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Abstract

Artificial neural networks (ANNs), despite their universal function approximation1

capability and practical success, are subject to catastrophic forgetting. Catastrophic2

forgetting refers to the abrupt unlearning of a previous task when a new task is3

learned. It is an emergent phenomenon that plagues ANNs and hinders continual4

learning. Existing universal function approximation theorems for ANNs guarantee5

function approximation ability, but seldom touch on the model details and do not6

predict catastrophic forgetting. This paper presents a novel universal approximation7

theorem for multi-variable functions using only single-variable functions and8

exponential functions. Furthermore, we present ATLAS—a novel ANN architecture9

based on the exponential approximation theorem and B-splines. It is shown that10

ATLAS is a universal function approximator capable of memory retention and,11

therefore, continual learning. The memory retention of ATLAS is imperfect,12

with some off-target effects during continual learning, but it is well-behaved and13

predictable. An efficient implementation of ATLAS is provided. Experiments14

are conducted to evaluate both the function approximation and memory retention15

capabilities of ATLAS.16

1 Introduction17

Catastrophic forgetting [7, 13, 23] is an emergent phenomenon where a machine learning model18

such as an artificial neural network (ANN) learns a new task, and the subsequent parameter updates19

interfere with the model’s performance on previously learned tasks. Catastrophic forgetting is also20

called catastrophic interference [19]. If an ANN cannot effectively learn many tasks, it has limited21

utility in the context of continual learning [9, 12]. Catastrophic forgetting is like learning to pick22

up a cup, but simultaneously forgetting how to breathe. Even linear functions are susceptible to23

catastrophic forgetting, as illustrated in Figure 124

Figure 1: A linear function is susceptible to catastrophic forgetting.
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The simple example of a linear regression model being susceptible to catastrophic forgetting might be25

due to the non-linearity of the target function, noise, or parameter sharing across the input. Parameter26

sharing is avoidable with piece-wise defined functions such as splines [27]. ANNs can be explained27

in many ways; a useful analogy is to compare ANNs to very large lookup tables that store information.28

Removing and updating values has off-target effects throughout the table or ANN.29

Universal function approximation theorems are a cornerstone of machine learning, and prove that30

ANNs can approximate any given continuous target function [10, 11, 15] under certain assumptions.31

The theorems do not specify how to find an ANN with sufficient performance for problems in32

practice. Gradient descent optimisation is the convention for finding/training neural networks, but33

other optimisation and learning procedures exist [22]. ATLAS models trained with gradient descent34

methods exhibit desirable properties. However, other optimisation techniques like evolutionary35

algorithms may not elicit the same properties.36

This paper introduces ATLAS—a novel universal function approximator based on B-splines that has37

some intrinsic memory retention, even in the absence of other training and regularisation techniques.38

ATLAS has well-behaved parameter gradients that are sparse, bounded and orthogonal between39

input points that are far enough from each other. The accompanying representation and universal40

approximation theorems are also provided.41

2 Relevant Studies42

It is conjectured that overlapping representations in ANNs lead to catastrophic forgetting [12].43

Catastrophic forgetting occurs when parameters necessary for one task change while training to meet44

the objectives of another task [14, 20]. The least desirable strategy to mitigate catastrophic forgetting45

is retraining a model over all tasks. Regularisation techniques like elastic weight consolidation (EWC)46

have also been employed [14]. Data augmentation approaches such as rehearsal and pseudo-rehearsal47

have also been employed [23]. Other ideas from optimal control theory in combination with dynamic48

programming have also been applied to counteract catastrophic forgetting, with a cost functional49

similar in form to the action integral from physics and Lagrangian mechanics [16].50

Orthogonal Gradient Descent (OGD) is a training augmentation or optimisation technique that51

modifies the gradient updates of subsequent tasks to be orthogonal to previous tasks [6, 1]. One52

can describe data in terms of a distribution defined over the input space, target values, and time (the53

order of data or tasks that are presented during training). OGD attempts to make gradient updates54

orthogonal to each other over time. ATLAS, in contrast, possesses distal orthogonality, meaning that55

if two inputs are far enough from each other in the input space, then corresponding gradient updates56

will be orthogonal. A corollary of this is that if the data distribution between tasks shifts in the input57

space, then the subsequent gradient updates will tend to be orthogonal. ATLAS does not use external58

memory like OGD. Extensions of OGD include PCA-OGD, which compresses gradient updates into59

principal components to reduce memory requirements [4]. The Neural Tangent Kernel (NTK) overlap60

matrices, as discussed by Doan et al. [4], could be a useful tool for analysing ATLAS models.61

The survey by Delange et al. [3] gives an extensive overview of continual learning to address62

catastrophic forgetting. ATLAS is a model that implements parameter isolation, because of its use of63

piece-wise defined splines. Particularly relevant to ATLAS is the work on scale of initialisation and64

extreme memorisation [21]. Increasing the density of basis functions in ATLAS can lead to better65

memorisation, and increases the scale of some parameters in ATLAS which may affect generalisation.66

Pi-sigma neural networks use nodes that compute products instead of sums [26]. Pi-sigma neural67

networks have some similarities with the global structure of ATLAS. B-splines, which form the basis68

of ATLAS, have been applied for machine learning [5]. Scardapane et al. [25] investigated trainable69

activation functions parameterised by splines. Uniform cubic B-splines have basis functions that are70

translates of one another [2]. Uniform cubic B-splines have been tested for memory retention, and71

ATLAS is an improvement on existing spline models [27].72

B-splines, and by extension ATLAS, can be trained to fit lower frequency components, expanded and73

trained again until a network is found with sufficient accuracy and generalisation, similar to other74

techniques [17, 18]. It is not necessary to expand the capacity of an ATLAS model to learn new75

tasks, as with some other approaches [24]. ATLAS does in practice demonstrate something akin to76

"graceful forgetting" as discussed in Golkar et al. [8].77
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3 Notation78

Vector quantities like x⃗ are clearly indicated with a bar or arrow for legibility. Parameters, inputs,79

functions etc. without a bar or arrow are scalar quantities like S(x). Some scalar quantities with80

indices are the scalar components of a vector like xj or scalar parameters in the model like θi. The81

gradient operator that acts on a scalar function like ∇⃗θ⃗A(x⃗) yields a vector-valued function ∇⃗θ⃗A(x⃗)82

as is typical of multi-variable calculus.83

4 Exponential Representation Theorem84

Any continuous multi-variable function on a compact space can be uniformly approximated with85

multi-variable polynomials by the Stone-Weierstrass Theorem. Let I denote an index set of tuples of86

natural numbers including zero such that ij ∈ N0 for all j ∈ N with i = (i1, .., in) ∈ I and ai ∈ R.87

Multi-variable polynomials can be represented as:88

y(x⃗) = y(x1, .., xn) =
∑
i∈I

aix
i1
1 xi2

2 ...xin
n =

∑
i∈I

aiΠ
n
j=1x

ij
j

Each monomial term aiΠ
n
j=1x

ij
j is a product of single-variable functions in each variable. It is89

desirable to rewrite products as sums using exponentials and logarithms.90

Lemma 1. For any ai ∈ R, there exists γi > 0 and βi > 0, such that: ai = γi − βi91

Theorem 1 (Exponential representation theorem). Any multi-variable polynomial function y(x⃗)92

of n variables over the positive orthant, can be exactly represented by continuous single-variable93

functions gi,j(xj) and hi,j(xj) in the form:94

y(x⃗) =
∑
i∈I

exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

Proof. Consider any monomial term aiΠ
n
j=1x

ij
j with ai ∈ R, then by Lemma 1 there exist strictly95

positive numbers γi > 0 and βi > 0, such that:96

aiΠ
n
j=1x

ij
j = γiΠ

n
j=1x

ij
j − βiΠ

n
j=1x

ij
j

= exp
(
log

(
γiΠ

n
j=1x

ij
j

))
− exp

(
log

(
βiΠ

n
j=1x

ij
j

))
= exp

(
log(γi) + Σn

j=1 log
(
x
ij
j

))
− exp

(
log(βi) + Σn

j=1 log
(
x
ij
j

))
The argument of each exponential function is a sum of single-variable functions and constants.97

Without loss of generality, a set of single-variable functions can be defined such that:98

aiΠ
n
j=1x

ij
j = exp

(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

Since this holds for any aiΠ
n
j=1x

ij
j and all i ∈ I, it follows that:99

y(x⃗) =
∑
i∈I

exp
(
Σn

j=1gi,j(xj)
)
− exp

(
Σn

j=1hi,j(xj)
)

100

This result is fundamental to the paper. Since every continuous function can be approximated with101

multi-variable polynomials, it follows that every continuous function can be approximated with102

positive and negative exponential functions. Single-variable function approximators are pivotal and103

must be reconsidered. Universal function approximation can also be proven with the sub-algebra104

formulation of the Stone-Weierstrass theorem, but it’s not as delightful and simple as the first105

constructive proof given above.106
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5 Single-Variable Function Approximation107

Splines are piece-wise defined single-variable functions over some interval. Each sub-interval of a108

spline is most often locally given by a low degree polynomial, even though the global structure is not109

a low degree polynomial. B-splines are polynomial splines that are defined in a way that resembles110

other basis function formulations [2]. Each single-variable function in ATLAS is approximated111

with uniform cubic B-spline basis functions, shown in Figure 2. B-splines can approximate any112

single-variable function, similar to using the Fourier basis. With uniform B-splines, each basis113

function is scaled so that the unit interval is uniformly partitioned, as in Figure 2.114

(a) ρ = 0 (b) ρ = 1 (c) ρ = 2

Figure 2: If uniformly spaced B-splines are used, then each basis function has the same shape. This
makes it possible to use the same activation function by scaling and translating the inputs. This is
also true for different densities of uniform cubic B-splines.

The activation function to implement B-splines is given by:115

S(x) =



1
6x

3 0 ≤ x < 1
1
6

[
−3(x− 1)3 + 3(x− 1)2 + 3(x− 1) + 1

]
1 ≤ x < 2

1
6

[
3(x− 2)3 − 6(x− 2)2 + 4

]
2 ≤ x < 3

1
6 (4− x)3 3 ≤ x < 4

0 otherwise

The choice was made to use uniform cubic B-splines due to their excellent performance and robustness116

to catastrophic forgetting, illustrated in Figure 3. Using uniform B-splines instead of arbitrary sub-117

interval partitions (also called knots in literature) makes optimisation easier. Optimising partitions is118

non-linear, but optimising only coefficient (also called control points) is linear and thus convex.119

(a) The activation is sparse and bounded. (b) Distal orthogonality.

Figure 3: Single-variable function

Each basis function is multiplied by a parameter and summed together. The total number of basis120

functions is typically fixed. Cubic B-splines are 3rd order polynomials, and thus require a minimum121

of 3 + 1 = 4 control points or basis functions.122
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Instead of considering arbitrary densities of uniform cubic B-splines, we look at powers of two times123

the minimum number of basis functions, called ρ-density B-spline functions.124

Definition 1 (ρ-density B-spline function). A ρ-density B-spline function is a uniform cubic B-spline125

function with 2ρ+2 basis functions:126

f(x) =

2ρ+2∑
i=1

θiSi(x) =

2ρ+2∑
i=1

θiS(wix+ bi) =

2ρ+2∑
i=1

θiS((2
ρ+2 − 3)x+ 4− i)

Consider the problem of expanding a single-variable function approximator with more basis functions127

to increase its expressive power. Using the Fourier basis makes it trivially easy by adding higher128

frequency sines and cosines with coefficients initialised to zero. It is trickier to achieve something129

similar with uniform cubic B-splines. There are algorithms for creating new splines from existing130

splines with knot insertion, but the intermediate steps result in non-uniform knots and splines. A131

simple and practical compromise that we propose is to use mixtures of different ρ-density B-spline132

functions, as illustrated in Figure 2.133

Definition 2 (mixed-density B-spline function). A mixed-density B-spline function is a single-134

variable function approximator that is obtained by summing together different ρ-density B-spline135

functions. Only the maximum ρ-density B-spline function has trainable parameters, the others are136

constant. Mixed-density B-spline functions are of the form:137

f(x) =

r∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x)

Only the maximum r = ρ-density B-spline has trainable coefficients. All lower density r > ρ-138

density B-spline have frozen and constant coefficients. The maximum r = ρ-density B-spline has139

trainable coefficients with gradient updates that are orthogonal if the distance between two inputs is140

large enough.141

Similar to increasing the expressiveness of a Fourier basis function approximator by adding higher142

frequency terms, one can add larger density cubic B-spline functions. Analytically, we can initialise143

all the new scalar parameters θr+1,i = 0, ∀i ∈ N such that:144

f(x) =

r∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x) =

r+1∑
ρ=0

2ρ+2∑
i=1

θρ,iSρ,i(x)

It is therefore possible to create a minimal model with r = 0 initialised at zero, and train the model145

until convergence. Then one can create a new model with r = 1, by subsuming the previous model’s146

parameters, and train this more expressive model until convergence. This process of training and147

expansion can be continued indefinitely, and is shown in Figure 8.148

Figure 4: Doubling densities of basis functions before and after training.

6 ATLAS149

ATLAS is named for carrying the burden of all it must remember, after the Titan god Atlas in Greek150

mythology who was tasked with holding the weight of the world. ATLAS is also an acronym for151

AddiTive exponentiaL Additive Splines.152
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Definition 3 (ATLAS). ATLAS is a function approximator of n variables, with mixed-density153

B-spline functions fj(xj), gi,j(xj), and hi,j(xj) in the form:154

A(x⃗) :=

n∑
j=1

fj(xj) +

M∑
k=1

1

k2
exp

(
Σn

j=1gk,j(xj)
)
− 1

k2
exp

(
Σn

j=1hk,j(xj)
)

ATLAS is equivalently given by the compact notation:155

A(x⃗) := F (x⃗) +

M∑
k=1

1

k2
exp(Gk(x⃗))−

1

k2
exp(Hk(x⃗))

The absolutely convergent series of scale factors k−2 was chosen for numerical stability and to ensure156

the model is absolutely convergent. Another feature is that the series of scale factors also breaks the157

symmetry that would otherwise exist if all mixed-density B-spline functions were initialised to zero.158

Initialising all the parameters to be zero is a departure from the conventional approach of random159

initialisation. The number of exponential terms can be increased without changing the output of the160

model. We can choose to initialise GM+1(x⃗) = 0 and HM+1(x⃗) = 0, such that the model capacity161

can be increased at will.162

ATLAS is a universal function approximator with some inherent memory retention. It possesses three163

properties atypical of most universal function approximators:164

1. The activity within ATLAS is sparse – most neural units are zero and inactive.165

2. The gradient vector with respect to trainable parameters is bounded regardless of the size166

and capacity of the model, so training is numerically stable for many possible training167

hyper-parameters.168

3. Inputs that are sufficiently far from each other have orthogonal representations.169

The proofs of the three properties follows from the single-variable case, the assumption of bounded170

single-variable functions and parameters, and the absolutely convergent k−2 scale factors.171

Property 1 (Sparsity). For any x⃗ ∈ D(A) ⊂ Rn and bounded trainable parameters θi with index172

set Θ, the gradient vector of trainable parameters (for ATLAS) is sparse:173

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
0
=

∑
i∈Θ

dHamming

(
∂A

∂θi
(x⃗), 0

)
≤ 4n(2M + 1)

Remark. For a fixed number of variables n, the model has a total of n2r+2(2M + 1) trainable174

parameters. The gradient vector has a maximum of 4n(2M+1) non-zero entries, which is independent175

of r. Recall that only the maximum density (ρ = r) cubic B-spline function has trainable parameters.176

The fraction of trainable basis functions that are active is at most 2−r. Sparsity entails efficient177

implementation, and suggests possible memory retention and robustness to catastrophic forgetting.178

Property 2 (Gradient flow attenuation). For any x⃗ ∈ D(A) ⊂ Rn and bounded trainable parameters179

θi with index set Θ: if all the mixed-density B-spline functions are bounded, then the gradient vector180

of trainable parameters for ATLAS is bounded:181

∥∥∥∇⃗θ⃗A(x⃗)
∥∥∥
1
=

∑
i∈Θ

∣∣∣∣∂A∂θi (x⃗)
∣∣∣∣ < U

Remark. For a fixed number of variables n, the model has a total of n2r+2(2M + 1) trainable182

parameters. The factor of k−2 inside the expression for ATLAS is necessary to ensure the sum is183

convergent in the limit of infinitely many exponential terms M → ∞. Only the maximum density184

(ρ = r) cubic B-spline function has trainable parameters, so that the gradient vector is bounded in185

the limit of arbitrarily large densities r → ∞. Smaller densities cannot be trainable, otherwise this186

property does not hold. The bounded gradient vector implies that ATLAS is numerically stable during187

training, regardless of its size or parameter count.188
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Property 3 (Distal orthogonality). For any x⃗, y⃗ ∈ D(A) ⊂ Rn and bounded trainable parameters189

θi for an ATLAS model A(x⃗):190

min
j=1,...,n

{|xj − yj |} > 2−r =⇒ ⟨∇⃗θ⃗A(x⃗), ∇⃗θ⃗A(y⃗)⟩ = 0

Remark. Two points that sufficiently differ in each input variable have orthogonal parameter gradients.191

Distal orthogonality means ATLAS is reasonably robust to catastrophic forgetting, without other192

regularisation and training techniques. However, memory retention can still potentially be improved193

when used in conjunction with other techniques.194

ATLAS can be implemented with 1D convolution, reshaping, embedding, multiplication and dense195

layers. The same basis functions have to be computed for each input variable, hence 1D convolutions.196

By correctly scaling, shifting, and rounding inputs one can compute only the non-zero basis functions197

with embedding layers. The number of basis functions are chosen from powers of two for convenience,198

with the maximum density B-spline function having exactly λ = 4× 2r basis functions. Summing199

over all densities the total number of all basis functions in each input variable is at most 2λ, because200

a geometric series was used. For every output dimension p, there are 2M exponentials. Each201

exponential has n single variable functions, with at most 2λ cubic B-spline basis functions each.202

ATLAS models have time complexity O(pMn log λ), and O(pMnλ) space complexity.203

7 Methodology204

The 1-,2- and 8-dimensional models were considered for evaluation, in combination with a chosen205

width for the update region in Task 2 from 0.1 to 0.9 in 0.1 increments. 30 trials were performed for206

each combination of model dimension and update region width. Mean Absolute Error (MAE) loss207

function, the Adam optimiser, and mini batch sizes of 100 are used throughout all experiments.208

At the beginning of each trial (for a given dimension and update region width) a random learning rate209

was sampled uniformly between 10−6 and 0.01 + 10−6. A random noise level was sampled from an210

exponential distribution with scale parameter equal to one. The Task 1 target function is constructed211

from 1000 Euclidean radial basis functions (RBFs) with locations chosen uniformly over the entire212

input domain, with RBF scale parameters sampled independently from an exponential distribution213

(scale parameter equal to 10). The weights of each radial basis function are sampled from a normal214

distribution with mean zero and standard deviation equal to one. The Task 2 target function is exactly215

the same as the Task 1 target function – except for a square-like region with width equal to update216

region width. The location of the update region is chosen uniformly at random, and such that it is217

completely inside the domain of the model. The updated region masks the Task 1 target function and218

instead replaces the values inside it with another function that is sampled from the same distribution219

as the Task 1 target function, but independently from the Task 1 target function.220

After the generation of the target functions 10000 data points are sampled for training, validation, and221

test sets for Task 1 and Task 2. To simulate the effect of learning unrelated tasks, the training data for222

Task 2 is only sampled from update region - with no training data outside of it being presented again,223

by contrast the validation and test sets for Task 2 were sampled over the entire input domain. Gaussian224

noise with standard deviation equal to the randomly chosen noise level is added to all training data.225

An ATLAS model (M = 10 positive and M = 10 negative exponential functions, maximum basis226

function density r = 4) with guaranteed distal orthogonality is trained and evaluated on Task 1227

and Task 2. Then a modified ATLAS model (M = 10 positive and M = 10 negative exponential228

functions, maximum basis function density r = 4, trainable lower density basis functions) without229

guaranteed distal orthogonality is trained and evaluated on Task 1 and Task 2 using the same data sets230

as previously mentioned model. The final test errors for Task 2 are presented. A randomly selected231

trial of the 2-dimensional case is shown for visual inspection. The experiments presented in the main232

body of the paper were performed on Google Colab and the relevant code is provided.233

8 Results234

As shown in Figure 5 the effect of distal orthogonality is clear and crisp boundaries that limit the235

effect of Task 2 on the memory of Task 1. Without distal orthogonality there are more off-target236

effects that can be visualised.237
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(a) Guaranteed distal orthogonality, Off-target effects deviate from Task 2 target.

(b) No guaranteed distal orthogonality, Off-target effects deviate from Task 2 target.

Figure 5: A randomly chosen trial is presented for visual inspection.

Figure 6: Distal orthogonality guaranteed: All validation MAE curves for Task 1.

Figure 7: No distal orthogonality: Task 2 validation MAE with update region width δ = 0.1.

Figure 8: Distal orthogonality guaranteed: Task 2 validation MAE with update region width δ = 0.1.

The effect of distal orthogonality on the averaged MAE for various trials for 1-,2- and 8-dimensional238

problems are presented as scatter plots of the averaged MAE over 30 trials for different update region239

widths as shown in Figure 9. The expected off-target error depends on the dimension of the problem240

and the width of the updated regions.241

Analytical results to the expected off-target error require simplification, but a reasonable assumption242

in the absence of other evidence is that each input dimension has equal contribution on the unit243

hyper-cube. Assume for a fixed input dimension n and some region of width 0 < δ < 1 where the244
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(a) The 1-dimensional model. (b) The 2-dimensional model. (c) The 8-dimensional model.

Figure 9: The effect of distal orthogonality on the final test error on task 2 for the 1-,2- and 8-
dimensional input.

target function Y is changed such that |∆Y | = 1 is one larger than it was originally. The expected245

off-target error depends on k the number of input variables inside the updated region: εk ≈ n−k
n . To246

correctly account for all permutations with the same magnitude of change:247

p(εk) =

(
n

k

)
δn−k (1− δ)

k

One can calculate expected change values:248

E[ε] =
n∑

k=0

εkp(εk) ≈
n∑

k=0

(
n− k

n

)(
n

k

)
δn−k (1− δ)

k
= δ

However if one assumes that the target function inside the updated region of width δ is correct, with249

probability δn of sampling from the entire input-domain, then the expected off-target error should be:250

Expected off-target error ≈ δ − δn

This seems consistent with some of the experimental results, but further investigation is needed.251

9 Conclusion252

The main contribution of the paper is theoretical and technical. A representation theorem is presented253

that outlines how to approximate multi-variable functions with single-variable functions (splines and254

exponential functions). ATLAS approximates all arbitrary single-variable functions with mixtures255

of B-spline functions. ATLAS is constructed in such a way that the gradient vector with respect256

to trainable parameters is bounded, regardless of how large an ATLAS model is. The activation of257

units in ATLAS is sparse, and allowed for an efficient implementation that only computes non-zero258

activation values with the aid of embedding layers. The gradient update vector with respect to259

trainable parameters is orthogonal for different inputs as long as the inputs are sufficiently different260

from each other.261

For every output dimension p in an ATLAS model, there are 2M exponentials. Each exponential has262

n single variable functions, with at most 2λ cubic B-spline basis functions each. ATLAS models263

have time complexity O(pMn log λ), and O(pMnλ) space complexity.264

ATLAS was shown to exhibit some memory retention, without the assistance of other techniques.265

This is a good indication of the potential for combining it with other techniques and models for266

continual learning. The chosen experiments demonstrated the theoretically derived predictions and267

contrasted two models, incuding a variant of ATLAS without distal orthogonality guarantees.268

As far as societal impacts are concerned: It is possible that ATLAS could allow for the creation of269

more powerful machine learning algorithms, that require less resources to train and deploy. Further270

testing is needed to make any concrete claim.271
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