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ABSTRACT

Graph Neural Networks from the spatial and the spectral domains often suffer
from the following problems: over-smoothing, poor flexibility, and low perfor-
mance on heterophily. In this paper, we provide a unified view of GNNs from
the matrix space analysis perspective to identify potential reasons for these prob-
lems and propose a new GNN framework to address them, called Wide Graph
Neural Network (WGNN). We formulate GNNs as two components: one is for
constructing a non-parametric feature space, and the other is for learning the pa-
rameters to re-weight the feature space. For instance, spatial GNNs encode the
adjacency matrix multiplication as the feature space and stack layers to re-weight
it, and spectral ones sum the polynomials to build the feature space and learn
shared model weights. Instead, WGNN constructs the space by concatenating all
polynomials and re-weights them individually. This mechanism reduces the un-
necessary constraints on the feature space due to the concatenation, which avoids
over-smoothing and allows independent parameters for better flexibility. Beyond
the parameter independence property, WGNN enjoys further flexibility in adding
matrices with arbitrary columns. For instance, by taking the principal components
of the adjacency matrix, we can significantly improve the representation of het-
erophilic graphs. We provide a detailed theoretical analysis and conduct extensive
experiments on eight datasets to show the superiority of the proposed WGNN. 1

1 INTRODUCTION
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Figure 1: WGNN compared with current GNNs

Graph neural networks (GNNs) have demon-
strated their great potential in representation
learning for graph-structured data, such as so-
cial networks, transportation networks, pro-
tein interaction networks, and chemical struc-
tures (Fan et al., 2019; Wu et al., 2020; Zheng
et al., 2022). Despite the success, existing
GNNs still suffer some issues in the following.
Firstly, the spatial GNNs aggregate the infor-
mation from the connected nodes, resulting in
the well-known over-smoothing (Cai & Wang,
2020). Secondly, the spatial models assume
that the features of connected nodes are simi-
lar; however, this assumption does not hold in
heterophilic graphs (Zheng et al., 2022). Thirdly, the spectral GNNs use polynomials to approach
arbitrary graph filters (He et al., 2021; Klicpera et al., 2019; Defferrard et al., 2016). In the absence
of layer stacking, the spectral GNNs are exempt from the issue of over-smoothing. However, these
spectral GNNs still perform poorly on heterophilic graphs since each polynomial term also shares
the same assumption of similarity in neighbors. In addition, spectral methods share the parameters
for each polynomial term, leading to a less flexible architecture. To better understand the problems
in both spatial and spectral domains, efforts exist that integrate GNNs, e.g., from the perspective of
optimization objectives (Ma et al., 2021; Zhu et al., 2021). However, they focus on summarizing
general formulas while lacking a clear explanation of the problems.

1The implementation of WGNN is available at https://drive.google.com/drive/folders/
1A6VWiPmKRhCNfdcuFJvnxTiTgzgbJIZ6?usp=sharing
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In this paper, we propose a unified view for both spectral and spatial GNNs from the matrix space
analysis point of view to investigate possible reasons for these problems and contribute a new way
to address them. Specifically, for the sake of theoretical investigations, we first abstract a linear
approximation of the GNNs following Wu et al. (2019a); Xu et al. (2018a). Then, as shown in the
mathematical formulation and implementation structure of Figure 1, we decompose the components
with and without parameters in the linear approximation, where the latter is regarded as a feature
space built by node attributes and graph structure (e.g., adjacency or Laplacian matrices), and the
former denotes the learnable parameters to re-weight the features. Consider spatial GNNs that 1)
build the feature space by taking the power of the adjacency matrix, and 2) form the parameter
space by taking the product of the weight matrices. For spectral GNNs, they sum the polynomials
to compose the feature space and share the parameter for each. Based on this view, we can identify
the reasons for issues in GNNs. When forming the feature space by powers of adjacency matrices,
we find that over-smoothing is due to feature space compression. The parameter-sharing manner
of spectral GNNs limits the flexibility of their architectures. Besides, the common issue of poor
performance in heterophilic graphs is caused by the construction of each feature sub-space that
embodies the similarity of neighboring nodes in both methods.

The primary contribution of this work is a wide architecture of GNNs named Wide Graph Neural
Networks (WGNN), whose basic architecture is shown in Figure 1. In particular, it constructs the
feature space by concatenating the polynomial terms of the adjacency matrix. This concatenation
avoids space compression caused by powers in the spatial domain and alleviates the over-smoothing
problem. To account for the feature space with multiple polynomial terms, the WGNN re-weights
each one with an independent parameter matrix. Unlike spectral GNNs, which use a single param-
eter matrix for all polynomial terms, our WGNN has better flexibility by allowing different param-
eters for each. WGNN architectures also enjoy augmenting the feature space with arbitrary width
of matrices. With this characteristic, we can improve the performance on heterophilic graphs by
adding principal components of the adjacency matrix. This augmentation reduces the dependency
of the feature space on the similarity of adjacent nodes since the principal components only ex-
tract the graph structure. Comprehensive experiments on both homophilic and heterophilic datasets
demonstrate the superiority of WGNN.

Contributions. (1) We provide a unified view of both spatial and spectral GNNs, which formu-
lates GNNs as the framework of jointly constructing the feature space and learning the parameters to
re-weight. (2) We propose a new architecture, WGNN, which avoids over-smoothing, enjoys flex-
ibility, alleviates heterophily problems, and provide a detailed theoretical analysis. (3) We conduct
experiments on homophilic and heterophilic datasets and achieve significant improvements, e.g., an
average accuracy increase of 32% on heterophilic graphs.

2 PRELIMINARIES

In this paper, we focus on the undirected graph G = (V, E), along with its node attributes
of V as X ∈ Rn×d and adjacency matrix A ∈ Rn×n to present E . GNNs take the input
of the node attributes and the adjacency matrix, and output the hidden node representations, as
H = GNN(X,A) ∈ Rn×d. By default, we employ the cross-entropy loss function in the node clas-
sification task to minimize the difference between node label Y and the obtained representation as
L(H,Y ) = −

∑
i Yi log softmax(Hi).

2.1 SPATIAL AND SPECTRAL GNNS

Spatial GNNs mostly fall into the message-passing paradigm. For any given node, it essentially
aggregates features from its neighbors and updates the aggregated feature,

H
(k+1)
i = σ

(
upd

(
H

(k)
i , agg

(
Âij , H

(k)
j ; j ∈ N(i)

)))
, (1)

where σ (·) is a non-linear activation function, H(k) indicates the hidden representation in k-th
layer, agg and upd are the aggregation and updating functions (Balcilar et al., 2021), Â = (D +
I)−1/2(A + I)(D + I)−1/2 is the re-normalized adjacency matrix using the degree matrix D, and
N(·) denotes the 1-hop neighbors.

Here, we provide two examples to specify this general expression. One is the vanilla GCN (Kipf &
Welling, 2017) that adopts the mean-aggregation and the average-update, as shown in the left part
of Figure 1. Its formulation is:
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H(k+1) = σ
(
ÂH(k)W (k)

)
. (2)

The second example shows a different update scheme with skip-connection (Xu et al., 2018a; Li
et al., 2019; Chen et al., 2020b), which is defined as follows,

H(k+1) = σ
(
α(k)H(0)W

(k)
0 + ÂH(k)W

(k)
1

)
, (3)

where α(k) controls the weight of each layer’s skip-connection, W (k)
0 ,W

(k)
1 are the transformation

weights for the initial layer and the previous one, respectively.

Spectral GNNs originally employ the Graph Fourier transforms to get filters (Chung & Graham,
1997), such as using the eigendecomposition of the Laplacian matrix: L̂ = I − Â = UΛUT .
In recent years, methods of this type have focused more on approximating arbitrary global filters
using polynomials (Wang & Zhang, 2022; Zhu & Koniusz, 2020; He et al., 2021), which has shown
superior performance and is written as

H =

K∑
k=0

γ(k)Pk(L̂)σ(XW1)W2, (4)

where Pk(·) donates a polynomial’s k-order term; γ(k) is the adaptive coefficients and W1,W2 are
learnable parameters. In Figure 1, we replace W1W2 with W (0). Note that some instances of
spectral filters are not included in this paper, such as Levie et al. (2018); Thanou et al. (2014).

2.2 CHALLENGING ISSUES

Over-smoothing: In spatial GNNs, when stacking layers deep enough, the representations of
connected nodes tend to be the same. Unlike deep models with tens of layers, GNNs often have
only a few layers, for which there exists relievers such as DropEdge Rong et al. (2020) and the
skip-connection scheme (Li et al., 2019; Xu et al., 2018b;a; Chen et al., 2020b) while having limited
effect. Recent research shows that over-smoothing is the result of low-pass filters from a spectral
perspective (Wu et al., 2019b; He et al., 2021).

Homophily and heterophily: Homophily and heterophily are the concepts of differentiating
whether connected nodes share the same labels. According to the definition of h = |{Yi =
Yj ; (i, j) ∈ E}|/|E| (Zhu et al., 2020), we consider a graph with a larger h as more likely to be
homophilic, otherwise heterophilic. GNNs were designed for homophilic graphs, making them un-
able to deal with heterophilic ones, sometimes even worse than MLPs (Zheng et al., 2022).

Poor flexibility: In spectral GNNs, all polynomial terms share the same parameter matrix due to
the concentration on updating the coefficients only, as shown in Figure 1. This learning mechanism,
unlike spatial GNNs, can form another weight matrix to the next feature subspace by layer-wise
multiplications, resulting in the feature matrices of spectral methods being linearly correlated.

3 METHODS

We propose a unified view with a decomposition of the feature space and the parameters in GNNs.
The primary motivation for the view is we consider the potential connections among the issues
is how they use the graph data, i.e., the construction of the feature space. To conduct theoretical
investigations of the feature space, we abstract a linear approximation of GNNs based on the success
of linearization attempts of Wu et al. (2019a); Xu et al. (2018a). Specifically, we offer an overall
formulation of linear approximation of arbitrary graph neural networks. GNN(X, Â) as:

H = GNN(X, Â) =

T−1∑
t=0

Φt(X, Â)Θt, (5)

where Φt(X, Â) ∈ Rn×dt is the non-parametric feature space constructing function that inputs the
graph data (e.g., node attributes and graph structure) and outputs a feature subspace, Θ ∈ Rdt×c

is the parameter space to re-weight the corresponding feature subspace for each class c, and T is a
hyper-parameter of the number of the feature sub-spaces that the GNN contains. In general, in this
linear approximation, a GNN model forms K feature sub-spaces, i.e., Φt, and outputs the addition of
all the re-weighted sub-spaces using the respective parameters Θt. Note that the (total) feature space
is the union of the sub-spaces as Φ = {Φt}t=0,1,··· ,T−1. Similarly, we have the (total) parameters
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Θ = {Θt}t=0,1,··· ,T−1. Besides, the number of the subspaces T that a GNN model obtains is not
parallel with its layer/order, for which we will provide some examples in Section 3.1.

In what follows, we will first identify the feature space Φ and the parameters Θ for the existing
GNNs. Then, leveraging the linear approximation, we will introduce our proposed wide-form GNN
architecture called WGNN. Lastly, we will theoretically analyze the reasons behind the failures
of existing GNNs, e.g., over-smoothing and poor performance of heterophily, and conclude the
superiority of WGNN.

3.1 REVISITING SPATIAL AND SPECTRAL GNNS

Spatial GNNs. We first transform the recursive formula of spatial GNNs, e.g., equation 1, to an
explicit formula, by iterating from the initial node attributes that H(0) = X and ignoring the activa-
tion function. Following Section 2, we consider two examples of spatial GNNs: vanilla GCN (Kipf
& Welling, 2017) and the one with skip-connections (Xu et al., 2018a).

The linear approximated explicit formula of a K-layer GCN is written as:

H(K) = ÂKX
K−1∏
i=0

W (i), (6)

which forms single feature space Φ0 = ÂKX and parameters Θ0 =
∏K−1

i=0 W (i) with T = 1.
While equation 3 furthermore considers skip-connections, whose K-layer linear approximated ex-
plicit formula is formualted as:

H(K) =

K−1∑
i=0

ÂiXα(K−1−i)W
(K−1−i)
0

K−1∏
j=K−i

W
(j)
1

+ ÂKX

K−1∏
h=0

W
(h)
1 . (7)

By this decomposition, this GCN with skip-connections consists of T = K+1 feature sub-spaces. It
forms each feature sub-space as Φt = ÂtX . For the first T − 1 sub-spaces, the according respective
parameters is denoted as Θt;t<T−1 = α(K−1−t)W

(K−1−t)
0

∏T−1
j=K−t W

(t)
1 , and for for the last ΦT ,

the parameter is ΘT =
∏T−1

h=0 W
(h)
1 . Please refer to the appendix A.1 for the derivation.

Spectral GNNs. Spectral GNNs are specified by the explicit formula as equation 4. We remove
the activation function, and obtain the linear approximation of a K-order spectral GNNs as:

H(K) =

K∑
k=0

Pk(L̂)Xγ(k)W (0). (8)

We put the learnable polynomial coefficient γ(k) together with the parameter matrices. Also, we
combine the shared parametric matrices in equation 4 as W (0) = W1W2. In this way, equation 8
forms T = K + 1 feature sub-spaces, where each sub-space is denoted as Φt = Pt(L̂)X , and the
parameters utilized to re-weight the respective sub-spaces are Θt = W (0)W (1).

Primary analysis. In Table 1, we summarize more instances of spatial and spectral methods, with
different colors to distinguish the feature space Φ (orange) and parameters Θ (blue). It demonstrates
that the proposed uniform view can support most of the methods in both spatial and spectral domains.
Due to the page limits, we put the example of GCNIIChen et al. (2020b) and ARMA Bianchi et al.
(2021) in Appendix C.8. Compared to the general formulation of re-weighting feature sub-spaces,
e.g., equation 5, existing GNNs prohibit constraints on both the feature space and the parameter
space. We can observe that the feature space Φ of spatial GNNs is always constrained by the power
of the adjacent matrix, which is potentially related to the over-smoothing problems. Most of the
parameters Θ of spectral GNNs are shared for different sub-spaces, which limits the flexibility of
adequately re-weighting for each sub-space. Besides, the feature space Φ in both spatial and spectral
GNNs is formulated by multiplication of structural matrices function and node attributes (e.g., Φk =

Pk(L̂)X). This multiplication to the node attributes X ∈ Rn×d demands the feature sub-spaces to
obtain d columns, which prevents the feature matrices with other shapes.
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Table 1: The feature space and parameters of the linear approximation for GNN models.

Original formula∗ Linear approximation formulations

GCN (Kipf & Welling, 2017) H(k+1) = σ
(
ÂH(k)W (k)

)
H(K) = ÂKX

∏K−1
i=0 W (i)

GIN (Xu et al., 2018a) H(k+1) = σ
(
(ϵ(k)I + Â)H(k)W

(k)
0

)
W

(k)
1 H(K) =

∑K
t=0 Â

kX
∑

{q0,··· ,qK−t−1}⊆{ϵ(0),··· ,ϵ(K−1)}
∏

i qi ·
∏K−1

j=0 W
(j)
0 W

(j)
1

APPNP (Klicpera et al., 2019) H(k+1) = (1− α)ÂH(l) + αH(0);H(0) = σ(XW1)W2 H(K) =
∑K

t=0 (1− α)tÂlH(0) +
∑t−1

i=0 α(1− α)iÂiH(0)W1W2

ChebyNet (Defferrard et al., 2016)∗∗ H =
∑K

k=0 Pk(L̂)XW (k) H(K) =
∑K

t=0 Pt(L̂)XW (t)

GPRGNN (Chien et al., 2021) H =
∑K

k=0 γ
(k)L̂kσ(XW1)W2 H(K) =

∑K
t=0 L̂

tXγ(t)W1W2

BernNet (He et al., 2021) H =
∑K

k=0
1
2K

(
K
k

)
γ(k)(2I − L̂)K−kL̂kσ(XW1)W2 H(K) =

∑K
t=0 (2I − L̂)K−lL̂tXγ(t)W1W2

WGNN (Ours) H =
∑K

k=0 Pk(L̂)XW (k) + SW (s) H =
∑K−1

k=0 Pk(L̂)XW (l) +
∑J−1

j=0 SjW
(j)

∗ Without specification, H(0) = X; ∗∗ Tk(x) denotes Chebyshev polynomial P0(x) = 1, P1(x) = x, Pk(x) = 2xPk−1 − Pk−2.

3.2 OUR PROPOSAL: WIDE GRAPH NEURAL NETWORK

Given the observations in the last part, we propose a Wide Graph Neural Network, a generalized
framework of GNNs that relaxes the constraints as formulated in the following,

H =

K∑
k=0

Pk(L̂)XW (k) +

J−1∑
j=0

SjW
(j). (9)

It constructs the feature space in a two-fold way. The first part inherits the previous GNNs,
that the same size of the feature sub-spaces is formed by the multiplication of the polynomi-
als of the structural matrix Pk(L̂) and the node attributes X . Secondly, we allow the feature
sub-spaces Sj with an arbitrary number of the columns, instead of the same columns with X .
Beyond these, WGNN utilizes independent parameters matrices W (k) and W (j) to re-weight
each feature sub-spaces to provide flexible re-weighting. To sum up, WGNN forms the feature
space of T = K + J sub-spaces, denoted as Φk = Pk(L̂)X ∈ Rn×d similar to GNNs’, and
Φj = Sj ∈ Rn×dj , the additional part with arbitrary columns ones, which compose the total feature
space Φ = {Φk}k=0,1,··· ,K−1 ∪ {Φj}j=0,1,··· ,J−1. Respectively, Θk ∈ Rd×c and Θj ∈ Rdj×c

re-weight them with respect to the objective.

In general, Sj could be any transformation of node features X , graph structure Â, or both of them.
The feature spaces Φk = Pk(L̂)X ∈ Rn×d provides the usage of the node features X only, e.g.
k = 0, and both of node attributes and graph structure, e.g. k > 0. Besides, using node features
leads to the dependency of the adjacent nodes’ similarity and is parallel to the heterophily problem.
In WGNN, we break this dependency and form Sj by using the graph structure only. To extract
the low-dimension information for the graph structure, we deploy truncated SVD to get its principal
components as follows:

S = Q̃Ṽ ; Â = QV RT , (10)

where S denotes that we only use single Sj , e.g., J = 1. Throughout the remaining context, we
stick to truncated SVD as a case for WGNN and delve into it accordingly. In addtion, the empirical
results of other transformation functions are given in Appendix C.4 Notably, the feature space Φk

and S may have imbalanced scales and cause poor re-weighting. We, therefore, add a column-wise
normalization to ensure each column equally contributes to the whole feature space.

3.3 THEORETICAL ANALYSIS

In this part, we analyze the feature space that different GNNs formed to explain the challenges of
over-smoothing and poor performance on heterophilic graphs.

Over-smoothing. The over-smoothing problem occurs when stacking deep GNN layers. We de-
scribe this phenomenon by the compression of the column span of the feature space. It is de-
fined as all the possible column-wise linear combinations of the matrix’s columns and denoted as
Span(Φ) = {

∑
i aiΦ·i; ai ∈ R}. We provide Theorem 3.1 to interpret the cause of this issue.

Theorem 3.1. The span of the feature space Φk = ÂkX will be shrunk gradually with the increase
of k, which leads to the over-smoothing problem.

Let us first look at the feature space of K-layer vanilla GCN,

ÂKX = (I − L̂)KX = U(I − Λ)lUTX; Λ ∈ [0, 2]n.
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Figure 2: Visualization of the analysis. (a) collects the distribution of the eigenvalues with increasing powers
of the adjacency matrix. It shifts to zero gradually, which compresses the feature space and leads to decreasing
the diversity of all the nodes’ features, measured by MADglobal (Chen et al., 2020a). (b) shows the similarity
between the later feature space to the previous total improves greatly, leading to marginal extension of the
space. (c) compares the similarity of different feature spaces’ distances to the labels, where the heterophilic
case obtains a greater distance and our proposed S can reduce the distance.

It is a linear combination of U(I − Λ)l using UTX , and (I − Λ)l re-weights U in column-wise.
Since Λ ∈ [0, 2]2, we have (I − Λ) ∈ [−1, 1]n. Along with the increase of K, the weights of some
U ’ columns will approach zero to shrink Span(U(I − Λ)l), because

Span(ÂKX) = Span(U(I − Λ)KUTX) ⊂ Span(U(I − Λ)K).

Figure 2(a) demonstrates this phenomenon since the distribution of the eigenvalues shifts to zero
with increasing layers while the similarity of the combination ÂKX greatly enhances. In this way,
over-smoothing occurs due to the limited column span of the feature space that compresses the
representations. To alleviate this issue, some modified GNNs using skip-connections that form the
feature space as {ÂkX}k=0,1,··· ,K that joints successive layer’s spaces, that

Span({ÂkX}k=0,1,··· ,K) = Span(Â0X) ∪ Span(Â1X) ∪ · · · ∪ Span(ÂKX).

It will not be influenced by the compression of later components, e.g., Span(ÂKX), and therefore
avoids over-smoothing. Similar conclusion can be derived by the feature space of spectral type
that forms {L̂kX}k=0,1,··· ,K . Following this, we can understand the performance bottleneck with
increasing layers by the similarity of the introduced feature space from later spatial layers / spectral
orders to the previous ones. Here, we provide quantitative analysis to better describe the property.
For this purpose, we take the feature space of spectral GNN (Chien et al., 2021) as an example,
i.e., {L̂kX}k=0,1,··· ,4, and measure the linear correlation of the appended k-th feature space to the
previous ones by calculating the mutual-correlation values:

Ek
i = max

j=0,··· ,k−1
µ(L̂jX, L̂kX·i),

where i is the index of the column in L̂kX , and µ(M0,M1) = maxdu∈M0,dv∈M1
cos(du, dv) is the

mutual-coherence of two matrices, based on the cosine distance cos. In Figure 2(b), we visualize
the distribution of {Ek

i } of all the columns with k = 1, 2, 3, 4. It confirms the great improvement
of the linear correlation, which results in little expansion of the feature space. Therefore, increasing
spectral orders or spatial layers can hardly enhance performance. Although some studies explain
the over-smoothing problem, e.g., Huang et al. (2020); Oono & Suzuki (2019); Cai & Wang (2020).
Our perspective differs from them in the view concept; please refer to the comparison we provide in
Appendix B.3.

Poor performance in heterophily. The majority of GNNs’ performance on heterophilic graphs
is much worse than on homophilic graphs. To understand this issue from the perspective of matrix
space analysis, we study the linear correlation of the feature space to the label space. We provide an
empirical analysis of the distribution following mutual-coherence values in Figure 2(c),

Ek =
1

C

∑
c

Ek
c ;E

k
c = µ(L̂kXT ·, Y

′

T c)

where we randomly sample 60% rows to mimic the training set denoted as T , and report the mean
with variance. c is the dimension of the matrix of the one-hot node labels, i.e., Y

′ ∈ Rn×c. It

6
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shows the distance between the feature space and the label space on homophilic graphs is much
higher than in the heterophilic scenario, which leads to poorer performance in the heterophily case.
Besides, we append a theoretical explanation from the feature space only, by Theorem A.1, that the
mutual-coherence of the heterophilic feature space, i.e., µ(L̂X), is higher than the homophilic ones.

WGNN compared to spatial and spectral GNNs. Our WGNN provides a new way of dealing
with graph data, where both graph structures and node attributes are regarded as the input cues to
construct feature spaces. In this way, the complex multiplicative design between the graph structure
and node attributes can be avoided and the constraints of feature space are relaxed, which contributes
to better model flexibility and generalizability on the heterophilic graph.

From the feature space construction perspective, WGNN utilizes all the sub-spaces from
Pk(X̂). Compared with the spatial GNNs, the feature space of our WGNN is more flexible as
Span({ÂkX}k=0,1,··· ,K) ⊂ Span({Pk(L̂)Xk=0,1,··· ,K), since it builds the space using all the
polynomial terms while spatial GNNs only takes the highest ordered term. This property helps
WGNN avoid the over-smoothing problem. Besides, we append a sub-space S to the feature space
of WGNN, which is built with the graph structure only. Without using the node attributes, this
sub-space is closer to the label space than others that are highly dependent on nodes’ similarity, and
achieve better performance on the heterophilic graphs. As shown in Figure 2(c), we demonstrate
that the sub-space S helps the feature space to approach labels, especially for heterophilic graphs.

From the view of parameters, compared with spectral GNNs, WGNN relaxes all the constraints on
the parameters and allows to re-weight the feature space independently. In Appendix A.4, we supply
the demonstration of the parameters constraints within previous GNNs. It tells that the constraints
on parameters (W (k)) limit the span of the weighted feature space (see Theorem A.2).

4 EXPERIMENTS

We evaluate the proposed WGNN on the following aspects: (1) node classification results, (2) ro-
bustness on the challenging issues, (3) ablation studies.

Dataset. We implement our experiments on homophilic datsets, i.e., Cora, CiteSeer, PubMed,
Computers, and Photo (Yang et al., 2016; Shchur et al., 2018), and heterophilic Chameleon, Squirrel
and Actor (Rozemberczki et al., 2021; Pei et al., 2020). More details are provided in Appendix C.

Baselines. We compare a list of state-of-the-art GNN methods. For spatial GNNs, we have
GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), GraphSAGE (Hamilton et al., 2017),
GCNII (Chen et al., 2020b) and APPNP (Klicpera et al., 2019), where MLP is included as a partic-
ular case. For spectrals, we take ChebyNet (Defferrard et al., 2016), GPRGNN (Chien et al., 2021)
and BernNet (He et al., 2021). Besides, we cover the recent unified models, ADA-UGNN (Ma et al.,
2021) and GNN-LF/HF (Zhu et al., 2021). WGNN employs the Chebyshev or Monomial polynomi-
als to construct feature space, and we name the corresponding version as WGNN-C and WGNN-M,
respectively. Please refer to Appendix C.3 for more details about the implementation.

Table 2: Overall Performance of Wide Graph Neural Networks (WGNN)

Type Baseline Time (ms) Homophilic graphs Heterophilic graphs

Cora CiteSeer PubMed Computers Photo Squirrel Chameleon Actor

Spatial

MLP - 76.70±0.15 76.67±0.26 85.11±0.26 82.62±0.21 84.16±0.13 37.86±0.39 57.83±0.31 38.99±0.17

GCN 17.42±1.64 87.69±0.40 79.31±0.46 86.71±0.18 83.24±0.11 88.61±0.36 47.21±0.59 61.85±0.38 28.61±0.39

GAT 18.06±1.18 88.07±0.41 80.80±0.26 86.69±0.14 82.86±0.35 90.84±0.32 33.40±0.16 51.82±1.33 33.48±0.35

GraphSAGE 10.72±0.25 87.74±0.41 79.20±0.42 87.65±0.14 87.38±0.15 93.59±0.13 48.15±0.45 62.45±0.48 36.39±0.35

GCNII 8.48±0.24 87.46±0.31 80.76±0.30 88.82±0.08 84.75±0.22 93.21±0.25 43.28±0.35 61.80±0.44 38.61±0.26

APPNP 23.74±2.08 87.92±0.20 81.42±0.26 88.16±0.14 85.88±0.13 90.40±0.34 39.63±0.49 59.01±0.48 39.90±0.25

Spectral
ChebyNet 20.26±1.03 87.17±0.19 77.97±0.36 89.04±0.08 87.92±0.13 94.58±0.11 44.55±0.28 64.06±0.47 25.55±1.67

GPRGNN 23.55±1.26 87.97±0.24 78.57±0.31 89.11±0.08 86.07±0.14 93.99±0.11 43.66±0.22 63.67±0.34 36.93±0.26

BernNet 36.88±0.84 87.66±0.26 79.34±0.32 89.33±0.07 88.66±0.08 94.03±0.08 44.57±0.33 63.07±0.43 36.89±0.30

Unified

GNN-LF 52.77±4.50 88.12±0.06 83.66±0.06 87.79±0.05 87.63±0.05 93.79±0.06 39.03±0.08 59.84±0.09 41.97±0.06

GNN-HF 53.28±4.51 88.47±0.09 83.56±0.10 87.83±0.10 86.94±0.06 93.89±0.10 39.01±0.51 63.90±0.11 42.47±0.07
ADA-UGNN 14.36±0.21 88.92±0.11 79.34±0.09 90.08±0.05 89.56±0.09 94.66±0.07 44.58±0.16 59.25±0.16 41.38±0.12

WGNN-C 15.8±0.11 89.45±0.22 81.96±0.23 90.27±0.49 90.79±0.08 95.36±0.14 67.82±0.26 73.33±0.35 40.54±0.15

WGNN-M 14.6±0.32 89.09±0.22 81.76±0.23 89.93±0.23 90.60±0.11 95.45±0.15 67.90±0.23 73.26±0.38 40.91±0.22
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4.1 NODE CLASSIFICATION

We test on transductive node classification task with random 60%/20%/20% splits and summarize
the results of 100 runs in Table 2, reporting the average accuracy with a 95% confidence interval. We
observe that WGNN has almost the best performance on homophilic graphs. Particularly, compared
with the current SoTA method ADA-UGNN (Ma et al., 2021) which unifies the objectives in both
spatial and spectral domains, our WGNN achieves 1.1% accuracy improvement on average of 5
homophilic graphs datasets. Besides, WGNN obtains 32.0% improvement on average of three
heterophilic graphs datasets than the GCN baseline. The excellent performance on both homophilic
and heterophilic graphs indicates the potential of WGNN.

4.2 ROBUSTNESS ON THE CHALLENGING ISSUES

Over-smoothing. We evaluate WGNN with different numbers of feature sub-space K on the Cora
(homophilic) and Chameleon datasets (heterophilic). Figure 5 indicates that the performance of
WGNN will not drop as extending feature space. It is because our concatenating polynomials of
adjacent matrices avoids the compression of feature space.

Heterophilic graphs. As shown in Table 2 and Section 4.1, WGNN greatly alleviates the prob-
lem of heterophily by supplementing the feature space with only the graph structure to reduce the
dependency on nodes’ similarity.

Table 3: Ablation study of the components in WGNN

Cora CiteSeer PubMed Squirrel Chameleon

WGNN-C 89.45±0.22 81.96±0.23 89.87±0.49 67.82±0.26 73.33±0.35
WGNN-M 89.09±0.22 81.76±0.23 89.93±0.23 67.90±0.23 73.26±0.38
w/o norm 86.23±1.43 79.32±0.59 90.27±0.49 64.70±1.10 68.25±1.64

w/o S 89.20±0.93 81.95±0.87 89.76±0.46 43.21±0.99 61.54±1.52

w/o Pk(L̂)Xk>0 71.10±1.72 74.38±1.01 86.61±0.54 67.90±0.96 73.35±1.21

w/o Pk(L̂)Xk=0 84.70±1.05 58.60±2.19 85.84±0.45 65.75±0.63 72.61±1.60

4.3 ABLATION STUDIES

In this subsection, we study the contribution of different components in WGNN and answer the
following questions.

How does each sub-space affect, e.g., Pk(L̂)X and S? Pk(L̂)X and S respectively matter on
homophilic and heterophilic graphs. We evaluate WGNN on 5 datasets of both homophilic and
heterophilic graphs in 3 different feature space constructions: including w/o S, w/o Pk(L̂)Xk=0,
and w/o Pk(L̂)Xk>0, which respectively denote building the feature spaces without graph structure,
without note attributes, and without the combination of them. In the ablation results of Table 3, we
found that w/o S works well on homophilic graphs but fails on heterophilic ones, while the other
two work oppositely.

Does the column-wise normalization matter? It matters when the node scale is not huge. As
shown in Table 3, we find column-wise normalization works well in most cases, except for PubMed.
It may be because the large node scale of PubMed causes the tiny value of normalized feature space.

On what ratio of the truncated SVD is adequate? 94% We conduct an experiment using dif-
ferent ratios of singular vectors and values to construct S, i.e., the top j singular values obtains
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r =
∑i

j=1 Vjj/
∑n

j=1 Vjj ratio of the components. In Figure 4, we report the test accuracy with re-
spect to increasing ratios of singular values on CiteSeer and Chameleon, where CiteSeer is robust to
the variation of the ratio, while Chameleon shows the best performance at ratio = 94%. Thus, we
use 94% for other experiments. We offer more interpretation of the SVD results in Appendix C.7.

On what order polynomial is sufficient? Three. We test a progressive order K of the polyno-
mials on Cora and Chameleon demonstrated in Figure 5. The performance in Cora rises from 1 to 3
and decreases in a slight tendency, while Chameleon has minor changes. It suggests that order 3 is
good enough to achieve nearly optimal performance. Please refer to Appendix C.5 for more results.

Are dropout (Agarap, 2018) and DropEdge (Rong et al., 2020) help? No. We respectively in-
tegrate ”dropout+ReLU” and DropEdge into WGNN and show the corresponding performance with
different drop ratios on four datasets in Figure 6. Unfortunately, both of them show worse perfor-
mance when increasing the drop rate. It may be because these regularization tricks break the graph
structure. Besides, the results also advocate for more attention on the feature space construction,
preventing over-applying deep artifices.

Is WGNN easy to train? Comparably, yes, and WGNN converges fast. In Table 2, we collect
the training time per epoch (ms) for each method, which shows that WGNN behaves at a compa-
rable time cost to other baselines, such as GCN (Kipf & Welling, 2017). Note that the time we
report includes the graph propagation for a fair comparison, though WGNN can further reduce it by
constructing the feature space in a pre-processing manner. This advantage comes from the lower-
ordered polynomial feature space and much simpler computation in feed-forward. Please refer to
Appendix C.3 for more details on the optimal architectures for the baselines. In Figure 3, we com-
pare the convergence time for all methods and observe that WGNN consumes the minimum number
of training epochs while achieving the highest accuracy.

Is the SVD applicable in practice? Yes. In Table 4, we show training time, SVD time (as
preprocessing), and their ratio of WGNN. We find the rate of SVD time in whole training time is
lower than 10%, which confirms the WGNN’s applicability.

Table 4: Time consumption of SVD

Cora CiteSeer Chameleon Squirrel Actor

Training time (ms) 4000.01± 52.23 4103.46± 133.77 2818.21± 81.87 6096.43± 403.95 6074.39± 547.34

SVD time (ms) 3.88± 0.08 8.76± 0.05 61.80± 0.24 432.43± 0.70 3.99± 0.02

# of epochs 252 252 252 271 252
SVD time / Training time (%) 0.097 0.21 2.2 7.1 0.066

5 CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH

In this paper, we provide a unified view to analyze GNNs, which separates the feature space and pa-
rameters using a linear approximation. Together, we provide a theoretical analysis of existing chal-
lenges under the setting of feature space or parameter space. To address these challenges, we pro-
pose a flexible architecture that relaxes all constraints, called Wide Graph Neural Network (WGNN).
Comprehensive experiments are conducted to verify its superiority.

Limitations and future research. More general nonlinear cases are not included in our work,
such as GAT (Velickovic et al., 2018), GateGNN (Bresson & Laurent, 2017), and will be considered
in future work. The mechanism between the feature space and the respective parameters is worth
more effort to optimize; in a way, the parameters in the WGNN can be further reduced by introducing
reasonable constraints. Finally, since WGNN adopts the same graph structure as node attributes as
graph data, more feature space construction methods should be discovered in the future.
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REPRODUCIBILITY STATEMENT

The code used in our experiments is provided in the supplementary material. For the data sets used
in the experiments, a comprehensive description is given in Appendix C.
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A PROOFS

A.1 DERIVATION OF EQUATION 7

Iterate equation 3 from H(0) = X , we have

H(0) = X (11)

H(1) = α(0)XW
(0)
0 + ÂXW

(0)
1 (12)

H(2) = α(1)XW
(1)
0 + Âα(0)XW

(0)
0 W

(1)
1 + Â2XW

(0)
1 W

(1)
1 (13)

H(3) = α(2)XW
(2)
0 + Âα(1)XW

(1)
0 W

(2)
1 (14)

+ Â2α(0)XW
(0)
0 W

(1)
1 W

(2)
1 + Â3XW

(0)
1 W

(1)
1 W

(2)
1 (15)

· · · (16)

Identify the rule of the iteration, we obtain

H(k) =

l−1∑
i=0

δ
(k)
i + ÂlX

l−1∏
h=0

W
(h)
1 , (17)

where δ
(k)
i s calculate by:

δ
(k)
i = α(k−1−i)ÂiXW

(k−1−i)
0

l−1∏
j=l−i

W
(j)
1 . (18)

We apply equation 18 on equation 17 and put α(k−1−i) back to the learnable parameters W (k−1−i)
0 ,

and the result of equation 7 is achieved.

A.2 THE COLUMN-WISE NORMALIZATION IN CURRENT GNNS

Here, we include some 10-ordered polynomial functions, to see the different column-wise nor-
malization response from these models. Column-wise normalization are defined as enforcing
∥F·i∥2 = 1, where we take F as the concatenation of the feature space. We extend this to an
arbitrary k times of ∥F·i∥2 = 1, i.e., ∥F·i∥2 = k, which equals to measure the extent of the consis-
tency of each ∥F·i∥2. Therefore, we report the standard variance of {∥F·i∥2; i = 1, 2, · · · }, and the
smaller value suggests greater response of column-wise normalization.

Table 5: The column-wise normalization response for different polyonmials on Cora

ChebyShev polynomial Bernstein polynomial Monomial polynomial

Cora 3.8246 4.7044e-06 0.4947
CiteSeer 34.6432 0.0023 24.4430

Chameleon 660.4274 0.7308 1039.2469
Squirrel 245.6538 0.7063 700.9365

Chebshev, Bernstein and Monomial polynomials are compared in Table 5. Bernstein polynomial
produces the least variance, suggesting it encourages the most atomicity compared to other polyno-
mials. This observation aligns with the narrative in the original paper of BernNet He et al. (2021),
where the authors claim the Bernstein polynomial is more numerically stable than other polynomial
functions.

A.3 EXPLAINING HETEROPHILY FROM THE PERSPECTIVE OF FEATURE SPACE

Theorem A.1. The mutual-coherence of the heterophilic feature space, i.e., µ(LX), is higher than
the homophilic ones.

14



Under review as a conference paper at ICLR 2023

Proof. In a binary classification task, we assume the node features can be draw from two separate
p-dimensional multivariate Gaussian distribution D0 = N (µ⃗0,Σ0) and D1 = N (µ⃗1,Σ1), cor-
responding to class c0 and c1. Σ0,Σ1 are both diagonal, i.e., for all i, j; i ̸= j dimensions are
independent. The node features are equally sampled from the two distributions, X = {xu;xu ∼
D0} ∪ {xv;xv ∼ D1}, where each includes n samples. Without loss of generality, suppose two
columns from X that di ⊥ dj . Equivalently, this leads to:

dTi dj =
∑
u∼D0

xuixuj +
∑
v∼D1

xvixvj (19)

∼ nE(D0iD0j) + nE(D1iD1j) (20)
= nE(D0i)E(D0j) + nE(D1i)E(D1j) (21)
= n(µ0iµ0j + µ1iµ1j) (22)
= 0. (23)

Note that for obtaining (64), we use the law of large numbers, e.g.,
∑n

i=0 Ai = Ā. So far, we
have a equation µ0iµ0j + µ1iµ1j = 0 from this orthogonality, which is the only equation that our
assumptions hold.

Next, we examine the effect of L on dTi dj . L is employed by a left-hand side multiplication, which
equals to a row-wise transformation of di and dj . We consider two extreme cases of homophily and
heterophily, respectively.

Firstly, for homophily, L only acts with the nodes that from the same class. For simplicity, if each
transformation is averaged, i.e., Lij is row-wise normalized, D0 and D1 remain the same. Therefore,
the orthogonal relation remains.

Secondly, L combines the nodes that from different classes in heterophily. In this situation, D0 and
D1 shift to D′

0 = N (µ⃗0 − µ⃗1,Σ0 + Σ1) and D′
1 = N (µ⃗1 − µ⃗0,Σ0 + Σ1). Here, we rewrite the

alignment from (65):

dTi dj = nE(D0i)E(D0j) + nE(D1i)E(D1j) (24)
= n(µ0i − µ1i)(µ0j − µ1j) + n(µ1i − µ0i)(µ1j − µ0j) (25)
= 2n(µ0i − µ1i)(µ0j − µ1j) (26)
= 2n(µ0iµ0j + µ1iµ1j)− 2n(µ0iµ1j + µ1iµ0j) (27)
= −2n(µ0iµ1j + µ1iµ0j). (28)

Based on this, the condition of orthogonality will not be held because µ0iµ1j + µ1iµ0j is not equal
to zero.

To sum up, heterophily breaks the limiting orthogonal condition, while homophily does not. Ex-
tensively, the LX columns are more easily to be mixed in row-wise, losing their distinctiveness
mutually. In other words, it increases the mutual-coherence of LX , for the definition below.

Definition A.1. The mutual-coherence of a matrix A ∈ Rn×n is the maximal inner product between
columns from these two bases,

µ(A) = max
1≤i,j≤n

|aTi aj |, (29)

where each column is normalized as ∥ai∥2 = 1, 1 ≤ i ≤ n.

Based on this analysis and definition, we find that the mutual-coherence of the feature space in a
heterophilic graph, e.g., LX , is more likely greater than that of a homophilic one. As a consequence,
this phenomena will be superimposed in the overall feature space F = ∥{Pk(L)X; k = 0, 1 · · · ,K}
to undermine the power of the feature space.

A.4 PARAMETERS CONSTRAINTS IN PREVIOUS GNNS

Theorem A.2. The span of the feature space Φk = ÂkX will be shrunk gradually with the increase
of k, which leads to the over-smoothing problem.
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Proof. We summarize the constraints on W in current GNNs as the following: i) in the case of
MLP-based implementation He et al. (2020), all layers share the same W , which forces the layer-
wise representation parameters into a single matrix; and ii) in the case of layer-wise W Kipf &
Welling (2017) Li et al. (2019), each Wk+1 is built upon its previous one, i.e, Wk+1 =

∏k+1
i=0 Wi.

We extract the ideas of these constraints into the following example. Suppose a linearly correlated
feature space U ′ = (d0, d1, λ0d0, λ1d1), where d0 ⊥ d1, dk ∈ R2. x ∈ Span{d0, d1} need to be
recovered by the elements in U ′.

We deploy the aforementioned two types of constraint on the undecided variables b0, b1, b2, and b3:
i) b2 = b0, b3 = b1, and ii) b2 = µb0, b3 = µb1, where µ is a trainable scalar. They align with the
graph neural networks. We begin by discussing these two cases.

Representing x in the first case, yields:

x = b0d0 + b1d1 + b0λ0d0 + b1λ1b1 (30)
= (1 + λ0)b0d0 + (1 + λ1)b1d1. (31)

Using the unique representation theorem Hoffman & Kunze (2004), we have (1 + λ0)b0 = a0 and
(1 + λ1)b1 = a1. Put it in a matrix multiplication format:

(
1 0 λ0 0
0 1 0 λ1

)b0
b1
b0
b1

 =

(
a0
a1

)
, (32)

which produces: (
1 + λ0 0

0 1 + λ1

)(
b0
b1

)
=

(
a0
a1

)
. (33)

It holds the closed form that b0 = a0

(1+λ0)
, b1 = a1

(1+λ1)
.

Then, we represent x in the second case:

x = b0d0 + b1d1 + µb0λ0d0 + µb1λ1b1 (34)
= (1 + µλ0)b0d0 + (1 + µλ1)b1d1, (35)

which produces (1+µλ0)b0 = a0 and (1+µλ1)b1 = a1. Formulate them in a matrix multiplication:

(
1 0 λ0 0
0 1 0 λ1

) b0
b1
µb0
µb1

 =

(
a0
a1

)
. (36)

This is a under-determined system and gives b0 = a0

(1+µλ0)
, b1 = a1

(1+µλ1)
, b2 = µa0

(1+µλ0)
, and

b3 = µa1

(1+µλ1)
.

We look into the values of bk to get the expressivity of the base D. Given the extreme case where
λ0 → 0, the appended λ0d0 is constrained while the original one keeps expressing. On the contrary,
when λ0 → ∞, the original base d0 is constrained by a0

(1+λ0)
or a0

(1+µγ0)
while the appended one

expresses. Besides, for the second case, when µ → 0, the corresponding bases are limited by
b2, b3 → 0. Consequently, both cases lead to partial expression of the feature spaces.

Finally, comparing these two cases, i.e., (59) and (62) to (55), we find that they merely restrict the
parameter space of (b0, b1, b2, b3)T by either sharing the values of each other or enforcing their linear
dependence. Therefore, restricting the parameter space in these two cases leads to partial expression
of the feature spaces. This proof is completed.

In the following, we provide the norm of the learned parameter matrix respect to each column of the
feature space, as shown in Figure 7. We find that existing GNNs’ parameters are limited leaving a
significant part of feature space unexplored. Differently, WGNN abandons all the constraints of the
parameters and allows all the columns to be re-weighted.
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Figure 7: We present the expression of the feature space. Y-axis marks the respective norm of the parameters,
i.e., ∥Wi∥2 of each F·i, and x-axis shows the index of the features spaces from different spatial layers or spectral
orders. WGNN relaxes the constraint on the parameters, leading to a full expression on the feature space.

B RELATED WORK

B.1 EFFORTS ON UNIFYING SEPARATE GNNS

Balcilar et al. (2021) first bridge the spatial methods to the spectral ones, that they assign most
of the spatial GNNs with their corresponding graph filters. More specifically, they begin with GNN
models’ convolution matrix and then summarize their frequency responses. For example, GCN (Kipf
& Welling, 2017) obtains the convolution matrix of D̃−1/2ÃD̃−1/2 leads to the filter of ΦGCN (λ) ≈
1 − λp̄/(p̄ − 1). This work causes attention to the unified perspective viewing GNNs, though they
fail to explain the existing progress and issues in spectral view.

Ma et al. (2021) regard the aggregation progress of GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), and APPNP (Klicpera et al., 2019) as graph signal denoising problem, which aims to
recover a clean signal H from minH ∥H −X∥2F + c · tr

(
HTLH

)
. Given this, the authors consider

generalize the smoothing regularization term to
∑

i∈V Ci/2
∑

j∈N(i) ∥Hi/
√
di − Hj/

√
dj∥22 and

propose ADA-UGNN. However, it also lacks the understanding of over-smoothing or heterophily.

Zhu et al. (2021) give a more comprehensive summary of GNNs from an optimization view, which
partly overlaps with Ma et al. (2021)’s opinions of graph signal denoising. Based on their conclusion,
they propose GNN-LF/HF with parameters adjusting the corresponding objective, e.g., GNN-LF
approaches minH ∥I+βL̃1/2(H−X)∥2F +(1/α−1) tr

(
HT L̃H

)
and behaves as a low-pass filter.

They attribute over-smoothing to the absence of original features and overcome this issue in their
proposal; however, heterophily is untouched either.

In general, these integrated perspectives lack the explanation of the issues, but focus on general
formulas.

B.2 SHALLOW MODELS

SIGN (Rossi et al., 2020) practices to device the aggregation in a pre-processing way, which is
similar to our idea of feature space construction. However, they focus on large-scale scenarios by
removing sampling and aggregation operations from the training.

FSGNN (Maurya et al., 2021) implements feature selection on GNNs, similar to feature sub-space
selection. Nevertheless, it combines all the sub-spaces by one linear transformation, which under-
mines the ability to understand the contribution of each part.
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These shallow models empirically approaches to the idea of feature space, since they will not per-
form better on in deep models. Besides, concatenation is also an instance of the feature space
concept, which is adopted by many spatial GNNs. In our view, these observations and modifications
are are framed as a method to expand the feature space.

B.3 OTHER ANALYTICAL VIEWS OF OVER-SMOOTHING

As we mentioned in Section 3, that several works exist explaining over-smoothing problems (in-
cluding those you mentioned). However, the view concept of our perspective, i.e., matrix space
analysis, is different from the existing ones. Oono & Suzuki (2019) propose one of the most ac-
cepted views, which is later followed by some literature Huang et al. (2020); Shan et al. (2021).
They assumes a stable point of node feature made by the node degrees and proposes that whatever
the initial node features are, some nodes will converge to the stable degree feature, with the layer
going infinitely, which is depending on the node’s corresponding eigenvalue. In details, the prove
that dM(X(l)) ≤ (sλ)ldM(X(0)), where dM(X(l)) is the distance to a given feature on the top of
node-degree and converges to 0 when sλ < 1. For concise, let us call it degree-view. It analyzes
from the row-wise perspective of the feature space. And some studies are also from a row-wise
aspect by measuring the global Dirichlet energy of the node features Cai & Wang (2020).

Differently, our view starts from the column-wise of the feature space by comparing the (column)
span of the feature space that extended. In particular, we factorize the feature space, for example,
LkX , as the bases (column-wise) composed by the eigenvector matrix U (of L̂). Each column is
re-weighted by the corresponding eigenvalue Λk

ii, then expressed by the static weight matrix UTX .
Therefore, we consider the feature space spanned by the columns of UΛk using the weight matrix
UTX , which is different from the node/row-wise perspective from the degree view.

Moreover, our view can potentially explain the inferior performance on heterophilic datasets than
on homophilic ones. By Thm B.1, we can see the mutual coherence of the feature matrix (e.g., L̂X)
is higher in heterophilic settings, leading to a shrunk feature space.

C EXPERIMENTAL SETTINGS

C.1 DATASET DETAILS

The datasets are concluded in Table 6, with licenses. 2 3 4 Cora, CiteSeer, and PubMed are com-
monly used homophilic citation networks Yang et al. (2016). Computers and Photo are homophilic
co-bought networks from Amazon Shchur et al. (2018). For heterophilic datasets, we utilize hy-
perlinked networks Squirrel and Chameleon from Pei et al. (2020), and Actor, a subgraph from the
film-director-actor network Rozemberczki et al. (2021). PyG5 are employed to get these data. Each
datasets are split into three parts using random selection: 60% as the training set, 20% as the vali-
dation set, and 20% as the test set. We set these datasets to undirected graphs as we assumed in the
Preliminaries.

Table 6: Statistics of Datasets

Cora CiteSeer PubMed Computers Photo Squirrel Chameleon Actor

|V| 2,708 3,327 19,717 13,752 7,650 5,201 2,277 7,600
|E| 5,278 4,552 44,338 245,861 119,081 217,073 36,101 30,019
h(G) 0.81 0.74 0.80 0.78 0.83 0.22 0.23 0.22
d(G) 1.95 1.37 2.25 17.88 15.57 41.74 15.85 3.95

2Chameleon, Squirrel: https://github.com/benedekrozemberczki/MUSAE/blob/master/LICENSE
3Cora, CiteSeer, PubMed, Actor: https://networkrepository.com/policy.php
4Computers, Photo: https://github.com/shchur/gnn-benchmark/blob/master/LICENSE
5https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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C.2 DETAILS ABOUT OPTIMIZATION AND REPORTED RESULTS

We report the average accuracy (micro F1 score) in the classification task with a 95% confidence
interval in all the tables and figures. For each result, we run 100 times on 10 random seeds. Besides,
we present the standard variance of Table 2 in the Table 7 followed:

Table 7: Overall performance of WGNN compared to the baselines with reporting the standard
variance.

Cora CiteSeer PubMed Computers Photo Squirrel Chameleon Actor

MLP 76.70±0.59 76.67±0.90 85.11±0.91 82.62±0.73 84.16±0.46 37.86±1.38 57.83±1.09 38.99±0.60

GCN 87.69±1.39 79.31±1.63 86.71±0.63 83.24±0.39 88.61±1.28 47.21±2.06 61.85±1.32 28.61±1.36
GAT 88.07±1.45 80.80±0.93 86.69±0.48 82.86±1.23 90.84±1.12 33.40±4.99 51.82±4.68 33.48±1.25

GraphSAGE 87.74±1.46 79.20±1.48 87.65±0.51 87.38±0.52 93.59±0.47 48.15±1.59 62.45±1.70 36.39±0.88
GCNII 87.46±0.18 80.76±1.05 88.82±0.75 84.75±0.78 93.21±0.89 43.28±1.21 61.80±1.54 38.61±0.90
APPNP 87.92±0.72 81.42±0.95 88.16±0.49 85.88±0.46 90.40±1.20 39.63±1.00 59.01±1.68 39.90±0.88

ChebNet 87.17±0.96 77.97±1.84 89.04±0.42 87.92±0.65 94.58±0.55 44.55±1.39 64.06±2.39 25.55±8.43
GPRGNN 87.97±1.23 78.57±1.56 89.11±0.44 86.07±0.71 93.99±0.54 43.66±1.12 63.67±1.72 36.93±1.30
BernNet 87.66±1.33 79.34±1.63 89.33±0.40 88.66±0.44 94.03±0.40 44.57±1.68 63.07±2.15 36.89±1.43

GNN-LF 88.12±0.06 83.66±0.06 87.79±0.05 87.63±0.05 93.79±0.06 39.03±0.08 59.84±0.09 41.97±0.06
GNN-HF 88.47±0.09 83.56±0.10 87.83±0.10 86.94±0.06 93.89±0.10 39.01±0.51 63.90±0.11 42.47±0.07

ADA-UGNN 88.92±0.11 79.34±0.09 90.08±0.05 89.56±0.09 94.66±0.07 44.58±0.16 59.25±0.16 41.38±0.12

WGNN-C 89.45±1.10 81.96±1.18 89.87±0.74 90.79±0.40 95.36±0.70 67.82±1.31 73.33±1.78 40.54±0.79
WGNN-M 89.09±1.22 81.76±1.17 89.93±0.50 90.60±0.53 95.45±0.73 67.90±1.18 73.26±1.95 40.91±0.61

w/o norm 86.23±1.99 79.32±0.78 90.27±0.69 89.43±0.55 94.94±0.78 64.70±1.53 68.25±2.30 37.46±0.86
w/o S 89.20±1.30 81.95±1.16 89.76±0.65 89.10±0.60 94.56±0.77 43.21±1.39 61.54±2.12 40.89±0.60
w/o Pk 71.10±2.41 74.38±20.86 86.61±0.75 89.58±0.56 94.90±0.44 67.90±1.34 73.35±1.70 38.44±1.01
w/o P0 84.70±1.47 58.60±3.06 85.84±0.64 90.02±0.32 92.92±0.72 65.75±0.88 72.61±2.23 25.89±4.80

We employ Adam for optimization and set the early stopping criteria as a warmup of 50 pluses
patience of 200 for a maximum of 100 epochs. We conduct all the experiments on the machine with
NVIDIA 3090 GPU (24G) and Intel(R) Xeon(R) Platinum 8260L CPU @ 2.30GHz.

C.3 SEARCHING SPACE FOR BASELINES HYPER-PARAMETERS

For WGNN, we turn the following hyper-parameters by the grid search.

• Learning rate: {0.01, 0.05, 0.1}
• Weight decay: {0.0005, 0.001, 0.005, 0.01, 0.02, 0.05}
• |S| for homophilic graphs: {0, 10, 50, 100, 200, 500, 1000, 2000}
• |S| for heterophilic graphs: {500, 600, 700, 800, 900, 1000, 1500, 2000}
• Suggested |S|: the whole hundred from the 94% singular values
• Hidden size: 64
• Ranks k of the polynomial Pk(L̂): {0, 1, 2, 3}

Table 8: The universally used hyper-parameters for WGNN.

lr weight decay |S| hidden k

Cora 0.01 0.01 50 64 3
CiteSeer 0.01 0.02 100 64 1
PubMed 0.01 0.005 100 64 3

Computers 0.01 0.0005 1000 64 3
Photo 0.01 0.0005 500 64 3

Squirrel 0.01 0.001 2000 64 3
Chameleon 0.01 0.0005 700 64 3

Actor 0.01 0.001 10 64 0
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Table 9: The turned hyper-parameters for the baselines.

lr weight decay dropout hidden layers/ranks others

MLP {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 2 -

GCN {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 {2,3} -
GAT {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 {2,3} heads:{1,8}

GraphSAGE {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 {2,3} -
GCNII {0.01, 0.05} 0.0005 0.5 64 {2,4,10} α, θ:{0.1, 0.2, 0.5, 0.8, 0.9}
APPNP {0.01, 0.05} 0.0005 0.5 64 {2,3,4,5,8} α:{0.1, 0.2, 0.5, 0.8, 0.9}
ChebNet {0.005, 0.01, 0.05} {0.0, 0.0005} {0.1, 0.2, 0.5} 64 10 -

GPRGNN {0.005, 0.01, 0.05} {0.0, 0.0005} {0.1, 0.2, 0.5} 64 10 -

BernNet {0.005, 0.01, 0.05} {0.0, 0.0005} {0.1, 0.2, 0.5} 64 10 prop drate:{0.001,0.02,0.01,0.05}
prop lr:{0.0, 0.1, 0.2, 0.5, 0.6, 0.7, 0.9}

ADA-GNN {0.05, 0.01} {0.0005, 0.00005} {0.2,0.5,0.8} 64 {2,5,10} s:{1,9,19,29}
GNN-LF 0.01 0.005 0.5 64 10 α, µ: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9}
GNN-HF 0.01 0.005 0.5 64 10 α, β: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9}

Table 8 represents the hyper-parameters searched for the baselines used in our experiments. We
prioritize their original released code repository, and the ranges of turning parameters are according
to their papers.

• MLP, GCN, GAT GraphSAGE, APPNP, GCNII are implemented with PyG. 6

• ChebNet is implemented according to the code style of BernNet/GPRGNN.

• GPRGNN is implemented according to its original code repository. 7

• BernNet is implemented according to its original code repository. 8

• ADA-UGNN is implemented according to its original code repository. 9

• GNN-HF/LF are implemented according to its original code repository. 10

C.4 OTHER TRANSFORMATIONS FOR COMPACTING THE GRAPH STRUCTURE INFORMATION

We append other possible transformations to extract compacted information from the normalized
adjacency matrix Â. In details, we compared:

• KernelPCA: a PCA method using non-linear kernel, where radial basis function (RBF) is
used.

• FastICA: a fast version of independent components analysis, which is a linear method.

• IsoMap: a nonlinear dimensionality reduction method based on spectral theory.

All of them can be easily implemented by sklearn package. As shown in Table 10, our chosen
truncated-SVD has comparable performance and we stick with this to make further analysis in the
main text.

Cora CiteSeer Chameleon Squirrel Photo

None 89.20± 0.93 81.95± 0.87 61.54± 1.52 43.21± 0.99 -
Truncated-SVD (Ours) 89.45± 0.22 81.96± 0.23 73.33± 0.35 67.90± 0.23 95.45± 0.15
KernelPCA (non-linear) 88.61± 0.82 81.99± 1.11 73.66± 1.45 68.79± 1.13 95.36± 0.51

FastICA (linear) 88.77± 1.09 81.92± 1.00 73.32± 1.37 68.12± 0.97 95.30± 0.22
IsoMap (non-linear) 88.54± 0.86 82.07± 1.15 67.00± 1.54 54.47± 0.87 94.88± 0.34

Table 10: Comparing the transformations in compacting the normalized adjacency matrix

6https://github.com/pyg-team/pytorch geometric
7https://github.com/jianhao2016/GPRGNN
8https://github.com/ivam-he/BernNet
9https://github.com/alge24/ADA-UGNN

10https://github.com/zhumeiqiBUPT/GNN-LF-HF
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C.5 RESULTS OF WGNN USING DIFFERENT POLYNOMIAL ORDERS

In the main text, we implement the polynomial order K within the range of three based on the
empirical observations, e.g., Figure 5. Here, we provide more comprehensive results for different
choices of K.

Table 11 indicates that we may find better K in a wider range, while the improvement is possibly
marginal.

K 4 5 6 7 8 9

Cora 89.60± 0.30 89.44± 0.25 89.52± 0.26 89.35± 0.24 89.34± 0.22 89.08± 0.25
CiteSeer 80.66± 1.09 81.15± 1.06 81.11± 0.89 80.83± 1.07 80.54± 1.03 80.10± 1.02

Computers 91.01± 0.46 90.90± 0.51 90.98± 0.42 90.77± 0.39 90.82± 0.41 90.45± 0.32
Chameleon 73.42± 0.40 73.69± 0.43 73.62± 0.43 73.68± 0.42 73.80± 0.39 73.75± 0.38

Squirrel 68.26± 0.78 68.41± 0.88 68.55± 0.82 68.83± 0.68 68.92± 0.76 69.06± 0.93

Table 11: Comparison of different K within 10

C.6 A DEEPER STUDY OF OVER-SMOOTHING

In this section, we append a more concrete study of over-smoothing problem. Specifically, we test
WGNN with K = {10, 20, 30, 40, 50, 60, 70, 80} and compare with a representative method GCNII
that overcomes over-smoothing. The results of Table 12 verify the effectiveness of WGNN on avoid-
ing over-smoothing which expresses superior capability as Residual Connection and DropEdge and
even achieve comparable results with GCNII. Note that all the hyper-parameters including Dropout,
DropEdge, α, θ for SkipConnection and GCNII is searched within {0.2, 0.5, 0.8}.

C.7 MORE COMPREHENSIVE STUDY OF SVD

In the main test, we append the results on CiteSeer and Squirrel to better verify the importance
of principal components of extracting information from adjacency matrix into Sj . As shown in
the Figure 8 below, we find the precisely results as we shared in Section 4. Cora and CiteSeer
both 1) have a more smoothing distribution of the singular values and 2) the information from
graph structure is less important as the node features and their interaction, therefore, the change of
the performance is more stable with introducing more principal components. On the other hand,
Chameleon and Squirrel 1) have a more centralized distribution of the singular values and 2) graph
structure is a more important information, resulting an tendency of the performance that increases
first and then decrease. In general, we can achieve a satisfying results on both kind of datasets when
94% principal components are inclusive.

Here, we offer more intuition about using principal components. The principal components project
and summarize a larger correlated variables into a smaller and more easily interpretable axes of vari-
ation. It is ideal for Sj to embody the graph structure information from adjacency matrix, because
the adjacency matrix is sparse and high-dimensional but each nodes are topologically correlated.
However, the different components need to be distinct from each other to be interpretable otherwise
they only represent random directions, which leads to noise.

0 1000 2000
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pe
rc

en
ta

ge
 o

f S
in

gu
la

r V
al

ue
s

Cora

0 1000 2000 3000
Singular Value Index

CiteSeer

0 1000 2000
Singular Value Index

Chameleon

0 2000 4000
Singular Value Index

Squirrel

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.600

0.625

0.650

0.675

0.700

0.725

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 A
cc

ur
ac

y

Figure 8: More results of SVD
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Table 12: Studying Over-smoothing on WGNN, DropEdge, SkipConnection, and GCNII

K
10

20
30

40
50

60
70

80

C
ora

W
G

N
N

88
.92

±
0.88

8
8
.5
7
±
1
.7
5

8
8
.6
0
±
1.07

88.03
±

0.69
8
7.9

8
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0.7
4

8
8.2

5
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0.5
8

8
7
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3
±
1
.2
0

88
.23

±
0
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8
3
.44
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7
7
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±
1
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8

6
0
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±
2
.1
8

5
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3
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1.51
51.05
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5
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1
±
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4
0
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9
±
2
.4
0

3
6.45

±
8.6
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87
.54

±
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.0
3
±
0
.8
2

8
6
.9
2
±
0
.4
7

8
6
.8
9
±

0.5
6

87.46
±

0.66
8
7.0

0
±
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.87
±

0.6
2

8
6.89

±
1.1

G
C

N
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87
.31

±
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8
7
.8
0
±

1.6
8

8
7
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7
±
2
.1
8

8
8
.0
9
±
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1
88.20
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88.52
±

1.3
3

8
7.64

±
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7
8
8
.1
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0
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8
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.02
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6
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4
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0

2
1
.3
1
±
3
.9
9

2
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7
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6
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6
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6
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1
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D
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6

C.8 FEATURE SPACE AND PARAMETERS FOR MORE GNN MODELS

Here, we present Table 1 in a more friendly way (with a larger scale and rotated 90 degrees), with
adding GCNII Chen et al. (2020b).
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Table 13: Feature Space and Parameters for More GNN Models
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