.9 (0.3) 82.8 (0.1) ✗ ✗
CnC (Zhang et al., 2022) 88.5 (0.3) 90.9 (0.1) - - ✗ ✓

JTT (Liu et al., 2021) 86.7 93.3 72.6 78.6 ✗ ✓

gDRO (Sagawa et al., 2020a) 86.0 93.2 77.7 81.4 ✓ ✓
DFRTr (Kirichenko et al., 2022) 90.2 (0.8) 97.0 (0.3) 71.5 (0.6) 82.5 (0.2) ✓ ✓

PDE (Deng et al., 2023) 90.3 (0.3) 92.4 (0.8) - - ✓ ✓
Ours 90.93 (0.58) 92.48 (0.72) 75.88 (1.62) 81.07 (0.25) ✓ ✓
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CnC (Zhang et al., 2022) 1. It is interesting to note that such data pruning attains state-of-the-art
performances across a wide range of pruning sparsities, as observed in Fig. 8. This suggests, in
addition to all previously observed results, that if one wants to ensure that the model they obtain after
training is robust to spurious correlations, they only need to ensure that they are careful to remove
a few training instances that are hard for the network to understand. This is in contrast to existing
methods that severe spurious correlations which are more complex and at times, computationally
expensive (Sagawa et al., 2020b; Ahmed et al., 2021; Ye et al., 2022; Zhang et al., 2022; Kirichenko
et al., 2022; Moayeri et al., 2023; Deng et al., 2023).

7 CONCLUSION
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Figure 8: Our data pruning approach works well across
a wide range of sparsities. Sparsities reported before
class balancing, if applicable. We report SOTA results
from Kirichenko et al. (2022) and Sagawa et al. (2020a)
respectively. Note that Kirichenko et al. (2022) obtain state-
of-the-art results on Waterbirds with the help of a held-out
group balanced dataset (DFRVal) and thus, we exclude it from
our comparision in Table 1.

Summary. We have shown that, in
practice, attaining information regard-
ing the presence and nature of spuri-
ous features is often impossible. This
renders all existing techniques that
show promise in overcoming spurious
correlations as ineffective. We also
discover that spurious correlations are
formed due to only a small fraction
of all samples containing the spurious
feature and develop a novel data prun-
ing technique that overcomes spurious
correlations by pruning a small subset
of the training data that contains these
samples. Finally, we show that such
data pruning attains state-of-the-art
performance on standard benchmarks
where information regarding spurious
features is easily available.

Outlook. With current practice of
training models on increasing large
datasets, it has become critical to de-
velop techniques that identify samples
that can cause these models to malfunction without requiring human intervention. In the future, we
will further develop this work to take into account other failure modes that are commonly exhibited
by these deep neural networks.
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A APPENDIX

A.1 TRAINING DETAILS

CIFAR-10S. We use the ResNet20 implementation from Liu et al. (2019) that we train for 160
epochs. The network is optimized using SGD with an initial learning rate 1e-1 and weight decay 1e-4.
The learning rate drops to 1e-2 and 1e-3 at epochs 80 and 120 respectively. We main a batch size of
64. Sample difficulty is computed after the 10th epoch.

CelebA. We use an ImageNet pre-trained ResNet-50 from PyTorch (Paszke et al., 2019) that we
train for 25 epochs. The network is optimized using SGD with a static learning rate 1e-3 and weight
decay 1e-4. We main a batch size of 64. Sample difficulty is computed after the 10th epoch.

Hard Image-Net. We use an ImageNet pre-trained ResNet-50 from PyTorch (Paszke et al., 2019)
that we train for 50 epochs. The network is optimized using SGD with a static learning rate 1e-3
and weight decay 1e-4. We maintain a batch size of 128. Sample difficulty is computed after the 1st
epoch.

Waterbirds. We use an ImageNet pre-trained ResNet-50 from PyTorch (Paszke et al., 2019) that we
train for 100 epochs. The network is optimized using SGD with a static learning rate 1e-3 and weight
decay 1e-3. We maintain a batch size of 128. Sample difficulty is computed after the 1st epoch.

MultiNLI. We use a pre-trained BERT model that we train for 20 epochs. The network is optimized
using AdamW using a linearly decaying starting learning rate 2e-5. We maintain a batch size of 32.
Sample difficulty is computed after the 5th epoch.

A.2 ADDITIONAL EXPERIMENTAL DETAILS

CIFAR-10S. We follow a similar approach to Nagarajan et al. (2021) for adding a spurious line
where pixel values for a vertical row of pixels in the middle of the first channel are set to the
maximum possible value (255) before normalization and before any augmentations. We use the same
augmentations generally used from training on the original CIFAR-10 Krizhevsky (2009).

CelebA. In this setting, we maintain 5000 Female Samples without Eyeglasses and 2500 Male
samples with Eyeglasses and 2500 Male samples without Eyeglasses.Consistent with implementations
in Sagawa et al. (2020a); Liu et al. (2021), we do not use any augmentations.

Hard ImageNet. In this setting, we maintain 58 Dog Sled samples with minimal spurious features
and 100 Ski samples randomly drawn from the dataset. All remaining classes are maintained the
same.We use the same augmentations used for training on ImageNet.

Waterbirds. We use the original Waterbirds setting commonly used in practice (Sagawa et al.,
2020a; Liu et al., 2021; Zhang et al., 2022; Kirichenko et al., 2022).We use the augmentations used
in Kirichenko et al. (2022) when training, which are similar to the augmentations used for training on
ImageNet.

MultiNLI. We use the original MultiNLI setting commonly used in practice (Sagawa et al., 2020a;
Liu et al., 2021; Kirichenko et al., 2022). Consistent with implementations in Sagawa et al. (2020a);
Liu et al. (2021); Kirichenko et al. (2022), we do not use any augmentations.

A.3 HARD IMAGENET: VERIFYING UNIDENTIFABILITY

We show that our Hard ImageNet setting is an unidentifiable setting by presenting information similar
to Fig. 5a and Fig. 5b. But since there exist multiple spurious features, namely Snow, People,
Trees, and Hills, we simply show that samples that contain these features and those that do not
are scattered uniformly across the difficulty spectrum (Fig. 9).
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Figure 9: Training distribution variance based on strength of spurious feature in identifiable and
unidentifiable settings.

A.4 ADDITIONAL EXPERIMENTS WITH MULTINLI

In this section, we reinforce our claims and observations by re-conducting specific vision experiments
in the language domain.

Spurious Correlations are formed from a few key samples. To show this, we perform the same
experiment in Section 4, but instead of CIFAR-10S, we use the MultiNLI dataset. First, we remove all
samples with negation words from the training data and then we compute the sample-wise difficulty
scores as we do for CIFAR-10S in Section 4. We then create two settings: one where we introduce
the spurious negation word “never” at the end of the 100 hardest input samples belonging to class 1
(contradicts) and another where we introduce the spurious negation word “never” at the end of
the 100 easiest input samples belonging to class 1 (contradicts). We do the same to a set of test
samples belonging to class 2 (neutral with) and class 3 (entailed by).

Consistent with the standard MultiNLI setting, we measure the degree of spurious feature reliance
through Worst Group Accuracy (accuracy of the set of test samples of class 2 or class 3 with the
spurious feature).

We observe that WGA is significantly worse when the word “never” occurs in the hardest samples vs.
the easiest samples during training.

Introducing the spurious feature in easiest 100 samples: WGA = 55.22%

Introducing the spurious feature in hardest 100 samples: WGA = 1.04%

Additionally, we note that there are 191,504 training samples in this setting. There are 57,498 samples
belonging to the contradicts class. We introduce the spurious feature in only 100 samples of the
contradicts class (0.17% of samples within the class, 0.0522% of all samples in the training set.)
We also observe that in a setting with no spurious features during training, Worst Group Accuracy is
67.42%.

This experiment reinforces the claim that samples with hard core features are primary contributors
to spurious correlations and that samples with simple core features do not contribute to spurious
correlations.

Excluding a few key samples during training severs spurious correlations. In the MultiNLI
setting, we observe that pruning the samples with hard core features and spurious features attains high
worst group accuracy. On the other hand, excluding samples with easy core features and spurious
features does not improve worst group accuracy.
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Figure 10: Excluding a fraction of all samples with hard core features and spurious features mitigates
spurious correlations in the MultiNLI setting. This is indicated by high Worst Group Accuracies.
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Figure 11: Training distribution variance based on strength of spurious feature in identifiable and
unidentifiable settings. Grouped by Quartiles, sorted by difficulty.

Distribution of the MultiNLI dataset. We show the distribution of the MultiNLI dataset, an
extension of Fig. 5b. Q1 in this setting contains almost half of all samples with spurious features
while Q4 only contains 15%. This shows that samples with spurious features are not uniformly
distributed when viewed through the lens of sample difficulty. This is in contrast to the CelebA setting
(Unidentifiable), in which samples with spurious features are uniformly distributed (Fig. 5b (right)).
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