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Abstract

The rapid advancement of Large Language001
Models (LLMs) has revolutionized text gen-002
eration but also raised concerns about poten-003
tial misuse, making detecting LLM-generated004
text (AI text) increasingly essential. While005
prior work has focused on identifying AI text006
and effectively checkmating it, our study in-007
vestigates a less-explored territory: portray-008
ing the nuanced distinctions between human009
and AI texts across text segments (introduction,010
body, and conclusion). Whether LLMs excel011
or falter in incorporating linguistic ingenuity012
across text segments, the results will critically013
inform their viability and boundaries as effec-014
tive creative assistants to humans. Through015
an analogy with the structure of chess games,016
comprising opening, middle, and end games,017
we analyze segment-specific patterns to reveal018
where the most striking differences lie. Al-019
though AI texts closely resemble human writ-020
ing in the body segment due to its length,021
deeper analysis shows a higher divergence in022
features dependent on the continuous flow of023
language, making it the most informative seg-024
ment for detection. Additionally, human texts025
exhibit greater stylistic variation across seg-026
ments, offering a new lens for distinguishing027
them from AI. Overall, our findings provide028
fresh insights into human-AI text differences029
and pave the way for more effective and inter-030
pretable detection strategies. Codes available031
at https://simpleurl.tech/TGKBi.032

1 Introduction033

When Garry Kasparov, then world chess champion,034

lost to IBM’s Deep Blue, a chess-playing super-035

computer, in 1997 (Pandolfini, 1997), it marked a036

turning point in AI history, the moment machines037

overtook humans in a game long considered a sym-038

bol of strategic mastery. A similar shift occurred039

with the public debut of ChatGPT in late 2022, as040

Large Language Models (LLMs) captured global041

attention and began reshaping the landscape of042
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Figure 1: An illustration of the resemblance between
chess and AI text generation. Both involve context-
driven decision-making and share a three-part structure.

communication, creativity, and cognition. With 043

models like GPT-4 passing professional exams 044

(Katz et al., 2024) and even approaching Turing 045

test benchmarks (Jones and Bergen, 2025), these 046

advancements raise critical questions about distinc- 047

tiveness of human intellect. Interestingly, AI chess 048

engines and LLMs share a remarkable similarity. 049

While chess engines determine the best move from 050

a given board state, LLMs predict the next token 051

based on preceding text. This shared mechanism of 052

context-driven prediction has even led to the devel- 053

opment of transformer-based chess engines capable 054

of achieving Grandmaster-level performance (Ru- 055

oss et al., 2024). 056

Inspired by this transformation, we revisit the 057

metaphor of chess to investigate a new frontier: 058

understanding how human and AI-generated texts 059

differ across segments. In both chess and writ- 060

ing, structure matters. A chess match progresses 061

through the opening, middlegame, and endgame, 062

each demanding different levels of strategic reason- 063

ing. Likewise, written texts often follow a tripartite 064

structure: an introduction to set the stage, a body to 065

deliver core arguments, and a conclusion to synthe- 066

size insights. Chess opening and endgame moves 067
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Figure 2: Segment comparison results using LIWC (Boyd et al., 2022) and WritePrint (Abbasi and Chen, 2008)
features: (a) In the original setting (E), the body segment shows less difference between human and AI texts, likely
due to its greater length. Under length-controlled conditions: (b) C1 (equal segmentation) and (c) C2 (body matched
to introduction/conclusion length), the body/middle segment exhibits the highest divergence.

are often heavily studied, analyzed, and codified068

into established theories for AI chess engines, like069

IBM DeepBlue (Campbell et al., 2002) or Stock-070

Fish (Romstad et al., 2008). However, it is the071

dynamic middlegame where the true mastery of072

players is put to the test (Znosko-Borovski, 1922).073

As Brian Christian (Christian, 2011) explores in his074

book “The Most Human Human”, the middlegame075

represents the crucible where creativity, strategy,076

and adaptability separate humans from AI.077

Just as in the middlegame of chess, one critical078

question arises: can LLMs move beyond following079

the typical opening and ending from their train-080

ing data to navigate the fluid “middlegame” of text081

generation with the same linguistic ingenuity as hu-082

mans? While recent studies have made substantial083

progress in distinguishing LLM-generated (AI text)084

from human-written text using stylometric features085

(Muñoz-Ortiz et al., 2024; Rosenfeld and Lazeb-086

nik, 2024; Guo et al., 2024; Reinhart et al., 2025),087

thus checkmating them, they often overlook the088

structural context of the text. Do different text seg-089

ments contribute differently to AI detection? And090

more importantly, do humans and LLMs exhibit091

similar patterns of stylistic variation across these092

segments? The answer has important implications,093

as limitations in this area could hinder their effec-094

tiveness in creative domains, while success would095

reinforce their role as versatile writing assistants.096

Therefore, in this paper, we explore these ques-097

tions through a comprehensive computational anal-098

ysis of human and AI texts, focusing on three do-099

mains, news articles, essays, and emails, all of100

which naturally follow a structured format (Henry101

and Roseberry, 1997; Medvid and Podolkova,102

2019; Matruglio, 2020). Our dataset includes both103

human texts and generations from four prominent104

LLMs: ChatGPT (GPT-3.5), PaLM (text-bison-105

001), LLaMA2 (llama2-chat-7b), and Mistral (mis-106

tral 7b). We introduce two core analyses:107

1. Segment Comparison: Do differences be- 108

tween human and AI texts vary across seg- 109

ments? 110

2. Source Comparison: Do internal stylistic 111

variation across segments differ between hu- 112

mans and AI texts ? 113

Our findings are both surprising and insightful. 114

While body segments initially appear more simi- 115

lar between human and AI texts (Figure 2), this is 116

largely due to their greater length (Révész, 2014). 117

In length-controlled settings, the body (or middle) 118

consistently reveals the most significant differences. 119

Moreover, it plays a dominant role in AI text detec- 120

tion. We also find that humans exhibit more varia- 121

tion across text segments than LLMs, reinforcing 122

that LLMs tend to maintain a consistent stylistic 123

fingerprint throughout. To further ground our anal- 124

ogy, we also analyze over 166K chess games to 125

examine how human and AI players differ across 126

game phases, showing that divergence peaks in the 127

middlegame, the creative core of a match. Over- 128

all, our research sheds new light on the nuanced 129

distinctions between human and AI text, offering 130

a compelling step toward understanding the sub- 131

tle yet defining elements that make human writing 132

authentically human. 133

2 Related Works 134

Stylometry difference between human and AI 135

text Stylometry features have long been effective 136

in text classification and authorship analysis tasks, 137

and can be proxies for creative chokepoints in text 138

(Neal et al., 2017). With the growing availabil- 139

ity of LLM-generated text datasets (Dugan et al., 140

2024; Tripto et al., 2023; Verma et al., 2024), recent 141

research has applied these features to distinguish 142

between human and AI text. For example, AI texts 143

often differ from human writing in vocabulary di- 144

versity (Muñoz-Ortiz et al., 2024), distinctive word 145
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Figure 3: Methodology: given a dataset of parallel human and AI texts, we divide each document into three segments
and extract a comprehensive set of features from each segment. We perform statistical significance tests for segment
and source comparisons for each feature, considering all possible combinations.

choices (Berriche and Larabi-Marie-Sainte, 2024),146

formality (Al Hosni, 2024), and rhetorical styles147

(Reinhart et al., 2025). Therefore, several studies148

have leveraged linguistic features for AI text de-149

tection (Casal and Kessler, 2023; Guo et al., 2024;150

Rosenfeld and Lazebnik, 2024), citing their ex-151

plainability (Muñoz-Ortiz et al., 2024) and strong152

statistical performance (Herbold et al., 2023). De-153

spite these relevant studies, LLMs become increas-154

ingly adept at mimicking human writing styles,155

and their difference is narrowing (Toshevska and156

Gievska, 2025).157

AI text detection With the rapid advancement of158

LLMs, interest in detecting AI-generated text has159

surged across domains. Beyond stylometry-based160

methods, current detection approaches include fine-161

tuned models like the RoBERTa-based OpenAI De-162

tector (Solaiman et al., 2019), GROVER (Zellers163

et al., 2019), MAGE (Li et al., 2024), RADAR (Hu164

et al., 2023), and LLM-DetectAIve (Abassy et al.,165

2024), which use supervised learning on binary166

classification tasks (human vs. AI). In contrast, sta-167

tistical and zero-shot detectors, such as DetectGPT168

(Mitchell et al., 2023), DetectLLM (Su et al., 2023),169

GPT-who (Venkatraman et al., 2023), and Binoc-170

ulars (Hans et al., 2024a) leverage distributional171

differences, often via perplexity, to offer more ro-172

bust cross-domain performance. Commercial tools173

like GPTZero (Tian, 2023), Originality.ai 1, and174

Turnitin’s AI detector 2 also provide user-facing175

solutions. While many of these methods highlight176

important tokens for interpretability, they generally177

overlook which text segments contribute most to178

detection. By analyzing how different linguistic179

differences vary across text segments, our study of-180

1https://originality.ai/ai-checker
2https://www.turnitin.com/campaigns/clarity//

fers a novel and necessary extension to the current 181

literature, advancing the theoretical understanding 182

and practical methodologies for AI text detection. 183

3 Methodology 184

Motivated by the chess middlegame analogy, we 185

examine how human and AI texts differ across dif- 186

ferent segments. Figure 3 presents an overview of 187

our methodological framework. 188

3.1 Dataset creation 189

We compile datasets from three domains (news ar- 190

ticles, emails, and essays), each containing human- 191

authored texts paired with corresponding LLM- 192

generated versions. Our study includes four LLMs: 193

ChatGPT (gpt-3.5-turbo) from OpenAI, PaLM 194

(text-bison-001) from Google, LLaMA2 (llama2- 195

chat-7b) from Meta, and Mistral 7b from Mistral 196

AI, representing both open-source and proprietary 197

models. For essays, we use the Persuade corpus 198

(Crossley et al., 2022), featuring ∼1700 argumen- 199

tative essays from US students (grades 6–12) and 200

matching LLM generations from a Kaggle competi- 201

tion (King et al., 2023). For news, we use the Ghost- 202

buster dataset (Verma et al., 2024), which includes 203

Reuters articles and corresponding LLM outputs. 204

For emails, we select a subset of the Enron corpus 205

(Klimt and Yang, 2004), filtering for users with at 206

least 10 emails and removing extreme-length or 207

attachment-containing messages. LLMs writings 208

are generated using header information and a sum- 209

mary of the original content. We perform sanity 210

checks on all generations. Table 1 summarizes key 211

statistics across domains. 212

3.2 Text segmentation 213

Segmenting text into introduction, body, and con- 214

clusion is inherently subjective (Hearst, 1994; Au- 215
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Dataset
(Domain) Source # texts Avg. #

words
Avg. #

sentences
I-B-C

ratio(%)
Reuter
(News)

Human 989 310.90 10.98 13-67-20
AI 4741 288.05 10.87 15-57-28

Enron
(Email)

Human 1632 173.34 8.78 17-70-13
AI 6289 144.61 8.63 17-63-20

Persuade
(Essays)

Human 1717 269.93 13.58 18-60-22
AI 3788 280.38 13.71 18-56-26

Table 1: Dataset statistics. I-B-C is the ratio of introduc-
tion (I), body (B), and conclusion (C) (Setting E)

miller et al., 2021), as these sections often lack216

clear boundaries and vary significantly across writ-217

ing styles, domains, and contexts. Manually anno-218

tating a large dataset would be prohibitively ex-219

pensive and time-consuming. However, recent220

advances in LLMs have demonstrated strong per-221

formance in natural language understanding tasks,222

often achieving human-level performance (Thapa223

et al., 2023; Michelmann et al., 2025; Sun et al.,224

2024). Therefore, we employ gemini-1.5-flash (ex-225

cluded from our authorship analysis to mitigate226

bias) to segment texts in our original setting (E).227

Since body segments are typically longer (Henry228

and Roseberry, 1997; Raharjo and Nirmala, 2016),229

we also explore length-controlled segmentation: in230

C1, dividing texts into three equal parts, and in231

C2, sampling a body portion matching the average232

length of the introduction and conclusion. In all233

settings, we ensure that the segments contain com-234

plete sentences to preserve semantic coherence and235

readability (Van Dijk, 1980; Graesser, 2003).236

Given the subjective nature of text segmentation,237

we show that our LLM-based approach is robust238

and well-aligned with alternative methods. We use239

the Segmentation Similarity Score (Fournier and240

Inkpen, 2012) (0 to 1, where 1 indicates identical241

segmentation) to evaluate text segmentation based242

on sentence counts. To validate our method, we243

segment a subset of 300 samples across all do-244

mains. Two human annotators (authors of this pa-245

per) provide manual segmentations to assess align-246

ment with human perception, and we use GPT-4247

to evaluate consistency between LLMs. Addition-248

ally, we fine-tune a BERT model on the human-249

segmented data to compare with standard computa-250

tional techniques. As shown in Table 2, all compar-251

isons yield segmentation similarity scores above252

90%, with no statistically significant differences253

(α = 0.05) among human-human, LLM-LLM, and254

LLM-human pairings. These results confirm that255

our LLM-based method, though not exact, reliably256

captures the structure of segmented text.257

Dataset/Source S Judgement criteria S
Persuade 0.96 Gemini vs GPT4 0.93
Enron 0.90 Gemini vs Human 1 0.91
Reuter 0.87 Gemini vs Human 2 0.92
Human 0.87 GPT4 vs Human 1 0.92
ChatGPT 0.91 GPT4 vs Human 2 0.91
PaLM 0.93 Human 1 vs Human 2 0.94
Llama-2 0.93 Gemini vs Finetuned BERT 0.92
Mistral 0.96

Table 2: Segmentation Similarity Score (S) for different
dataset/LLM and judgement criteria.

3.3 Feature extractions 258

We extract traditional stylometric feature sets such 259

as LIWC (Linguistic Inquiry and Word Count), 260

which provides psycholinguistic characteristics 261

(Boyd et al., 2022), and Writeprint features, which 262

capture an author’s distinctive stylometric patterns 263

(Abbasi and Chen, 2008). Additionally, we exam- 264

ine how specific features vary across different seg- 265

ments and sources. Therefore, we include several 266

individual lexical (vocabulary richness, readabil- 267

ity), syntactic (part-of-speech tags, named entity 268

tags, stopwords distributions) opinion (formality, 269

sentiment, subjectivity), contextual (text embed- 270

ding), and text perplexity-related features, offering 271

a comprehensive analysis of the text’s stylistic and 272

structural attributes (details in Appendix D). 273

To use these features for segment and source 274

comparison using statistical significance tests, we 275

first define a difference measure, denoted as ∆, 276

between two feature values. Features are catego- 277

rized as either scalar (e.g., vocabulary richness, 278

readability, sentiment score) or distributional (e.g., 279

POS-tag, stopwords, and LIWC distributions). For 280

scalar features, we use absolute difference. For dis- 281

tributional features, we apply Jensen–Shannon Di- 282

vergence (JSD) (Lin, 1991), a symmetric, bounded 283

metric well-suited for comparing discrete proba- 284

bility distributions (Endres and Schindelin, 2003). 285

For vector-based features not summing to one, such 286

as perplexity scores and contextual embeddings, 287

we use correlation distance and cosine distance, 288

respectively. These capture relational and angu- 289

lar differences, making them appropriate for high- 290

dimensional comparisons (Ruppert, 2004; Huang 291

et al., 2008; Turney and Pantel, 2010). 292

3.4 Statistical significance test 293

We conduct separate statistical tests for each lin- 294

guistic feature. Given two text sources (Sources, 295

H: Human, A: AI) and three segments from each 296
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Criteria Description
White vs Black Human as white (53.08%), AI as white (46.92%)
AI win % as white Win (71.36%), Draw (5.29%), Loss (23.35%)
AI win % as black Win (67.23%), Draw (4.79%), Loss (27.98%)
Elo ratings Human (1503-2433), AI (1557-2761)
Game category Blitz (29.71%), Lighting (29.29%), Standard (41%)
Move category Opening (28.31%), Middle (29.23%), End (42.46%)
Top 4 ECO codes A00(4.54%), A45(4.09%), D00(3.23%), C50(2.37%)

Table 3: A summary of the chess dataset.

text (Segments, I: Introduction, B: Body, C:297

Conclusion), we define Zx as an individual feature298

from segment x for source Z.299

For source comparison tests, we consider pair-300

wise segments, x, y ∈ {I,B,C}, compute their301

differences for human and AI texts, ∆(Hx, Hy)302

and ∆(Ax, Ay), respectively. We evaluate whether303

human cross-segment differences ∆(Hx, Hy) are304

statistically greater than (>), less than (<), or305

comparable (∼) to AI cross-segment differences306

∆(Ax, Ay), for specific pair of segments. Similarly,307

for segment comparison, we compute the differ-308

ence between human and AI texts for all three seg-309

ments, ∆(HI , AI), ∆(HB, AB), and ∆(HC , AC)310

to determine whether human-AI differences are sta-311

tistically similar across segments. Details of the312

tests are mentioned in the Appendix B.313

3.5 Chess dataset creation314

Since our study was motivated by the chess mid-315

dlegame analogy, we conduct a concise yet sys-316

tematic analysis of chess games to computationally317

explore whether these differences vary by phases.318

Using games from the Free Internet Chess Server319

(FICS) database3, we compile a dataset of ranked320

human vs AI games played between 2018 and 2020,321

selected due to the rise of AlphaZero (Silver et al.,322

2018) and the emergence of open-source AI chess323

bots (McIlroy-Young et al., 2020). We include324

only games between 30 and 100 moves, exclud-325

ing short (due to early blunders or resignations) or326

excessively long games (repetitive moves). Table327

3 summarizes the final dataset of 166,738 games.328

We then segment each game into opening, mid-329

dlegame, and endgame phases and extract features330

from chess moves in each segment (see Appendix331

C for details).332

4 Results333

We present our findings on segment and source334

comparisons across different experimental settings,335

identify which text segment contributes most to AI336

3https://www.ficsgames.org/download.html

text detection, and explore whether similar segmen- 337

tal differences exist between human and AI chess 338

players. 339

4.1 Segment and source comparison results 340

We conduct a comprehensive analysis of individual 341

features across all possible combinations to eval- 342

uate both segment and source comparisons, with 343

key findings summarized in Table 4. In the original 344

experimental setting (E), segment comparison re- 345

veals that the body segment exhibits less distinction 346

between human and AI texts compared to the intro- 347

duction and conclusion. However, this lower con- 348

trast is due to the body’s greater length, which can 349

dilute syntactic features like POS-tag or named en- 350

tity distributions and flatten opinion-based features 351

such as sentiment or formality through averaging. 352

The extended length also allows AI text to align 353

more easily with human content in the body seg- 354

ment. Nevertheless, length-independent features 355

like vocabulary richness and perplexity indicated 356

higher differences in the body. 357

In the length-controlled experiments (C1 and C2) 358

settings, stylometric (e.g., LIWC, Writeprints) and 359

linguistic features (e.g., vocabulary richness, read- 360

ability, sentiment) show higher differences in the 361

body/middle segment. When segment lengths are 362

normalized, several features show no statistically 363

significant differences across segments. Given that 364

the body segment typically hosts the core argu- 365

ments, elaboration, and creativity in writing (Med- 366

vid and Podolkova, 2019), our findings suggest that 367

while LLMs may mimic surface-level structure, 368

they struggle to replicate the nuanced, adaptive 369

strategies humans employ in this more demanding 370

segment, as validated through human vs. AI text 371

detection in the following subsection. 372

In the source comparison, our findings show 373

human texts exhibit higher cross-segment variation 374

than AI text, offering an innovative lens to differ- 375

entiate between the two. While prior studies (Guo 376

et al., 2023; Muñoz-Ortiz et al., 2024) have shown 377

that AI texts tend to be more structurally consistent 378

and formal, our analysis uncovers how this consis- 379

tency manifests across segments. LLMs inherently 380

prefer structured text generation, often incorporat- 381

ing a distinct introduction, body, and conclusion 382

boundary, leading to smoother transitions and uni- 383

form distribution of content, named entities, and 384

POS tags across segments. In contrast, human writ- 385

ers tend to modulate their linguistic fingerprints 386

between segments, a trait not yet replicated by AI. 387
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Source comparisonFeature Dataset
∆(I, B) ∆(I, C) ∆(B, C)

Segment comparison
∆(H,A)

Reuter H>A ∼ H>A B>C>I
Enron ∼ H>A ∼ († ‡)Vocabulary

Richness Persuade ∼ H>A B>C>I
Reuter H>A C>I>B † ‡
Enron A>H H>A I>C>B †Readability

Score Persuade ∼ C>I>B † ‡
Reuter ∼ I∼C>B 3

Enron A>H C>B>I ‡Sentiment
Score Persuade ∼ I>C>B 3

Reuter H>A I∼C>B † ‡
Enron H>A I∼C>B †

Formality Score &
Content Similarity
(same results) Persuade H>A I∼C>B † ‡

Reuter ∼ B>I>C
Enron H>A A>H H>A C>I>B 3

Perplexity
Scores Persuade ∼ B>I∼C

Reuter H>A I>C>B 3

Enron H>A I∼C>B 3
Parts of Speech
Tags Distribution Persuade H>A I>C>B 3

Reuter ∼ H>A C>I>B 3

Enron ∼ H>A ∼ ∼Named Entity
Tags Distribution Persuade ∼ H>A ∼

Table 4: Statistical significance test results in the original experimental setting (E). Source Comparison: ∆(I, B)
represents the difference in a given feature between the Introduction (I) and Body (B) for both human and AI texts.
Violet (H > A) indicates that this difference is significantly greater in human texts, while orange (A > H) denotes
the opposite and (∼) indicates no statistically significant difference. Segment Comparison: ∆(H, A) captures the
feature difference between human and AI texts within a specific segment (I, B, or C). Green highlights cases where
the body segment shows a significantly greater difference than the introduction or conclusion, while red marks the
opposite. (∼) indicates no significant difference across segments. The symbols (†) and (‡) denote cases where the
body segment shows higher differences in the length-controlled settings C1 and C2, respectively. The 3 symbol
indicates no significant segmental difference in both C1 and C2. Cells without symbols represent cases where the
original setting (E) aligns with both length-controlled settings.

Additional analysis on individual LLM behavior388

can be found in the Appendix.389

4.2 Checkmating AI text: which segment390

reveals its origins?391

To explore how different text segments contribute392

to AI text detection, we evaluate a suite of promi-393

nent detectors: GPT-Zero (Tian, 2023), MAGE394

(Li et al., 2024), Radar (Hu et al., 2023), Binocu-395

lar (Hans et al., 2024b), GPT-Who (Venkatraman396

et al., 2024), and a fine-tuned BERT classifier (de-397

tailed in the Appendix E). Our primary goal is to398

understand the relative importance of the introduc-399

tion, body, and conclusion in distinguishing human400

and AI text. Accordingly, we apply each detector401

to the total text, individual segments, and a com-402

bined introduction & conclusion segment. We also403

test a simple voting mechanism across the three404

segments. Results are summarized in Table 5.405

Overall, using the entire text yields the highest406

detection performance across most domains, except407

for the email. It aligns with the nature of email writ-408

ing: introductions and conclusions often include409

formulaic greetings or closing remarks, while the410

body contains the most meaningful content. Across411

all domains, the body consistently plays a domi-412

nant role in AI text detection, outperforming both413

the introduction and conclusion, even when com-414

Figure 4: Comparison of False Negative Rates (FNR) in
different experimental settings & datasets. Lower value
indicates this segment contributes more in detection.

bined. Interestingly, the voting mechanism across 415

segments fails to improve performance, likely due 416

to redundancy or the overwhelming influence of 417

the body segment. Notably, fine-tuned classifiers 418

consistently benefit from analyzing the complete 419

text, as they leverage more data during training. 420

Figure 5: Token importance and FNR across length.

To account for the body segment’s longer length 421

in the original setting (E), we assess detection per- 422
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Dataset Criteria GPT Zero MAGE RADAR Binoculars GPT-Who Finetuned Bert

Reuter
(News)

Total text 0.84 0.75 0.77 0.91 0.82 0.96
Voting 0.83 (↓1.19%) 0.51 (↓45.74%) 0.72 (↓6.49%) 0.85 (↓6.59%) 0.82 (↓1.2%) 0.97 (↓2.02%)
Body only 0.85 (↑1.19%) 0.76 (↑1.33%) 0.81 (↑5.19%) 0.84 (↓7.69%) 0.84 (↑2.44%) 0.94 (↓2.08%)
Intro+conclusion 0.76 (↓9.52%) 0.62 (↓17.33%) 0.77 (↓0%) 0.77 (↓15.38%) 0.79 (↓3.66%) 0.93 (↓3.12%)

Enron
(Emails)

Total text 0.62 0.78 0.82 0.73 0.77 0.98
Voting 0.61 (↓1.61%) 0.78 (↑0.0%) 0.73 (↓10.98%) 0.71 (↓2.74%) 0.85 (↑10.39%) 0.96 (↓2.04%)
Body only 0.71 (↑14.52%) 0.72 (↓7.69%) 0.79 (↓3.36%) 0.74 (↑1.37%) 0.78 (↑1.3%) 0.93 (↓5.1%)
Intro+conclusion 0.55 (↓11.29%) 0.7 (↓10.26%) 0.74 (↓9.76%) 0.68 (↓6.85%) 0.75 (↓2.6%) 0.96 (↓2.04%)

Persuade
(Essay)

Total text 0.94 0.94 0.79 0.82 0.83 0.99
Voting 0.9 (↓4.26%) 0.75 (↓20.21%) 0.64 (↓18.99%) 0.86 (↑4.88%) 0.8 (↓3.61%) 0.97 (↓2.02%)
Body only 0.88 (↓6.38%) 0.82 (↓12.77%) 0.67 (↓15.19%) 0.84 (↑2.44%) 0.82 (↓1.2%) 0.96 (↓3.03%)
Intro+conclusion 0.89 (↓5.32%) 0.73 (↓22.34%) 0.61 (↓22.78%) 0.78 (↓4.88%) 0.75 (↓9.64%) 0.96 (↓3.03%)

Table 5: AI text detection results (original setting E). Each cell value represents the F1 score of various detection
methods, with higher scores indicating better performance. The results are presented across multiple datasets and
evaluated using different criteria to assess how different segments can contribute to AI text detection.

formance using False Negative Rate (FNR), the pro-423

portion of AI text misclassified as human, across424

all settings & datasets (Figure 4). A lower FNR425

indicates better detector performance, as the text426

is more easily identified as LLM-generated, mak-427

ing it more distinguishable from human text. Con-428

versely, a higher FNR suggests that the text closely429

resembles human writing, causing the detector to430

struggle to label it as AI text. Consistently, the431

body segment yields the lowest FNR, suggesting432

that it is more distinguishable from human text than433

the introduction or conclusion. Prior work (Huang434

et al., 2024; Wu et al., 2024) shows that longer texts435

generally improve detection, a trend we confirm436

in (Figure 5), where FNR declines as text length437

increases. Yet, within comparable length ranges,438

the body segment still exhibits the lowest FNR. Ad-439

ditionally, using integrated gradients (Sundarara-440

jan et al., 2017) in our fine-tuned classifier for the441

length-controlled studies, we find that the average442

token importance in the body segment is higher443

than in the introduction and conclusion.444

Dataset MAGE MAGE+ RADAR RADAR+ Binocular Binocular+
Reuter 0.85 0.87 0.69 0.87 0.68 0.91
Persuade 0.86 0.88 0.84 0.85 0.89 0.90
Enron 0.88 0.81 0.82 0.7 0.57 0.65

Table 6: Cross-segment feature differences enhance
the performance of base detectors in identifying AI
text from human-AI text pairs. Green cells indicate
improved performance when using cross-segment vari-
ation instead of detector confidence scores, while Red
cells indicate decreased performance.

Finally, cross-segment variation between human445

and AI texts (source comparison results) prompts446

us to explore its utility in AI text detection. We447

frame the task as identifying the AI text from a448

given (human, AI) pair. When existing detectors449

assign the same label to both texts, rather than re-450

lying solely on their confidence scores (denoted as 451

detector name), we use the cross-segment variation 452

(based on the C1 setting, which splits text into three 453

equal parts and is more practical for real-world use) 454

as the deciding factor (detector name+). This sim- 455

ple yet effective strategy improves detection accu- 456

racy across most detectors and datasets (Table 6), 457

demonstrating that cross-segment variation offers 458

a promising new lens for AI text detection. 459

4.3 Human and AI chess moves comparison 460

As our study was inspired by the chess middlegame 461

analogy, We also investigate whether the differ- 462

ences between human and AI players emerge most 463

noticeably in the middlegame. To quantify these 464

differences, we calculate the JSD distance between 465

the feature sets of human and AI moves across the 466

opening, middlegame, and endgame phases. As 467

shown in Figure 6, the middlegame exhibits a sta- 468

tistically significant (α = 0.05) increase in JSD, in- 469

dicating higher divergence during this phase. More- 470

over, the middlegame shows a broader spread of 471

JSD values, reflecting higher variability in how hu- 472

mans and AI play diverges. We further compute 473

Jaccard similarity over unique move patterns (ECO 474

codes) and find lower overlap in the middlegame 475

compared to the opening and endgame, reinforcing 476

that this phase carries the most distinction. These 477

findings echo our text segment comparison re- 478

sults, where the body or ”middlegame” segment 479

also reveals the highest differences between hu- 480

mans and AI. Finally, we analyze the percentage 481

of optimal moves and win probability using the 482

Stockfish game engine (Romstad et al., 2008) for 483

each move. As expected, AI players achieve higher 484

optimal move rates and win probabilities, particu- 485

larly in the endgame phase. AI chess engines are 486

extensively trained on historical game databases, 487
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allowing them to efficiently navigate toward vic-488

tory in the endgame by executing optimal move489

sequences, a feat more challenging for human play-490

ers.491

(a) (b)

Figure 6: (a) The middlegame exhibits the most signifi-
cant divergence between human and AI players. (b) AI
players outperform humans in optimal move percentage
during the opening and endgame, but the difference is
not statistically significant in the middlegame.

5 Discussion492

In this section, we highlight key findings that re-493

inforce our central claim, offer valuable insights494

into human creativity, and demonstrate the broader495

applicability of our results.496

Text length matters We find that LLMs’ ability497

to replicate human stylometry and linguistic fea-498

tures is influenced by text length. Initially, the body499

segment appears more similar to human text due500

to its greater length. Longer texts also yield higher501

AI text detection accuracy, aligning with prior stud-502

ies (Liu et al., 2020; Liu, 2024; Baillargeon and503

Lamontagne, 2024; Jeon and Strube, 2021), which504

show improved classification and higher similarity505

scores in lengthier samples (Klaussner et al., 2015;506

Päpcke et al., 2023). Therefore, LLMs can better507

approximate human writing when given the chance508

to generate more tokens, as they have more room509

to establish consistent stylistic patterns, an insight510

critical to understanding and detecting AI text.511

Distribution vs. textual divergence Our study512

offers a comprehensive view of how well LLMs513

replicate different linguistic features. LLMs consis-514

tently excelled at replicating the features that do not515

rely on word orders in sentences but instead depend516

on overall word choices, such as pos-tags, stopword517

distributions, or readability scores, showing no ob-518

servable statistical differences with humans across519

experiments. In contrast, for features that capture520

the continuous flow of text, such as token-level per-521

plexity or content change through that text, human522

and AI texts exhibited significant differences across 523

experimental conditions. These insights can assist 524

platforms like Turnitin, Grammarly, or Originality 525

to integrate flow-based stylometric checks for AI 526

text detection. 527

Body segment: more interesting for Human- 528

AI text distinction While longer body segment 529

makes human and AI texts appear more similar 530

for that segment, body/middle consistently shows 531

higher divergence in length-controlled settings. Ad- 532

ditionally, AI-generated introductions and conclu- 533

sions yield higher false negative rates, suggesting 534

detectors perceive them as more human-like. Token 535

importance further confirms the body segment’s 536

superior discriminatory power. Thus, when distin- 537

guishing between human and AI texts, the body 538

segment offers the most revealing starting point. 539

Cross-segment variation as a signal for AI text 540

detection Our source comparison shows that 541

cross-segment linguistic and contextual differences 542

are consistently more pronounced in human texts 543

than in AI-generated ones. It suggests that LLMs 544

maintain a uniform writing style across segments, 545

while humans naturally vary their linguistic pat- 546

terns throughout a text. Importantly, we find that 547

leveraging these cross-segment stylometric differ- 548

ences as a secondary signal can enhance the perfor- 549

mance of existing AI text detectors, highlighting a 550

promising new direction for detection strategies. 551

6 Conclusion 552

Our paper offers a novel perspective by identify- 553

ing subtle differences between human and AI texts 554

across specific text segments, an area that has re- 555

mained largely overlooked. Drawing parallels from 556

chess game phases, we conduct a thorough eval- 557

uation of linguistic features, analogous to chess 558

“chokepoints” and explore how they vary in each 559

segment between AI and human text. Our experi- 560

mental design and detailed segment-wise analysis 561

offer robust insights into LLMs’ strengths and lim- 562

itations in mimicking human text. Overall, our 563

findings highlight the pivotal role of the body seg- 564

ment in distinguishing AI from human text and 565

propose that cross-segment feature differences may 566

serve as a novel and valuable characteristic for AI 567

text detection. In future, we aim to extend our find- 568

ings to other domains and contribute to responsible 569

LLM usage to ensure accurate outputs across all 570

text segments. 571

8



Limitations572

While this study presents new findings in differ-573

entiating between human and AI text, inspired by574

chess game dynamics, there are some limitations575

to acknowledge. First, the scope of our analysis576

is restricted to three domains and texts from four577

LLMs. Additionally, the AI texts are collected578

from existing datasets that used generic prompts,579

which may affect the generalization of our findings580

to other domains, models, or prompting techniques.581

Secondly, dividing a text into introduction, body,582

and conclusion is inherently subjective, and while583

we show that an LLM can perform this segmen-584

tation, demonstrating alignment with human judg-585

ment, alternative approaches may yield different586

results. Despite these constraints, our study makes587

a substantial contribution by exploring human-AI588

text distinctions from a novel angle and can inform589

ongoing AI text detection research.590

Ethical Considerations591

Our study raises important ethical considerations592

regarding the responsible development, evalua-593

tion, and deployment of Large Language Models594

(LLMs). By analyzing segment-level distinctions595

between human and AI-generated texts, our goal596

is not to stigmatize AI use in writing but to pro-597

mote transparency and accountability in its appli-598

cation. The insights from this research intend to599

strengthen detection mechanisms that help prevent600

misuse, such as academic dishonesty, misinforma-601

tion, or deceptive authorship, while also informing602

the development of more interpretable and aligned603

LLMs. All AI-generated texts used in this study604

were created under controlled, non-deceptive con-605

ditions or collected from existing public datasets,606

and no personal, sensitive, or private human data607

was used. As detection technologies advance, it608

remains crucial to balance innovation with privacy,609

avoid over-surveillance, and ensure that such tools610

are not misused to unjustly penalize legitimate hu-611

man writing.612
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Felix Helfenstein, Jannis Blüml, Johannes Czech, and 743
Kristian Kersting. 2024. Checkmating one, by using 744
many: Combining mixture of experts with mcts to 745
improve in chess. arXiv preprint arXiv:2401.16852. 746

Alex Henry and Robert L Roseberry. 1997. An investi- 747
gation of the functions, strategies and linguistic fea- 748
tures of the introductions and conclusions of essays. 749
System, 25(4):479–495. 750

Steffen Herbold, Annette Hautli-Janisz, Ute Heuer, 751
Zlata Kikteva, and Alexander Trautsch. 2023. 752
A large-scale comparison of human-written ver- 753
sus chatgpt-generated essays. Scientific reports, 754
13(1):18617. 755

M Hollander. 2013. Nonparametric statistical methods. 756
John Wiley & Sons Inc, New York. 757

Israel Albert Horowitz. 1986. How to Win in the Chess 758
Openings. Simon and Schuster, New York. 759

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023. 760
Radar: Robust ai-text detection via adversarial learn- 761
ing. Advances in neural information processing sys- 762
tems, 36:15077–15095. 763

Anna Huang et al. 2008. Similarity measures for text 764
document clustering. In Proceedings of the sixth new 765
zealand computer science research student confer- 766
ence (NZCSRSC2008), Christchurch, New Zealand, 767
volume 4, pages 9–56. 768

Baixiang Huang, Canyu Chen, and Kai Shu. 2024. Au- 769
thorship attribution in the era of llms: Problems, 770
methodologies, and challenges. SIGKDD explo- 771
rations. 772

Sungho Jeon and Michael Strube. 2021. Countering the 773
influence of essay length in neural essay scoring. In 774
Proceedings of the second workshop on simple and 775
efficient natural language processing, pages 32–38. 776

Cameron R Jones and Benjamin K Bergen. 2025. Large 777
language models pass the turing test. arXiv preprint 778
arXiv:2503.23674. 779

Daniel Martin Katz, Michael James Bommarito, Shang 780
Gao, and Pablo Arredondo. 2024. Gpt-4 passes the 781
bar exam. Philosophical Transactions of the Royal 782
Society A, 382(2270):20230254. 783

10

https://aclanthology.org/2024.acl-long.674
https://aclanthology.org/2024.acl-long.674
https://aclanthology.org/2024.acl-long.674
https://aclanthology.org/2024.acl-long.674
https://aclanthology.org/2024.acl-long.674


Jules King, Perpetual Baffour, Scott Crossley,784
Ryan Holbrook, and Maggie Demkin. 2023.785
LLM - Detect AI Generated Text. Kag-786
gle. https://kaggle.com/competitions/787
llm-detect-ai-generated-text.788

Carmen Klaussner, John Nerbonne, and Çağrı Çöltekin.789
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A Prompt engineering996

While we primarily use human and AI text in vari-997

ous domains from existing datasets, we also employ998

LLMs for missing data generation and text segmen-999

tation. As mentioned, we select GPT-3.5 (OpenAI),1000

PaLM text-bison-001 (Google), LLaMA 2-Chat-7B1001

(Meta), and Mistral-7B (Mistral AI) as our LLMs.1002

Several data were missing in the original datasets1003

collected from (Verma et al., 2024) or (King et al.,1004

2023). For example, Reuters news articles from1005

any Google model were unavailable in the original1006

Ghostbuster dataset (Verma et al., 2024). So, we1007

generated them using text-bison-001 using identi-1008

cal prompts from the original paper (Verma et al.,1009

2024). Similarly, for the email dataset, we generate1010

AI text from all four LLMs, as only human-written1011

emails are available in the Enron corpus (Klimt and1012

Yang, 2004). For segmentation, we use Gemini-1013

1.5-Flash (Google) and GPT-4 (OpenAI), which1014

are distinct from the models used for text genera-1015

tion in our study. Proprietary models from Google1016

and OpenAI are accessed via their official APIs,1017

while open-source models from Meta and Mistral1018

are sourced from their stable weights on Hugging1019

Face. Across all settings, we use top p = 0.95 and1020

temperature = 0.9 to maintain consistency. How-1021

ever, it is important to note that even with identical1022

prompts and hyperparameters, LLM outputs are1023

not entirely deterministic.1024

Prompt for news data1025

1026
Suppose You are <reporter name>, a news reporter
in Reuter. Write a news article in
<original word count> words with the following
headline (output news text only, do not include
headline):
<original headline>

1027

Prompt for email data1028

1029
Create an email (only the email body) as an
Enron employee <sender name> to <receiver name>
around <original word count> words based on the
subject: <original email header>. The summary of
the original email is as follows.
<original email summary>

1030

Prompt for text segmentation1031

1032

You are advanced in essay understanding and
writing. Given the following text you need to
divide it into three parts: introduction, main
body and conclusion. For each part, only copy
relevant portion from the original text. Do not
use any other formatting.
{Introduction}:the intro goes here
{Body}:the main body goes here
{Conclusion}:the conclusion goes here
The text is as follows:
<original text>

1033

B Statistical test details 1034

As mentioned in Subsection 3.4, we have two text 1035

sources (Sources, H: Human, A: AI) and three 1036

segments from each text (Segments, I: Introduc- 1037

tion, B: Body, C: Conclusion). Zx is an indi- 1038

vidual feature extracted from segment x for source 1039

Z. 1040

For source comparison tests, we consider pair- 1041

wise segments, x, y ∈ {I,B,C}, compute their 1042

differences for human and AI texts, ∆(Hx, Hy) 1043

and ∆(Ax, Ay), respectively. Then, we address 1044

the key question, whether ∆(Hx, Hy) differs sig- 1045

nificantly from ∆(Ax, Ay) for any segment pair. 1046

We conduct a two-way ANOVA test (α = 0.05) 1047

(Fisher, 1970) focusing on the interaction effect 1048

of source (H vs. A) and cross-segment differ- 1049

ences. If the interaction effect is significant, we pro- 1050

ceed with post-hoc pairwise comparisons using the 1051

Wilcoxon signed-rank test. We opted for Wilcoxon 1052

signed-rank tests instead of t-tests due to the ro- 1053

bustness to non-normal distributions (Hollander, 1054

2013). These pairwise tests reveal whether human 1055

cross-segment differences ∆(Hx, Hy) are statisti- 1056

cally greater than (>), less than (<), or comparable 1057

(∼) to AI cross-segment differences ∆(Ax, Ay), 1058

for specific segment pairs. If no significant inter- 1059

action effect is found in the ANOVA test, we infer 1060

that cross-segment differences between human and 1061

AI texts are not statistically meaningful. 1062

Similarly, for segment comparison, we com- 1063

pute the difference between human and AI texts for 1064

all three segments, ∆(HI , AI), ∆(HB, AB), and 1065

∆(HC , AC). Then, we conduct a one-way ANOVA 1066

test (α = 0.05) with the three measures. If the 1067

result is statistically significant, we perform post- 1068

hoc pairwise comparisons between ∆(Hx, Ax) and 1069

∆(Hy, Ay) for all segment pairs x, y ∈ {I,B,C}. 1070

The post-hoc tests determine whether the human- 1071

AI feature difference is more pronounced in a spe- 1072

cific segment or whether the differences are statis- 1073

tically indistinguishable across segments. If the 1074

ANOVA test shows no significant effects, we con- 1075
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Opening conditions reasonings Mid game End game conditions reasonings

# of moves <= 16

OR

All classic chess openings are done in mostly
16 moves (Horowitz, 1986)

All other
moves that
are not
classified as
opening or
end game
moves

If total # moves<=50 then end
game consist 35% of last moves
else 45% of last moves OR

Overall distribution of moves in
different phases and general
ideas(Van Emden, 1982)

# of pieces exchanged<=8

OR

Initial exchanges have taken place and game
has moved to mid game (Chinchalkar, 1996)

Less then 12 pieces remain

OR

Board is simplified and both players
aim for strategic checkmate
(Dvoretsky, 2020; Heinz, 1999)

Both castling are available
If both players have done castling, game has
moved to mid game (Nimzowitsch, 1925)

# of legal moves for both
kings>=8 and both kings are in
third row (row 3 or 6)

King has taken a more active
role in the game
(Dvoretsky, 2020; Heinz, 1999)

Table 7: Criteria used for categorizing chess moves into opening, midgame, or endgame phases. The rationale for
each criterion is provided in separate columns for clarity.

clude that the differences between human and AI1076

texts for the analyzed feature do not vary meaning-1077

fully across segments.1078

C Chess features extractions1079

Similar to segmenting text, dividing chess moves1080

into opening, middlegame, and endgame can be1081

subjective, as there are no strict rules for defining1082

these transitions (Helfenstein et al., 2024). While1083

openings are identified by ECO codes, the mid-1084

dle game does not always begin immediately after1085

these moves, nor can the start of the endgame be1086

consistently determined by board conditions alone.1087

Therefore, we draw on reasoning from existing1088

studies (Horowitz, 1986; Van Emden, 1982; Chin-1089

chalkar, 1996; Dvoretsky, 2020; Heinz, 1999; Nim-1090

zowitsch, 1925), using factors such as piece counts,1091

board conditions, and castling status to segment1092

the games (Table 7). To validate our rule-based1093

method, we employ an LLM (GPT-4) to segment1094

a subset of 2000 games, achieving a segmentation1095

similarity score of 0.94, indicating its effectiveness1096

in approximating chess move segmentation.1097

Prompt for chess game segmentation1098

1099
You are an expert in chess game understanding and
moves. From the given list of moves you need
to divide them into chess start, middle and end
game moves. Your output should be strictly in the
following format:
{Start}: <list of start game moves in comman
seperated format>
{Middle}: <list of mid game moves in comman
seperated format>
{End}: <list of mid game moves in comman seperated
format>
moves list: <original move list>

1100

Our next step involves creating a feature list1101

from chess moves to computationally assess the1102

differences between human and AI across game1103

segments. While prior works have focused on cog-1104

nitive aspects of chess play (e.g., memory, decision-1105

making (Rasskin-Gutman, 2009)) or expert-driven1106

analysis of key moments (Müller and Schaeffer, 1107

2018), recent advances in deep learning have en- 1108

abled computational feature extraction in chess 1109

for tasks like next optimal move prediction, game 1110

outcome projection, and game clustering (Oshri 1111

and Khandwala, 2016; Brown et al., 2017; Pan- 1112

chal et al., 2021). Drawing on these studies, we 1113

extract 72 features related to board conditions, 1114

piece movements, positions, and captures. We 1115

also incorporate the optimal move and the corre- 1116

sponding player’s win probability, as determined by 1117

the Stockfish engine (Romstad et al., 2008) (with 1118

time limit = 0.1 second) for each position. 1119

D Text Features Extraction Details 1120

In this section, we discuss the details of extracting 1121

linguistic features from text that are essential to 1122

our analysis. For vocabulary richness, we consider 1123

the Brunét Index (Brunet et al., 1978), as it is less 1124

sensitive to text length than the type-token ratio 1125

(TTR), making it more suitable for segments of 1126

varying lengths. For readability, we compute the 1127

Flesch Reading Ease score and employ the Python 1128

Textdescriptive library for additional linguistic in- 1129

sights. 1130

Syntactic features include part-of-speech (POS) 1131

tags, named entity recognition (NER), and stop- 1132

word distributions extracted using SpaCy (Vasiliev, 1133

2020). We further assess affective and stylistic ele- 1134

ments through average sentiment and subjectivity 1135

scores using the VADER sentiment library, and for- 1136

mality scores via a pre-trained classifier (Babakov 1137

et al., 2023). 1138

For content analysis, we use OpenAI text em- 1139

beddings (text-embedding-ada-002) to capture the 1140

content within segments and measure the variation 1141

in embeddings between consecutive sentences or 1142

evaluate text predictability, we utilize GPT-2 to 1143

calculate both average perplexity and token-level 1144

perplexity scores, alongside burstiness, a metric 1145
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that captures shifts in sentence structure and word1146

choice. These features, shown to be impactful in1147

recent AI text detection efforts (Tian, 2023; Venka-1148

traman et al., 2023; Mitchell et al., 2023), provide1149

a comprehensive lens through which to explore1150

the nuanced differences between human and AI-1151

generated writing.1152

E AI text detection methods1153

GPTZero: To determine whether a text is LLM-1154

generated, GPTZero (Tian, 2023) uses perplexity1155

to measure the text’s complexity and burstiness to1156

evaluate sentence variants for providing the final1157

output. We utilize the official API of GPT-Zero in1158

our experiments.1159

MAGE: MAGE (Machine-generated Text Detec-1160

tion in the Wild) is a Longformer model (Li et al.,1161

2024), finetuned on the entire Deepfakedetect (Li1162

et al., 2023) dataset (comprising 447,674 human-1163

written and AI texts). By effectively managing1164

more than 512 tokens, Longformer (Beltagy et al.,1165

2020), a modified Transformer architecture, gets1166

around the drawbacks of conventional transformer1167

models. Longer documents can be processed more1168

easily because of their attention pattern, which1169

scales linearly with sequence length. We also ac-1170

cess the model from the HuggingFace repository4.1171

RADAR: RADAR is a robust AI text detection1172

framework that leverages adversarial learning by1173

jointly training a paraphraser and a detector (Hu1174

et al., 2023). The paraphraser aims to generate re-1175

alistic, human-like text that can evade detection,1176

while the detector learns to identify such para-1177

phrased AI-generated content. In our study, we1178

utilize the hosted version of RADAR available on1179

Hugging Face5.1180

Binocular: Binoculars is a zero-shot, domain-1181

agnostic method for AI text detection that oper-1182

ates without the need for training data (Hans et al.,1183

2024a). It relies on cross-perplexity, computed1184

as the cross-entropy between two language mod-1185

els that sharing the same tokenizer and vocabu-1186

lary, when evaluated on a given text. Following1187

the original implementation, we use the Falcon-7B1188

and Falcon-7B-Instruct models for cross-perplexity1189

computation in our experiments.1190

4https://huggingface.co/yaful/MAGE
5https://huggingface.co/spaces/TrustSafeAI/

RADAR-AI-Text-Detector

GPT-who: GPT-who (Venkatraman et al., 2023) 1191

is a domain-agnostic statistical AI text detector that 1192

uses UID-based characteristics to capture unique 1193

statistical signatures. UID features are created via 1194

GPT2 inference and trained with a logistic regres- 1195

sion model. 1196

Finetuned-BERT: We fine-tuned BERT (bert- 1197

base-cased) on each dataset training set and evalu- 1198

ated it on the test set, as fine-tuned language models 1199

have been state-of-the-art in a lot of text classifica- 1200

tion and authorship tasks (Tyo et al., 2022). 1201
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