
Published in Transactions on Machine Learning Research (01/2024)

Fixed-Budget Best-Arm Identification in
Sparse Linear Bandits

Recep Can Yavas recep.yavas@cnrsatcreate.sg
CNRS at CREATE, Singapore

Vincent Y. F. Tan vtan@nus.edu.sg
Department of Mathematics,
Department of Electrical and Computer Engineering,
National University of Singapore

Reviewed on OpenReview: https: // openreview. net/ forum? id= Igxp7FC8uf

Abstract

We study the best-arm identification problem in sparse linear bandits under the fixed-budget
setting. In sparse linear bandits, the unknown feature vector θ∗ may be of large dimension
d, but only a few, say s≪ d of these features have non-zero values. We design a two-phase
algorithm, Lasso and Optimal-Design- (Lasso-OD) based linear best-arm identification. The
first phase of Lasso-OD leverages the sparsity of the feature vector by applying the thresh-
olded Lasso introduced by Zhou (2009), which estimates the support of θ∗ correctly with
high probability using rewards from the selected arms and a judicious choice of the de-
sign matrix. The second phase of Lasso-OD applies the OD-LinBAI algorithm by Yang
and Tan (2022) on that estimated support. We derive a non-asymptotic upper bound on
the error probability of Lasso-OD by carefully choosing hyperparameters (such as Lasso’s
regularization parameter) and balancing the error probabilities of both phases. For fixed
sparsity s and budget T , the exponent in the error probability of Lasso-OD depends on s
but not on the dimension d, yielding a significant performance improvement for sparse and
high-dimensional linear bandits. Furthermore, we show that Lasso-OD is almost minimax
optimal in the exponent. Finally, we provide numerical examples to demonstrate the signif-
icant performance improvement over the existing algorithms for non-sparse linear bandits
such as OD-LinBAI, BayesGap, Peace, LinearExploration, and GSE.

1 Introduction

The stochastic multi-armed bandit (MAB) is a model that provides a mathematical formulation to study the
sequential design of experiments and exploration-exploitation trade-off, where a learner pulls an arm out of
a total K and receives a reward drawn from a fixed and unknown distribution according to the chosen arm.
This model has several applications including online advertising, recommendation systems, and drug tests.
While in the standard reward model, the arms are uncorrelated with each other, stochastic linear bandits
introduced in Auer (2002) generalize the standard model by associating each arm with a d-dimensional
feature vector and the reward is equal to the inner product between the feature vector and an unknown
global parameter. Therefore, the arms are correlated in linear bandits, meaning that pulling an arm gives
information about the rewards of some other arms.

Most prior work including Auer (2002); Thompson (1933); Robbins (1952); Bubeck & Cesa-Bianchi (2012);
Dani et al. (2008) on MABs focuses on regret minimization, where the goal is to maximize the cumulative
reward after T arm pulls by optimizing the trade-off between exploration and exploitation. Recently, the
pure exploration setting has drawn attention from researchers. One example of pure exploration is the best-
arm identification (BAI) problem, where the goal is to identify the arm with the largest mean reward. The

1

https://openreview.net/forum?id=Igxp7FC8uf

Published in Transactions on Machine Learning Research (01/2024)

BAI problem is studied in two settings: (1) the fixed-budget setting considers a budget T ∈ N and aims to
minimize the probability of failing to identify the best arm in at most T arm pulls; (2) the fixed-confidence
setting considers a confidence level δ ∈ (0, 1) and aims to minimize the average number of arm pulls while
identifying the best arm with probability at least 1− δ.

For the standard reward model with uncorrelated arms, the works in Even-Dar et al. (2006); Karnin et al.
(2013); Kaufmann et al. (2016) and Carpentier & Locatelli (2016); Audibert & Bubeck (2010) consider the
BAI problem in the fixed-confidence and fixed-budget settings, respectively. For the linear model, the works
in Soare et al. (2014); Xu et al. (2018); Fiez et al. (2019); Tao et al. (2018); Jedra & Proutiere (2020);
Zaki et al. (2022) develop several algorithms under the fixed-confidence setting. For the linear model under
the fixed-budget setting, Hoffman et al. (2014) develop the first algorithm, BayesGap, which is a gap-based
exploration algorithm using a Bayesian approach. Katz-Samuels et al. (2020) develop the Peace algorithm
that has equally-sized rounds, where the arm-pulling strategy within each round is based on the Gaussian
width of the underlying arm set. Alieva et al. (2021) develop LinearExploration that exploits the linear
structure of the model and is robust to unknown levels of observation noise and misspecification in the linear
model. Yang & Tan (2022) develop the Optimal-Design-Based Linear Best Arm Identification (OD-LinBAI)
algorithm, which also employs almost equally-sized rounds, but the arm-pulling strategy within each round
is based on the G-optimal design. In the first round, OD-LinBAI aggressively eliminates all empirically
suboptimal arms except the top d

2 arms; in the subsequent rounds, half of the remaining arms are eliminated
in each round until a single arm remains. Azizi et al. (2022) develop the Generalized Successive Elimination
(GSE) algorithm that has similar principles as OD-LinBAI with the difference that GSE eliminates the half
of the remaining arms in all rounds. Among these algorithms, only OD-LinBAI is shown to be asymptotically
minimax optimal.

In many practical applications of MABs, there are a large number of features available to the learner, but
only a few of these features significantly affect the value of the reward of an arm. Sparse linear bandits are
a mathematical abstraction of this phenomenon by assuming that the d-dimensional unknown parameter
θ∗ in the linear model has only s nonzero values, i.e., ∥θ∗∥0 = s, where s is usually much smaller than d.
The performance in the MAB problems (e.g., cumulative regret, probability of identification error) usually
deteriorates as the ambient dimension d increases. Therefore, the goal in the sparse setting is to design an
algorithm whose performance is a function of s but not d. Some works that study the regret minimization
problem for sparse linear bandits include Abbasi-Yadkori et al. (2012); Kim & Paik (2019); Hao et al. (2020);
Oh et al. (2021); Ariu et al. (2022); Li et al. (2022); Jang et al. (2022); Wang et al. (2023); Chakraborty et al.
(2023). The OFUL algorithm of Abbasi-Yadkori et al. (2012) keeps track of a high probability confidence set
for θ∗ and pulls an arm that maximizes the reward with respect to the arm vectors and the confidence set for
θ∗. The DR Lasso algorithm of Kim & Paik (2019) combines Lasso with a doubly-robust technique used in
the missing data literature. The ESTC algorithm of Hao et al. (2020) uses Lasso to estimate θ∗ at the end of
the first phase and then in the second phase commits to the best arm with respect to the Lasso estimate. The
SA Lasso Bandit algorithm of Oh et al. (2021) estimates θ∗ at each time using Lasso and pulls the best arm
with respect to the Lasso estimate. TH Lasso Bandit algorithm of Ariu et al. (2022) estimates the support of
θ∗ using Lasso and a thresholding procedure at each time and pulls the best arm with respect to the ordinary
least squares estimation restricted to the estimated support in the first phase. Li et al. (2022) generalize
the ESTC algorithm of Hao et al. (2020) to general bandit problems with low-dimensional structures such
as low-rank matrix bandits. The PopArt algorithm of Jang et al. (2022) takes the population covariance of
arms as input and uses a thresholding step to estimate θ∗ in the first phase; in the second phase, it commits
to the best arm with respect to the estimate of θ∗ in the first phase. The LRP-Bandit algorithm of Wang
et al. (2023) combines the thresholded Lasso with random projection where random projection is used to
mitigate the negative influence of model misspecification due to the Lasso phase; their algorithm is also
computationally efficient since Lasso is computed only at times with exponentially increasing gaps. Finally,
Chakraborty et al. (2023) develop a Thompson Sampling algorithm for sparse linear contextual bandits.

In this paper, we study the BAI problem in sparse linear bandits under the fixed-budget setting. To the
best of our knowledge, this paper presents the first result on the BAI problem in linear bandits with sparse
structure, and we show that our bound on the error probability is almost minimax optimal in the exponent.

2

Published in Transactions on Machine Learning Research (01/2024)

Contributions Our main contributions are summarized as follows.

1. We design an algorithm, Lasso and Optimal-Design- (Lasso-OD) based Linear Best Arm Identifica-
tion. This algorithm has two phases. In the first phase, we pull arms to estimate a support set Ŝ
that captures the support of the unknown parameter θ∗ with high probability and has size as small
as possible. This goal is accomplished by the thresholded Lasso (TL) introduced by Zhou (2009).
TL obtains an initial estimation θ̂init for the parameter θ∗ from Lasso (Tibshirani, 1996) and passes
it through an absolute value threshold to obtain θ̂thres. The support of θ̂thres is the output of the
first phase. In the second phase, we apply OD-LinBAI from Yang & Tan (2022). Lasso-OD has 3
hyperparameters: (i) T1 < T , the budget allocated for the first phase; (ii) λinit > 0, the parameter
in the initial Lasso problem; and (iii) λthres > 0, the threshold value in TL. The choice of the design
matrix (i.e., number of times each arm is pulled) in the first phase is crucial in attaining a good
performance. Inspired by Hao et al. (2020), we design it by maximizing the smallest eigenvalue of
the Gram matrix associated with the design matrix; this is known as the E-optimal design (Boyd &
Vandenberghe, 2004, Sec. 7.5.2). This particular choice minimizes an upper bound on a probability
term related to the performance of TL.

2. We derive a non-asymptotic upper bound on the error probability of Lasso-OD as a function of the
total budget T , the number of arms K, the ambient dimension d, the sparsity s, and the arm vectors
a(k), k = 1, . . . ,K, the first few suboptimality gaps, and the hyperparameters T1, λinit, and λthres.
As a corollary to this bound, with the knowledge of s, we carefully choose the hyperparameters so that
firstly, with high probability, phase 1 selects all variables in θ∗ and at most s2 additional variables
and secondly, the probability terms due to phases 1 and 2 are approximately “balanced”. Under
the assumption that the compatibility constant, which is a quantity that governs the performance
of the Lasso, is lower bounded by a constant that is independent of s and d, our particular choice
achieves the error probability exp

{
− Ω

(
T

(log2 s)H2,lin(s+s2)
)}

for s, d, T → ∞, s
d → 0, and K and d

not growing exponentially with T (see Corollary 1). Here, H2,lin(s + s2) is a hardness parameter
that depends only on the first s+ s2− 1 suboptimality gaps. Note that the exponent is independent
of dimension d, implying that increase in d does not significantly increase the error probability. For
OD-LinBAI, this exponent is given by exp

{
−Ω

(
T

(log2 d)H2,lin(d)
)}

; therefore, Lasso-OD improves the
error probability exponent by a factor of Ω(log2 d

log2 s) for d ≥ s+ s2.

3. We empirically compare the identification error of Lasso-OD with that of other existing algorithms in
the literature on several synthetic datasets, including one that is a sparsity-based version of examples
used in other papers (Jedra & Proutiere, 2020). The empirical results support our theoretical result
that claims that the scaling of the error probability of Lasso-OD is characterized by the sparsity s
while the performances of other algorithms significantly depend on d. We additionally demonstrate
that algorithms that do not exploit the sparsity of θ∗ are computationally prohibitive, while the
computational complexity of Lasso-OD scales well even as d grows.

2 Problem Formulation

We consider a standard linear bandit with K arms with a d-dimensional unknown global parameter θ∗. Let
the arm set be [K] ≜ {1, . . . ,K}, where each arm k ∈ [K] is associated with a known arm vector a(k) ∈ Rd.
A set of K arms, {a(1), . . . ,a(k)}, together with θ∗ define a linear bandit instance η. At each time t, the
agent chooses an arm At ∈ [K] and observes a noisy reward

yt = ⟨θ∗,a(At)⟩+ ϵt, (1)

where ϵ1, ϵ2, . . . are independent 1-subgaussian noise variables. For the arm selection, the agent uses an online
algorithm, that is, the arm pull At ∈ [K] may depend only on the previous t− 1 arm pulls A1, . . . , At−1 and
their corresponding rewards y1, . . . , yt−1. Denote the mean rewards of the arm vectors by

µk ≜ ⟨θ∗,a(k)⟩, ∀ k ∈ [K]. (2)

3

Published in Transactions on Machine Learning Research (01/2024)

Without loss of generality, we assume that µ1 > µ2 ≥ µ3 ≥ · · · ≥ µK , i.e., arm 1 is the unique best arm. We
denote the mean gaps by ∆k ≜ µ1 − µk for 2 ≤ k ≤ K.

Under the fixed-budget setting of BAI, the agent is given a fixed time T , and makes an estimate Î for the
best arm with no more than T arm pulls. The goal is to design an online algorithm with the identification
error probability, P[Î ̸= 1], as small as possible.

Notation: For any integer n, we denote [n] ≜ {1, . . . , n}. Let x = (x1, . . . , xd) be a d-dimensional vector
and S ⊆ [d], we denote xS ≜ (xs : s ∈ S) ∈ R|S|. We denote ∥x∥A ≜

√
x⊤Ax. The minimum eigenvalue

of a symmetric A is denoted by σmin(A). We denote the set of distributions on the set A as P(A). Let
A1, . . . , At ∈ [K] be a sequence of arm pulls. The matrix X ∈ Rt×d whose j-th row is a(Aj)⊤ is called
the design matrix. Let ν ∈ P([K]) be the vector of fractions of arm pulls associated with this strategy,
i.e., νk = 1

t

∑t
j=1 1{Aj = k} for k ∈ [K]. The Gram matrix associated with this strategy is denoted by

M(ν) = 1
t X⊤X =

∑
k∈[K] νka(k)a(k)⊤ ∈ Rd×d. When we use asymptotic notation such as O(·) and

Ω(·), somewhat unconventionally, we are referring to nonnegative sequences, e.g., an ∈ O(bn) if and only if
lim supn→∞

an

bn
<∞ and {an}n≥1 is a nonnegative sequence.

Model assumptions: Denote the support of θ∗ by S(θ∗) ≜ {j ∈ [d] : θ∗
j ̸= 0}. We assume that the

unknown parameter θ∗ and the arm vectors {a(k)}k∈[K] are of length d but θ∗ is sparse, i.e., the number
of non-zero coefficients in θ∗ satisfies ∥θ∗∥0 ≜ |S(θ∗)| = s < d. We assume that S(θ∗) is unknown, but s
and θmin ≜ minj∈S(θ∗) |θ∗

j | are known. We further assume that |µk| ≤ 1 for all arms k ∈ [K] and that there
exists a positive constant θ0 independent of s and d such that θmin ≥ θ0.

3 Our Algorithm: Lasso-OD

We now present our algorithm, Lasso and Optimal-Design- (Lasso-OD) based linear best-arm identification
which has two phases. In phase 1, we pull a judiciously chosen set of arms to learn the support of the
unknown parameter θ∗. Specifically, we design phase 1 so that it outputs a subset of variables Ŝ ⊆ [d] whose
support Ŝ captures the true variables, S(θ∗), with high probability, and its cardinality |Ŝ| is small. To do
this, we use the thresholded Lasso introduced by Zhou (2009). Once Ŝ is obtained, we eliminate all variables
in the arm vectors except the ones in Ŝ. Note that given that Ŝ ⊇ S(θ∗), this variable elimination would have
no effect on the mean values µ1, . . . , µK since by assumption, we only eliminate some variables j ∈ [d] with
θ∗

j = 0. Therefore, the best arm is also preserved after variable elimination. Building upon this principle,
in phase 2, we project the arms on the estimated support Ŝ and pull arms according to the OD-LinBAI
algorithm by Yang & Tan (2022), which is designed for linear bandits without the sparsity assumption.

3.1 Motivation for Lasso-OD Algorithm

OD-LinBAI used in phase 2 is a minimax optimal algorithm up to a multiplicative factor in the exponent
in the sense that it achieves an asymptotic error probability exp

{
− Ω

(
T

(log2 d)H2,lin(d)
)}

, and for every
algorithm, there exists a bandit instance η whose asymptotic error probability is lower bounded by exp

{
−

O
(

T
(log2 d)H2,lin(d)

)}
. The hardness parameter

H2,lin(d) ≜ max
2≤i≤d

i

∆2
i

(3)

determines how difficult it is to identify the best arm for a given bandit instance η (Yang & Tan, 2022). For
sparse linear bandits, if an oracle knew the support of the unknown parameter θ∗, then the lower bound in
Yang & Tan (2022, Th. 3) would be improved to exp

{
−O

(
T

(log2 s)H2,lin(s)
)}

. The purpose of TL in phase 1 is
to provide an estimate for the support of θ∗ with high accuracy while also pulling arms few enough that the
resulting error probability is a function of s rather than d as in the oracle lower bound. Below, we provide
the details on two phases of Lasso-OD.

4

Published in Transactions on Machine Learning Research (01/2024)

3.2 Phase 1 (TL)

Consider a linear model y = Xθ∗ +ϵ, where X ∈ RT1×d is a fixed design matrix, θ∗ ∈ Rd is a fixed unknown
feature vector, y ∈ RT1 is the response vector, and ϵ ∈ RT1 is a noise vector whose entries are independent
and 1-subgaussian. Tibshirani (1996) introduces the Lasso optimization problem to identify a sparse solution
to the least squares estimation problem

θ̂init = arg min
θ∈Rd

1
T1
∥y−Xθ∥2

2 + λinit ∥θ∥1 , (4)

where λinit > 0 is a suitably chosen regularization parameter. The Lasso (4) is a convex program and can be
solved efficiently, e.g., using Alternating Direction Method of Multipliers (ADMM) algorithm (Boyd et al.,
2011).

For the task of variable selection, i.e., recovering the support of the unknown parameter θ∗ without missing
any of its non-zero variables, we want to obtain an estimate θ̂ that satisfies S(θ̂) ⊇ S(θ∗) while ensuring
that |S(θ̂) \S(θ∗)| is as small as possible. Zhou (2009) introduces the following thresholding procedure that
has this property

(θ̂thres)j = (θ̂init)j 1{|(θ̂init)j | ≥ λthres}, ∀ j ∈ [d], (5)

where the initial estimate θ̂init is given in (4), and λthres > 0 is the threshold. The set of selected variables
by TL is S(θ̂thres). A variation of TL is used by Ariu et al. (2022) to derive refined regret guarantees in
sparse stochastic contextual linear bandits. Their main idea is to find the support estimate S(θ̂(t)

thres) at each
time instance t using TL and then to compute the ordinary least squares (OLS) estimation restricted on the
variables in S(θ̂(t)

thres). Ariu et al. (2022) tune the free parameters λ(t)
init and λ

(t)
thres in a way that with high

probability, S(θ̂(t)
thres) ⊇ S(θ∗) and S(θ̂(t)

thres) is small enough, which is s + O(
√
s) in their case. Note that

on the event {S(θ̂(t)
thres) ⊇ S(θ∗)}, the OLS solution restricted on the subset S(θ̂(t)

thres) is equal to that for
the unrestricted case where all d variables are used. Our approach is similar to that in Ariu et al. (2022) in
using TL to reduce the effective dimension of the problem.

Let T1 < T be the budget allocated to the variable selection procedure described above.

Design matrix optimization First, we need to specify the number of pulls for each arm during phase 1,
which corresponds to determining the design matrix X ∈ RT1×d in the Lasso problem (4). To do this, we
solve the optimization problem, known as the E-optimal design (Boyd & Vandenberghe, 2004, Sec. 7.5.2),
given by

ν̃⋆ = arg max
ν∈P([K])

σmin

(
K∑

i=1
νia(i)a(i)⊤

)
. (6)

Since the function A 7→ σmin(A) is concave and ν 7→
∑K

i=1 νia(i)a(i)⊤ is linear, (6) is a convex optimization
problem, and can be solved efficiently, for example, using the CVX toolbox (Boyd et al., 2011).

The design matrix determined by the allocation in (6) minimizes an upper bound on a probability term
related to phase 1; hence, it approximately optimizes the penalty term due to incorrectly estimating the
variables of θ∗. More discussion on this choice of the design matrix appears in Appendix A. The optimization
problem (6) also appears in Hao et al. (2020) on their regret analysis in sparse linear bandits. The allocation
ν̃⋆ can lead to fractional number of pulls T1ν̃

⋆
i for some arm i ∈ [K]. To guarantee integer number of pulls

for all arms, we apply a rounding procedure given in Pukelsheim (2006, Ch. 12), the ROUND function in
Appendix B, which is also employed in the fixed-confidence BAI algorithm in Fiez et al. (2019).

Support estimation We compute the number of pulls for each arm using (6) and ROUND, and then
estimate the support from (4) and (5). Algorithm 1 below delineates the pseudo-code of this procedure.

5

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 1 Thresholded Lasso (TL)
input Time budget T1, Lasso parameters λinit and λthres, and arm vectors a(1), . . . ,a(K).

1: Compute the arm pull fractions ν̃∗ from (6).
2: Update ν̃∗ ← ROUND(ν̃∗, T1) to ensure integer number of arm pulls.
3: Pull each arm i ∈ [K] exactly T1ν̃

∗
i times. Denote the vector of rewards by y ∈ RT1 .

4: Form the design matrix X ∈ RT1×d so that it has T1ν̃
∗
i rows equal to a(i)⊤ for i ∈ [K]. Compute θ̂thres

from (4) and (5).
output the support Ŝ = S(θ̂thres).

3.3 Phase 2 (OD-LinBAI)

In this section, we review the OD-LinBAI algorithm by Yang & Tan (2022). OD-LinBAI divides the budget
T into ⌈log2 d⌉ phases, where each phase has roughly the same length.

At the start of round r, OD-LinBAI applies a dimensionality reduction step to maintain that the set of
modified arms spans the space of its reduced dimension. The arm allocation during each round is determined
by the G-optimal design (Kiefer & Wolfowitz, 1960), which takes a set of arm vectors {a(1), . . . ,a(K)} ⊆ Rd

and solves the optimization problem

π∗ = arg min
π∈P([K])

max
i∈[K]

∥a(i)∥2
M(π)−1 , (7)

where M(π) ≜
∑K

i=1 πia(i)a(i)⊤ is the Gram matrix associated with the allocation π. At the start of each
round, we solve (7) for the set of active arms and then apply the ROUND function in Appendix B to the
resulting allocation to ensure integer number of pulls. The latter step replaces the procedure in Line 17
Yang & Tan (2022, Algorithm 1). This slight modification may improve the performance of the algorithm
especially if the budget T is small. At the end of round 1, we eliminate all arms except the top ⌈d

2⌉ with
respect to the OLS estimator; in the rest, we halve the remaining arms at the end each round. At the end
of the last round, only one arm remains and that arm is declared to be the best one. The pseudo-code of
OD-LinBAI can be found in Yang & Tan (2022) and a slight modification of it which leads to the improved
error probability bound in Theorem 2 can be found in Appendix B.

3.4 Lasso-OD Algorithm

The pseudo-code of Lasso-OD described above is given in Algorithm 2. Notice that since the two phases of
Lasso-OD operate independently, one can replace either or both of TL and OD-LinBAI with their alternatives,
e.g., the PopArt algorithm (Jang et al., 2022) and the adaptive Lasso (Bühlmann & van de Geer, 2011,
Ch. 2.8) for TL and any of the algorithms in Alieva et al. (2021); Katz-Samuels et al. (2020); Azizi et al.
(2022); Hoffman et al. (2014) for OD-LinBAI. We discuss some of the variants of our algorithm in Appendix G.

Algorithm 2 Lasso and Optimal-Design Based Linear Best Arm Identification (Lasso-OD)
input Time budgets T1 and T2 so that T = T1 + T2, Lasso parameters λinit and λthres, and arm vectors

a(1), . . . ,a(K) ∈ Rd.
1: Run TL (Algorithm 1) with T1, λinit, and λthres and get the output Ŝ ⊆ [d].
2: Project the arm vectors on the subset Ŝ by setting a′(i) = (a(i))Ŝ for i ∈ [K].
3: Run OD-LinBAI from Yang & Tan (2022) with budget T2 and arm vectors {a′(1), . . . ,a′(K)} ⊆ R|Ŝ|

with Line 17 of Algorithm 1 in Yang & Tan (2022) replaced by ROUND.
output the only remaining arm Î as the output of OD-LinBAI.

6

Published in Transactions on Machine Learning Research (01/2024)

4 Main Results

This section presents three non-asymptotic upper bounds on the performances of TL, OD-LinBAI, and
Lasso-OD algorithms.

4.1 Thresholded Lasso

Recall the linear model y = Xθ∗ +ϵ, where X ∈ RT1×d is a fixed design matrix, θ∗ ∈ Rd is a fixed unknown
feature vector, y ∈ RT1 is the response vector, and ϵ ∈ RT1 is a noise vector whose entries are independent
and 1-subgaussian. For any set S ⊆ [d], define the set of vectors

C(S) ≜ {θ ∈ Rd : ∥θSc∥1 ≤ 3 ∥θS∥1}. (8)

van de Geer & Bühlmann (2009) introduce the following compatibility condition that allows one to control
the ℓ1-norm error for the sparse estimation of the unknown parameter θ∗ where the components of the design
matrix X are not highly correlated. For the rest of the section, let M = 1

T1
X⊤X denote the Gram matrix

associated with X.
Definition 1 (Compatibility condition). Given a fixed design matrix X ∈ RT1×d (whose Gram matrix is
M) and a subset S ⊆ [d], the compatibility constant ϕ2(M ,S) is defined as

ϕ2(M ,S) ≜ min
θ∈Rd : ∥θS∥1 ̸=0

{
|S| ∥θ∥2

M

∥θS∥2
1

: θ ∈ C(S)
}
. (9)

With some abuse of notation, we also define

ϕ2(M , s) ≜ min
S⊆[d] : |S|=s

ϕ2(M ,S). (10)

The following result controls the ℓ1-norm error of the initial Lasso estimator in (4).

Lemma 1 (Ariu et al. (2022), Lemma G.6). Assume that ϕ2(M , s) > 0. The Lasso estimator θ̂init in (4)
satisfies

P
[∥∥∥θ̂init − θ∗

∥∥∥
1
≤ 4λinits

ϕ2(M , s)

]
≥ 1− 2d exp

−
T1λ

2
init

32
(

1
T1

max
j∈[d]
∥X:,j∥2

2

)
 . (11)

Using Lemma 1, we derive the following bound on the event that the size of the support of the TL output (5)
is below a threshold and it captures the true support S(θ∗).
Theorem 1. Fix a design matrix X ∈ RT1×d and parameters λinit, λthres > 0. Let c = λthres

λinit
. Assume that

ϕ2 ≜ ϕ2(M , s) > 0 and θmin ≥ λinit

(
c+ 4

ϕ2 s
)

holds. Then,

P
[{
|S(θ̂thres)| ≤ s

(
1 + 4

ϕ2c

)}⋂
{S(θ̂thres) ⊇ S(θ∗)}

]
≥ 1− 2d exp

−
T1λ

2
init

32
(

1
T1

max
j∈[d]
∥X:,j∥2

2

)
 . (12)

The proofs of Lemma 1 and Theorem 1 are deferred to Appendix C. Theorem 1 follows steps similar to those
in Ariu et al. (2022, Lemma 5.4). The interested reader can refer to Bühlmann & van de Geer (2011, Ch. 6
and 7) for more results and discussions on Lasso, TL, and their variants.

7

Published in Transactions on Machine Learning Research (01/2024)

4.2 An Improved Upper Bound on the Error Probability of OD-LinBAI

The theorem below gives an improved upper bound on the error probability of OD-LinBAI (Yang & Tan,
2022).

Theorem 2. Let T̃ =
⌊

T
⌈log2 d⌉

⌋
. For any linear bandit instance, the output of OD-LinBAI satisfies

P
[
Î ̸= 1

]
≤ (K + log2 d) exp

− T̃

16
(

1 + d2

T̃

)
H2,lin(d)

 . (13)

The right-hand side of (13) is slightly different than the one presented in Yang & Tan (2022, Th. 2). First, in
Yang & Tan (2022, Th. 2), the numerator in the exponent is equal to some constant m that is approximately
equal to T

log2 d just like T̃ ; this is due to the modification in the distribution rounding technique. Second, the
pre-factor in Yang & Tan (2022, Th. 2) is 4K

d +3 log2 d instead of (our smaller) K+log2 d. More importantly,
in (13), the constant 32 in the denominator of the exponent in Yang & Tan (2022, Th. 2) is improved to 16.
The last two differences are due to a refinement in the proof technique. Lastly, our result includes a rounding
error factor 1 + d2

T̃
, which becomes negligible as T becomes large. This factor appears due to the fact that

the G-optimal design may yield fractional number of pulls for some arms, which is obviously not allowed in
practice. The proof of Theorem 2 is deferred to Appendix D.

4.3 Upper Bound on the Error Probability of Lasso-OD

The theorem below bounds the probability of incorrectly identifying the best arm using Lasso-OD.
Theorem 3. Let T1 < T be the length of phase 1, and let T2 = T − T1 be the length of phase 2. Let λinit
and λthres be some positive scalars. Let c = λthres

λinit
. Let ν̃∗ be the solution to (6), and let ν̃ = ROUND(ν̃∗, T1)

be its rounded version for length T1. Assume that the compatibility constant associated with the E-optimal
design is positive, i.e., ϕ2 ≜ ϕ2

(∑K
i=1 ν̃ia(i)a(i)⊤, s

)
> 0, and θmin ≥ λinit

(
c+ 4

ϕ2 s
)

. Then, the output of
Algorithm 2 satisfies

P
[
Î ̸= 1

]
≤ (K + log2 d) exp

−
⌊

T2
log2(s1)

⌋
16 (1 + ϵ)H2,lin(s1)

+ 2d exp
{
− T1λ

2
init

32x2
max

}
, (14)

where

s1 =
⌊
s

(
1 + 4

ϕ2c

)⌋
, x2

max = max
j∈[d]

K∑
k=1

ν̃k(a(k)j)2, and ϵ = s2
1
T2
. (15)

Proof. The proof uses Theorems 1 and 2 for the probability terms due TL and OD-LinBAI, respectively.
Let Ŝ ⊆ [d] denote the output of phase 1. Define the events E ≜ {|Ŝ| ≤ s1} and F ≜ {Ŝ ⊇ S(θ∗)}. By the
law of total probability, we have

P
[
Î ̸= 1

]
≤ P

[
Î ̸= 1

∣∣∣E ∩ F]+ P [Ec ∪ Fc] . (16)

Given E ∩ F , the error probability is bounded by the right-hand side of (13) with the budget T replaced
by the length of phase 2, T2, and with the dimension d replaced by s1. This follows since on the event F ,
the mean rewards are preserved after the arm vectors and θ∗ are projected on Ŝ and since the right-hand
side of (13) is non-decreasing in d. From Theorem 1 and the arm-pulling strategy described in Line 2 of
Algorithm 2, we have

P [Ec ∪ Fc] ≤ 2d exp
{
− T1λ

2
init

32x2
max

}
. (17)

Combining (16) with (13) and (17), we complete the proof.

8

Published in Transactions on Machine Learning Research (01/2024)

The following corollary is obtained by choosing the free parameters T1, λinit, and λthres suitably to meet the
conditions of Theorem 3. These nontrivial choices use the knowledge of θmin and s but not the hardness
parameter and achieve an exponent of the error probability that depends only on s, T , and the hardness
parameter.
Corollary 1. For any linear bandit instance that satisfies ϕ2 > 0, the output of Algorithm 2 satisfies

P
[
Î ̸= 1

]
≤ (K + log2 d+ 2d) exp

{
− T

16⌊log2(s+ s2)⌋(1 + ϵ)H2,lin(s+ s2)(1 + c0)

}
, (18)

where

c0 = 400x2
max

3ϕ4θ2
min log2(s+ s2) and ϵ = (1 + c0)(s+ s2)2

T
. (19)

Here, c0 = T1
T2

is the fraction of lengths of two phases of Lasso-OD, and 1 + ϵ is the small multiplicative
penalty due to rounding.

Assume that for a sequence of bandit instances (of growing dimension d), there exist positive constants ϕ2
0 and

x2
0, both independent of s and d, such that ϕ2 ≥ ϕ2

0 and x2
max ≤ x2

0.1 A paradigmatic example of this is the
scenario where the arm vectors are generated independently from a zero-mean, unit-variance distribution
with a finite fourth-order moment (e.g., the Gaussian distribution N (0, 1), equiprobable distribution on
{−1, 1}). Now, consider the setting in which K = T1 = rd where r > 1 is independent of s and d, and we
pull each arm once in the Lasso phase. Then, from Bai & Yin (1993, Theorem 2), we know that the minimum
eigenvalue of the Gram matrix σmin(M) converges to

(
1− 1√

r

)2 with probability one, and x2
max converges to

1 also with probability one. For this example, we may take the constants ϕ2
0 and x2

0 to be ϕ2
0 = 1

2
(
1− 1√

r

)2

and x2
0 = 2. Note that, for this example, ϕ2

0 and x2
0 are independent of s and d. Therefore, the ratio c0 is

O(1) as s, d, and T grow. Under these conditions, Corollary 1 implies that the error probability of Lasso-OD
is upper bounded by

exp
{
−Ω

(
T

(log2 s)H2,lin(s+ s2)

)}
(20)

for s, d, T →∞, s
d → 0, and K and d not growing exponentially with T , all of which are realistic assumptions

in practice. Unlike the non-sparse case in Yang & Tan (2022), the error probability exponent under these
assumptions is independent of the dimension d, but instead, depends on the sparsity s, which yields much
smaller error probabilities for high dimensional sparse linear bandits. The choices of the parameters that
achieve the exponent in (20) is nontrivial; we carefully choose λinit and λthres so that the condition in
Theorem 1 is satisfied with equality and c0 is decreasing in s and choose T1 so that two exponents in (14)
resulting from phases 1 and 2 are approximately equal. The proof of Corollary 1 is presented in Appendix E.

Assume that the agent knows the support of θ∗. Then, following the construction in the proof of Yang
& Tan (2022, Th. 3), for any algorithm, there exists a bandit instance whose error probability is lower
bounded by exp

{
−O

(
T

(log2 s)H2,lin(s)
)}

. This implies that the upper bound in (20) is indeed almost minimax
optimal in the exponent. In Appendix G, we develop a variant of Lasso-OD, called PopArt-OD, which
replaces TL in phase 1 of Lasso-OD with PopArt from Jang et al. (2022). Thanks to the fact that PopArt
provides a guarantee on the ℓ∞ norm of the difference between the estimated parameter θ′ and θ∗, we derive
an upper bound on the probability P

[
ŜPA ̸= S(θ∗)

]
, where ŜPA denotes the estimated support using the

PopArt algorithm. Using this bound, we show that the error probability of PopArt-OD is upper bounded
by exp

{
− Ω

(
T

(log2 s)H2,lin(s)
)}

, matching the lower bound up to a constant factor in the exponent. Due to
its superior empirical performance over PopArt-OD, we focus on Lasso-OD in the paper.

1In general, ϕ2 depends on the geometry of the set of arm vectors. One can construct instances where ϕ2 vanishes as s and
d grow.

9

Published in Transactions on Machine Learning Research (01/2024)

103 104
0

0.1

0.2

0.3

0.4

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.2

0.4

0.6

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

p
ro

b
a
b
ili

ty

Lasso-OD-CV Lasso-OD-Analytical OD-LinBAI Bayes-Gap-Adaptive GSE

Figure 1: Comparison of several algorithms with T ∈ [200, 10000] and s = 2.

Table 1: Performance comparison of several algorithms for T = 800, d = 10, K = 50, and s = 2.
Lasso-OD-CV Lasso-OD-An. Peace LinearExploration

Error probability 0.0275 0.045 0.40 0.39
Std. deviation 0.0026 0.0033 0.049 0.0153

5 Experiments

In this section, we numerically evaluate the performance of Lasso-OD on several synthetic sparse linear
bandit instances and compare it with those of OD-LinBAI (Yang & Tan, 2022), BayesGap (Hoffman et al.,
2014), GSE (Azizi et al., 2022), Peace (Katz-Samuels et al., 2020), and LinearExploration (Alieva et al.,
2021). In each setting, we report the empirical error probabilities for Lasso-OD, BayesGap, and GSE over
4000 independent trials and for Peace and LinearExploration over 100 independent trials.

5.1 Synthetic Dataset with Sparse Unknown Parameter Vector

To illustrate the efficacy and robustness of our algorithm on synthetic data, we consider three different sets
of experiments.

In the first example, we draw K arms independently from the uniform distribution on the d-dimensional
sphere of radius

√
d/s, i.e.,

{
x ∈ Rd : ∥x∥2

2 = d
s

}
, and the sparse unknown parameter is taken as θ∗ =

(1, 1, 0, . . . , 0), i.e., s = 2. Figure 1 reports the empirical error probabilities for d ∈ {10, 20}, K ∈ {50, 100}
and T ∈ [200, 10000], except Peace (Katz-Samuels et al., 2020) and LinearExploration (Alieva et al., 2021).
Since the computational complexities of Peace and LinearExploration are much higher than the rest of the
algorithms, we compare Lasso-OD with Peace and LinearExploration only for T = 800 in Table 1. Among
these algorithms, Lasso-OD has the best performance for all sparse instances shown in Figure 1 and Table 1.

Lasso-OD-CV sets the budgets for phase 1 and phase 2 as T1 = T
5 and T2 = 4T

5 and tunes the Lasso
parameters λinit and λthres using a K-fold cross-validation procedure that uses the value of s in its loss
function. See Appendix F for the details of the cross-validation procedure. As an alternative to cross-
validation, Lasso-OD-Analytical uses the knowledge of s, θmin, and the hardness parameter H2,lin(s1) in (14),

10

Published in Transactions on Machine Learning Research (01/2024)

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1

E
rr

o
r

p
ro

b
a

b
ili

ty

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1

E
rr

o
r

p
ro

b
a

b
ili

ty

Lasso-OD-CV Lasso-OD-Analytical OD-LinBAI BayesGap-Adaptive GSE

Figure 2: Comparison of several algorithms with T ∈ {800, 2000}, s = 2, and δ ∈ [0, 0.025].

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

o
r

p
ro

b
a
b
ili

ty

ODLinBAI Lasso-OD GSE

Figure 3: Comparison of Lasso-OD, OD-LinBAI, and GSE for d = 500, s = 4, and T ∈ [3× 103, 3× 105].

and sets λinit, λthres, and T1 so that s1 in (15) equals s+ s2, θmin = λinit(c+ bs), and two exponents in (14)
are equal. Note that H2,lin(s1) is usually not available to the agent.

In the second example, we test the robustness of our algorithm with respect to the variables in θ∗ that are
assumed to be zero by keeping the same arms as in the previous example and setting θ∗ as θ∗

j = 1 for j ∈ [2],
and θ∗

j = δRj for j ∈ {3, . . . , d}, where Rj , j = 3, . . . , d, are independent Rademacher (i.e., {±1}-valued)
random variables, and δ > 0 is a constant. Figure 2 reports the empirical error probabilities for s = 2,
d = 10, K = 50, T ∈ {800, 2000}, and δ ∈ [0, 0.025]. The phase transition for Lasso-OD in Figure 2 suggests
that Lasso-OD achieves a smaller error probability as long as δ is small enough that the approximately sparse
instance (i.e., δ > 0) and the sparse instance (i.e., δ = 0) have the same best arm. Some examples including
an instance where the hyperparameters are set as in Corollary 1 without cross-validation or knowing the
hardness parameter are discussed in Appendix G.

The third experiment is similar to the first, except that the parameters are larger to demonstrate that our
method scales well, while others do not. Namely, we set s = 4, d = 500, and K = 1000. Since only Lasso-OD,
OD-LinBAI, and GSE are the only computationally feasible algorithms for such large dimensions, we only
include the performances of these algorithms in Figure 3. The empirical error probabilities are obtained
from 4000 independent trials for Lasso-OD and from 100 independent trials for OD-LinBAI and GSE.2 We
observe that Lasso-OD outperforms OD-LinBAI for this instance at all T values shown.

5.2 Real-World Dataset with Sparse Unknown Parameter Vector

We conduct an experiment on an online news popularity dataset published by Mashable (Fernandes et al.,
2015), which includes 39,797 news articles, each having 58 attributes. Some of these attributes are the

2We use a smaller number of independent trials for OD-LinBAI and GSE as it takes too long to run since it does not exploit
the sparsity of the problem.

11

Published in Transactions on Machine Learning Research (01/2024)

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

Lasso-OD

Lasso-OD-Analytical

Lasso-XY

Lasso-BayesGap

PopArt-OD

OD-LinBAI

BayesGap-Adaptive

GSE

Figure 4: Comparison of several algorithms for the example bandit instance in Yang & Tan (2022).

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

o
r

p
ro

b
a
b
ili

ty

ODLinBAI LassoOD BayesGap GSE

Figure 5: Comparison of several algorithms for the real-world dataset with T ∈ [103, 105], s = 3, and d = 55.

number of words, the number of links, the number of keywords, the day that the news is published, and
the channel of the news. The target of the dataset is the number of shares in social network. To adapt the
dataset to the sparse linear bandit framework, we first normalize each attribute (and the target) so that the
mean and the standard deviation of each attribute is 0 and 1, respectively. Since three of the attributes have
> 99% correlation with some other attribute, we remove these three attributes; hence the overall dimension
d = 55. Then, to obtain a sparse ground truth vector θ∗ ∈ R55 (assuming a linear model between the
attributes and the target), we estimate θ∗ using the thresholded Lasso, where the hyperparameters λinit and
λthres are determined via cross-validation. The resulting θ∗ has 3 nonzero values, hence s = 3 (all 3 active
attributes are related to the number of keywords in the news). We select 500 news articles with the largest
shares as the arms, i.e., K = 500.

In Figure 5, we see that Lasso-OD, where its two hyperparameters λinit and λthres are determined by cross-
validation, has the smallest error probability for all T values shown. We are not able to conduct experiments
using Peace and LinearExploration due to their prohibitively high computational complexities for such large
dimensions. To corroborate this claim, the CPU runtimes of the algorithms compared in the experiments

12

Published in Transactions on Machine Learning Research (01/2024)

Table 2: The empirical means of the CPU runtimes for d ∈ {10, 55, 500} and T = 104.

CPU runtimes (seconds)
d Lasso-OD OD-LinBAI GSE BayesGap-Ad. LinearExploration Peace

10 0.0019 0.0084 0.011 0.75 2.33 31.69
55 0.0068 0.048 0.092 83.2 >1800 >1800

500 0.017 4.95 5.29 >1800 >1800 >1800

above are shown in Table 2.3 In all experiments, Lasso-OD is the fastest algorithm, and the gap between
the CPU runtimes of the Lasso-OD and of the other algorithms increases with the dimension d, as the other
algorithms do not exploit the sparsity of the unknown parameter vector θ∗.

6 Conclusion

In this work, we study the BAI problem in linear bandits with sparse structure under fixed-budget setting
and develop the first BAI algorithm, Lasso-OD, that exploits the sparsity of the unknown parameter θ∗.
Lasso-OD combines TL for support estimation with the minimax optimal BAI algorithm, OD-LinBAI. We
analyze the error probability of Lasso-OD and show that the error exponent depends on the sparsity s rather
than the dimension d. Unlike other algorithms in the literature, the empirical performance of Lasso-OD does
not deteriorate at large dimensions.

One future direction is to derive an instance-dependent asymptotic or non-asymptotic lower bound for the
BAI problem in sparse linear bandits; however, such a bound remains open even in the non-sparse scenario.
Another possible direction is to extend the TL technique used in Lasso-OD to the fixed-confidence setting.
Although such an extension is relatively easy to analyze, the empirical performances of most fixed-confidence
BAI algorithms in linear bandits are not heavily dependent on the dimension unlike the fixed-budget setting
(see, for example, Zaki et al. (2022); Tao et al. (2018); Fiez et al. (2019)). Therefore, the benefit of adding
a TL phase in the fixed-confidence setting could be limited.

7 Acknowledgments and Disclosure of Funding

This research is part of the programme DesCartes and is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise
(CREATE) programme.

References
Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions and ap-

plication to sparse stochastic bandits. In Neil D. Lawrence and Mark Girolami (eds.), Proceedings
of the Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22 of Pro-
ceedings of Machine Learning Research, pp. 1–9, La Palma, Canary Islands, 21–23 Apr. 2012. URL
https://proceedings.mlr.press/v22/abbasi-yadkori12.html.

Ayya Alieva, Ashok Cutkosky, and Abhimanyu Das. Robust pure exploration in linear bandits with limited
budget. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 187–195, 18–24 July
2021. URL https://proceedings.mlr.press/v139/alieva21a.html.

Kaito Ariu, Kenshi Abe, and Alexandre Proutiere. Thresholded Lasso bandit. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
3Note that for Table 2, we terminate experiments when their runtimes exceed 30 minutes.

13

https://proceedings.mlr.press/v22/abbasi-yadkori12.html
https://proceedings.mlr.press/v139/alieva21a.html

Published in Transactions on Machine Learning Research (01/2024)

International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 878–928, 17–23 July 2022. URL https://proceedings.mlr.press/v162/ariu22a.html.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In COLT - 23th
Conference on Learning Theory - 2010, pp. 13 p., Haifa, Israel, June 2010. URL https://hal-enpc.
archives-ouvertes.fr/hal-00654404.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning
Research, 3:397–422, Nov. 2002.

MohammadJavad Azizi, Branislav Kveton, and Mohammad Ghavamzadeh. Fixed-budget best-arm iden-
tification in structured bandits. In Lud De Raedt (ed.), Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-22, pp. 2798–2804. International Joint Con-
ferences on Artificial Intelligence Organization, July 2022. doi: 10.24963/ijcai.2022/388. URL https:
//doi.org/10.24963/ijcai.2022/388.

Z. D. Bai and Y. Q. Yin. Limit of the Smallest Eigenvalue of a Large Dimensional Sample Covariance
Matrix. The Annals of Probability, 21(3):1275–1294, 1993. doi: 10.1214/aop/1176989118. URL https:
//doi.org/10.1214/aop/1176989118.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine learning, 3(1):1–122, 2011.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, Dec. 2012.

Peter Bühlmann and Sara A. van de Geer. Statistics for high-dimensional data. Springer Series in Statistics.
Springer, Heidelberg, 2011. ISBN 978-3-642-20191-2. doi: 10.1007/978-3-642-20192-9. URL http://dx.
doi.org/10.1007/978-3-642-20192-9.

Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget best arm identification
bandit problem. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir (eds.), 29th Annual Conference
on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pp. 590–604, Columbia
University, New York, New York, USA, 23–26 Jun 2016. URL https://proceedings.mlr.press/v49/
carpentier16.html.

Sunrit Chakraborty, Saptarshi Roy, and Ambuj Tewari. Thompson sampling for high-dimensional sparse
linear contextual bandits. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 3979–4008. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/chakraborty23b.html.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit feedback.
21st Annual Conference on Learning Theory, pp. 355–366, 2008.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions for the
multi-armed bandit and reinforcement learning problems. Journal of Machine Learning Research, 7(39):
1079–1105, 2006. URL http://jmlr.org/papers/v7/evendar06a.html.

Kelwin Fernandes, Pedro Vinagre, Paulo Cortez, and Pedro Sernadela. Online News Popularity. UCI
Machine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5NS3V.

Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental de-
sign for transductive linear bandits. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32, 10–12 Dec. 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
8ba6c657b03fc7c8dd4dff8e45defcd2-Paper.pdf.

14

https://proceedings.mlr.press/v162/ariu22a.html
https://hal-enpc.archives-ouvertes.fr/hal-00654404
https://hal-enpc.archives-ouvertes.fr/hal-00654404
https://doi.org/10.24963/ijcai.2022/388
https://doi.org/10.24963/ijcai.2022/388
https://doi.org/10.1214/aop/1176989118
https://doi.org/10.1214/aop/1176989118
http://dx.doi.org/10.1007/978-3-642-20192-9
http://dx.doi.org/10.1007/978-3-642-20192-9
https://proceedings.mlr.press/v49/carpentier16.html
https://proceedings.mlr.press/v49/carpentier16.html
https://proceedings.mlr.press/v202/chakraborty23b.html
http://jmlr.org/papers/v7/evendar06a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/8ba6c657b03fc7c8dd4dff8e45defcd2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8ba6c657b03fc7c8dd4dff8e45defcd2-Paper.pdf

Published in Transactions on Machine Learning Research (01/2024)

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.0. http:
//cvxr.com/cvx, August 2012.

Botao Hao, Tor Lattimore, and Mengdi Wang. High-dimensional sparse linear bandits. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 10753–10763, 7–12 Dec. 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/7a006957be65e608e863301eb98e1808-Paper.pdf.

Matthew Hoffman, Bobak Shahriari, and Nando Freitas. On correlation and budget constraints in model-
based bandit optimization with application to automatic machine learning. In Samuel Kaski and Jukka
Corander (eds.), Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics, volume 33 of Proceedings of Machine Learning Research, pp. 365–374, Reykjavik, Iceland, 22–
25 Apr. 2014. URL https://proceedings.mlr.press/v33/hoffman14.html.

Kyoungseok Jang, Chicheng Zhang, and Kwang-Sung Jun. Popart: Efficient sparse regression and experimen-
tal design for optimal sparse linear bandits. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 2102–2114. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
0e5cce15e1bfc6b3d7b71f24cc5da821-Paper-Conference.pdf.

Yassir Jedra and Alexandre Proutiere. Optimal best-arm identification in linear bandits. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 10007–10017, 7–12 Dec. 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/7212a6567c8a6c513f33b858d868ff80-Paper.pdf.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits. In
Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th International Conference on Ma-
chine Learning, volume 28 of Proceedings of Machine Learning Research, pp. 1238–1246, Atlanta, Georgia,
USA, 17–19 June 2013. URL https://proceedings.mlr.press/v28/karnin13.html.

Julian Katz-Samuels, Lalit Jain, Zohar Karnin, and Kevin G Jamieson. An empirical process approach to
the union bound: Practical algorithms for combinatorial and linear bandits. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 10371–10382, 7–12 Dec. 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/75800f73fa80f935216b8cfbedf77bfa-Paper.pdf.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best arm identification in
multi-armed bandit models. Journal of Machine Learning Research, 17:1–42, 2016.

J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal of Mathematics,
12:363–366, 1960. doi: 10.4153/CJM-1960-030-4.

Gi-Soo Kim and Myunghee Cho Paik. Doubly-robust lasso bandit. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf.

Wenjie Li, Adarsh Barik, and Jean Honorio. A simple unified framework for high dimensional bandit
problems. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 12619–12655. PMLR, 17–23 Jul 2022. URL https://
proceedings.mlr.press/v162/li22a.html.

J. Löfberg. Yalmip: A toolbox for modeling and optimization in MATLAB. In In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

Min-Hwan Oh, Garud Iyengar, and Assaf Zeevi. Sparsity-agnostic lasso bandit. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139

15

http://cvxr.com/cvx
http://cvxr.com/cvx
https://proceedings.neurips.cc/paper_files/paper/2020/file/7a006957be65e608e863301eb98e1808-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7a006957be65e608e863301eb98e1808-Paper.pdf
https://proceedings.mlr.press/v33/hoffman14.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/0e5cce15e1bfc6b3d7b71f24cc5da821-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0e5cce15e1bfc6b3d7b71f24cc5da821-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7212a6567c8a6c513f33b858d868ff80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7212a6567c8a6c513f33b858d868ff80-Paper.pdf
https://proceedings.mlr.press/v28/karnin13.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/75800f73fa80f935216b8cfbedf77bfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/75800f73fa80f935216b8cfbedf77bfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf
https://proceedings.mlr.press/v162/li22a.html
https://proceedings.mlr.press/v162/li22a.html

Published in Transactions on Machine Learning Research (01/2024)

of Proceedings of Machine Learning Research, pp. 8271–8280. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/oh21a.html.

Friedrich Pukelsheim. Optimal Design of Experiments. Society for Industrial and Applied Mathematics, 2006.
doi: 10.1137/1.9780898719109. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719109.

Herbert Robbins. Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc., 58:527–535,
1952.

Marta Soare, Alessandro Lazaric, and Remi Munos. Best-arm identification in linear bandits. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information
Processing Systems, volume 27, 8–11 Dec. 2014. URL https://proceedings.neurips.cc/paper_files/
paper/2014/file/f387624df552cea2f369918c5e1e12bc-Paper.pdf.

Chao Tao, Saúl Blanco, and Yuan Zhou. Best arm identification in linear bandits with linear dimension
dependency. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4877–4886, 10–15 July
2018. URL https://proceedings.mlr.press/v80/tao18a.html.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288, 1996. doi: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x.

Sara A. van de Geer and Peter Bühlmann. On the conditions used to prove oracle results for the Lasso.
Electronic Journal of Statistics, 3(none):1360 – 1392, 2009. doi: 10.1214/09-EJS506. URL https://doi.
org/10.1214/09-EJS506.

Xue Wang, Mike Mingcheng Wei, and Tao Yao. Efficient sparse linear bandits under high dimensional data.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23,
pp. 2431–2443, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030.
doi: 10.1145/3580305.3599329. URL https://doi.org/10.1145/3580305.3599329.

Liyuan Xu, Junya Honda, and Masashi Sugiyama. A fully adaptive algorithm for pure exploration in linear
bandits. In Amos Storkey and Fernando Perez-Cruz (eds.), Proceedings of the Twenty-First Interna-
tional Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning
Research, pp. 843–851, 09–11 Apr. 2018. URL https://proceedings.mlr.press/v84/xu18d.html.

Junwen Yang and Vincent Y. F. Tan. Minimax optimal fixed-budget best arm identification in linear
bandits. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, Nov. 2022. URL https://openreview.net/forum?id=PLmNPSKJr8e.

Mohammadi Zaki, Avi Mohan, and Aditya Gopalan. Improved pure exploration in linear bandits with no-
regret learning. In Lud De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, pp. 3709–3715. International Joint Conferences on Artificial Intelligence
Organization, July 2022. doi: 10.24963/ijcai.2022/515. URL https://doi.org/10.24963/ijcai.2022/
515.

Shuheng Zhou. Thresholding procedures for high dimensional variable selection and statistical estimation. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (eds.), Advances in Neural Information
Processing Systems, volume 22, 7–10 Dec. 2009. URL https://proceedings.neurips.cc/paper_files/
paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf.

16

https://proceedings.mlr.press/v139/oh21a.html
https://proceedings.mlr.press/v139/oh21a.html
https://epubs.siam.org/doi/abs/10.1137/1.9780898719109
https://proceedings.neurips.cc/paper_files/paper/2014/file/f387624df552cea2f369918c5e1e12bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/f387624df552cea2f369918c5e1e12bc-Paper.pdf
https://proceedings.mlr.press/v80/tao18a.html
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/09-EJS506
https://doi.org/10.1214/09-EJS506
https://doi.org/10.1145/3580305.3599329
https://proceedings.mlr.press/v84/xu18d.html
https://openreview.net/forum?id=PLmNPSKJr8e
https://doi.org/10.24963/ijcai.2022/515
https://doi.org/10.24963/ijcai.2022/515
https://proceedings.neurips.cc/paper_files/paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf

Published in Transactions on Machine Learning Research (01/2024)

A Design Matrix Optimization in Thresholded Lasso

The performance of TL in Lasso-OD is characterized by the bound on the probability in (12). For any
pair of (λinit, λthres), the bound in (12) is optimized by setting the design matrix X to maximize the ratio

ϕ2(M ,s)√
1

T1
maxj∈[d]∥X:,j∥2

.

Note that in the application of the Lasso, we can normalize the dataset so that
∑

k∈[K] a(k)2
j are equal

for all j ∈ [d]. Under the assumptions that the number of arms, K, is large and that the arm vectors are
drawn from the same distribution, the value of 1

T1
maxj∈[d] ∥X:,j∥2

2 cannot vary too much with respect to
different fraction of arm pulls. Therefore, we relax the quantity 1

T1
maxj∈[d] ∥X:,j∥2

2 in (12) by its upper
bound maxk∈[K] ∥a(k)∥2

∞. Then, Theorem 1 implies that the best choice of X maximizes the compatibility
constant ϕ2(M , s).

Computation of the compatibility constant Let ν ∈ PT1([K]) be the T1-type distribution describing
the fractions of the number of pulls for each arm. Then, M = 1

T1
X⊤X =

∑
i∈[K] νia(i)a(i)⊤. Rewriting

the compatibility constant ϕ2(M ,S) from Definition 1, with some overload of notation, we obtain

ϕ2(ν,S) ≜ ϕ2(M ,S) = min
θ∈Rd

{
|S| ∥θ∥2∑

i∈[K]
νia(i)a(i)⊤ : ∥θS∥1 = 1, ∥θSc∥1 ≤ 3

}
(21)

ϕ2(ν, s) ≜ min
S⊆[d] : |S|=s

ϕ2(ν,S). (22)

Given a fixed ν, the program in (21) is non-convex due to the ℓ1-norm equality constraint; however, by
introducing binary variables, it can be turned into a mixed-integer discipled convex program (MIDCP) and
be efficiently solved using CVX toolbox (Grant & Boyd, 2012). If we relaxed the equality constraint to
∥θS∥1 ≤ 1, then (21) would be a quadratic program (QP).

Relaxing the optimization problem According to the arguments above, the optimization problem that
we originally need to solve is

ν∗ = arg max
ν∈PT1 ([K])

ϕ2(ν, s), (23)

which is computationally intractable since the maximization constraint makes it an integer program; and
even if we relaxed it to allow fractional number of pulls, the program would involve

(
d
s

)
≈ ds MIDCPs in its

constraints.
Lemma 2. For any ν ∈ P([K]) and any S ⊆ [d], it holds that ϕ2(ν,S) ≥ σmin

(∑K
i=1 νia(i)a(i)⊤

)
.

Lemma 2 follows from |S| ∥θS∥2
1 ≤ ∥θS∥2

2 ≤ ∥θ∥
2
2 and relaxing the inequality constraint in (21).

Replacing ϕ2(ν,S) by its lower bound and allowing fractional number of pulls, we get the relaxed optimization
problem in (6), which can be solved efficiently.

With the inclusion of 1
T1

maxj∈[d] ∥X:,j∥2
2, the optimization problem can be re-formulated as

max
ν∈P([K])

σmin

(∑K
i=1 νia(i)a(i)⊤

)
√

max
(

diag
(∑K

i=1 νia(i)a(i)⊤
)) , (24)

which does not satisfy the MIDCP ruleset. In our experiments, we observe that the convergence of the
numerical solution to the problem in (24) heavily depends on the initialization; therefore, (24) could not be
considered as a reliable approach.

17

Published in Transactions on Machine Learning Research (01/2024)

B Pseudo-codes of ROUND and OD-LinBAI

The pseudo-codes of the rounding procedure from Pukelsheim (2006, Ch. 12) that is used in Algorithm 1
and OD-Lasso from Yang & Tan (2022) are given below.

Algorithm 3 ROUND(π, T)
input a distribution π on a set with cardinality d and a positive integer T .

1: Initialize Ti = ⌈(T − d
2)πi⌉ for i = 1, . . . , d.

2: while
∑d

i=1 Ti ̸= T do
3: if

∑d
i=1 Ti < T then

4: Set j ← arg mini∈[d]
Ti

πi
. Update Tj ← Tj + 1.

5: else if
∑d

i=1 Ti > T then
6: Set j ← arg maxi∈[d]

Ti−1
πi

. Update Tj ← Tj − 1.
7: end if
8: end while

output Distribution π̃ =
(

T1
T , . . . ,

Td

T

)
.

Algorithm 4 Optimal Design-Based Linear Best Arm Identification (OD-LinBAI)
input time budget T , arm set A = [K], and arm vectors {a(1), . . . ,a(K)} ∈ Rd.

1: Initialize t0 ← 0, A0 ← A, d0 ← d. For each i ∈ A0, set a0(i) = a(i). Set R = ⌈log2 d⌉, Tr =
⌊

T
R

⌋
for

r = 1, . . . , R− 1, and TR = T −
∑R−1

i=1 Ti.
2: for r = 1 to R do
3: \\ Dimensionality reduction:
4: Set X so that its columns are {ar−1(i) : i ∈ Ar−1}. Set dr ← rank(X). Set ar(i) ← ar−1(i) for

i ∈ Ar−1.
5: if dr < dr−1 then
6: Find the singular value decomposition of X = UDV ⊤, where U ∈ Rdr−1×dr .
7: Update X ← U⊤X and ar(i)←Xi for i ∈ Ar−1.
8: end if
9: \\ G-optimal design:

10: Input the set {ar(i) : i ∈ Ar−1} to the G-optimal design, and set π(r) as the output of (7).
11: Set π̃(r) = ROUND(π(r), Tr) from Algorithm 2.
12: \\ Arm pulling:
13: Pull each arm i ∈ Ar−1 Tr(i) = π̃

(r)
i Tr times, which determines Atr−1+1, . . . , Atr−1+Tr

. Observe the
corresponding rewards ytr−1+1, . . . , ytr−1+Tr

.
14: Compute the OLS estimator

V (r) =
∑

i∈Ar−1

Tr(i)ar(i)ar(i)⊤ (25)

θ̂(r) = V (r)−1
tr−1+Tr∑

t=tr−1+1
ar(At)yt. (26)

15: \\ Arm elimination:
16: Estimate the mean rewards for each i ∈ Ar−1 as

µ̂r(i) = ⟨θ̂(r),ar(i)⟩. (27)

Set Ar ← the set of ⌈ d
2r ⌉ arms in Ar−1 with the largest estimated mean rewards. Set tr ← tr−1 + Tr.

17: end for
output Î = the only remaining arm in AR.

18

Published in Transactions on Machine Learning Research (01/2024)

C Proofs Related to Lasso

In the following, let n be the number of samples. The linear model is given by y = Xθ∗ + ϵ, where y ∈ Rn

are the rewards, X ∈ Rn×d is the design matrix, and ϵ ∈ Rn are i.i.d. 1-subgaussian random variables.
Recall the initial Lasso estimator

θ̂ = arg min
θ∈Rd

1
n
∥y−Xθ∥2

2 + λ ∥θ∥1 . (28)

Define the event

T =
{

max
j∈[d]

1
n
|X⊤

:,jϵ| ≤ λ

4

}
. (29)

The following result, known as the oracle inequality, is the main tool to control the performance of the initial
lasso estimator.
Lemma 3 (Oracle Inequality: Theorem 6.1 from Bühlmann & van de Geer (2011)). On the event T , the
initial Lasso estimator θ̂ (28) satisfies∥∥∥X(θ̂ − θ∗)

∥∥∥2

2
+ λ

∥∥∥θ̂ − θ∗
∥∥∥

1
≤ 4λ2s

ϕ2(M , S(θ∗)) . (30)

Furthermore, it holds that

P [T] ≥ 1− 2d exp

− nλ2

32
(

1
n maxj∈[d] ∥X:,j∥2

2

)
 . (31)

Proof of Lemma 3. Since θ̂ minimizes (28), we have

1
n

∥∥∥y−Xθ̂
∥∥∥2

2
+ λ

∥∥∥θ̂
∥∥∥

1
≤ 1
n
∥y−Xθ∗∥2

2 + λ ∥θ∗∥1 . (32)

Plugging y = Xθ∗ + ϵ into (32), after some algebra, we get the basic inequality

1
n

∥∥∥X(θ̂ − θ∗)
∥∥∥2

2
+ λ

∥∥∥θ̂
∥∥∥

1
≤ 2
n

ϵ⊤X(θ̂ − θ∗) + λ ∥θ∗∥1 . (33)

Let T̃ be the event

T̃ =
{

max
j∈[d]

2
n
|ϵ⊤X:,j | ≤ λ0

}
. (34)

Then, on T̃ , we have using the Hölder inequality that

1
n

∥∥∥X(θ̂ − θ∗)
∥∥∥2

2
≤ λ0

∥∥∥θ̂ − θ∗
∥∥∥

1
+ λ∥θ∗∥1 − λ

∥∥∥θ̂
∥∥∥

1
. (35)

Let S = S(θ∗). By the triangle inequality, we have∥∥∥θ̂
∥∥∥

1
=
∥∥∥θ̂S

∥∥∥
1

+
∥∥∥θ̂Sc

∥∥∥
1
≥ ∥θ∗

S∥1 −
∥∥∥θ̂S − θ∗

S

∥∥∥
1

+
∥∥∥θ̂Sc

∥∥∥
1
. (36)

Applying (36) to (35), we get

1
n

∥∥∥X(θ̂ − θ∗)
∥∥∥2

2
≤ λ0

(∥∥∥θ̂S − θ∗
S

∥∥∥
1

+
∥∥∥θ̂Sc − θ∗

Sc

∥∥∥
1

)
+ λ

(
∥θ∗∥1 − ∥θ

∗
S∥1 +

∥∥∥θ̂S − θ∗
S

∥∥∥
1
−
∥∥∥θ̂Sc

∥∥∥
1

)
(37)

= (λ0 + λ)
∥∥∥θ̂S − θ∗

S

∥∥∥
1

+ (λ0 − λ)
∥∥∥θ̂Sc − θ∗

Sc

∥∥∥
1
, (38)

19

Published in Transactions on Machine Learning Research (01/2024)

where the last step uses the fact that θ∗
Sc = 0. We set λ0 = λ

2 . Then, (38) implies that on the event T ,∥∥∥θ̂Sc − θ∗
Sc

∥∥∥
1
≤ 3

∥∥∥θ̂S − θ∗
S

∥∥∥
1
. (39)

Therefore, θ̂ − θ∗ ∈ C(S), and from the definition of compatibility constant in Definition 1, we have

∥∥∥θ̂S − θ∗
S

∥∥∥
1
≤

√
s(θ̂ − θ∗)⊤X⊤X(θ̂ − θ∗)

√
nϕ(M ,S) . (40)

We now continue with (38) with λ0 = λ
2 . We have

2
n

∥∥∥X(θ̂ − θ∗)
∥∥∥2

2
+ λ

∥∥∥θ̂ − θ∗
∥∥∥

1
= 2
n

∥∥∥X(θ̂ − θ∗)
∥∥∥2

2
+ λ

∥∥∥θ̂S − θ∗
S

∥∥∥
1

+ λ
∥∥∥θ̂Sc − θ∗

Sc

∥∥∥
1

(41)

≤ (3λ+ λ)
∥∥∥θ̂S − θ∗

S

∥∥∥
1
− λ

∥∥∥θ̂Sc − θ∗
Sc

∥∥∥
1

+ λ
∥∥∥θ̂Sc − θ∗

Sc

∥∥∥
1

(42)

= 4λ
∥∥∥θ̂S − θ∗

S

∥∥∥
1

(43)

≤
4λ
√
s
∥∥∥X(θ̂ − θ∗)

∥∥∥
2√

nϕ(M ,S) (44)

≤ 1
n

∥∥∥X(θ̂ − θ∗)
∥∥∥2

2
+ 4λ2s

ϕ2(M ,S) , (45)

where (44) applies (40), and (45) applies the inequality 4uv ≤ u2 + 4v2 to (44). Inequality (45) completes
the proof of (30).

Next, we upper bound the probability P
[
T̃ c]. We have

P
[
T̃ c] = P

 ⋃
j∈[d]

{
1
n
|X⊤

:,jϵ| > λ

4

} (46)

≤
d∑

j=1

(
P
[

1
n

X⊤
:,jϵ >

λ

4

]
+ P

[
− 1
n

X⊤
:,jϵ >

λ

4

])
(47)

≤ 2
d∑

j=1
exp

{
− λ2

2 · 42 · 1
n2 ∥X:,j∥2

2

}
, (48)

where the last inequality follows since 1
n X⊤

:,jϵ − 1
n X⊤

:,jϵ are subgaussian with variance proxy 1
n2 ∥X:,j∥2

2
as ϵ1, . . . , ϵn are independent 1-subgaussian random variables. Bounding each summand in (48) by the
maximum of summands completes the proof of (31).

Proof of Lemma 1. The right-hand side of (30) depends on the unknown set S(θ∗); however, we can further
upper bound the right-hand side of (30) by replacing ϕ2(M , S(θ∗)) by its lower bound ϕ2(M , s), which is
computable using only X and s. Therefore, Lemma 1 is a corollary to Lemma 3.

Proof of Theorem 1. Define the event G ≜
{∥∥∥θ̂init − θ∗

∥∥∥
1
≤ 4λinits

ϕ2(M ,s)

}
. We have∥∥∥θ̂init − θ∗

∥∥∥
1
≥
∥∥∥(θ̂init − θ∗)S(θ∗)c

∥∥∥
1

(49)

=
∑

j∈S(θ∗)c

|(θ̂init)j | (50)

≥
∑

j∈S(θ̂thres)\S(θ∗)

|(θ̂init)j | (51)

≥ |S(θ̂thres) \ S(θ∗)|λthres, (52)

20

Published in Transactions on Machine Learning Research (01/2024)

where (50) follows since θ∗
S(θ∗)c = 0 by assumption, and (52) follows from the thresholding step in (5).

Therefore, on the event G, it holds that

|S(θ̂thres) \ S(θ∗)| ≤

∥∥∥θ̂init − θ∗
∥∥∥

1
λthres

≤ 4λinits

λthres ϕ2(M , s) . (53)

For all j ∈ S(θ∗), on the event G, we have

|(θ̂init)j | ≥ θmin −
∥∥∥(θ∗ − θ̂init)S(θ∗)

∥∥∥
∞

(54)

≥ θmin −
∥∥∥(θ∗ − θ̂init)S(θ∗)

∥∥∥
1

(55)

≥ θmin −
∥∥∥θ∗ − θ̂init

∥∥∥
1

(56)

≥ θmin −
4λinits

ϕ2(M , s) . (57)

Therefore, if

λthres ≥ θmin −
4λinits

ϕ2(M , s) , (58)

S(θ̂thres) ⊇ S(θ∗) is satisfied on G. Combining Lemma 1, (53), and (58) completes the proof of Theorem 1.

D Proof of Theorem 2

The proof of Theorem 2 closely follows the proof of Yang & Tan (2022, Th. 2). Therefore, we only explain
the differences, which are as follows.

(i) Due to our construction, m in Yang & Tan (2022) is replaced by T̃ =
⌊

T
⌈log2 d⌉

⌉
.

(ii) Let Ar be the active arms in round r and let {ar(i) : i ∈ Ar} ⊂ Rdr be the dimensionality-reduced
arm vectors. From Fiez et al. (2019, Appendix B), it holds that

max
i∈Ar

∥ar(i)∥2
M(π̃(r))−1 ≤ dr

(
1 + d2

r

T̃

)
, (59)

where π̃(r) is the rounded version of the G-optimal design output π(r).

(iii) In the proof of Yang & Tan (2022, Lemma 3), the set Br is the set of arms in Ar−1 excluding the best
arm and ⌈ d

2r+1 ⌉ − 1 suboptimal arms with the largest mean rewards. We re-define Br as the set of
arms in Ar−1 excluding the best arm and ⌈ d

2r ⌉ − 1 suboptimal arms with the largest mean rewards.

With the modifications in items (i) and (ii) and following the steps in the proof of Yang & Tan (2022,
Lemma 2), we get for any arm i ∈ Ar−1

P [µ̂r(1) < µ̂r(i)|1 ∈ Ar−1] ≤ exp
{
− T̃∆2

i

8⌈ d
2r−1 ⌉(1 + d2

T̃
)

}
, (60)

where µ̂r(i) denotes the estimated mean of arm i in round r.

21

Published in Transactions on Machine Learning Research (01/2024)

Using item (iii) and (60), we go through the proof of Yang & Tan (2022, Lemma 3) and get

P [1 /∈ Ar|1 ∈ Ar−1] ≤


(K − d

2) exp
{
−

T̃ ∆⌈ d
2r ⌉+1

16(⌈ d
2r ⌉+1)(1+ d2

T̃
)

}
, if r = 1

(d
2r + 1) exp

{
−

T̃ ∆⌈ d
2r ⌉+1

16(⌈ d
2r ⌉+1)(1+ d2

T̃
)

}
, if r > 1.

(61)

Finally, following the steps in the proof of Yang & Tan (2022, Th. 2) with (61), we get

P
[
Î ̸= 1

]
≤

K − d

2 +
⌈log2 d⌉∑

r=2

d

2r
+ ⌈log2 d⌉ − 1

 exp

− T̃

16
(

1 + d2

T̃

)
H2,lin(d)

 (62)

≤ (K + log2 d) exp

− T̃

16
(

1 + d2

T̃

)
H2,lin(d)

 , (63)

which completes the proof.

E Proof of Corollary 1

We set κ, λinit and λthres as

κ = 16
ϕ4θ2

min

25
24 , (64)

λinit = 1√
κ(s+ s2)

, and (65)

λthres = 4
ϕ2s

λinit. (66)

Note that (66) sets s1 = s+ s2 in (15), and for any s ∈ N, we check that the condition in Theorem 3 holds:

θmin = 4
ϕ2√κ

√
25
24 ≥

4
ϕ2√κ

s+ 1
s√

s+ s2
= λinit

(
c+ 4

ϕ2 s

)
. (67)

Next, we would like to set c0 = T1
T2

so that the two exponents in (14) are equal. However, since H2,lin(s+ s2)
is not available to us, we use the lower bound

H2,lin(s+ s2) = max
i∈{2,...,s+s2}

i

∆2
i

≥ s+ s2

∆2
s+s2

≥ s+ s2

4 , (68)

where the last inequality follows from the assumption |µk| ≤ 1 for all k ∈ [K].4 One can further upper bound
∆s+s2 by using the values of K arm vectors and searching for θ∗ that gives the largest ∆s+s2 .

We set the ratio c0 = T1
T2

as

c0 = 25 · 16x2
max

3ϕ4θ2
min log2(s+ s2) , (69)

which together with (64)–(68) ensures that

exp

−
⌊

T2
log2(s1)

⌋
16 (1 + ϵ)H2,lin(s1)

 ≥ exp
{
− T1λ

2
init

32x2
max

}
. (70)

Combining (70) with s1 = s+ s2 completes the proof.

The ratio c0 decreasing with s as in (69) is consistent since as s approaches d, the sparse linear bandit
approaches the standard linear bandit, and we would expect to spend more budget on phase 2 than phase
1 for large s. We deliberately choose the parameters in (64)–(66) to maintain this property.

4This step is the only place where the assumption on the mean rewards is used.

22

Published in Transactions on Machine Learning Research (01/2024)

F Implementation Details

Our code is available at https://github.com/recepcyavas/TMLR_sparse_linear_bandit. In all compu-
tations of the Lasso problem (4), we use the ADMM algorithm (Boyd et al., 2011).

F.1 Lasso-OD with K-fold Cross-Validation

In the implementation of Lasso-OD-CV, the ratio of the budgets, T1
T2

, is set to the default value 1
4 , i.e.,

naturally, the algorithm spends more budget for the BAI algorithm than for the support estimation.

For tuning the hyperparameters λinit and λthres, we pull T1 arms according to the allocation given in (6).
We use the following cross-validation steps to tune the parameters.

(i) Fix two sets of hyperparameters {λinit,1, λinit,2, . . . , λinit,m} and {λthres,1, λthres,2, . . . , λthres,m} that are
candidates for λinit and λthres respectively.

(ii) Iteratively tune the parameters by fixing one of them and searching for the best parameter for the
other one.

(iii) In each cross-validation round, the objective is to minimize the loss function

L = 1
T1

E
[∥∥∥y−Xθ̂thres

∥∥∥2

2

]
+ c1P

[∥∥∥θ̂thres

∥∥∥
0
< s
]

+ c2E
[
1
{∥∥∥θ̂thres

∥∥∥
0
> s
}∥∥∥θ̂thres

∥∥∥
0

]
, (71)

where c1 and c2 are ℓ0-norm regularization parameters. Here, the first term in (71) is the mean-squared
error; the second and the third terms penalize the ℓ0-norm error and force the hyperparameters to
output an estimate with s variables. In application, we set c1 = 200 and c2 = 5, giving more importance
to detecting at least s variables. If the value of s is not available, we can still use this technique by
setting c1 = c2 = 0. As standard, we approximate (71) by training the parameters in K − 1 blocks
and testing in the remaining block.

(iv) To speed up convergence, in each round of cross-validation, we exponentially narrow down the candi-
date sets.

(v) To reduce the variance in cross-validation, we employ Monte-Carlo simulations, i.e., we independently
partition the data into K blocks for multiple times and then take the average loss.

F.2 Lasso-OD-Analytical

In the implementation of Lasso-OD-Analytical, we set the hyperparameters λinit and λthres as in (64)–(66),
and c0 is set so that (69) holds with equality. This setup effectively uses the hardness parameter H2,lin(s+s2).
To compute these hyperparameters, we first need to compute ϕ2(M , s). As discussed in Appendix A, this
requires solving a MIDCP. We do this by using the YALMIP toolbox (Löfberg, 2004) because it does not ask
to convert the problem into another one. Alternatively, one can use the CVX toolbox (Grant & Boyd, 2012)
with a little bit more effort, or use Lemma 2 and solve an easier problem at the expense of some performance
loss.

F.3 OD-LinBAI and Other BAI Algorithms

We implement OD-LinBAI and other BAI algorithms shown in section 5 using the methods described in
Yang & Tan (2022, Appendix E).

BayesGap-Adaptive: In general, BayesGap algorithm (Hoffman et al., 2014) requires the knowledge of
the hardness parameter. As in Hoffman et al. (2014); Yang & Tan (2022), at the beginning of each time
instant, we input the estimated hardness parameter according to the three-sigma rule. In the experiments,
we omit the oracle version of BayesGap that directly uses the knowledge of the hardness parameter.

23

https://github.com/recepcyavas/TMLR_sparse_linear_bandit

Published in Transactions on Machine Learning Research (01/2024)

G Additional Experiments

G.1 Variants of Our Algorithm

We present two variants of Lasso-OD that modify the operations in phase 2 and one variant that replaces
the thresholded Lasso in phase 1.

Lasso-XY-Allocation: This algorithm is identical to Lasso-OD except that the G-optimal design used to
determine the allocations within each round is replaced by the XY-allocation from Soare et al. (2014). Let
X = {a(i) : i ∈ A} be the set of arms in an active set A. Let Y = {x− x′ : x,x′ ∈ X ,x ̸= x′} be the set of
arm differences. The XY-allocation solves the problem

π∗ = arg min
π∈P(A)

max
y∈Y
∥y∥M(π)−1 . (72)

Lasso-XY-Allocation replaces Line 11 of Algorithm 4 with (72). In the experiments, we compute (72) using
the Frank–Wolfe algorithm as in Fiez et al. (2019).

From Yang & Tan (2022, Proof of Lemma 2), the probability that a sub-optimal arm i has a smaller estimated
mean than the optimal arm 1 is bounded as

P [µ̂(1) < µ̂(i)] ≤ exp
{
− ∆2

i

2 ∥a(1)− a(i)∥M(π)−1

}
(73)

≤ exp
{
− ∆2

i

2 maxi ̸=j ∥a(j)− a(i)∥M(π)−1

}
(74)

≤ exp
{
− ∆2

i

8 maxi∈A ∥a(i)∥M(π)−1

}
, (75)

where π is the allocation within the round. Here, (75) follows from the triangle inequality. The G-optimal
design optimizes the allocation π in (75), and XY-allocation optimizes (74). Since XY-allocation optimizes
a tighter bound, Lasso-XY-allocation is expected to perform better than Lasso-OD.

Lasso-BayesGap: Since BayesGap performs better than OD-LinBAI in the examples in section 5, we
propose the variant Lasso-BayesGap where in phase 2, OD-LinBAI is replaced by BayesGap-Adaptive from
Hoffman et al. (2014).

In our implementations of Lasso-XY-Allocation and Lasso-BayesGap (as described above), the parameters
of Lasso are tuned via cross-validation.

PopArt-OD: Recently, Jang et al. (2022) develop the PopArt algorithm, which estimates the unknown
parameter θ∗ similarly to Lasso and TL. Due to its superior ℓ1 error to Lasso, PopArt also guarantees that
the support of θ∗ is estimated efficiently. Similar to TL, the PopArt estimate is obtained by thresholding
an initial estimate. Our variant, PopArt-OD, replaces the TL in phase 1 of Lasso-OD with PopArt, and
retains phase 2 as is. We give its pseudo-code in Algorithm 5 and analyze its performance in the section
below. Line 1 of PopArt involves an optimization problem that yields the optimal covariance matrix with
respect to an upper bound on the error probability; this process reflects the design matrix optimization
of TL described in Appendix A. In PopArt, if the population covariance M in Line 3 was replaced with
the empirical covariance and if the Catoni estimator in Line 4 was replaced with averaging, the resulting
algorithm would be the thresholded OLS estimator.

PopArt has one hyperparameter (the estimate on the error probability δ in Jang et al. (2022)). In the
experiments to follow, we tune the hyperparameter using a K-fold cross validation procedure.

G.2 Analysis of PopArt-OD

The following theorem bounds the error probability of PopArt-OD.

24

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 5 PopArt-OD
input Time budget T , arm vectors a(1), . . . ,a(K) ∈ Rd, θmin, and sparsity s.

1: Solve the convex optimization problem ν∗ = arg min
ν∈P[K]

max
i∈[d]

(
{
∑K

i=1 νia(i)a(i)⊤}−1
)

ii
. Let the objective

value of the minimum be H2
∗ and M =

∑K
i=1 ν

∗
i a(i)a(i)⊤. Set

λPA = min
{√

2H2
∗ ,
θmin

2

}
, cPA = 2H2

∗
λ2

PAs log2 s
, T1 =

⌈
T

cPA

1 + cPA

⌉
, T2 = T − T1, g = λ2

PA
8H2

∗
.

(76)

2: Sample T1 arms, A1, . . . , AT1 i.i.d. with ν∗, and observe rewards y1, . . . , yT1 .
3: For t = 1, . . . , T1, let θ̃t = M−1a(At)yt ∈ Rd.

4: Set for i ∈ [d], θ′
i = Catoni

(
(θ̃1,i, . . . , θ̃T1,i),

√
g

(M−1)ii(1+ 2g
1−2g)

)
, where Catoni((Z1, . . . , Zn), α) is the

unique solution y to the equation
n∑

i=1
ψ(α(Zi − y)) = 0, ψ(x) = sign(x)(1 + |x|+ x2/2). (77)

5: θ̂PA =
(
θ′

i1
{
|θ′

i| ≥
√

8M−1
ii g

}
: i ∈ [d]

)
and ŜPA = S(θ̂PA).

6: Run OD-LinBAI (Algorithm 4) restricted to the support ŜPA using T2 pulls.
output Î is the only remaining arm as the output of Algorithm 4.

Theorem 4. For any linear bandit instance, the error probability of PopArt-OD given in Algorithm 5 is
bounded as

P
[
Î ̸= 1

]
≤ (K + log2 d+ 2d) exp

{
− T

16⌊log2(s)⌋(1 + ϵPA)H2,lin(s)(1 + cPA)

}
, (78)

where cPA is defined in (76), below, and ϵPA = (1+cPA)s2

T .

Proof. By Line 5 of PopArt, if i ∈ [d] satisfies that θ′
i ≥ λPA, then i ∈ ŜPA. From Jang et al. (2022, Prop. 1

and Th. 1), with probability at least 1− 2d exp
{
−T1λ2

PA
8H2

∗

}
, the initial PopArt estimator θ′ satisfies

∥θ′ − θ∗∥∞ ≤ λPA. (79)

and the PopArt estimator satisfies S(θ̂PA) ⊆ S(θ∗). By selecting λPA ≤ θmin
2 , we further ensure that

S(θ∗) ⊆ S(θ̂PA), giving S(θ̂PA) = S(θ∗). Therefore, by the union bound and Theorem 2, the error probability
of PopArt-OD is bounded as

P
[
Î ̸= 1

]
≤ P

[
S(θ̂PA) ̸= S(θ∗)

]
+ P

[
Î ̸= 1

∣∣∣S(θ̂PA) = S(θ∗)
]

(80)

≤ 2d exp
{
−T1λ

2
PA

8H2
∗

}
+ (K + log2 d) exp

{
− T2

16⌈log2 s⌉H2,lin(s)(1 + ϵPA)

}
. (81)

The rest of the proof follows steps similar to the proof of Theorem 3, which aims to balance the two exponents
in (81). The choices of cPA, T1, and T2 together with the lower bound H2,lin(s) ≥ s

4 (see, (68)) imply that

T1λ
2
PA

8H2
∗
≥ T2

16⌈log2 s⌉H2,lin(s)(1 + ϵPA) , (82)

which completes the proof. Note that we select λPA ≤
√

2H2
∗ to ensure that 1 − 2g ≥ 1

2 > 0, making the
Catoni parameter in Line 4 of Algorithm 5 valid.

25

Published in Transactions on Machine Learning Research (01/2024)

103 104
0

0.2

0.4

0.6

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.2

0.4

0.6

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

103 104
0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

Lasso-OD

Lasso-OD-Analytical

Lasso-XY

Lasso-BayesGap

PopArt-OD

OD-LinBAI

BayesGap-Adaptive

GSE

Figure 6: Comparison of several algorithms with s ∈ {2, 3, 4}.

Theorem 4 shows that PopArt-OD has an error probability that scales as

exp
{
−Ω

(
T

(log2 s)H2,lin(s)

)}
(83)

as T and s grow. This is the same theoretical result as that for Lasso-OD. However, we observe from the
next section (specifically Appendix G.3.1) that Lasso-OD outperforms PopArt-OD empirically.

G.3 Experiments

In the experiments below, we include Lasso-XY-allocation and Lasso-BayesGap to the list of algorithms in
Section 5.

G.3.1 First Example

In the first example, we test the performance of the various BAI algorithms for sparsities of at least 2. We
generate K d-dimensional arm vectors a(k) = (a(k)i : i ∈ [d]), k ∈ [K], where a(k)i’s are distributed N (0, 1

s)
independent across arms k ∈ [K] and coordinates i ∈ [d]. The s-sparse unknown vector θ∗ is set as θ∗

i = 1√
s

for i ∈ [s] and θ∗
i = 0 for i = s + 1, . . . , d. Figure 6 compares the performances of several algorithms in

the literature and variants of our algorithm for s ∈ {2, 3, 4}, K = 50, d ∈ {10, 20}, and T ∈ [200, 104].
For all bandit instances under consideration, the performances of Lasso-OD and Lasso-XY-allocation are
almost identical. However, due to its low computational complexity (see Tables 3 and 4 for the CPU
runtimes), Lasso-OD is preferred over Lasso-XY-allocation. Among different variants of Lasso-OD, Lasso-
OD and Lasso-XY-allocation have the best performance for the instances with s = 2. For s = 3 and s = 4,

26

Published in Transactions on Machine Learning Research (01/2024)

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a
b
ili

ty

Lasso-OD

Lasso-OD-An.-LB

Lasso-XY

Lasso-BayesGap

PopArt-OD

OD-LinBAI

BayesGap-Adaptive

GSE

Figure 7: Comparison of several algorithms with θ∗ belonging to a finite set.

among the algorithms shown, Lasso-BayesGap performs the best for a large enough budget T . The poor
performance of Lasso-based algorithms for small budgets is because at larger s, the minimum budget that
should be allocated to phase 1 to reliably estimate the support of θ∗ increases with s. For the instances with
s ∈ {3, 4}, BayesGap-Adaptive performs remarkably well, but it is outperformed by Lasso-based algorithms
for s = 2. PopArt-OD algorithm is outperformed by Lasso-OD for all instances shown, which implies that
the variable selection property of PopArt is poorer than that of the thresholded Lasso.

In Tables 3 and 4,5 we report the average CPU runtimes for the instances in the first example with s = 2
and s = 3. Lasso-OD is superior to all other algorithms in terms of the computational complexity.6

G.3.2 Second Example

In the second example, we assume that θ∗ belongs to the finite set H ≜ {θ ∈ Rd : ∥θ∥0 = s, θi ∈{
− 1√

s
, 0, 1√

s

}
, ∀ i ∈ [d]}. In other words, the non-zero coordinates of θ∗ are assumed to have mag-

nitudes all equal to 1√
s
. We generate K d-dimensional arm vectors in the vicinity of H as follows:

a(k)i = Rk,i cos(π/4 + Zk,i), where Rk,i’s are independently and identically distributed (i.i.d.) generated
with distribution Unif({−1, 1}), Zk,i’s are i.i.d. generated with distribution N (0, 0.01), and Rk,i’s and Zk,i’s
are independent. For this bandit instance, given the arm vectors and using the assumption that θ∗ ∈ H, we
can lower bound the hardness parameter H2,lin(s+ s2) by computing the minimum hardness parameter for
the vectors θ ∈ H. In Figure 7, Lasso-OD-An.-LB computes the hyperparameters analytically and obtains
T1 from the lower bound on H2,lin(s+ s2) above instead of the true value of H2,lin(s+ s2). Figure 7 shows
that Lasso-OD-An.-LB outperforms all other algorithms in the literature and achieves similar performance
as Lasso-OD and Lasso-XY-allocation for a large enough time budget.

5Pre-calculation in Tables 3 and 4 refers to the calculation of ϕ2(M , s) that is used to determine the hyperparameters for
Lasso-OD-Analytical.

6All experiments are implemented on MATLAB 2023a on an Intel(R) Core(TM) i9-12900H processor.

27

Published in Transactions on Machine Learning Research (01/2024)

Table 3: The empirical means of the CPU runtimes for s = 2, d = 10, K = 50.

CPU runtimes (milliseconds)
T Pre-calc. Lasso Tuning Lasso-OD Lasso-X Y Lasso-BayesG. Lasso-OD-An. BayesGap-Ad. OD-LinBAI GSE

100 9680 3300 0.98 9.0 1.6 1.7 3.2 2.2 4.0
200 9680 3500 0.61 5.2 2.9 1.2 5.1 2.2 4.0
400 9680 3800 0.55 3.6 5.5 0.83 9 2.1 4.0
800 9680 4380 0.48 3.4 11 0.76 17 2.1 4.0

1600 9680 6570 0.66 4.1 23 0.68 34 2.1 4.0
3200 9680 7520 0.66 4.0 46 0.70 69 2.1 4.0
6400 9680 7710 0.70 4.1 89 1.1 139 2.1 4.0

G.3.3 Third Example

In the third example, we extend the example in Yang & Tan (2022); Jedra & Proutiere (2020); Fiez et al.
(2019) to sparse linear bandits. We set θ∗ = (1√

2 ,
1√
2 , 0, . . . , 0), i.e., s = 2, and S = S(θ∗) = {1, 2}.

For the coordinates in S, we pull arms as in Yang & Tan (2022); we set a(1)S = (cos(π/4), sin(π/4)),
a(K)S = (cos(5π/4), sin(5π/4)), and a(i)S = (cos(π/2 + ϕi), sin(π/2 + ϕi)) for i = 2, . . . ,K − 1, where ϕi

are independently drawn from N (0, 0.09). For any i ∈ [K], we draw a(i)Sc independently from the uniform
distribution on the (d − s)-dimensional centered sphere of radius

√
d−s

s . Recall that since θ∗
Sc = 0, the

values of arms on the coordinates Sc have no effect on the best arm or the value of the hardness parameter.
The problem would be identical to that in Yang & Tan (2022) if the agent knew the support S. In this
bandit instance, arm 1 is the best arm and there are K − 2 arms whose mean values are close to that of the
second best arm. In the non-sparse case, i.e., d = s = 2, Yang & Tan (2022) demonstrate that OD-LinBAI
outperforms the other algorithms. Figure 8 compares the performance of variants of our algorithm with the
other algorithms in the literature. We report the empirical performances for d ∈ {10, 20},K ∈ {50, 100}, and
T ∈ [200, 104]. Among the algorithms shown, Lasso-OD and its variants Lasso-XY-allocation and PopArt-
OD significantly outperform the other algorithms. Unlike the previous two examples, for this example,
Lasso-BayesGap is not the best performing algorithm.

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a

b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a

b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a

b
ili

ty

10
3

10
4

0

0.2

0.4

0.6

0.8

E
rr

o
r

p
ro

b
a

b
ili

ty

Lasso-OD

Lasso-OD-Analytical

Lasso-XY

Lasso-BayesGap

PopArt-OD

OD-LinBAI

BayesGap-Adaptive

GSE

Figure 8: Comparison of several algorithms for the example bandit instance in Yang & Tan (2022).

28

Published in Transactions on Machine Learning Research (01/2024)

Table 4: The empirical means of the CPU runtimes for s = 3, d = 10, K = 50.

CPU runtimes (milliseconds)
T Pre-calc. Lasso Tuning Lasso-OD Lasso-X Y Lasso-BayesG. Lasso-OD-An. BayesGap-Ad. OD-LinBAI GSE

100 27100 4200 1.1 12 1.6 2.2 2.5 2.4 4.2
200 27100 4500 0.96 8.9 2.9 2.1 5.2 2.4 4.1
400 27100 4900 0.94 8.1 5.7 2.3 10 2.4 4.1
800 27100 5000 0.98 7.6 12 2.3 17 2.4 4.2

1600 27100 5100 1.5 9.2 24 2.1 34 2.4 4.2
3200 27100 7000 1.5 9.2 47 2 68 2.4 4.2
6400 27100 9800 1.6 9.4 93 2 137 2.4 4.1

G.3.4 Fourth Example

In the final example, we test the performance of thresholded Lasso in which the whole horizon of length
T is used for learning the support of θ∗. We draw each entry of the design matrix X ∈ RT ×d i.i.d. from
N (0, 1

s) and set θ∗ = (1√
s
, . . . , 1√

s
, 0, . . . , 0) where θ∗ has s non-zero entries. In Figure 9, we report the

empirical probability of detection error P
[
S(θ̂thres) ̸⊇ S(θ∗)

]
and the empirical mean E[|S(θ̂thres)|] over

10,000 independent trials. For s = 2, the empirical error probability is 0 for T ≥ 400; for s = 4, the empirical
error probability is 0 for T ≥ 800. Figure 9 shows that for T ≥ 100 and s ∈ {2, 4}, thresholded Lasso is
capable of correctly detecting the active variables in θ∗ with high probability while also keeping the average
number of false positives close to zero. As expected, the average number of false positives increases with s.

29

Published in Transactions on Machine Learning Research (01/2024)

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

7

10
1

10
2

10
3

10
4

0

2

4

6

8

10

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

7

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

Average support size Probability of detection error

Figure 9: The empirical detection error probability and the empirical size of the thresholded Lasso output.

30

	Introduction
	Problem Formulation
	Our Algorithm: Lasso-OD
	Motivation for Lasso-OD Algorithm
	Phase 1 (TL)
	Phase 2 (OD-LinBAI)
	Lasso-OD Algorithm

	Main Results
	Thresholded Lasso
	An Improved Upper Bound on the Error Probability of OD-LinBAI
	Upper Bound on the Error Probability of Lasso-OD

	Experiments
	Synthetic Dataset with Sparse Unknown Parameter Vector
	Real-World Dataset with Sparse Unknown Parameter Vector

	Conclusion
	Acknowledgments and Disclosure of Funding
	Design Matrix Optimization in Thresholded Lasso
	Pseudo-codes of ROUND and OD-LinBAI
	Proofs Related to Lasso
	Proof of Theorem 2
	Proof of Corollary 1
	Implementation Details
	Lasso-OD with K-fold Cross-Validation
	Lasso-OD-Analytical
	OD-LinBAI and Other BAI Algorithms

	Additional Experiments
	Variants of Our Algorithm
	Analysis of PopArt-OD
	Experiments
	First Example
	Second Example
	Third Example
	Fourth Example

