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It’s Not Just a Phase: On Investigating Phase Transitions in Deep
Learning-based Side-channel Analysis

Anonymous Authors1

Abstract
Side-channel analysis (SCA) represents a realis-
tic threat where the attacker can observe uninten-
tional information to obtain secret data. Evalu-
ation labs also use the same SCA techniques in
the security certification process. The results in
the last decade have shown that machine learning,
especially deep learning, is an extremely pow-
erful SCA approach, allowing the breaking of
protected devices while achieving optimal attack
performance. Unfortunately, deep learning oper-
ates as a black-box, making it less useful for secu-
rity evaluators who must understand how attacks
work to prevent them in the future. This work
demonstrates that mechanistic interpretability can
effectively scale to realistic scenarios where rele-
vant information is sparse and well-defined inter-
change interventions to the input are impossible
due to side-channel protections. Concretely, we
reverse engineer the features the network learns
during phase transitions, eventually retrieving se-
cret masks, allowing us to move from black-box
to white-box evaluation.

1. Introduction
Side-channel analysis (SCA) is a realistic security threat that
consists of diverse methods that allow for the extraction and
exploitation of unintentionally observable information of
internally processed data (Kocher et al., 1999). SCA enables
establishing a relationship between observable information
and the internal state of a device under investigation. As
such, it poses a major threat to devices that handle sensitive
data like keys, private certificates, or intellectual property.
In SCA, sensitive information gets extracted from a device
by observing its physical characteristics (e.g., power con-
sumption, timing).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Since 2016 (Maghrebi et al., 2016), deep learning-based
side-channel analysis (DLSCA) has received significant
attention from the research community (Picek et al., 2023).
The main benefits of using deep learning (DL) over classical
techniques are that assumptions for attacker capabilities can
be relaxed and it leads to better attack performance. Thus,
integration of these techniques into evaluation procedures
has become standardized (Federal Office for Information
Security (BSI), 2024). Note that (DL)SCAs are practical and
demonstrated in real-world settings (Roche, 2024; Roche
et al., 2021).

One of the main open challenges for black-box evaluations
using DL is interpretability (Picek et al., 2023). A model
that can extract the key suggests exploitable leakage but does
not indicate how the network exploits what leakage. No-
tably, this does not allow the evaluator to provide any feed-
back beyond pass/fail, which complicates the cost-effective
implementation of a solution. Indeed, understanding the
mechanisms by which neural networks learn to exploit side-
channel information can prove crucial for developing ro-
bust defenses against these attacks (Rijsdijk et al., 2022).
Thus, several attempts have been made to understand net-
work behavior. However, these approaches either focus only
on input visualization (Masure et al., 2019; Hettwer et al.,
2019), use more explainable model architectures (Yap et al.,
2023; Yoshida et al., 2024) or require access to masking
randomness (Zaid et al., 2023; Perin et al., 2022a).

While interpreting how neural networks perform computa-
tions is generally difficult, the algorithmic tasks performed
in models trained on side-channel data are conceptually rela-
tively simple. Learning to extract leakage information from
masked implementations is similar to the toy models that
learn group operations in the works on grokking (Power
et al., 2022; Nanda et al., 2023a; Chughtai et al., 2023;
Zhong et al., 2023). Concretely, for masked implementa-
tions, the computations on a sensitive value s is split into
d secret shares s = s1 · s2 · · · sd. Then, to learn to extract
leakage from the side-channel signals, a neural network
needs to combine leakage from each of these shares, often
without the knowledge of individual shares even for the
training set (Masure et al., 2023). This connection between
side-channel and grokking models is further motivated by
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On Investigating Phase Transitions in DLSCA

Figure 1: The analysis approach used in this study broadly consists of three major steps. After the phase transitions are
located using the PI metric, we plot logits to extract relevant features. Using these features, we plot the PCs of the activations
and find the structure related to the leakage. Finally, we apply activation patching to reverse-engineer the masks.

the observation of Masure et al. that the learning curves for
models trained against masked targets experience an ‘initial
plateau’ (Section 5.2 of (Masure et al., 2023)). After a num-
ber of training steps where test loss does not improve, the
models suddenly generalize to the test set and can extract
the (sub)key.

These sudden increases in performance, i.e., phase tran-
sitions, raise the question of what the model is learning.
Indeed, as some models for neural scaling predict neural
networks learn in discrete steps (Michaud et al., 2023), we
expect that investigating what is learned during these transi-
tions will give a reasonable understanding of model behav-
ior. Recent successful results of mechanistic interpretability
(MI) investigating phase transitions in toy models (Nanda
et al., 2023b; Simon et al., 2023) and even language mod-
els (Olsson et al., 2022) further motivate this direction.

From the point of view of MI, side-channel data provides
an interesting test case. The data is often noisy, high-
dimensional, characterized by subtle dependencies that are
difficult to capture and interpret, and presents a real-world
scenario. Additionally, the masks are hidden values which
further complicates the application of MI as we cannot de-
scribe model behavior exhaustively concerning the concrete
input features as in (Nanda et al., 2023b; Chughtai et al.,
2023), or do (automated) input interventions to align with a
causal model as in (Geiger et al., 2021; Conmy et al., 2023).

In this work, we aim to understand what specific side-
channel leakage the network is learning to exploit. Con-
cretely, we derive features from model outputs, find visual
patterns (structures) that arise from principal components

(PCs) during phase transitions, and relate these to the phys-
ical leakage. As a practical consequence, we utilize this
learned structure to extract input features, i.e., individual
shares si, from model activations, providing a path to move
from black-box to white-box evaluations. The overall analy-
sis process is illustrated in Figure 1.

To summarize, our main contributions are:

• We explore the feasibility of applying MI in a chal-
lenging real-world setting where input interventions to
features are not possible due to SCA countermeasures.

• By investigating the changes in model outputs during
phase transitions, we find how networks combine leak-
age in DLSCA.

• We directly retrieve the secret share values leaked in a
trace by applying activation patches1 to intermediate
layer activations across several targets.

• We provide more detailed insights into the specific
physical leakage exploited by neural networks on
widely used (DL)SCA benchmarks. Notably, we do
this without assuming a priori mask knowledge (Zaid
et al., 2023; Perin et al., 2022a) or requiring custom
architectures (Yap et al., 2023; Yoshida et al., 2024).

• We find identical structures emerging during phase
transitions for models trained on side-channel traces
captured in different SCA domains and on different
implementations, providing further evidence for the
weak universality hypothesis (Chughtai et al., 2023).

1Activation patching is a technique from MI.
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On Investigating Phase Transitions in DLSCA

2. Side-channel Analysis
SCA consists of diverse methods that allow extracting and
exploiting unintentionally observable information from in-
ternally processed data. SCA enables establishing a rela-
tionship between observable information and the internal
state of a device under evaluation. In (physical) SCA, we at-
tempt to extract secret information from side-channel traces,
e.g., power/electromagnetic (EM) measurements, during the
computation of a cryptographic algorithm. There, for n en-
cryptions2 we collect n traces of m samples (features/points
of interest) resulting in traces X = {xj , 1 ≤ j ≤ n}
where xj is a vector with m points. Then, for each of
these traces, key(s) kj and plaintexts pj allow us to gen-
erate a set of measurement labels. Let us consider the ex-
ample of the NIST Advanced Encryption Standard (AES)
cipher (Rijmen & Daemen, 2001), which is the algorithm
of choice for most settings when encrypting information
and is also the common target to explore in the research
domain (Picek et al., 2023). AES is a byte-oriented cipher
that operates in a number of rounds and where each of the
rounds contains several operations. A common place to
attack is after the S-box part, making the function of in-
terest IV = S-box(plaintext ⊕ key). We can use the
divide-and-conquer approach and consider attacking every
key byte separately (as AES is byte-oriented); we denote the
i-th byte of the key and plaintext as kji and pji , respectively.
The intermediate value then equals IV j = S-box[pji ⊕kji ].
Finally, when modeling the leakage, it is common to assume
a certain behavior of how the device leaks, a concept known
as the leakage model. Common leakage models include the
Hamming weight (HW) leakage model3, which assumes the
leakage is proportional to the number of ones in a byte, the
least/most significant bit (LSB/MSB) that assumes the leak-
age happens in a single bit only, and the identity (ID) model
that assumes that the leakage is proportional to the value
at the output of the S-box. Note that since AES is byte-
oriented, the S-box output contains 256 values, and the
Hamming weight (distance) of those values can be between
0 and 8 (making a total of 9 values). While the ID leakage
model is bijective, the HW/HD leakage models follow a bi-
nomial distribution. To assess the attack’s effectiveness, it is
common to consider how many guesses one needs to make
before finding the correct key. As such, the fewer guesses,
the better the attack (Picek et al., 2023). Another common
metric to assess SCA performance is perceived informa-
tion (PI), a lower bound for mutual information (Renauld
et al., 2011). Masure et al. (Masure et al., 2020) showed
that minimizing the negative log-likelihood is asymptoti-

2For simplicity, we mention only encryption; the process is
analogous for decryption.

3Or the Hamming Distance (HD) leakage model that assumes
the leakage is proportional to the number of transitions from zero
to one and one to zero.

cally equivalent to maximizing PI, making it relevant for the
usage of deep learning and the metric we use in our analysis.

While many SCA variants exist, a common division is into
direct and profiling attacks (Picek et al., 2023). Direct at-
tacks assume a single device where the attacker uses sta-
tistical techniques (called distinguishers) to find the most
likely keys. A common approach is the Correlation Power
Analysis (CPA) (Brier et al., 2004). In profiled attacks, one
assumes the attacker can access a copy of a device to be
attacked. This copy is under the complete control of the
attacker and is used to build a model of the device. Then,
the attacker uses that model to attack a different (but simi-
lar) device. While the profiled attack is more complex due
to the assumption of access to a copy of a device, it can
be significantly more powerful than direct attacks. Indeed,
provided that the model is well-built, one could need as
little as a single trace from the device under attack to obtain
the secret key. Direct attacks may need millions of traces
to break a real-world target (Picek et al., 2023). One can
easily observe a similarity between profiled attacks and the
supervised machine learning paradigm (where building a
model is training, and the attack is testing). Consequently,
in the last decade and more, many machine (deep) learning
algorithms have been tested in SCA.

As already stated, to protect against SCA, one commonly
uses countermeasures that can be either hiding or masking.
In both cases, the goal is to remove the correlation between
the observed quality (traces) and secret information. Hiding
countermeasures can happen in the amplitude domain by
randomizing/smoothing the signal or by adding desynchro-
nization/random delays in the time domain. Masking (Ishai
et al., 2003), on the other hand, divides a secret variable into
a number of shares such that one, to obtain the secret infor-
mation, needs to know all the shares. For instance, consider
a Boolean masking of a secret variable x. If we combine
that secret variable with a random value m, we obtain a new
variable y: y = x ⊕m. Then, to get information about x,
one needs to know both y and m. For further information
about SCA, refer to (Standaert, September 2024).

3. Mechanistic Interpretability
Mechanistic interpretability (MI) aims to reverse engineer a
neural network into human-understandable algorithms (Olah
et al., 2020; Olah, 2022; Wang et al., 2023; Nanda et al.,
2023b). This involves identifying “features” which are di-
rections in internal representations that correspond to con-
cepts, and “circuits” that are subgraphs within the network
composed of interconnected neurons and their weights, rep-
resenting meaningful computations.

Generally, the process in MI work is first to identify the fea-
tures. Examples of features include low-level features such
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On Investigating Phase Transitions in DLSCA

as curve or edge detector neurons in vision models (Olah
et al., 2020), or more high-level features corresponding to
the board state in toy models (Li et al., 2023; Nanda et al.,
2023c). As features generally often correspond to linear
directions in latent space, training linear probes (Alain &
Bengio, 2017), i.e., small classifiers, is common for showing
the presence of features in the latent space.

After finding features, the goal becomes to determine how
these features relate to model outputs (or other features).
Ideally, we can create a causal abstraction of the network
behavior based on the feature descriptions (Geiger et al.,
2021). Measuring causal effects involves intervening in the
model activations by doing activation patches (Heimersheim
& Nanda, 2024). Here, we replace (part of the) activations
during a forward pass with saved activations from another
forward pass corresponding to a different feature value to
understand the effects on model outputs. This allows for
measuring the impact of a specific feature or, eventually,
verifying that the circuit is a (faithful) description of the
model behavior.

4. Analysis Approach
The analysis process is shown in Figure 1 and detailed in this
section. However, additional analysis and MI techniques
might have been used depending on each specific dataset’s
observed behavior and findings. These additional steps and
the reasons for them will be directly described within the
experimental results (Section 5).

Assumptions. In (DL)SCA, the attack typically focuses on
extracting a subkey (often a single key byte) of the secret key.
Once one subkey is recovered, the target is effectively bro-
ken, as the attack can be repeated to recover the remaining
subkeys. However, the effort for different subkeys can differ
significantly (Perin et al., 2022b). Our analysis assumes
the attack has already succeeded and the subkey has been
recovered. This assumption allows us to label (test) traces
by deriving the intermediate value (label) from the input
(plaintext) and the key (remember IV j = S-box[pji ⊕kji ]).
We do not assume we have access to mask values. The goal
is to understand the model’s behavior and identify what
information it extracts from the traces to make predic-
tions. Additionally, we aim to recover the masks used in the
cryptographic algorithm, which enables us to recover the
rest of the secret key with (significantly) less effort. Note
that if the model’s most likely subkey is incorrect, inter-
pretability methods provide limited insights since the model
presumably fails to learn the masks and features necessary
for accurate key recovery.

Logit Analysis. Once we have a model that successfully re-
covers a subkey, our primary goal during initial exploratory
testing is to understand the factors influencing the network’s

predictions. To achieve this, we analyze models at points di-
rectly after phase transitions and observe the changes to the
model predictions. As phase transitions suggest significant
changes in a neural network’s behavior during training, they
are shown to be useful for discerning features (Zhong et al.,
2023). We examine the distributions of output logits for dif-
ferent classes, looking for clear separations between classes,
indicating distinct patterns in the traces. We aggregate dis-
tribution for model outputs for traces that belong to each
class and visualize them to identify commonly confused
classes. Those insights enable us to formulate hypotheses
about higher-level features influencing predictions. Op-
posed to other recent works that reverse engineer models,
see, e.g., (Nanda et al., 2023b; Wang et al., 2023), where
authors assign features to (or derive features from) model
inputs, we rely on output logits as we do not have access
to masking randomness. Additionally, the (physical) noise
inherent to side-channel traces results in final model accu-
racies that can be only marginally above random guessing,
making single trace predictions challenging to analyze from
the MI perspective. Note that the analysis becomes easier in
white-box SCA settings, where one would assume knowl-
edge of all internal values during computation, including
the masking randomness, see (Perin et al., 2022a).

Activations Analysis. After finding and testing initial hy-
potheses about the physical leakage used for classification,
we can proceed to look at activations and how these relate
to the predictions. As only a small number of the opera-
tions in each trace should be relevant for the classification,
i.e., only leakage related to the target value is relevant, the
number of relevant features should be small. Furthermore,
during phase transitions, discernible structure emerges in
PCs (Simon et al., 2023; Zhong et al., 2023).

As we expect structure to emerge in the first few PCs during
phase transitions (Simon et al., 2023), we can plot the distri-
bution of attack traces for features we derive from the logit
analysis. Still, while we expect a specific structure would
emerge in the first few PCs, some manual effort in determin-
ing the correct (number of) components and subdivisions
might be necessary. However, in our case, we notice the
structure generally emerges with up to the first four compo-
nents. In ideal cases, we see clear divisions between groups
of traces belonging to certain values. Even if this is not the
case due to noise, some regions might contain more/less of
certain groups, and the overall distribution should be tied to
(noisy) physical leakage. After finding some structure, we
should explain how it arises in terms of the physical leak-
age that is in the trace. For example, if there is a grid-like
structure in the PCs, we could assume that (embeddings of)
two secret shares correspond to the x− y directions of the
grid since we have two shares.4

4For higher d, the structure will be in higher dimensions.
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On Investigating Phase Transitions in DLSCA

Reverse engineering masks with activation patching.
When a structure is found, we need to verify that the hypoth-
esized behavior is causally related to the model predictions
in the expected way. We do this by fixing the directions that
correspond to all but one share to a fixed value. If possible,
we try to fix them to be 0 or some other value that allows
for easy descriptions of the output based on the one varying
share. Then, we observe how the model outputs relate to
the final share. If the hypothesis about model behavior is
correct, we can also directly derive the values for a secret
share from these patched outputs. Finally, after deriving
secret shares, we can use Signal-to-Noise Ratio (SNR)5 to
plot where in the trace these shares leak to derive which
secret share is which, i.e., which of the two shares is the
mask and which the masked S-box output. Note that this
patching setup follows the activation patching method used
in (Perin et al., 2022a) without requiring a priori knowledge
of secret share values.

5. Experimental Results
This section presents results for three common public SCA
targets - CHES CTF, ESHARD, and ASCAD (Picek et al.,
2023). The models are the Multilayer Perceptron (MLP)
neural networks taken from (Perin et al., 2022a) for ES-
HARD and ASCAD. For CHES CTF, we directly train the
ESHARD model without additional hyperparameter tuning.
We focus on MLPs as these are generally sufficient for state-
of-the-art (even optimal where the target is broken with
a single attack measurement) performance in SCA (Perin
et al., 2022b). The analyses given here should be similar
for CNNs. Thus, the results on ESHARD and CHES CTF
datasets, which exhibit very similar leakage characteristics,
both leaking mostly in the HW leakage model, follow the
same process and similar findings. The ASCAD target has
leakage biased toward the least significant bits, and a differ-
ent MLP model is used, leading to slightly different findings
and additional analysis required.

5.1. CHES CTF Dataset

For the CHES CTF target, we see in Figure 2 that there
are two concrete increases in perceived information across
training. The initial increase starts at epoch 15 and is com-
pleted around epoch 40. After another plateau in PI, there is
a second increase between epochs 70-85, after which there
are no more significant changes in PI.

As we aim to find what is learned during the phase transi-
tions, we show both average logits for different classes and
two main PCs in Figure 3. After the first phase transition,

5SNR measures the signal variance versus the noise variance.
In SCA, a higher SNR indicates a stronger exploitable signal com-
pared to noise, making it easier to extract sensitive information.

Figure 2: Evolution of Perceived Information for training
and test traces of the CHES CTF dataset.

at epoch 50, the predictions on the test set differentiate be-
tween high HW values and low HW values. When we use
this information to plot PCs in the first layer (middle plot
in Figure 3), we see that one diagonal corresponds to high
HWs and the other to low HWs. This indicates that the HWs
of both secret shares mask and masked S-box output leak
in the HW leakage model and that these are the features that
map onto the PCs. Further details are in Appendix E.

When looking at the logits after the second phase transi-
tion at epoch 100, Figure 3 shows that in addition to the
high-low HW divide, the models also separate even-odd
HWs. Plotting the same components but separating even-
odd HWs shows a grid structure of even and odd points.
In this grid, the number of changes in even-odd is about
nine, corresponding to the nine possible HW values. The
even-odd separation also clearly corresponds to learning the
parity of a target value from HWs with Boolean masking
(see Appendix E.2). This leads to the ability to learn the
mask values the network uses for classification, as discussed
next.

5.1.1. ACTIVATION PATCHING

To validate that the PC embeddings are causally related
to model outputs, we can fix one of the components and
observe the effects on model outputs. An additional consid-
eration is that when we fix the value of one of the Hamming
weights to 0 (or 8), the output of the model should be the
HW value of the other share (or 8-output if we fix the first to
8).6 As such, if the PCs relate to mask values, we can patch
one share to 0 (or 8) to retrieve the value of the other share.

To practically extract mask values, we fix the value of one
PC to be (near) one of the corners of the grid we see in Fig-
ure 3. Then, we take the model outputs and check whether
the predicted value changed as expected. As the model
generally predicts HW values between 3-5 (because those

6Note that patching one share to be 0 to validate that the outputs
become directly related to the other share has been done before
in (Perin et al., 2022a) although by using knowledge of the masking
randomness.
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On Investigating Phase Transitions in DLSCA

Figure 3: Logit analysis (first column) and activation analysis (remaining columns) from models at epoch 50 (top) and epoch
100 (bottom) for CHES CTF. Legends for activation analysis are shared within columns. The difference in the number of
points between the last two columns is due to not plotting the points for classes (HWs) 3, 4, and 5.

occur most), we sort each trace by the difference of logits
for high (5-8) and low (0-3) HWs. Then, since we know the
expected number of occurrences for each HW7, we can take
the first 1/256 values to be HW = 0, then the next 8/256
values for HW = 1, and so on.

The resulting mask and masked S-box distribution are
shown in Figure 4. We can see that fixing values of certain
PCs to extremes results in the model basing its predictions
mainly on the other PC, as is expected when one of the
shares is fixed to 0 (or 8). When we visualize the SNR for
each share, we observe clear spikes corresponding to the
usage of the leaking values. First, we see spikes related
to the value of rm, indicating the loading of the mask and
some pre-processing before the encryption. Then later, we
see leakage related to S-box[pi ⊕ ki]⊕ rm.

Due to the page limit, ESHARD results are in Appendix C.
In summary, there is only one phase transition, which results
in the ability of the model to distinguish high-low HWs. The
results are qualitatively the same as for CHES CTF.

5.2. ASCAD Dataset

Model behavior has been relatively straightforward in map-
ping to expected behavior with the HW leakage. However,
for the ASCAD target (the main benchmark for DLSCA re-
search since its introduction in 2018 (Benadjila et al., 2020)),
the masking scheme is more complex, and the leakage is
not directly tied to the HW of the full byte. As such, for
this dataset, we additionally train linear probes for each
bit of both the S-box input and output. One of the main

7If the mask values are uniformly distributed, which they gen-
erally are for the security properties to hold (Ishai et al., 2003).

distinctions is also that for ASCAD, it is standard to use the
S-box output values directly as class labels over transform-
ing them into their HW values (see, e.g., (Benadjila et al.,
2020; Perin et al., 2022b)).

Figure 5 shows a sudden transition to the positive PI from
epochs 8-12, corresponding to increased probe accuracies
for the input bits. Immediately after, PI still marginally
increases until improvement stops at epoch 25. This increase
is accompanied by the increasing probe accuracies for the
two least significant S-box output bits. Indeed, the two
least significant bits for both input and output clearly achieve
far higher accuracies than other bits, which only marginally
improve over random guessing (around 0.55).

Looking at the logits in Figure 6, at epoch 12, the values are
distributed according to the two input bits. When we plot
PCs to distinguish the values of these bits in Figure 6, we see
an emerging structure in the first two PCs of the activations
in the second layer corresponding to the combination of
mask values by mapping these on certain axes. Note that
the grid structure in both cases follows a 3 × 3 structure
over the more ideal 4 × 4 if all four possible 2-bit values
of the masks are perfectly distinguished. This is due to the
physical leakage of two classes for the secret shares (mostly)
overlapping, as shown in the rightmost two plots.

When we consider the logits at epoch 25 for the output bits,8

the mean values are significantly higher. Additionally, the
logits are spread out across fewer values. This aligns with
the network’s predictions, which now incorporate the infor-
mation on the output bits. We also observe a visually similar

8We fix the input bits to 00 to increase visibility, for a complete
description, see Appendix F.1.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

On Investigating Phase Transitions in DLSCA

Figure 4: SNR plot and PC distributions for mask values using patching experiments for CHES CTF. We set PC0 to -20 for
both patching experiments, as that resulted in more apparent separation during manual testing.

Figure 5: Evolution of Perceived Information and probe
accuracies for bits during training for the ASCAD dataset.

structure to the grid at epoch 12 appearing in the 3rd and 4th
PCs for the S-box output bits. The first two PCs remain
related to the input bits as in epoch 12. Within the activa-
tion patching experiments for ASCAD, we observe causal
effects on outputs by training probes on the final layer and
selectively intervening on key components. However, fur-
ther refinement is needed to extract mask values accurately.
The experiments are presented in Appendix D.

6. Contextualizing the Results
In this work, we focus on side-channel models and attempt
to find the features the trained networks extract by analyz-
ing models after specific phase transitions during training.
While several works have already explored the circuits in
language models (Wang et al., 2023; Olsson et al., 2022)
and those learned during phase transitions in algorithmic
models (Nanda et al., 2023b; Simon et al., 2023), the fea-
sibility of using these approaches for more realistic tasks
remains an open question.

We showcase that studying phase transitions without a priori
assumptions about relevant input features is still possible
in real-world settings. Indeed, the SCA setting is fairly ex-
treme in some characteristics: 1) the traces are extremely
long and contain only small amounts of relevant informa-
tion, 2) features can leak in several distinct ways, and 3)
models are not expected to achieve high accuracies. As such,

the analysis requires investigating average/accumulated be-
havior across a large number of examples, and individual
interventions become significantly more complex. We fur-
ther showcase that deriving relevant features from outputs
can be useful in determining model behavior.9

Our work shows a real-world example of effective reverse
engineering of model predictions. We showcase that in-
vestigating phase transitions can be an effective approach
to understanding the features networks learn, even in chal-
lenging settings. More precisely, we observe that phase
transitions result in feature learning and corresponding gen-
eralization. Finally, the main generalizations of the models
are all learned in discrete phase transitions, which are clearly
detectable in both model performance and output logits as
predicted by the quantization model (Michaud et al., 2023).
We further showcase that some structures seem universal
across different targets when the physical leakage is suffi-
ciently similar, providing further evidence for weak univer-
sality (Chughtai et al., 2023). Indeed, the features learned
after the first phase transition in both the ESHARD and
CHES CTF models are the same.

7. Implications of Results on the SCA Domain
As DLSCA becomes more common, it is increasingly impor-
tant to understand how neural networks exploit implemen-
tations. This work provides concrete analyses for several
common side-channel datasets, showing the possibility of
reverse engineering masks from network activations. We
show that specific structures can occur for different side-
channel targets, indicating that building a library of such
common attack paths or circuits can be useful in analyzing
future networks.

As a highlight result, we can reverse engineer the secret
shares from a trace by using the structures learned by the
neural networks. To our knowledge, only (Gao et al., 2018)

9We also see the relevance of output-centric features for auto-
mated interpretability (Gur-Arieh et al., 2025).
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Figure 6: Logit analysis for two LSBs of pi ⊕ ki at epoch 12 and S-box[pi ⊕ ki] at epoch 25 with corresponding actual
mask values for ASCAD. Note that for the lower logit plot, we use only traces with pi ⊕ ki in 00 for clarity, and that
extracted mask values are in Figure 10.

can extract mask values, where this work is focused on a spe-
cific implementation using classical side-channel techniques
(thus, no consideration of machine learning approaches),
which requires stronger assumptions than DL-based attacks.
This substantially benefits evaluations as we can move from
black-box to white-box evaluations. This, in turn, would
allow better feedback to designers of cryptographic imple-
mentations.10 One might question how relevant this is for
practical attackers as we require a model that already breaks
the target. When attacks target individual bytes, the diffi-
culty of breaking any individual byte can vary, even for the
same device. As such, when masks are shared for all bytes
(which is often required for masking the non-linear opera-
tions, e.g., the S-box in AES), spending significant effort
to break one key byte might allow retrieving the shared
mask. Then, subsequent attacks against other key bytes
become much more straightforward as we can use the re-
trieved mask during training to effectively move the attack
to an unprotected case by including the mask, see, e.g., the
white-box evaluations in (Bronchain & Standaert, 2021).

Finally, discovering how neural networks practically defeat
countermeasures can improve evaluation/attack methodolo-
gies and countermeasure design. On the evaluation/attack
side, we can design more effective methods for label distri-
bution that consider the common mistakes networks make,
which can improve convergence (Wu et al., 2023). On
the defense side, understanding what type of leakage is
more/less easily exploited could lead to the design of more
(cost-)effective countermeasures that enable more robust
protections (Rijsdijk et al., 2022).

10See (Masure et al., 2023) for more discussion on the relevance
in the context of SCA evaluations.

Profiled attacks against real-world targets are often signif-
icantly more complex than idealized evaluation settings
where the same device is used for both profiling and attack.
Differences between devices often result in worse perfor-
mance when models trained on a profiling device are applied
to the target (Bhasin et al., 2019). In security evaluations,
the same device is commonly used for both profiling and
attack to represent the worst-case scenario where the device
differences are minimal. As such, the attack sets of the con-
sidered targets are from the same device as the profiling set,
which raises questions about the practical relevance of these
results for real-world settings. However, this work considers
post-hoc explanations for models that already break a target.
Therefore, the experimental evaluations emulate what is pos-
sible even for (more realistic) non-profiled adversaries that
obtain a trained model using techniques like (Timon, 2019)
as non-profiled attacks always consider a single device.

8. Conclusions and Future Work
We show that interpreting neural networks trained on side-
channel models is feasible, even without access to random
masks. Moreover, we highlight the effectiveness of inves-
tigating the structures learned during phase transitions and
find evidence for the weak universality of circuits in side-
channel models. Finally, we leverage these insights to re-
verse engineer the mask values.

Automating these analyses represents an interesting direc-
tion for future work. Additionally, further work on leverag-
ing the insights into DLSCA models to improve evaluation
methods could be useful. For example, using tailored leak-
age models that consider common structures could help
simplify model tuning.
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9. Impact Statement
This paper proposes a new approach to understanding the
operations performed by neural networks when used in side-
channel analysis. The end goal is to improve the security
of implementations by implementing stronger countermea-
sures. As such, there are many potential societal conse-
quences of our work, none of which we feel must be specifi-
cally highlighted here. We do not use live systems or violate
terms of service, and to the best of our knowledge, we fol-
low all laws. Our research does not contain elements that
could potentially negatively impact team members. All used
datasets are publicly available.
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A. Datasets
We utilize publicly available datasets commonly used in SCA literature for benchmarking. These datasets implement
AES-128 with Boolean masking protection. The attack set consists of 10 000 traces for each dataset.

CHES CTF 2018 (Hu et al., 2019)11 consists of power consumption measurements from an AES-128 implementation running
on ARM Cortex-M4 (32 bits). CHES CTF 2018 raw traces contain 650 000 sample points per trace. Following (Perin et al.,
2022b), we take a subset of 150 000 points corresponding to the initial setup and the first AES round and resample to 15 000
samples per trace. The profiling set has 30 000 traces.

ESHARD-AES128 (Vasselle et al., 2023)12 consists of EM measurements from a software-masked AES-128 implementation
running on an ARM Cortex-M4 device. The AES implementation is protected with a first-order Boolean masking scheme
and shuffling of the S-box operations. In this work, we consider a trimmed version of the dataset that is publicly available 13

and includes the processing of the masks and all S-box operations in the first encryption round without shuffling. This
dataset contains 100 000 measurements with 90 000 traces for the profiling set.

ASCAD (Benadjila et al., 2020) measures EM emissions from an AES-128 implementation on AVR RISC (8 bits). We use
the version with the variable key in the profiling set. The traces are 250 000 sample points per trace. Following (Perin et al.,
2022a), we take a window of 20 000 points, which are resampled to 2 000 points. 200 000 traces are used for profiling.

B. Models and Training
The used models are MLPs from (Perin et al., 2022a), where model configurations were found through a random hyperpa-
rameter search for ESHARD and ASCAD. Note that as the ESHARD model performed well directly for CHES CTF, we did
not do further optimizations.

The model for CHES CTF and ESHARD is a 4-layer MLP with 40 neurons in each layer with he uniform weight
initialization. We use relu activations. We use the Adam optimizer with a learning rate of 0.0025 and L1 regularization set
to 0.000075. The batch size is 400, and we train for 200 epochs for CHES CTF and 100 for ESHARD.

For ASCAD, the model is a 6-layer MLP with 100 neurons in each layer with random uniform weight initialization. We use
the Adam optimizer with a learning rate of 0.0005. We use elu activations, and we again train for 100 epochs with batch size
400.

C. ESHARD Results
In Figure 7, we see that for ESHARD, only one phase transition occurs for the test set. At epoch 4, the perceived information
becomes positive, and the models start to generalize. We note that the main distinction here is again the high-low HWs,
similar to the first phase transition in CHES CTF. Further analyses are analogous to CHES CTF, although the model here
can never distinguish between even and odd HWs.

In the rightmost two plots in Figure 8, we showcase distributions of the concrete intermediate values the models use. The
models are clearly mapping the HWs of secret shares onto specific features.

C.1. Activation Patching

We can do similar patching experiments as done for CHES CTF in Section 5.1.1. As the high-low HWs are not on the
diagonals in the PCs at epoch 5, we rotate the PC coordinates before patching and then rotate them back before continuing
inference to align PCs more with the expected masks. The results we see in Figure 9 closely match the actual distributions
of secret share HWs as seen in the rightmost plots of Figure 8.

11Referred to as CHES CTF.
12Referred to as ESHARD.
13https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled

13

https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled
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Figure 7: Evolution of Perceived Information for train and test traces of the ESHARD dataset.

Figure 8: Logit analysis (first column) and activation analysis (second column) from models at epoch 3 (top row) and epoch
5 (bottom row). Legend is shared among all figures. We also include the PC embeddings for the actual mask of secret shares
at epoch 5 (third column). The masks we extract are in Figure 9.

Figure 9: SNR plot and PC component distributions for mask values using patching experiments in ESHARD.
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D. ASCAD Patching results
As the leakage model for ASCAD is more complicated than the HW models, patching becomes more difficult. First, we
train probes on the final layer to classify the input and output bits separately. We can directly measure the effects on only the
input or output. Patching the input shares in the PC components in layer 2, which we show in Figure 6, does not work. Then,
we find a qualitatively similar structure in PC1 and PC2 in layer one and patch there.

For the patches on the output shares, we set the first two components, which are related to the input shares, to 0 to isolate the
effects of the patched components. For both experiments, we again rotate the two components by multiplying them with a
rotation matrix to simplify the patches.

Figure 10: SNR plot and PC component distributions for mask values using patching experiments in ASCAD.

In Figure 10, we can see that the patches work reasonably well. Clearly, intervening on the found components has some
causal effects. Furthermore, as we can see in the SNR plots, the patched outputs of the models are tied to the mask values
we expect. However, the SNR values are significantly lower than those for the actual shares, and the ri and S-box⊕ ri
shares only result in two or three classes, respectively, where we expect four. Additionally, we see that the reversed shares
do not combine to the correct label for the input bits, indicating that while the mask values we retrieve are a reasonable
clustering, further post-processing is necessary to retrieve actual values.

As we aim to keep the experiments (somewhat) aligned across all targets, we do not tailor the patching methods further
for ASCAD. The current experiments show we can intervene in the structures and observe effects on the (probe) outputs.
However, refining mask extraction methods in models with more complicated interactions is an interesting direction for
future work. We provide further analysis to validate model predictions based on the four bits in Appendix F.1.

E. HW Recombination CHES CTF and ESHARD
Next, we discuss how mask recombination can be done algorithmically for the HW leakage model.

E.1. High-Low HW Distinguishing

For the CHES CTF and ESHARD targets, we notice that after the first phase transition (for some cases), high and low HWs
can be differentiated. These are byte-based implementations protected with Boolean masking with order 2, i.e., the sensitive
value x = x1 ⊕ x2 (⊕ being bitwise xor). When, based on prior experience working with these targets, we then choose to
model the leakage (and therefore the presumed features of the model) as the L = HW (xi)

14 we can consider modeling

14We note that we knew this a priori for ESHARD and it was strongly suspected for CHES CTF. However, it is also a common leakage
model in practice.
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HW (x) Matrices counting occurrences of HW (s1), HW (s2) s.t. x = s1 ⊕ s2 from 0-9.

HW = 0
HW = 1



1 8 0 0 0 0 0 0 0
8 8 56 0 0 0 0 0 0
0 56 28 168 0 0 0 0 0
0 0 168 56 280 0 0 0 0
0 0 0 280 70 280 0 0 0
0 0 0 0 280 56 168 0 0
0 0 0 0 0 168 28 56 0
0 0 0 0 0 0 56 8 8
0 0 0 0 0 0 0 8 1



HW = 2
HW = 3



0 0 28 56 0 0 0 0 0
0 56 168 168 280 0 0 0 0
28 168 336 840 420 560 0 0 0
56 168 840 840 1680 560 560 0 0
0 280 420 1680 1120 1680 420 280 0
0 0 560 560 1680 840 840 168 56
0 0 0 560 420 840 336 168 28
0 0 0 0 280 168 168 56 0
0 0 0 0 0 56 28 0 0



HW = 4



0 0 0 0 70 0 0 0 0
0 0 0 280 0 280 0 0 0
0 0 420 0 1120 0 420 0 0
0 280 0 1680 0 1680 0 280 0
70 0 1120 0 2520 0 1120 0 70
0 280 0 1680 0 1680 0 280 0
0 0 420 0 1120 0 420 0 0
0 0 0 280 0 280 0 0 0
0 0 0 0 70 0 0 0 0



HW = 5
HW = 6



0 0 0 0 0 56 28 0 0
0 0 0 0 280 168 168 56 0
0 0 0 560 420 840 336 168 28
0 0 560 560 1680 840 840 168 56
0 280 420 1680 1120 1680 420 280 0
56 168 840 840 1680 560 560 0 0
28 168 336 840 420 560 0 0 0
0 56 168 168 280 0 0 0 0
0 0 28 56 0 0 0 0 0



HW = 7
HW = 8



0 0 0 0 0 0 0 8 1
0 0 0 0 0 0 56 8 8
0 0 0 0 0 168 28 56 0
0 0 0 0 280 56 168 0 0
0 0 0 280 70 280 0 0 0
0 0 168 56 280 0 0 0 0
0 56 28 168 0 0 0 0 0
8 8 56 0 0 0 0 0 0
1 8 0 0 0 0 0 0 0


Table 1: Occurrences of HWs for two 8-bit shares for each of the nine output classes, cell i, j in each matrix corresponds to
HW (s1), HW (s2). For the percentage of examples in practice, these values should be divided by 2562. As even and odd
HW (x) never occurs in the same place, we show two HWs in one matrix. Note that any red value (resp. black) is a zero in
black (resp. red).

how occurrences of different classes Y = HW (x) look. In Table 1, low HWs tend to be on the diagonal from top-left to
bottom-right while high HWs tend to be on other diagonal. This (low HWs on one diagonal while high HWs are on the
other) matches the PC embeddings for both models in Figure 8 and Figure 3.

E.2. Even-Odd HW Distinguishing CHES CTF

For CHES CTF, we further see that the even and odd HW target classes can be distinguished after the second phase transition.
From Table 1, it is clear that if the HWs of each secret share can be retrieved accurately enough, there should be a clear
separation between even and odd HWs for the resulting point. Indeed, for any point HW (x1), HW (x2) where x = x1 ⊕x2
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Figure 11: Median logits for traces belonging to varying Yi classes. The red dots indicate indices in respective Yi.

we have that HW (x1) +HW (x2) mod 2 = HW (x) mod 2. This can be seen in Table 1 for two 8-bit shares, but the
ability to distinguish the parity of HW (x) holds for general higher masking orders d (Ito et al., 2022).

F. Bitwise Leakage ASCAD
As we show in Figure 5, the features the model learns for ASCAD are the two least significant bits of both pi ⊕ ki and
S-box[pi ⊕ ki]. We first note that the way the first two bits of S-box[pi ⊕ ki] relate to model labels (S-box[pi ⊕ ki]) is
straightforward: if bit 0 and 1 of S-box[pi ⊕ ki] are 00 then these correspond to predicting each label y mod 4 ≡ 0. For
bits 0 and 1 of pi ⊕ ki, we can use the inverse of the S-box15. If we define y′ = S-Box−1[y] then if bit 0 and 1 of pi ⊕ ki
are 00, we predict y s.t. y′ mod 4 ≡ 0.

Combining these, we can divide the output classes into 16 clusters corresponding to model predictions. Practically, we
define the outputs that belong to the 16 classes as Yi = {y|y ≡ i mod 4 ∧ y′ ≡ ⌊ i

4⌋ mod 4}. Here, we set i to be a
concatenation of bit 1 and 0 of pi ⊕ ki and then bit 1 and 0 of S-box[pi ⊕ ki].

We can then train a linear probe on the activations of the final layer to predict these 16 classes. If we then transform the
probe outputs to evenly distribute the predictions for its i’th output to the values in Yi, we can measure the entropy between
this resulting distribution and the model outputs. In summary, the probe accuracy is 0.64, and the PI between the probes’
transformed distribution and the labels is 2.47 vs. 2.58 for the actual model. The entropy (in bits) between the probe outputs
and model predictions is 0.27, indicating that most of the relevant behavior is explained by using the probe.
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Figure 12: Median logits for traces belonging to varying for epoch 12 (top) and 25 (bottom).

F.1. Logits For ASCAD with Classes

In Figure 11, we show the median logits for traces belonging to classes Yi. As we can see, the logits corresponding to the
expected points in Yi are always the main peaks.

Figure 12 shows how logits change from epoch 12 to epoch 25. When we analyze using only S-box inputs, we see that the
logit values are significantly higher before accuracies for output bits are increased. This is explained by the fact that each of
these cases combines four plots (vertically) in Figure 11. Concretely, as for each trace in Figure 12, we combine traces that
belong to 4 different classes of the output bits, we expect the logits for each index that belongs to p⊕ k mod 4 ≡ i to only
be high for 1/4 traces resulting in lower medians. Note that mean values do not show this same trend as the increase in the
Yi class compensated for this decrease.

To verify that the results in Figure 11 are not an artifact of selecting traces, we visualize the same analysis for bits 2 and 3 in
Figure 13. Clearly, the output values are significantly lower than for correct bits, indicating that these bits are (mostly) not
being used by the model.

15The AES S-box is bijective, which simplifies this, but the analysis also works for surjective functions by taking the pre-image.
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Figure 13: Median logits for traces belonging to varying Yi for bits 2 and 3. The red dots indicate indices in respective Yi.
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