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Abstract

We present a novel method for tuning the regularization hyper-parameter, λ, of
a ridge regression that is faster to compute than leave-one-out cross-validation
(LOOCV) while yielding estimates of the regression parameters of equal, or par-
ticularly in the setting of sparse covariates, superior quality to those obtained by
minimising the LOOCV risk. The LOOCV risk can suffer from multiple and bad
local minima for finite n and thus requires the specification of a set of candidate λ,
which can fail to provide good solutions. In contrast, we show that the proposed
method is guaranteed to find a unique optimal solution for large enough n, under
relatively mild conditions, without requiring the specification of any difficult to
determine hyper-parameters. This is based on a Bayesian formulation of ridge
regression that we prove to have a unimodal posterior for large enough n, allowing
for both the optimal λ and the regression coefficients to be jointly learned within
an iterative expectation maximization (EM) procedure. Importantly, we show that
by utilizing an appropriate preprocessing step, a single iteration of the main EM
loop can be implemented in O(min(n, p)) operations, for input data with n rows
and p columns. In contrast, evaluating a single value of λ using fast LOOCV costs
O(nmin(n, p)) operations when using the same preprocessing. This advantage
amounts to an asymptotic improvement of a factor of l for l candidate values for λ
(in the regime q, p ∈ O(

√
n) where q is the number of regression targets).

1 Introduction

Ridge regression [25] is one of the most widely used statistical learning algorithms. Given training
data X ∈ Rn×p and y ∈ Rn, ridge regression finds the linear regression coefficients β̂λ that minimize
the ℓ2-regularized sum of squared errors, i.e.,

β̂λ = argmin
β

{
||y −Xβ||2 + λ||β||2

}
. (1)

In practice, using ridge regression additionally involves estimating the value for the tuning parameter
λ that minimizes the expected squared error E(xTβ̂λ − y)2 for new data x and y sampled from the
same distribution as the training data. This problem is usually approached via the leave-one-out
cross-validation (LOOCV) estimator, which can be computed efficiently by exploiting a closed-form
solution for the leave-one-out test errors for a given λ. The wide and long-lasting use of the LOOCV
approach suggests that it solves the ridge regression problem more or less optimally, both in terms of
its statistical performance, as well as its computational complexity.
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Figure 1: Comparison of LOOCV (with fixed candidate grid of size 100) and EM for setting with
sparse covariate vectors of x = (x1, . . . , x100) such that xi ∼ Ber(1/100) i.i.d. and responses
y|x ∼ N(βTx, σ2) for increasing noise levels σ and sample sizes n. In an initial phase for small n,
the number of EM iterations k tends to decrease rapidly from an initial large number until it reaches
a small constant (around 10). In this phase, EM is computationally slightly more expensive than
LOOCV (third row) but has a better parameter mean squared error (first row) corresponding to less
shrinkage (second row). In the subsequent phase, both algorithms have essentially identical parameter
estimates but EM outperforms LOOCV in terms of computation by a wide margin.

However, in this work, we show that LOOCV is outperformed by a simple expectation maximization
(EM) approach based on a Bayesian formulation of ridge regression. While the two procedures
are not equivalent, in the sense that they generally do not produce identical parameter values, the
EM estimates tend to be of equal quality or, particularly in sparse regimes, superior to the LOOCV
estimates (see Figure 1). Specifically, the LOOCV risk estimates can suffer from potential multiple
and bad local minima when using iterative optimization, or misspecified candidates when performing
grid search. In contrast, we show that the EM algorithm finds a unique optimal solution for large
enough n (outside pathological cases) without requiring any hard to specify hyper-parameters, which
is a consequence of a more general bound on n (Thm. 3.1) that we establish to guarantee the
unimodality of the posterior distribution of Bayesian ridge regression—a result with potentially wider
applications. In addition, the EM procedure is asymptotically faster than the LOOCV procedure by a
factor of l where l is the number of candidate values for λ to be evaluated (in the regime p, q ∈ O(

√
n)

where p, q, and n are the number of covariates, target variables, and data points, respectively). In
practice, even in the usual case of q = 1 and l = O(1), the EM algorithm tends to outperform
LOOCV computationally by an order of magnitude as we demonstrate on a test suite of datasets from
the UCI machine learning repository and the UCR time series classification archive.

While the EM procedure discussed in this paper is based on a recently published procedure for
learning sparse linear regression models [44], the adaption of this procedure to ridge regression
has not been previously discussed in the literature. Furthermore, a direct adoption would lead to
a main loop complexity of O(p3) that is uncompetitive with LOOCV. Therefore, in addition to
evaluating the empirical accuracy and efficiency of the EM algorithm for ridge regression, the main
technical contributions of this work are to show how certain key quantities can be efficiently computed
from either a singular value decomposition of the design matrix, when p ≥ n, or an eigenvalue
decomposition of the Gram matrix XTX, when n > p. This results in an E-step of the algorithm
in time O(r) where r = min(n, p), and an M-step found in closed form and solved in time O(1),
yielding an ultra-fast main loop for the EM algorithm.
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Table 1: Time complexities of algorithms; m = max(n, p), r = min(n, p), l number of candidate λ
for LOOCV, k number of EM iterations and q is the number of the target variables.

METHOD MAIN LOOP PRE-PROCESSING OVERALL (p, q ∈ O(
√
n))

NAIVE ADAPTION OF EM O(kp3q) O(p2n) O(kn2)
PROPOSED BAYESEM O(krq) O(mr2) O(kn+ n2)
FAST LOOCV O(lnrq) O(mr2) O(ln2)

These computational advantages result in an algorithm that is computationally superior to efficient,
optimized implementations of the fast LOOCV algorithm. Our particular implementation of LOOCV
actually outperforms the implementation in scikit-learn by approximately a factor of two by
utilizing a similar preprocessing to the EM approach. This enables an O(nr) evaluation for a single λ
(which is still slower than the O(r) evaluation for our new EM algorithm; see Table 1 for an overview
of asymptotic complexities of LOOCV and EM), and may be of interest to readers by itself. Our
implementation of both algorithms, along with all experiment code, are publicly available in the
standard package ecosystems of the R and Python platforms, as well as on GitHub1.

In the remainder of this paper, we first briefly survey the literature of ridge regression with an
emphasis on the use of cross validation (Sec. 2). Based on the Bayesian interpretation of ridge
regression, we then introduce the EM algorithm and discuss its convergence (Sec. 3). Finally, we
develop fast implementations of both the EM algorithm and LOOCV (Sec. 4) and compare them
empirically (Sec. 5).

2 Ridge Regression and Cross Validation

Ridge regression [25] (also known as ℓ2-regularization) is a popular method for estimation and
prediction in linear models. The ridge regression estimates are the solutions to the penalized least-
squares problem given in (1). The solution to this optimization problem is given by:

β̂λ = (XTX+ λIp)
−1XTy. (2)

When λ→ 0, the ridge estimates coincide with the minimum ℓ2 norm least squares solution [22, 31],
which simplifies to the usual least squares estimator in cases where the design matrix X has full
column rank (i.e. XTX is invertible). Conversely, as λ → ∞, the amount of shrinkage induced
by the penalty increases, with the resulting ridge estimates becoming smaller for larger values of
λ. Under fairly general assumptions [26], including misspecified models and random covariates of
growing dimension, the ridge estimator is consistent and enjoys finite sample risk bounds for all fixed
λ ≥ 0, i.e., it converges almost surely to the prediction risk minimizer, and its squared deviation
from this minimizer is bounded for finite n with high probability. However, its performance can still
vary greatly with the choice of λ; hence, there is a need to estimate the optimal value from the given
training data.

Earlier approaches to this problem [e.g. 2, 7, 14, 19, 23, 28–30, 34, 48] rely on an explicit estimate
of the (assumed homoskedastic) noise variance, following the original idea of Hoerl and Kennard
[25]. However, estimating the noise variance can be problematic, especially when p is not much
smaller than n [18, 20, 24, 46]. More recent approaches adopt model selection criteria to select the
optimal λ without requiring prior knowledge or estimation of the noise variance. These methods
involve minimizing a selection criterion of choice, such as the Akaike information criterion (AIC) [1],
Bayesian information criterion (BIC) [40], Mallow’s conceptual prediction (Cp) criterion [33], and,
most commonly, cross validation (CV) [4, 49].

A particularly attractive variant of CV is leave-one-out cross validation (LOOCV), also referred to as
the prediction error sum of squares (PRESS) statistic in the statistics literature [3]

RCV
n (λ) =

1

n

n∑
i=1

(yi − ŷi)
2 (3)

1https://github.com/marioboley/fastridge.git
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where ŷi = x̃iβ̂
−i
λ , and β̂−i

λ denotes the solution to (2) when the i-th data point (x̃i, yi) is omitted.
LOOCV offers several advantages over alternatives such as 10-fold CV: it is deterministic, nearly
unbiased [47], and there exists an efficient "shortcut" formula for the LOOCV ridge estimate [36]:

RCV
n (λ) =

1

n

n∑
i=1

(
ei

1−Hii(λ)

)2

(4)

where H(λ) = X(XTX + λIp)
−1XT is the regularized “hat”, or projection, matrix and e =

y −H(λ)y are the residuals of the ridge fit using all n data points. As it only requires the diagonal
entries of the hat matrix, Eq. (4) allows for the computation of the PRESS statistic with the same
time complexity O(p3 + np2) as a single ridge regression fit.

Moreover, unless p/n→ 1, the LOOCV ridge regression risk as a function of λ converges uniformly
(almost surely) to the true risk function on [0,∞) and therefore optimizing it consistently estimates
the optimal λ [22, 36]. However, for finite n, the LOOCV risk can be multimodal and, even worse,
there can exist local minima that are almost as bad as the worst λ [42]. Therefore, iterative algorithms
like gradient descent cannot be reliably used for the optimization, giving theoretical justification
for the pre-dominant approach of optimizing over a finite grid of candidates L = (λ1, . . . , λl).
Unfortunately, despite the true risk function being smooth and unimodal, a naïvely chosen finite grid
cannot be guaranteed to contain any candidate with a risk value close to the optimum. While this
might not pose a problem for small n when the error in estimating the true risk via LOOCV is likely
large, it can potentially become a dominating source of error for growing n and p. Therefore, letting
l grow moderately with the sample size appears necessary, turning it into a relevant factor in the
asymptotic time complexity.

As a further disadvantage, LOOCV (or CV in general) is sensitive to sparse covariates, as illustrated
in Figure 1 where the performance of LOOCV, relative to the proposed EM algorithm, degrades as
the noise variance σ2 grows. In the sparse covariate setting, a situation common in genomics, the
information about each coefficient is concentrated in only a few observations. As LOOCV drops an
observation to estimate future prediction error, the variance of the CV score can be very large when
the predictor matrix is very sparse, as the estimates depend on only a small number of the remaining
observations. In the most extreme case, known as the multiple means problem [27], X = In, and
all the information about each coefficient is concentrated in a single observation. In this setting, the
LOOCV score reduces to

∑
y2i , and provides no information about how to select λ. In contrast,

the proposed EM approach explicitly ties together the coefficients via the probabilistic Bayesian
interpretation of λ as the inverse-variance of the unknown coefficient vector. This “borrowing of
strength” means that the procedure provides a sensible estimate of λ even in the case of multiple
means (see Appendix A).

3 Bayesian Ridge Regression

The ridge estimator (2) has a well-known Bayesian interpretation; specifically, if we assume that the
coefficients are a priori normally distributed with mean zero and common variance τ2σ2 we obtain a
Bayesian version of the usual ridge regression procedure, i.e.,

y |X,β, σ2 ∼ Nn

(
Xβ, σ2In

)
,

β | τ2, σ2 ∼ Np

(
0, τ2σ2Ip

)
,

σ2 ∼ σ−2dσ2,

τ2 ∼ π(τ2)dτ2,

(5)

where π(·) is an appropriate prior distribution assigned to the variance hyperparameter τ2. For a
given τ > 0 and σ > 0, the conditional posterior distribution of β is also normal [32]

β | τ2, σ2,y ∼ Np(β̂τ , σ
2A−1

τ ),

β̂τ = A−1
τ XTy,

Aτ = (XTX+ τ−2Ip),

(6)

where the posterior mode (and mean) β̂τ is equivalent to the ridge estimate with penalty λ = 1/τ2

(we rely on the variable name in the notation β̂x to indicate whether it refers to (6) or (2)).
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Shrinkage Prior To estimate the τ2 hyperparameter in the Bayesian framework, we first must
choose a prior distribution for the hypervariance τ2. We assume that no strong prior knowledge on the
degree of shrinkage of the regression coefficients is available, and instead assign the recommended
default beta-prime prior distribution for τ2 [15, 38] with probability density function:

π(τ2) =
(τ2)a−1(1 + τ2)−a−b

B(a, b)
, a > 0, b > 0, (7)

where B(a, b) is the beta function. Specifically, we choose a = b = 1/2, which corresponds to a
standard half-Cauchy prior on τ . The half-Cauchy is a heavy-tailed, weakly informative prior that is
frequently recommended as a default choice for scale-type hyperparameters such as τ [38]. Further,
this estimator is very insensitive to the choice of a or b. As demonstrated by Theorem 6.1 in [6], the
marginal prior density over β,

∫
π(β|τ2)π(τ2|a, b)dτ2 = π(β|a, b) has polynomial tails in ∥β∥2

for all a > 0, b > 0, and has Cauchy or heavier tails for b ≤ 1/2. This type of polynomial-tailed
prior distribution over the norm of the coefficients is insensitive to the overall scale of the coefficients,
which is likely unknown a priori. This robustness is in contrast to other standard choices of prior
distributions for τ2 such as the inverse-gamma distribution [e.g., 35, 41] which are highly sensitive to
the choice of hyperparameters [38].

Unimodality and Consistency The asymptotic properties of the posterior distributions in Gaussian
linear models (5) have been extensively researched [8, 16, 17, 45]. These studies reveal that in
linear models, the posterior distribution of β is consistent, and converges asymptotically to a normal
distribution centered on the true parameter value. When p is fixed, this assertion can be established
through the Bernstein-Von Mises theorem [45, Sec. 10.2]. Our specific problem (5) satisfies the
conditions for this theorem to hold: 1) both the Gaussian-linear model p(y|β, σ2) and the marginal
distribution

∫
p(y|β, σ2)π(β|τ2)dβ = p(y|τ2, σ2) are identifiable; 2) they have well defined Fisher

information matrices; and 3) the priors over β and τ are absolutely continuous. Further, these
asymptotic properties remain valid when the number of predictors pn is allowed to grow with the
sample size n at a sufficiently slower rate [8, 16].

The following theorem (see the proof in Appendix B) provides a simple bound on the number
of samples required to guarantee that the posterior distribution for the Bayesian ridge regression
hierarchy given by (5) has only one mode outside a small environment around zero.

Theorem 3.1. Let ϵ > 0, and let γn be the smallest eigenvalue of XTX/n. If γn > 0 and
ϵ > 4/(nγn) then the joint posterior p(β, σ2, τ2|y) has a unique mode with τ2 ≥ ϵ. In particular, if
γn ≥ cn−α with α < 1 and c > 0 then there is a unique mode with τ2 ≥ ϵ if n > (4/(cϵ))1/(1−α).

In other words, all sub-optimal non-zero posterior modes vanish for large enough n if the smallest
eigenvalue of XTX grows at least proportionally to some positive power of n. This is a very mild
assumption that is typically satisfied in fixed as well as random design settings, e.g., with high
probability when the smallest marginal covariate variance is bounded away from zero.

Expectation Maximization Given the restricted unimodality of the joint posterior (5) for large
enough n, in conjunction with its asymptotic concentration around the optimal β0, estimating the
model parameters via an EM algorithm appears attractive, as they are guaranteed to converge to an
exact posterior mode. In particular, in the non-degenerate case that β0 ̸= 0, there exist τ2 = ϵ2 > 0,
such that for large enough, but finite n, the posterior concentrates around (β0, τ

2), and thus β0 is
identified by EM if initialized with a large enough τ2.

Specifically, we use the novel approach [44] in which the coefficients β are treated as “missing
data”, and τ2 and σ2 as parameters to be estimated. Given the hierarchy (5), the resulting Bayesian
EM algorithm then solves for the posterior mode estimates of β by repeatedly iterating through the
following two steps until convergence:

E-step. Find the parameters of the Q-function, i.e., the expected complete negative log-posterior
(with respect to β), conditional on the current estimates of τ̂2t and σ̂2

t , and the observed data y:

Q(τ2, σ2|τ̂2t , σ̂2
t ) = Eβ

[
− log p(β, τ2, σ2 |y) | τ̂2t , σ̂2

t ,y
]

=

(
n+ p+ 2

2

)
log σ2 +

ESS

2σ2
+

p+ 1

2
log τ2 +

ESN

2σ2τ2
+ log(1 + τ2) (8)
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where the quantities to be computed are the (conditionally) expected sum of squared errors ESS =
E
[
||y −Xβ||2 | τ̂2t , σ̂2

t

]
and the expected squared norm ESN = E

[
∥β∥2 | τ̂2t , σ̂2

t

]
. Denoting by

tr(·) the trace operator, one can show (see Appendix C) that these quantities can be computed as

ESS = ||y −X β̂τ ||2 + σ2tr(XTXA−1
τ ) and ESN = σ2tr(A−1

τ ) + ∥β̂τ∥2 . (9)

M-step. Update the parameter estimates by minimizing the Q-function with respect to the shrinkage
hyperparameter τ2 and noise variance σ2, i.e.,

{τ̂2t+1, σ̂
2
t+1} = argmin

τ2,σ2

{
Q
(
τ2, σ2 | τ̂2t , σ̂2

t

)}
. (10)

Instead of numerically optimizing the two-dimensional Q-function (10), we can derive closed-form
solutions for both parameters by first finding σ̂2(τ2), i.e., the update for σ2, as a function of τ2, and
then substituting this into the Q-function. This yields a Q-function that is no longer dependent on σ2,
and solving for τ̂2 is straightforward. The resulting parameter updates in the M-step are given by:

σ̂2 =
τ2ESS + ESN

(n+ p+ 2)τ2
and τ̂2 =

(n− 1)ESN− (1 + p)ESS +
√
g

(6 + 2p)ESS
, (11)

where g = (4n + 4)ESN (3 + p)ESS + ((1 − n)ESN + (p + 1)ESS)2. The derivations of these
formulae are presented in Appendix D.

From (11), we see that updating the parameter estimates in the M-step requires only constant time.
Therefore, the overall efficiency of the EM algorithm is determined by the computational complexity
of the E-step. Computing the parameters of the Q-functions directly via (9) requires inverting Aτ ,
resulting in O(p3) operations. In the next section, we show how to substantially improve this approach
via singular value decomposition.

4 Fast Implementations via Singular Value Decomposition

To obtain efficient implementations of the E-Step of the EM algorithm as well as of the LOOCV
shortcut formula, one can exploit the fact that the ridge solution is preserved under orthogonal
transformations. Specifically, let r = min(n, p) and m = max(n, p) and let UΣVT = X be a
compact singular value decomposition (SVD) of X. That is, U ∈ Rn×r and V ∈ Rp×r are semi-
orthonormal column matrices, i.e., UTU = In and VTV = Ip, and Σ = diag(s1, . . . , sr) ∈ Rr×r

is a diagonal matrix that contains the non-zero singular values s = (s1, . . . , sr) of X. With this
decomposition, and an additional O(nr) pre-processing step to compute c = ΣUTy, we can compute
the ridge solution ατ ∈ Rr for a given τ with respect to the rotated inputs XV in time O(r) via

α̂τ = (ΣTUTUΣ+ τ−2I)−1ΣUTy = (Σ2 + τ−2I)−1c =
(
1/(s2j + τ−2)

)r
j=1
⊙ c (12)

where a ⊙ b denotes the element-wise Hadamard product of vectors a and b. The compact SVD
itself can be obtained in time O(mr2) via an eigendecomposition of either XTX = VΣ2VT in case
n ≥ p or XXT = UΣ2UT in case n < p followed by the computation of the missing U = XVΣ−1

or V = XTUΣ−1.

In summary, after an O(mr2) pre-processing step, we can obtain rotated ridge solutions for an
individual candidate τ in time O(r). Moreover, for the optimal τ∗, we can find the ridge solution
β̂τ∗ = Vα̂τ∗ with respect to the original input matrix via an O(pr) post-processing step. Below
we show how the key statistics that have to be computed per candidate τ (and σ) can be computed
efficiently based on α̂τ , the pre-computed c, and SVD. For the EM algorithm, these are the posterior
squared norm and sum of squared errors, and for the LOOCV algorithm, this is the PRESS statistic.
While the main focus of this work is the EM algorithm, the fast computation of the PRESS shortcut
formula appears to be not widely known (e.g., the current implementation in both scikit-learn
and glmnet do not use it) and may therefore be of independent interest.

ESN For the posterior expected squared norm ESN = σ2tr(A−1
τ ) + ∥β̂τ∥2, we first observe that

∥β̂τ∥2 = ∥Vα̂τ∥2 = ∥α̂τ∥2, and then note that the trace can be computed as

tr(A−1
τ ) = tr(Vp(Σ

2
p + τ−2Ip)

−1VT
p )

= τ2 max(p− n, 0) +

r∑
j=1

1/(s2j + τ−2), (13)
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where in the first equation we denote by Vp, Σ2
p the full matrices of eigenvectors and eigenvalues of

XTX (including potential zeros), and in the second equation we used the cyclical property of the
trace. Thus, all quantities required for ESN can be computed in time O(r) given the SVD and α̂τ .

ESS For the posterior expected sum of squared errors ESS = ∥y −Xβ̂τ∥2 + σ2tr(XTXA−1
τ ),

we can compute the residual sum of squares term via

∥y −Xβ̂τ∥2 = ∥y∥2 − 2yTUΣα̂τ + ∥UΣα̂τ∥2

= ∥y∥2 − 2α̂T
τ c+ ∥s⊙ α̂τ∥2, (14)

where we use β̂τ = Vα̂τ and X = UΣVT in the first equation and the orthonormality of U and
the definition of c = ΣUTy in the second. Finally, for the trace term, we find that

tr(XTXA−1
τ ) = tr(VΣ2VT(V(Σ2 + τ−2Ip)V

T)−1)

=

r∑
j=1

s2j/(s
2
j + τ−2). (15)

PRESS The shortcut formula of the PRESS statistic (4) for a candidate λ requires the computation
of the diagonal elements of the hat matrix H(λ) = X(XTX + λIp)

−1XT as well as the residual
vector e = y −Hy. With the SVD, the first simplifies to

H(λ) = UΣ(Σ2 + λIr)
−1ΣUT

= U diag

(
s21

s21 + λ
, . . . ,

s2r
s2r + λ

)
UT

where we use the fact that diagonal matrices commute. This allows to compute the desired diagonal
elements hii in time O(r) via

hii(λ) =

r∑
j=1

u2
ijs

2
j/(s

2
j + λ) (16)

where uij denotes the elements of U. Computing the residual vector is easily done via the rotated
ridge solution e = y −UΣα̂λ. However, this still requires O(nr) operations, simply because there
are n residuals to compute.

Thus, in summary, by combining the pre-processing with the fast computation of the PRESS statistic,
we obtain an overall O(mr2+ lqnr) implementation of ridge regression via LOOCV where l denotes
the number of candidate λ and q the number of regression target variables. In contrast, for the EM
algorithm, by combining the fast computation of ESS and ESN, we end up with an overall complexity
of O(mr2 + kqr) where k denotes the number of EM iterations. If we further assume that k = o(n),
which is supported by experimental results, see Sec. 5, and that both q, p = O(

√
n) there is an

asymptotic advantage of a factor of l of the EM approach. This regime is common in settings where
more data allows for more fine-grained input as well as output measurements, e.g., in satellite time
series classification via multiple target regression [11, 37]. All time complexities are summarized
in Tab. 1 and detailed pseudocode for both the fast EM algorithm and the fast LOOCV algorithm is
provided in the Appendix (see Table 3 and 4).

5 Empirical Evaluation

In this section, we compare the predictive performance and computational cost of LOOCV against
the proposed EM method. We present numerical results on both synthetic and real-world datasets.
To implement the LOOCV estimator, we use a predefined grid, L = (λ1, . . . , λl). We use the two
most common methods for this task: (i) fixed grid - arbitrarily selecting a very small value as λmin,
a large value as λmax, and construct a sequence of l values from λmax to λmin on log scale; (ii)
data-driven grid - find the smallest value of λmax that sets all the regression coefficient vector to zero
2 (i.e. β̂ = 0), multiply this value by a ratio such that λmin = κλmax and create a sequence from

2For ridge regression, λmax = ∞. Following the glmnet package, the sequence of λ is derived for α = 0.001.
The penalty function used by glmnet is λ[(1−α)∥β∥22 +α∥β∥1], where α = 0 corresponds to ridge regression.
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Figure 2: Comparison of EM to LOOCV variants for increasing n and p for settings with x ∼
Np(0,Σ) and y|x ∼ N(xTβ, 0.25) with random β ∼ Np(0, I) and Σ ∼Wp(I, p).

λmax to λmin on log scale. The latter method is implemented in the glmnet package in combination
with an adaptive κ coefficient

κ =

{
0.0001 , if n ≥ p

0.01 , otherwise
,

which we replicate here as input to our fast LOOCV algorithm (Appendix, Table 4) to efficiently
recover the glmnet LOOCV ridge estimate. 3

We consider a fixed grid of λ = (10−10, . . . , 1010) and the grid based on the glmnet heuristic;
in both cases, we use a sequence of length 100. The latter is a data-driven grid, so we will have
a different penalty grid for each simulated or real data set. Our EM algorithm does not require a
predefined penalty grid, but it needs a convergence threshold which we set to be ϵ = 10−8. All
experiments in this section are performed in Python and the R statistical platform. Datasets and code
for the experimental results is publicly available. As is standard in penalized regression, and without
any loss of generality, we standardized the data before model fitting. This means that the predictors
are standardized to have zero mean, standard deviation of one, and the target has a mean of zero, i.e.,
the intercept estimate is simply β̂0 = (1/n)

∑
yi.

5.1 Simulated Data

In this section, we use a simulation study to investigate the behavior of EM and LOOCV as a function
of the sample size, n, and two other parameters of interest: the number of covariates p, and the noise
level of the target variable. In particular, we are interested in the parameter estimation performance,
the corresponding λ-values, and the computational cost. To gain further insights into the latter, the
number of iterations performed by the EM algorithm is of particular interest, as we do not have
quantitative bounds for its behavior. We consider two settings that vary in the level of sparsity and
correlation structure of the covariates. The first setting (Fig. 1) assumes i.i.d Bernoulli distributed
covariates with small success probabilities that result in sparse covariate matrices, while the second
setting (Fig. 2) assumes normally distributed covariates with random non-zero covariances. In both
cases, the target variable is conditionally normal with mean xTβ for a random β drawn from a
standard multivariate normal distribution.

Looking at the results, a common feature of both settings is that the computational complexity of
the EM algorithm is a non-monotone function in n. In contrast to LOOCV, the behavior of EM
shows distinctive phases where the complexity temporarily decreases with n before it settles into
the, usually expected, monotonically increasing phase. As can be seen, this is due to the behavior of
the number of iterations k, which peaks for small values of n before it declines rapidly to a small

3glmnet LOOCV is computed directly by model refitting via coordinate-wise descent which can be slow.
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constant (around 10) when the cost of the pre-processing begins to dominate. The occurrence of these
phases is more pronounced for both growing p and growing σ. This behavior is likely due to the
convergence to normality of the posterior distribution as the sample size n→∞, with convergence
being slower for large p.

An interesting observation is that CV with the employed glmnet grid heuristic fails, in the sense that
the resulting ridge estimator does not appear to be consistent for large p in Setting 2. This is due to
the minimum value of λ produced by the glmnet heuristic being too large, and the resulting ridge
estimates being overshrunk. This clearly underlines the difficulty of choosing a robust dynamic grid –
a problem that our EM algorithm avoids completely.

5.2 Real Data

We evaluated our EM method on 24 real-world datasets. This includes 21 datasets from the UCI
machine learning repository [5] (unless referenced otherwise) for normal linear regression tasks and
3 time-series datasets from the UCR repository [10] for multitarget regression tasks. The latter is a
multilabel classification problem in which the feature matrix was generated by the state-of-the-art
HYDRA [12] time series classification procedure (which by default uses LOOCV ridge regression
for classification), and we train q ridge regression models in a one-versus-all fashion, where q is the
number of target classes. The datasets were chosen such that they covered a wide range of sample
sizes, n, and number of predictors, p. We compared our EM algorithm against the fast LOOCV in
terms of predictive performance, measured in R2 (and classification accuracy) on the test data, and
computational efficiency.

Our linear regression experiments involve 3 settings: (i) standard linear regression; (ii) second-
order multivariate polynomial regression with added interactions and second-degree polynomial
transformations of variables, and (iii) third-order multivariate polynomial regression with added
three-way interactions and cubic polynomial transformations. For each experiment, we repeated
the process 100 times and used a random 70/30 train-test split. Due to memory limitations, we
limit our design matrix size to a maximum of 35 million entries. If the number of transformed
predictors exceeded this limit, we uniformly sub-sampled the interaction variables to ensure that
p∗ ≤ 35000000/(0.7n), and then fit the model using the sampled variables. Note that we always
keep the original variables (main effects) and sub-sampled the interactions. In the case of multitarget
regression, we performed a random 70/30 train-test split and repeated the experiment 30 times. To
ensure efficient reproducibility of our experiments, we set a maximum runtime of 3 hours for each
dataset. Any settings that exceeded this time limit were consequently excluded from the result table.

Table 2 details the results of our experiments; specifically, the ratio of time taken to run fast LOOCV
divided by the time taken to run our EM procedure (T ), and the R2 values obtained by both methods
on the withheld test set. The number of features, p, and observations, n recorded are values after
data preprocessing (missing observations removed, one-hot encoding transformation, etc.). The
results demonstrate that our EM algorithm can be up to 49 times faster than the fast LOOCV, with
the speed-ups becoming more apparent as the sample size n and the number of target variables q
increases. In addition, we see that this advantage in speed does not come at a cost in predictive
performance, as our EM approach is comparable to, if not better than, LOOCV in almost all cases
(also see Appendix, Figure 1, in which most of R2 values are distributed along the diagonal line).

An interesting observation is that LOOCV using the fixed grid can occasionally perform extremely
poorly (as indicated by large negative R2 values) while LOOCV using the glmnet grid does not
seem to exhibit this behavior. This appears likely to be due to the grid chosen using the glmnet
heuristic. Its performance is artificially improved because it is unable to evaluate sufficiently small
values of λ and is not actually selecting the very small λ value that minimizes the LOOCV score.
The incorrectly large λ values are providing protection in these examples from undershrinkage.

6 Conclusion
The introduced EM algorithm is a robust and computationally fast alternative to LOOCV for ridge
regression. The unimodality of the posterior guarantees a robust behavior for finite n under mild
conditions relative to LOOCV grid search, and the SVD preprocessing enables an overall faster
computation with an ultra-fast O(kmin(n, p)) main loop. Combining this with a procedure such
as orthogonal least-squares to provide a highly efficient forward selection procedure is a promising
avenue for future research. As the Q-function is an expected negative log-posterior, it offers a score
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Table 2: Real datasets experiment results. The first column is the dataset (abbreviated, refer to
Appendix E for the full name); the number of target variables q, the training sample size n, the
raw number of features p; T is the ratio of time tCV/tEM ; p∗ is the number of features including
interactions; EM, Fix, and GLM are the R2 values on the test data for the three procedures.

LINEAR 2ND ORDER 3RD ORDER

DATASET (q) n p T EM FIX GLM p∗ T EM FIX GLM p∗ T EM FIX GLM

TWITTER 408275 77 20 0.94 0.94 0.94 86 16 0.94 0.94 0.94 - - - - -
BLOG 39355 275 13 0.46 0.46 0.46 804 9.1 0.51 0.51 0.51 - - - - -
CT SLICES 37450 379 12 0.86 0.86 0.86 930 7.7 0.92 0.91 0.92 - - - - -
TOMSHW 19725 96 17 0.63 0.63 0.63 1775 6.5 0.71 0.71 0.71 - - - - -
NPD - COM 8353 13 13 0.84 0.84 0.84 104 15 1.00 1.00 1.00 559 8.6 1.00 1.00 1.00
NPD - TUR 8353 13 14 0.91 0.91 0.91 104 15 1.00 1.00 1.00 559 8.6 1.00 1.00 1.00
PT - MOTOR 4112 19 13 0.15 0.15 0.15 208 12 0.25 0.19 0.21 1539 3.9 -1.09 0.01 0.04
PT - TOTAL 4112 19 13 0.17 0.17 0.17 208 12 0.24 0.23 0.21 1539 3.7 -1.38 -0.04 0.00
ABALONE 2923 9 13 0.53 0.53 0.53 51 16 0.38 0.35 0.50 209 12 0.28 0.12 0.12
CRIME 1395 99 14 0.66 0.66 0.66 5049 1.3 0.67 -0.74 0.66 17652 1.1 0.66 -0.22 0.60
AIRFOIL 1052 5 17 0.51 0.51 0.51 20 14 0.62 0.62 0.62 55 11 0.73 0.73 0.73
STUDENT 730 39 12 0.18 0.18 0.18 801 3.8 0.19 -0.89 0.16 10693 1.1 0.19 -6.22 -0.18
CONCRETE 721 8 16 0.61 0.61 0.61 44 11 0.78 0.78 0.78 164 5.5 0.85 0.85 0.85
F.FIRES 361 12 2.4 -0.01 -0.01 -0.03 295 0.5 -0.01 -0.01 -0.14 1984 0.3 -0.01 -50.6 -0.45
B.HOUSING 354 13 11 0.71 0.71 0.71 104 8.1 0.84 0.83 0.80 559 2.2 0.83 -3E2 0.83
FACEBOOK 346 15 15 0.91 0.91 0.91 167 6.6 -5.09 -26.4 -3.99 1087 1.9 -2.53 -2E4 -5.76
DIABETES 1 309 10 13 0.49 0.49 0.49 65 6.5 0.49 0.48 0.48 285 2.1 0.47 0.47 0.47
R.ESTATE 289 6 13 0.56 0.56 0.56 27 10 0.65 0.65 0.65 83 5.5 0.65 0.65 0.65
A.MPG 278 8 13 0.81 0.81 0.81 35 8.3 0.86 0.86 0.86 119 4.1 0.86 0.86 0.86
YACHT 215 7 16 0.97 0.97 0.97 27 11 0.97 0.97 0.97 83 6.1 0.98 0.98 0.98
A.MOBILE 111 25 6.1 0.90 0.89 0.89 1076 1.7 0.90 -4E3 0.89 12924 0.5 0.88 -1E4 0.83
EYE 1 84 200 2.7 0.50 0.26 0.45 20300 1.3 0.19 0.19 0.19 - - - - -
RIBO 1 49 4088 2.3 0.64 0.64 0.64 - - - - - - - - - -

CROP (24) 2 11760 3072 49 0.75 0.75 0.76 - - - - - - - - - -
ELECD (7) 2 11645 4096 9.2 0.88 0.88 0.89 - - - - - - - - - -
STARL (3) 2 6465 7168 2.1 0.98 0.60 0.98 - - - - - - - - - -

1 This dataset is not from the UCI repository. Data references can be found in the appendix.
2 Time-series dataset from the UCR repository. EM, Fix, and GLM are the classification accuracy on the test data

on which the usefulness of predictors themselves may be assessed, i.e., a model selection criteria,
resulting in a potentially very accurate and fast procedure for sparse model learning. An important
open problem is the theoretical analysis of the expected number of EM iterations k that is required for
convergence. The empirical evidence suggests that k converges to a constant, and is thus negligible
in the asymptotic time complexity. This is in alignment with the convergence of the posterior to a
multivariate normal distribution. However, such intuitive and empirical arguments cannot replace a
rigorous worst-case analysis.
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A EM Procedure for Multiple Means

We show that the Bayesian EM procedure provides sensible estimates of the regularization parameter
even in the setting of the normal multiple means problem with known variance σ2. In this setting, the
LOOCV is unable to provide any guidance on how to choose λ due to all the information for each
regression parameter being concentrated in a single observation. We use the τ parameterisation of
the hyperparameter, rather than τ2, as the resulting estimator has an easy to analyse form.

In the normal multiple means model, we are given (yi|βi) ∼ N(βi, 1), i.e., y is a p-dimensional
normally distributed vector with mean β and identity covariance matrix. The conditional posterior
distribution of β is:

β|y, τ ∼ N
(
(1− κ)y, σ2(1− κ)

)
(17)

where κ = 1/(1+ τ2). Under this setting, Strawderman [43] proved that if p ≥ 3, then any estimator
of the form (

1− r

(
1

2
||y||2

)
p− 2

||y||2

)
y (18)

where 0 ≤ r
(
1
2 ||y||

2
)
≤ 2 and r(·) is non-decreasing, is minimax, i.e., it dominates least-squares.

We will now show that our EM procedure not only yields reasonable estimates in this setting, in
contrast to LOOCV, but that these estimates are minimax, and hence dominate least-sqaures.

For the normal means model, we can obtain a closed form solution for the optimum τ , by solving for
the stationary point for which τt+1 = τt, with τ ∼ C+(0, 1):

argmin
τ

{Eβ[− log p(y|β, τ)− log p(β|τ)− log π(τ)]} = τ

argmin
τ

{p
2
log τ2 +

w

2τ2
+ log(1 + τ2)

}
= τ√

w − p+
√

p2 + 8w + 2pw + w2

2(2 + p)
= τ,

and with w =
∑p

j=1 E
[
β2
j

]
= (1− κ)2s+ (1− κ)p, s = ||y||2 and τ =

√
1−κ
κ . This yields√

(
√
p((κ− 2)2p− 8κ+ 8)− 2(κ− 1)2s((κ− 2)p− 4) + (κ− 1)4s2 − κp+ (κ− 1)2s)

2(2 + p)
=

√
1− κ

κ

with solution κ = (p+ 2)/s. Plugging this κ solution into (17), we note that the resulting estimator
of β (17) is of the form (18) with

r

(
1

2
||y||2

)
=

(
p+ 2

||y||2

)
/

(
p− 2

||y||2

)
=

p+ 2

p− 2

As we have r
(
1
2 ||y||

2
)
≤ 2 when p ≥ 6, the EM ridge estimator is minimax in this setting for p ≥ 6.

B Proof of Theorem 3.1

We prove that for sufficiently large n, a continuous injective reparameterization of the negative log
joint posterior of (5) & (7) is convex when restricted to τ2 ≥ ϵ. This is sufficient, since unimodality
is preserved by strictly monotone transformations and continuous injective reparameterizations.

Specifically, for the presented hierarchical model, the negative log joint posterior up to an additive
constant is

n+ p+ 2

2
log σ2 +

1

2σ2
∥y −Xβ∥2 + p+ 2− 2a

2
log τ2 +

∥β∥2

2σ2τ2
+ (a+ b) log(1 + τ2)

and reparameterising with ϕ = β/σ, ρ = 1/σ and χ = 1/τ and reorganising terms yields

−(n+ p+ 2) log ρ− (p+ 2− 2a) logχ+ (a+ b) log(1 + χ−2) +
1

2
∥ρy −Xϕ∥2 + ∥χϕ∥

2

2
.
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The first three terms can easily be checked to be convex via a second derivative test, for which the
convexity of the second term is contingent on the condition that a < 1 + p/2, a condition that holds
true in our specific scenario with a = b = 1/2. For the last two terms, the combined Hessian is of
block form [A,B;BT,C] with A = XTX+ χ2Ip, B = 2χϕ, and C = ∥ϕ∥2. Symmetric matrices
of this form are positive definite if A and its Schur complement

C−BTA−1B = ∥ϕ∥2 − 4ϕT(XTX/χ2 + Ip)
−1ϕ

are positive definite. Clearly, A is positive definite. Moreover, for n > 4/(ϵ2γn), we have

ϕT(XTX/χ2 + I)−1ϕ = ϕT(VΣTΣVT/χ2 + I)−1ϕ

= ϕTV(ΣTΣ/χ2 + I)−1VTϕ

≤ ϕTVVTϕχ2/(nγn)

= ((I−VVT)ϕ+VVTϕ)TVVTϕχ2/(nγn)

= ∥VVTϕ∥2χ2/(nγn)

≤ ∥ϕ∥2χ2/(nγn)

< ∥ϕ∥2/(ϵ2nγn)
< ∥ϕ∥2/4

where we used the fact that VVT is the orthogonal projection onto the column space of V. The
overall inequality implies the required positivity of the Schur complement.

C Derivation of Equation 9

C.1 Derivation of ESN

Here we show that
p∑

j=1

E
[
β2
j | τ̂ (t), σ̂2(t)

]
= tr (Cov[β]) +

p∑
j=1

E[βj ]
2

= σ2tr(A−1
τ ) + ∥β̂τ∥2

This is a rather straightforward proof. We use the fact that given a random variable x; the expected
squared value of x is E

[
x2
]
= Var[x] + E[x]

2.

C.2 Derivation of ESS

Here we show that

Eβ

[
||y −Xβ||2 | τ̂ (t), σ̂2(t)

]
= ||y −X E[β] ||2 + tr(XTX Cov[β]) (19)

We first provide an important fact on the quadratic forms of random variables in Lemma C.1 below:
Lemma C.1. Let b be a p-dimensional random vector and A be a p-dimensional symmetric matrix.
If E[b] = µ and Var(b) = Σ, then E

[
bTAb

]
= tr(AΣ) + µTAµ.

Now, we expand the left-hand side of Equation 19 :

Eβ

[
||y −Xβ||2

]
= Eβ

[
(y −Xβ)T (y −Xβ)

]
= Eβ

[
yTy − 2yTXβ + βTXTXβ

]
= yTy − 2 yTXE[β] + E

[
βTXTXβ

]
(20)

The use of lemma C.1 allows Equation 20 to be rewritten as

Eβ

[
||y −Xβ||2

]
= yTy − 2 yTXE[β] + E[β]

T
(XTX)E[β] + tr(XTX Cov[β])

= ||y −X E[β] ||2 + tr(XTX Cov[β])

= ||y −X β̂τ ||2 + σ2tr(XTXA−1
τ )
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D Solving for the parameter updates (Derivation of Equation 11)

Rather than solving a two-dimensional numerical optimization problem (10), we show that given
a fixed τ2, we can find a closed formed solution for σ2, and vice versa. To start off, we need to
find the solution for σ2 as a function of τ2. First, find the negative logarithm of the joint probability
distribution of hierarchy (5):

argmin
σ2

{
Eβ

[
− log p(y|X,β, σ2)− log p(β|τ2, σ2)− log p(σ2)− log π(τ2)

]}
. (21)

Dropping terms that do not depend on σ2 yields:

argmin
σ2

{
Eβ

[
− log p(y|X,β, σ2)− log p(β|τ2, σ2)− log p(σ2)

]}
= argmin

σ2

{(
n+ p

2

)
log σ2 +

ESS

2σ2
+

ESN

2σ2τ2
+ log σ2

}
= argmin

σ2

{(
n+ p+ 2

2

)
log σ2 +

ESS

2σ2
+

ESN

2σ2τ2

}
. (22)

Solving the above minimization problem involves differentiating the negative logarithm with respect
to σ2 and solving for σ2 that set the derivative to zero. This gives us:

∂

∂σ2

{(
n+ p+ 2

2

)
log σ2 +

ESS

2σ2
+

ESN

2σ2τ2

}
= 0

2 + n+ p

2σ2
− ESS

2(σ2)2
− ESN

2(σ2)2τ2
= 0

σ̂2 =
τ2ESS + ESN

(n+ p+ 2)τ2
(23)

Next, to obtain the M-step updates for the shrinkage parameter τ2, we repeat the same procedure -
find the negative logarithm of the joint probability distribution and remove terms that do not depend
on either σ2 or τ2:

argmin
τ2

{
Eβ

[
− log p(y|X,β, σ2)− log p(β|τ2, σ2)− log p(σ2)− log π(τ2)

]}
= argmin

τ2

{(
n+ p+ 2

2

)
log σ2 +

ESS

2σ2
+

ESN

2σ2τ2
+

p

2
log τ2 + log(1 + τ2) +

log τ2

2

}
(24)

Substiting the solution for σ2 (23) into equation (24), yields a Q-function that depends only on τ2.
We eliminate the dependency on σ2 by finding the optimal σ2 as a function of τ2 and substitute it
into the Q-function of (24):

argmin
τ2

{
1

2

[
(1 + p) log τ2 + 2 log(1 + τ2) + (n+ p+ 2)

(
1 + log

(
ESN + τ2ESS

(n+ p+ 2)τ2

))]}
(25)

Differentiating (25) with respect to τ2 and solving for the τ2 that set the derivative to zero yields:

∂

∂τ2

{
1

2

[
(1 + p) log τ2 + 2 log(1 + τ2) + (n+ p+ 2)

(
1 + log

(
ESN + τ2ESS

(n+ p+ 2)τ2

))]}
= 0

(3ESS + ESSp)(τ2)2 + (ESN− ESNn+ ESS + ESSp)τ2 − ESN− ESNn

2τ2(1 + τ2)(ESN + τ2ESS)
= 0.

(26)

The τ2 update is the positive solution to the quadratic equation (in terms of τ2) (26):

τ̂2 =
(n− 1)ESN− (1 + p)ESS +

√
(4n+ 4)ESN(3 + p)ESS + ((1− n)ESN + (p+ 1)ESS)2

(6 + 2p)ESS
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Table 3: Pseudo-code of EM algorithm with complexity of individual steps.

EM Algorithm with SVD Operations

Input: Standardised predictors X ∈ Rn×p, centered targets y ∈ Rn and convergence
threshold ϵ > 0
Output: β ∈ Rp

r = min(n, p) O(1)
IF p ≥ n

[U,Σ,V] = svd(X) O(mr2)
s2 = (Σ2

1,1, . . . ,Σ
2
r,r) O(r)

c = (UTy)⊙ s O(nr)
ELSE
[V,Σ2] = eigen(XTX) O(mr2)
s2 = (Σ2

1,1, . . . ,Σ
2
r,r) O(r)

c = VTXTy O(np)
Y = yTy O(n)
τ2 ← 1 O(1)

σ2 ← (1/n)
∑n

i=1 (yi − ȳ)
2
, ȳ = (1/n)

∑n
i=1 yi O(n)

RSS←∞ O(1)

DO
RSSold ← RSS O(k)

αj ←
cj

s2j + 1/τ2
O(kr)

(E-step)

ESN←
r∑

j=1

α2
j + σ2

 r∑
j=1

1

s2j + τ−2
+ τ2 max(p− n, 0)

 O(kr)

RSS← Y − 2

r∑
j=1

αjcj +

r∑
j=1

α2
js

2
j O(kr)

ESS← RSS + σ2

 r∑
j=1

s2j
s2j + τ−2

 O(kr)

(M-step)
g ← (4n+ 4)ESN (3 + p)ESS + ((1− n)ESN + (p+ 1)ESS)2 O(k)

τ2 ←
(n− 1)ESN− (1 + p)ESS +

√
g

(6 + 2p)ESS
O(k)

σ2 ← τ2ESS + ESN

(n+ p+ 2)τ2
O(k)

δ ← |RSSold − RSS|
(1 + |RSS|)

O(k)

until δ < ϵ

αj ←
cj

s2j + 1/τ2
O(kr)

β = Vα O(pr)
return β
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Table 4: Pseudocode of the fast LOOCV algorithm with complexity of individual steps. R has
column vectors rj for 1 ≤ j ≤ r.

Fast LOOCV ridge with SVD Operation

Input: Standardised predictors X ∈ Rn×p, centered targets y ∈ Rn and a grid of
penalty parameters L = (λ1, λ2, . . . , λl)
Output: β ∈ Rp

r = min(n, p) O(1)
IF p ≥ n

[U,Σ,V] = svd(X) O(mr2)
s = (Σ1,1, . . . ,Σr,r) O(r)
R = (s1u1, . . . , srur) O(nr)
c = (UTy)⊙ s O(nr)

ELSE
[V,Σ2] = eigen(XTX) O(mr2)
s2 = (Σ2

1,1, . . . ,Σ
2
r,r) O(r)

R = XV O(nrp)
c = RTy O(nr)
U = (r1/s1, . . . , rr/sr) O(nr)

for λ ∈ L {

hi =

r∑
j=1

(
s2j

s2j + λ

)
u2
ij , (i = 1, . . . , n) O(lnr)

αj =
cj

s2j + λ
O(lr)

e = y −Rα O(lnr)

CVE(λ) =
1

n

n∑
i=1

(
ei

1− hi

)2

O(ln)

}
Find λ∗ = argmin

λ∈L
{CVE(λ)} O(l)

αj =
cj

s2j + λ∗ O(r)

β = Vα O(pr)
return β
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E Supplementary Results Material

E.1 Real Datasets Details

Table 5: Real datasets details

DATASETS ABBREVIATION n p TARGET VARIABLE SOURCE

BUZZ IN SOCIAL MEDIA (TWITTER) TWITTER 583250 77 mean number of active discus-
sion

UCI

BLOG FEEDBACK BLOG 60021 281 number of comments in the next
24 hours

UCI

RELATIVE LOCATION OF CT SLICES
ON AXIAL AXIS

CT SLICES 53500 386 reference: Relative image loca-
tion on axial axis

UCI

BUZZ IN SOCIAL MEDIA (TOM’S
HARDWARE)

TOMSHW 28179 97 Mean Number of display UCI

CONDITION-BASED MAINTENANCE OF
NAVAL PROPULSION PLANTS

NPD - COM 11934 16 GT Compressor decay state co-
efficient

UCI

CONDITION-BASED MAINTENANCE OF
NAVAL PROPULSION PLANTS

NPD - TUR 11934 16 GT Turbine decay state coeffi-
cient

UCI

PARKINSON’S TELEMONITORING PT - MOTOR 5875 26 motor UPDRS score UCI
PARKINSON’S TELEMONITORING PT - TOTAL 5875 26 total UPDRS score UCI
ABALONE ABALONE 4177 8 Rings (age in years) UCI
COMMUNITIES AND CRIME CRIME 1994 128 ViolentCrimesPerPop UCI
AIRFOIL SELF-NOISE AIRFOIL 1503 6 Scaled sound pressure level

(decibels)
UCI

STUDENT PERFORMANCE STUDENT 649 33 final grade (with G1 & G2 re-
moved)

UCI

CONCRETE COMPRESSIVE STRENGTH CONCRETE 1030 9 Concrete compressive strength
(MPa)

UCI

FOREST FIRES F.FIRES 517 13 forest burned area (in ha) UCI
BOSTON HOUSING B.HOUSING 506 13 Median value of owner-

occupied homes in $1000’s
[21]

FACEBOOK METRICS FACEBOOK 500 19 Total Interactions (with com-
ment, like, and share columns
removed)

UCI

DIABETES DIABETES 442 10 quantitative measure of disease
progression one year after base-
line

[13]

REAL ESTATE VALUATION R.ESTATE 414 7 house price of unit area UCI
AUTO MPG A.MPG 398 8 city-cycle fuel consumption in

miles per gallon
UCI

YACHT HYDRODYNAMICS YACHT 308 7 residuary resistance per unit
weight of displacement

UCI

AUTOMOBILE A.MOBILE 205 26 price UCI
RAT EYE TISSUES EYE 120 200 the expression level of TRIM32

gene
[39]

RIBOFLAVIN RIBO 71 4088 Log-transformed riboflavin pro-
duction rate

[9]

CROP CROP 24000 3072 24 crop classes UCR
ELECTRIC DEVICES ELECD 16637 4096 7 electric devices UCR
STARLIGHT CURVES STARL 9236 7168 3 starlight curves UCR
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Figure 3: Comparison of predictive performance (R2) of EM algorithm (x-axes) against CV with
fixed grid (y-axes, top) and glmnet heuristic (y-axis, bottom). Columns correspond to the results of
linear features (left), second-order features (middle), and third-order features (right). Negative values
are capped at 0. Points skewing toward the bottom right indicate when our EM approach is giving
better/same prediction performance as LOOCV (colored in green).
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