
Under review as submission to TMLR

Flatness-guided hyper-parameter optimization

Anonymous authors
Paper under double-blind review

Abstract

We propose a novel white-box approach to hyper-parameter optimization. Motivated by
recent work establishing a relationship between flat minima and generalization, we first
establish a relationship between the Hessian norm and established sharpness metrics. Based
on this, we seek to find hyper-parameter configurations that improve flatness by minimizing
the upper bound on the sharpness of the loss. By using the structure of the underlying
neural network, we derive semi-empirical estimates for the sharpness of the loss, and attempt
to find hyper-parameters that minimize it in a randomized fashion. Through experiments
on 14 classification datasets, we show that our method achieves strong performance at a
fraction of the runtime.

1 Introduction

A typical machine learning pipeline involves using a combination of processes that have hyper-parameters
that the analyst sets. There is significant interest in automatically computing a Pareto-optimal set of
hyper-parameters tailored to the problem (Agrawal et al. (2019); Cowen-Rivers et al. (2022); Li et al. (2017);
Bergstra et al. (2011); Bergstra and Bengio (2012); Falkner et al. (2018); Eriksson et al. (2019); Ansel et al.
(2014b); Snoek et al. (2012); Hernández-Lobato et al. (2014); Swersky et al. (2014); Snoek et al. (2015);
Bergstra et al. (2013)). In parallel, there is a venerable line of work studying the loss landscapes of neural
networks (Hochreiter and Schmidhuber (1994; 1997); Hinton and Van Camp (1993); Chaudhari et al. (2019);
Keskar et al. (2016); Dziugaite and Roy (2017); McAllester (1999); Neyshabur et al. (2014; 2017); Li et al.
(2018); Seong et al. (2018); Dauphin et al. (2014); Choromanska et al. (2015); Zhang et al. (2021)). Notably,
prior work has shown the effectiveness of improving the smoothness of loss surfaces via batch normalization
(Santurkar et al. (2018)) and filter normalization (Li et al. (2018)).

Hyper-parameter optimization (HPO) is well-studied, with the most popular approaches being based on
Bayesian optimization (Snoek et al. (2012); Hernández-Lobato et al. (2014); Swersky et al. (2014); Bergstra
et al. (2013)), while other work suggests alternative approaches such as random search (Bergstra and Bengio
(2012)) and tabu search (Agrawal et al. (2019)). Smith (2018) discusses empirical methods to manually tune
hyper-parameters based on the performance of the current system. However, although HPO has repeatedly
been shown to improve learner performance (Tantithamthavorn et al. (2016); Majumder et al. (2018)), much
applied machine learning research either does not use HPO, or uses computationally expensive methods such
as grid search. Some of this reluctance to use HPO stems from the general view that it is computationally
expensive. For example, Tran et al. (2020) comment, “Regardless of which hyper-parameter optimization
method is used, this task is generally very expensive in terms of computational costs.” Moreover, there is a
growing concern to reduce the carbon emissions from ML experiments (Lacoste et al. (2019)).

Motivated by the need for computationally cheaper HPO methods, we pose the following question: can we
aim to directly improve the desirable properties of loss landscapes by exploiting the structure of the learning
algorithm? Specifically, recent work has repeatedly endorsed the relationship between the flatness of local
minima and generalization ability of networks (Keskar et al. (2016); Jiang et al. (2019); Neyshabur et al.
(2017); Dziugaite and Roy (2017); Li et al. (2018); Jastrzebski et al. (2017)). We use four major advances
in the theoretical understanding of loss landscapes: (i) Wu and Su (2023) show that SGD can escape from
low-loss, sharp minima (measured by the Frobenius norm of the Hessian) exponentially fast; (ii) Dauphin
et al. (2014) used the line of work starting with Bray and Dean (2007) to show that saddle points are

1

Under review as submission to TMLR

Figure 1: Landscapes (plotted using the method of Li et al. (2018)) with their corresponding metrics, on the
Australian (binary classification, imbalanced) dataset. Left: a landscape with lower sharpness (0.112) and
a wider minima. Middle: a landscape with higher sharpness (1.133). The sharpness values are computed
using the result of Theorem 1. Right: Test metrics and generalization error for the two hyper-parameter
configurations. Although the sharper configuration converged faster to a training error of 0, it generalizes
poorly and performs worse on the test set.

exponentially more likely than local minima; (iii) gradient descent dynamics repel from saddle points (iv) the
sharpness measure proposed by Keskar et al. (2016) have been repeatedly endorsed to correlate well with
generalization (Jiang et al. (2019)). RbkEw:W2 We use these advances to develop a novel, computationally
inexpensive HPO method that demonstrates strong performance. This continues a line of work studying
efficient methods for HPO (Paul et al. (2019)). Through this work, we encourage researchers to adopt
hyper-parameter optimziation in their applied ML work and avoid expensive and ineffective strategies such
as random search and grid search.

We make the following connection between hyper-parameters and the sharpness of the loss surface. Consider
the set of all loss functions. These loss functions depend on the data, the weights, and the hyper-parameters,
so that for a fixed dataset, choosing a set of hyper-parameters materializes a subset of the neural network loss
functions. Our method attempts to compute the lower bound on the sharpness for each set of loss functions,
and materializes the neural networks corresponding to the 10 lowest values of sharpness.

In this work, we show that minimizing the supremum of the sharpness is equivalent in formulation to
computing a lower bound on the Hessian norm of the loss in a mini-batch fashion. Next, we demonstrate a
semi-empirical method of computing the sharpness of a loss function parameterized by the hyper-parameters
of the model. The result we obtain is general enough to cover a wide range of network topologies. We use this
result to motivate a hyper-parameter optimization method that uses the sharpness as a heuristic for search.
Our method requires fewer full-length training runs of the learning algorithm, instead relying on one-epoch
cycles to compute the sharpness, and discarding hyper-parameter configurations that are not promising.

Figure 1 shows the motivation for our approach. The left side shows a landscape with lower sharpness as
computed by our method (and a flatter minima), which in turn has much lower generalization error for both
accuracy and AUC1; the middle shows a landscape with a higher sharpness value, which led to a much higher
generalization error for both metrics. Note that for the latter case, the training stopped early since both
training AUC and accuracy reached 1; however, the model generalized poorly, and did worse on the test set.
Similar plots and their corresponding performances on more datasets are shown in Appendix E.

Our contributions are as follows:

• We propose a novel white-box hyper-parameter optimization algorithm based on minimizing the
sharpness of the loss, RbkEw:W1a which has been shown to negatively correlate with generalization
performance (Section 3.2).

1 RuHZU:W2a These are computed as metrictrain − metrictest .

2

Under review as submission to TMLR

• We derive semi-empirical estimates of the infimum of the Hessian norm, as a method of computing the
sharpness. RbkEw:W1b Crucially, this does not rely on materializing the exact Hessian at runtime,
which is computationally prohibitive (Section 3.3.

• We show that our algorithm achieves strong performance in HPO across 14 datasets at a fraction of
the computational cost. RbkEw:W1c Compared to the fastest algorithm we compare against, our
method is ≈ 200% faster (Section 4.1).

To allow others to reproduce our work, our code is available online2.

2 Related Work

This section briefly discusses related work; for a more comprehensive discussion, please see Appendix A.

Hyper-parameter optimization. In its general form, hyper-parameter optimization (HPO) solves the
problem of finding a non-dominated hyper-parameter configuration under some budget. Early works (Bergstra
and Bengio (2012); Bergstra et al. (2011)) showed the strength of random search, but since then, Bayesian
Optimization has become increasingly popular. For example, the Tree of Parzen Estimators (TPE) algorithm
models p(x|y) using two kernel density estimates depending on whether y is below or above some quantile,
and optimizes the Expected Improvement (EI).

HyperBand (HB) (Li et al. (2017)) uses a procedure called “successive halving", which starts by randomly
sampling a set of configurations and testing them under a limited budget, retaining only the best-performing
ones and allocating those greater resources. At its core, its strategy is to aggressively prune poor-performing
configurations so that more promising ones can be allocated more resources. Algorithms such as BOHB
(Falkner et al. (2018)) and DEHB (Awad et al. (2021)) improve upon these in different ways: DEHB uses
a distributed computing approach and combines differential evolution with HB, while BOHB combines a
slightly modified version of the BO-based TPE with HB.

HEBO (Cowen-Rivers et al. (2022)) use a combination of input and output transformations along with
NSGA-II to optimize a multi-objective acquisition function. TuRBO (Dou et al. (2023)) assumes the hyper-
parameter to performance mapping is Lipschitz, and uses an ensemble of learners to predict performance,
using the prediction to update its Gaussian Process model instead if that prediction is poor.

Flat minima and generalization. The connection between “flat minima” and generalization has been
repeatedly endorsed. The flatness of minima has been defined in various ways, such as the volume of
hypercuboids such that the loss is within a tolerance (Hochreiter and Schmidhuber (1997)) and as robustness
to adversarial perturbations in weight space (Keskar et al. (2016)). The specific formulation of Keskar et al.
(2016) is

ζ(w; ϵ) =
max

v∈B(ϵ,w)
f(v)− f(w)

1 + f(w)

This notion of sharpness was also endorsed by a large-scale study of complexity measures by Jiang et al. (2019).
The relationship between flatness and generalization was later also endorsed by several works (Neyshabur
et al. (2017); Li et al. (2018); Wu and Su (2023)). RuHZU:W5 It is worth noting that flat minima are not a
necessary condition for good generalization performance (Wen et al. (2023); Dinh et al. (2017)); however,
Jiang et al. (2019) show a strong causal relationship between sharpness and generalization performance,
which motivates our method. We defer the reader to Appendix A for a more detailed review.

At this point, we also distinguish this work from Sharpness-Aware Minimization (SAM) (Foret et al. (2020)).
The latter attempts to find flat minima during optimization, i.e., once hyper-parameters have been chosen.
As such, SAM can be used in conjunction with our method, and we do not compare against it.

2https://anonymous.4open.science/r/ahsc-hpo/

3

https://anonymous.4open.science/r/ahsc-hpo/

Under review as submission to TMLR

3 Method

3.1 Notation and Assumptions

For any learner, X ∈ X will represent the independent variables and y will represent the labels; W represents
the weights of a neural network. We use m to denote the number of training samples, n to denote the number
of features, k to denote the number of classes, and E to denote the loss function. R6ZG2:W4a When we wish
to express the loss function as parameterized by a set of hyper-parameters H, we will denote it as E(·; H) .

For a feedforward network, L represents the number of layers, and at each layer, the following computation is
performed: z[l] = W [l]T a[l−1] + b[l] and a[l] = g[l](z[l]) where a[0] = X. Here, b[l] is the bias vector at layer l,
W [l] is the weight matrix at layer l, and g[l] is the activation function used at layer l.

We use ∇W · to denote the first gradient of ·, with respect to W . ∇2
W · denotes the Hessian, R6ZG2:W5

which is a rank-4 tensor obtained by computing the gradient of E with respect to W twice . Finally, B(ϵ, w)
denotes an ϵ−ball centered at w. Whenever unspecified, the matrix norm is the Frobenius norm. We use Sn

to denote the set of n× n real, symmetric matrices. We defer to Appendix B for background definitions in
convex optimization.

R6ZG2:W6a For notational convenience, we will use lb f to denote some lower bound on a function f . Our
method is based on obtaining lower bounds on sharpness for a chosen set of hyper-parameters, but it cannot
be guaranteed that these lower bounds are the greatest lower bounds (i.e., the infimum). With some abuse of
notation, when we write lb f(x) = g for some expression g, it is equivalent to f(x) ≥ g∀x ∈ dom f .

Assumption 1. We assume the space X is Polish3. We use the Frobenius norm of the Hessian to define
the sharpness of a loss landscape. In this context, completeness of the underlying metric space is necessary.
Moreover, completeness is an important assumption in gradient descent, since it guarantees the existence
of limits for Cauchy sequences. Finally, separability helps avoid issues with measurability when we use a
covering argument in the next section.

Asssumption 2. We also assume the activation functions used in every layer satisfy dg[l]

dx ≤ 1. Most
commonly used activations such as sigmoid, softmax, ReLU, and GELU satisfy this property.

3.2 FGHPO: Flatness-guided HPO

RbkEw:W4 Based on the relationship between flat minima and generalization, we develop a hyper-parameter
optimization method that in a randomized fashion, explicitly searches for flatter losses. Specifically, we are
interested in the problem:

inf
h∈H

ζh(w; ϵ)

where ζ is the sharpness measure proposed by Keskar et al. (2016), discussed above, and the subscript denotes
that the loss is parameterized by the hyper-parameter set h.

RuHZU:W1a In this paper, we derive a lower bound on the norm of the Hessian to compute the sharpness of
the loss landscapes. Specifically, we solve the problem:

lb
h∈H

sup
x⊂X
∥∇2E(x; h)∥

This mini-batch version accounts for large datasets for which a mini-batch approach is necessary. Note that
it is necessary to use an upper bound approximation at the mini-batch level: using a lower bound instead
yields 0 a majority of the time, making the search ineffective. We can relate this to the sharpness measure
from Keskar et al. (2016): this formulation corresponds to minimizing the upper bound on the sharpness over
the entire ϵ−ball. In Appendix B.1, we note that the standard covering argument bounds the deviation of
this mini-batch approximation of the supremum from the true supremum.

We first show that this lower bound is directly related to the sharpness measure established by Keskar et al.
(2016):

3A Polish space is a complete, separable, metrizable space.

4

Under review as submission to TMLR

ζ(w) =
max

w′∈B(ϵ,w)
f(w′)− f(w)

1 + f(w)
(i)
≊ max

w′∈B(ϵ,w)
f(w′)− f(w)

(ii)
≊

ϵ2

2
∥∥∇2f(w)

∥∥
2 ≤

ϵ2

2
∥∥∇2f(w)

∥∥
F

where (i) is because the training error is typically small in practice (Neyshabur et al. (2017)) and (ii) follows
from a second-order Taylor expansion of f around w, as done by Dinh et al. (2017). Therefore, we wish to
minimize the sharpness, which is equivalent to the formulation above. Equivalently, we have (with r denoting
the rank of the Hessian)

ζ(w) ≊ ϵ2

2
∥∥∇2f(w)

∥∥
2 ≥

ϵ2

2
√

r

∥∥∇2f(w)
∥∥

F
≥ ϵ2

2
√

n

∥∥∇2f(w)
∥∥

F

Therefore, we have:
ϵ2

2
√

n

∥∥∇2f(w)
∥∥

F
≤ ζ(w) ≤ ϵ2

2
∥∥∇2f(w)

∥∥
F

so that the sharpness and a scaled version thereof provide bounds on the sharpness, and minimizing the
Hessian norm implies both the lower and upper bounds on the sharpness are lowered.

Algorithm 1 shows our overall approach. We first sample N1 random configurations (line 2). For each of
these configurations, we first train the model for one epoch to bring the weights closer to their final weights
(line 6). Training for a single epoch provides a balance between the cost associated with training fully (which
would provide a more accurate estimate for the sharpness), and not training at all (which provides a very
poor estimate). We discuss this further in Section 4.2. We then compute the sharpness of the loss in a
mini-batch fashion (lines 8-10). This sharpness is computed using the result of Theorem 1 below. Since we
wish to minimize the sharpness, it is important that we (a) at the mini-batch level, compute a lower bound
on the sharpness to obtain an estimate for the best-case scenario (line 9); (b) overall, look at the highest
value across mini-batches, since that represents a best-effort estimate at the lower bound globally (also line
9). We aim to minimize that upper bound (line 15). Importantly, if the lower bound is 0 (implying there is
no information), we discard that configuration (lines 11-13). We pick the configurations corresponding to the
N2 lowest values of sharpness as computed above, and train those models fully (lines 15-17). Finally, we
return the best-performing configuration.

In Appendix C, Theorem 2, we show that if the loss is smooth and µ−strongly convex4, then

f(xt)− f(x∗) ≤ (1− αµ)t (f(x0)− f(x∗))

where α is the learning rate. Since we have ∀t, f(xt)− f(x∗) ≥ 0,

f(xt+1)− f(xt) ≤ (1− αµ)t+1 (f(x0)− f(x∗))
≤ exp(−αµ(t + 1)) (f(x0)− f(x∗))

which implies exponentially decaying benefit as the number of epochs increases. On the other hand, Theorem
2 also implies that for vanilla gradient descent, the number of steps required for convergence is inversely
proportional to the strong convexity, so that minimizing the latter implies a greater number of steps is
required to converge (which increases the runtime). To reduce the impact of this, we use the Adam (Kingma
and Ba (2014)) optimizer. We leave it to future work to explore additional strategies, such as large adaptive
learning rates, which can also lead to flatter losses (Jastrzebski et al. (2017)).

4Note that the strong convexity can be defined as the lower bound on the Hessian norm, which is what we use to compute
sharpness.

5

Under review as submission to TMLR

Algorithm 1 FGHPO
1: Input: Number of configurations to sample N1, number of configurations to run N2. Defaults: N1 =

50, N2 = 10.
2: H0 ← Random(H, N1)
3: S ← ϕ {Sharpness values}
4: P ← ϕ {Performance scores}
5: for config h in H0 do
6: Train for one epoch using h
7: µmax = −∞
8: for mini-batch x ⊂ X do
9: µmax = max(µmax, lb

∥∥∇2E(x; h)
∥∥)

10: end for
11: if µmax > 0 then
12: S[h] ← µmax

13: end if
14: end for
15: for config h in Lowest(S, N2) do
16: P[h] ← Run(h)
17: end for
18: return arg max P

3.3 Computing the sharpness

RuHZU:W1b We now derive a semi-empirical expression for the sharpness (lb
∥∥∇2E(x; h)

∥∥) used in Line 9
of Algorithm 1. Our main result (Theorem 1) is that in the general multi-class classification setting with a
softmax activation at the last layer,

lb
∥∥∇2

W E
∥∥ =

∥a[L−1]
j ∥
∥W [L]∥

Importantly, the proof does not rely on the architecture of the network beyond the last two layers. That is,
as long as the last two layers of the network are fully-connected, this theorem applies. RuHZU:W1c We first
prove some auxiliary results that will be used in the proof for Theorem 1.

Lemma 1 (Norm of Moore-Penrose pseudo-inverse). Let B be the left Moore-Penrose pseudo-inverse of
some matrix A. Then

∥B∥2 = 1
σmin(A)

where σmin(A) denotes the least singular value of A.

6

Under review as submission to TMLR

Proof. It is well-established that AB is the orthogonal projection to the column space of A, so that for every
vector y, ABy ⊥ (I −AB)y. Therefore:

∥B∥2 = max
y ̸=0

∥By∥
∥y∥

= max
y ̸=0

∥By∥
∥ABy + (I −AB)y∥

= max
By ̸=0

∥By∥
∥ABy + (I −AB)y∥

≤ max
By ̸=0

∥By∥
∥ABy∥

≤ max
x ̸=0

∥x∥
∥Ax∥

=
(

min
x ̸=0

∥Ax∥
∥x∥

)−1

= 1
σmin(A)

Lemma 2. For a deep learner with activations satisfying Assumption 2 in the hidden layers, the last two
layers being fully-connected, and a softmax activation at the last layer,

∂E

∂z
[L]
h

= a
[L]
h −

1
m

m∑
i=1

[y(i) = h]

under the cross-entropy loss.

Proof. Consider the Iverson notation version of the general cross-entropy loss:

E(a[L]) = − 1
m

m∑
i=1

k∑
j=1

[y(i) = j] log a
[L]
j

Then,

∂E

∂z
[L]
h

= − 1
m

m∑
i=1

k∑
j=1

[y(i) = j]
a

[L]
j

a
[L]
j

(
δhj − a

[L]
h

)

= − 1
m

m∑
i=1

k∑
j=1

[y(i) = j]
(

δhj − a
[L]
h

)

= − 1
m

m∑
i=1

k∑
j=1

[y(i) = j]δhj + 1
m

m∑
i=1

k∑
j=1

[y(i) = j]a[L]
h

= − 1
m

m∑
i=1

[y(i) = h] +
a

[L]
h

m

m∑
i=1

1

= a
[L]
h −

1
m

m∑
i=1

[y(i) = h] (1)

7

Under review as submission to TMLR

Theorem 1 (Sharpness for feedforward networks). For a deep learner with activations satisfying Assumption
2 in the hidden layers, the last two layers being fully-connected, and a softmax activation at the last layer, the
sharpness of the cross-entropy loss is lower bounded by R6ZG2:W6b

lb∥∇2
W [L]E∥ =

∥∥a[L]
∥∥∥∥W [L]
∥∥ (2)

Proof. From Lemma 2 and z[L] = W [L]a[L−1] + b[L],

∇W [L]E = a[L]a[L−1]T

Now, we work toward the Hessian:

∂2E

∂a[L]∂W L
= In[L]×n[L] ⊗ a[L−1]T + a[L] ⊗

(
∂a[L]

∂a[L−1]T

)−1

which is of shape (n[L], n[L], n[L−1]). Note that because the derivative inside the inverse is not square, this
inverse is the Moore-Penrose pseudo-inverse. We have:

∂a[L]

∂a[L−1] = ∂a[L]

∂z[L]
∂z[L]

∂a[L−1]

=
(

diag(a[L])− a[L]a[L]T
)

W [L]In[L−1]×n[L−1]

∂a[L]

∂a[L−1]T = In[L−1]×n[L−1]W [L]T
(

diag(a[L])− a[L]a[L]T
)

so that

∂2E

∂a[L]∂W L
= In[L]×n[L] ⊗ a[L−1]T + a[L]

(
In[L−1]×n[L−1]W [L]T

(
diag(a[L])− a[L]a[L]T

))−1

Next,

∂a[L]

∂W [L] = ∂a[L]

∂z[L]
∂z[L]

∂W [L]

=
(

diag(a[L])− a[L]a[L]T
)
⊗ a[L−1]

which is of shape (n[L], n[L], n[L−1]). This yields the Hessian

∇2
W [L]E = (

In[L]×n[L] ⊗ a[L−1]T) ((diag(a[L])− a[L]a[L]T)⊗ a[L−1])T +

a[L] (In[L−1]×n[L]W [L]T (diag(a[L])− a[L]a[L]T))−1 (diag(a[L])− a[L]a[L]T)⊗ a[L−1]

≥
∥∥a[L]

∥∥∥∥W [L]
∥∥

where for the last step we used Lemma 1, dropped the first term to get a lower bound, and used σminX ≤
σmaxX = ∥X∥2.

8

Under review as submission to TMLR

Table 1: Experimental results on various classification datasets. FGHPO is our method. Values shown are
medians over 20 repeats. Statistically best results are highlighted in bold (see Section 4 for details).

Image

Dataset HPO method Accuracy

MNIST

FGHPO 98.65
Hyperopt 97.22
Random 98.95
TuRBO 98.99
HEBO 98.94
BOHB 98.85

SVHN

FGHPO 86.63
Hyperopt 67.20
Random 91.86
TuRBO 80.41
HEBO 92.89
BOHB 79.67

Bayesmark

Dataset HPO method Score

breast

FGHPO 93.98
Hyperopt 92.68
Random 90.45
TuRBO 88.97
HEBO 90.84
BOHB 92.37

digits

FGHPO 84.74
Hyperopt 96.85
Random 87.39
TuRBO 89.51
HEBO 95.24
BOHB 91.50

iris

FGHPO 91.00
Hyperopt 79.83
Random 82.98
TuRBO 83.52
HEBO 78.27
BOHB 92.30

wine

FGHPO 92.35
Hyperopt 83.98
Random 76.59
TuRBO 81.15
HEBO 74.93
BOHB 81.68

OpenML

Dataset HPO method AUC

vehicle

FGHPO 0.885
Hyperopt 0.883
Random 0.873
TuRBO 0.882
HEBO 0.884
BOHB 0.883

blood-transf...

FGHPO 0.721
Hyperopt 0.728
Random 0.708
TuRBO 0.720
HEBO 0.718
BOHB 0.725

Australian

FGHPO 0.934
Hyperopt 0.932
Random 0.928
TuRBO 0.932
HEBO 0.935
BOHB 0.928

car

FGHPO 1.0
Hyperopt 1.0
Random 1.0
TuRBO 1.0
HEBO 1.0
BOHB 1.0

phoneme

FGHPO 0.560
Hyperopt 0.564
Random 0.561
TuRBO 0.564
HEBO 0.563
BOHB 0.563

segment

FGHPO 0.961
Hyperopt 0.960
Random 0.955
TuRBO 0.960
HEBO 0.961
BOHB 0.960

credit-g

FGHPO 0.778
Hyperopt 0.782
Random 0.766
TuRBO 0.763
HEBO 0.763
BOHB 0.752

kcl

FGHPO 0.816
Hyperopt 0.817
Random 0.769
TuRBO 0.775
HEBO 0.816
BOHB 0.785

4 Experiments

We compare our approach based on the sharpness (which we call FGHPO) with other popular hyper-parameter
optimization algorithms. We randomly sample 50 configurations, compute their sharpness (computed by
Theorem 1), and run the top 10, reporting the best-performing one. We repeat all experiments 20 times, and
compare results using pairwise Mann-Whitney tests (Mann and Whitney (1947)) with a Benjamini-Hochberg
correction procedure for p-values (as endorsed by Farcomeni (2008)), employing a 5% significance level.
R6ZG2:W2 For all baselines, we use default settings with a budget of 50 evaluations. In all cases, models are

trained for 100 epochs. RuHZU:W8b At test time, for the random and Bayesian Optimization (BO)-based
methods5, we use the most promising candidate produced by the 50 evaluations over the training set (based

5This is all the methods except ours and random.

9

https://openml.org/t/53
https://openml.org/t/10101
https://openml.org/t/146818
https://openml.org/t/146821
https://openml.org/t/9952
https://openml.org/t/146822
https://openml.org/t/31
https://openml.org/t/3917

Under review as submission to TMLR

on validation set performance at training time). For our method, we use the best performing configuration
(based on validation set performance) over the 10 with the lowest sharpness.

For tabular datasets, we experiment on the Bayesmark datasets used in the NeurIPS 2020 Black-Box
Optimization Challenge and the 8 datasets used in the MLP benchmarks in HPOBench (Eggensperger et al.
(2021)). For convolutional networks, we run experiments on MNIST (LeCun (1998)) and SVHN (Netzer et al.
(2011)).

RuHZU:W8a We use the default train/test splits provided for all datasets to remain consistent with prior
work. For the image datasets, we scale each feature to [0, 1]. For the OpenML datasets, we normalize samples
to have an l2 norm of 1. We do not perform any preprocessing for the Bayesmark datasets.

Table 2: Summary of our results. Wins, ties, and losses are determined by the results of statistical significance
tests.

Algorithm Wins Ties Losses (Wins + Tie)%

FGHPO 1 8 5 64.3
R6ZG2:W3a Hyperopt 0 10 4 71.4

Random 0 2 12 14.3
TuRBO 0 5 9 35.7
HEBO 0 6 8 42.9
BOHB 0 8 6 57.1

For Bayesmark, we use the default set of hyper-parameters for MLPs, which has a size of 134M6. For MNIST,
we used Conv - MaxPooling blocks, followed by two fully-connected layers. For SVHN, we used Conv -
BatchNorm - Conv - MaxPooling - Dropout layers, followed by a fully-connected layer, a dropout layer, and
a final fully-connected layer. The range of hyper-parameters for all these models is shown in Table 3.

We use the metrics employed by prior work to ensure a fair and consistent evaluation. For Bayesmark datasets,
we report the mean normalized score, which first calculates the performance gap between observations and
the global optimum and divides it by the gap between random search and the optimum. For MNIST and
SVHN, we use the accuracy score. For the OpenML datasets, we use the area under the ROC curve, since we
found that many of them had notable class imbalances.

Our results, shown in Table 1, demonstrate that FGHPO is capable of achieving strong performance on
most datasets. These results are summarized in Table 2. We declare an algorithm as “winning” on a dataset
if it outperforms every other algorithm; it “ties” if any other algorithm’s performance is not statistically
significantly different.

R6ZG2:W1 We also checked that the final validation loss is more strongly correlated with the flatness than
with the validation loss after one epoch. Using data from all of the OpenML datasets, we computed the
Spearman correlation coefficient. As predicted, the sharpness that we computed was negatively correlated
with the final validation loss (ρ = −0.14, p < 0.05); moreover, the validation loss after one epoch was not
correlated with the final validation loss (ρ = 0.08, p = 0.23).

4.1 Runtime

In practice, computing the sharpness is cheap. In detail, we train the network with the given hyper-parameters
for one epoch and then use the equations derived to compute the sharpness in mini-batches. The one epoch
of training moves the network weights closer to the final position, so that the measured loss criterion is more
accurate than from a randomly initialized point.

On a machine with an Intel Cascade Lake CPU with 4 vCPUs and 23GB RAM and no GPU, where we
ran our NeurIPS Black-Box Optimization Challenge experiments, we measured the cost of computing the
sharpness over 15 runs with varying batch sizes. The median number of batches was 15.51 (442 samples),
which took a median of 0.47 seconds. Therefore, it takes 0.03s/batch/config to compute the sharpness. For

6https://github.com/uber/bayesmark/blob/master/bayesmark/sklearn_funcs.py

10

https://github.com/uber/bayesmark/blob/master/bayesmark/sklearn_funcs.py

Under review as submission to TMLR

Figure 2: Algorithm runtimes on the vehicle dataset.

Figure 3: RuHZU:W9 Intersection over Union (IoU) of the set of the 10 configurations corresponding to the
lowest sharpness, after one epoch and after epoch i, i ∈ {1, . . . , 10}.

example, the breast cancer dataset has 569 samples. Using the mean batch size in the hyper-parameter space
of 130, that evaluates to 4.38 batches, which we expect to take 0.03 × 4.38 × 50 = 6.57s to compute the
sharpness for 50 configurations.

The above experiments suggest that computing the sharpness this way is computationally cheap, since we
train for the full epochs only for the top 10 configurations. Figure 2 shows the runtimes for each algorithm
on the vehicle dataset, on a machine with an RTX 2060 Super. Our approach requires between 13% to 33%
of the runtime compared to other algorithms.

4.2 The exploration-exploitation trade-off

We additionally tested how much the configurations corresponding to the 10 lowest sharpness values changed
as the epochs progressed (since those are the only ones trained fully and evaluated). To do this, we computed
the sharpness after each epoch, for 10 epochs, on the HPOBench datasets used in our paper. We then
computed the IoU (Intersection Over Union) metric between the configurations in the top 10 after 1 epoch
with those in the top 10 after 2, 3, . . . , 10 epochs. As expected, this metric decreases gradually; after
10 epochs, this IoU has a mean of 47% (see Figure 3). This means that after 10 epochs, about half the
configurations in the top 10 are the same as after epoch 1. We argue that this is an exploration-exploitation

11

Under review as submission to TMLR

tradeoff: by training for further epochs, we obtain a more accurate estimate, at additional computational
expense. We maintain that the one-epoch training cycle balances the exploration-exploitation trade-off well,
since it is not necessary for a landscape to have flat minima to generalize well (Wen et al. (2023); Dinh et al.
(2017)).

5 Limitations

In this paper, we developed a novel white-box hyper-parameter optimization algorithm that, after some cheap
computation, requires only 10 full runs to find a good configuration. We demonstrated our results on 12
tabular and two image datasets.

It has not escaped our attention that this method does not allow the user to specify a preference for evaluation
metrics such as recall or precision. We leave this as future work. In particular, we exploit the fact that the
Pareto frontier is a subset of the convex hull of the hyper-parameter performance scores. To find configurations
that do well on some metric, we traverse the Pareto frontier and compute quantized7 convex combinations of
adjacent points and also test them. This is similar to the approach of Ammar (2004). However, this approach
adds additional computational cost.

Our hyper-parameter optimization method has two key limitations: first, it is limited to learners for which a
loss function can be defined. In some cases such as Naive Bayes, a surrogate such as the negative log-likelihood
can be used, for which the sharpness can be computed. Even in cases where the loss is not twice-differentiable,
one can use a finite difference approximation to compute the Hessian (see Nocedal and Wright (1999)):

∂2f
∂xi∂xj

(x) ≈ 1
ϵ2 (f(x + ϵei + ϵej)− f(x + ϵei)− f(x + ϵej) + f(x))

where the error is O(ϵ). The second, potentially more important limitation is that the sharpness cannot be
compared across learners, especially if different losses are used. For example, while algorithms such as TPE
can be used on hyper-parameter spaces with multiple classes of learners, our approach cannot: the entire
hyper-parameter space must have comparable sharpness values, for which the same class of learners (such as
neural networks, Naive Bayes, logistic regression, etc.) must be used. However, this can be resolved by using
the same loss function across learning algorithms. For example, a negative log-likelihood ratio loss has been
proposed for neural classifiers (Yao et al. (2020)), which is compatible with other learners.

References
Amritanshu Agrawal, Wei Fu, Di Chen, Xipeng Shen, and Tim Menzies. How to “dodge” complex software

analytics. IEEE Transactions on Software Engineering, 47(10):2182–2194, 2019.

Kareem Ammar. Multi-heuristic theory assessment with iterative selection. West Virginia University, 2004.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: An extensible framework for program autotuning. In
Proceedings of the 23rd international conference on Parallel architectures and compilation, pages 303–316,
2014a.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: An extensible framework for program autotuning. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT), Edmonton, Canada, Aug
2014b. URL http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf.

Sebastian Pineda Arango, Hadi Samer Jomaa, Martin Wistuba, and Josif Grabocka. Hpo-b: A large-
scale reproducible benchmark for black-box hpo based on openml. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.
7This is only necessary if the space is not dense in Rd; for example, Z is nowhere dense in R so that for a space Rn × Z,

quantization would be necessary.

12

http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf

Under review as submission to TMLR

Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary hyperband for scalable, robust and
efficient hyperparameter optimization. arXiv preprint arXiv:2105.09821, 2021.

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Subdominant
dense clusters allow for simple learning and high computational performance in neural networks with
discrete synapses. Physical review letters, 115(12):128101, 2015.

Carlo Baldassi, Christian Borgs, Jennifer T Chayes, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and
Riccardo Zecchina. Unreasonable effectiveness of learning neural networks: From accessible states and
robust ensembles to basic algorithmic schemes. Proceedings of the National Academy of Sciences, 113(48):
E7655–E7662, 2016.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks. The Journal of Machine Learning Research,
20(1):2285–2301, 2019.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of machine
learning research, 13(2), 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. Advances in neural information processing systems, 24, 2011.

James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. 2013.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas,
Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter optimization: Foundations,
algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 13(2):e1484, 2023.

George EP Box and David R Cox. An analysis of transformations. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 26(2):211–243, 1964.

Alan J Bray and David S Dean. Statistics of critical points of gaussian fields on large-dimensional spaces.
Physical review letters, 98(15):150201, 2007.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer
Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys.
Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018, 2019.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss surfaces
of multilayer networks. In Artificial intelligence and statistics, pages 192–204. PMLR, 2015.

Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys Griffiths,
Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, et al. Hebo: pushing the limits of sample-
efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research, 74:1269–1349, 2022.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Advances
in neural information processing systems, 27, 2014.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In International Conference on Machine Learning, pages 1019–1028. PMLR, 2017.

Hui Dou, Lei Zhang, Yiwen Zhang, Pengfei Chen, and Zibin Zheng. Turbo: A cost-efficient configuration-based
auto-tuning approach for cluster-based big data frameworks. Journal of Parallel and Distributed Computing,
177:89–105, 2023.

13

Under review as submission to TMLR

John Duchi. Lecture notes on statistics and information theory.
https://web.stanford.edu/class/stats311/lecture-notes.pdf, 2023.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for deep (stochas-
tic) neural networks with many more parameters than training data. arXiv preprint arXiv:1703.11008,
2017.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, Rene Sass, Aaron Klein, Noor
Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of reproducible multi-fidelity benchmark
problems for hpo. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global
optimization via local bayesian optimization. Advances in neural information processing systems, 32, 2019.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter optimization at
scale. In International Conference on Machine Learning, pages 1437–1446. PMLR, 2018.

Alessio Farcomeni. A review of modern multiple hypothesis testing, with particular attention to the false
discovery proportion. Statistical methods in medical research, 17(4):347–388, 2008.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated machine learning, pages
3–33. Springer, Cham, 2019.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Peter D Grünwald. The minimum description length principle. MIT press, 2007.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pages 1225–1234. PMLR, 2016.

Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension bounds for piecewise linear
neural networks. In Conference on learning theory, pages 1064–1068. PMLR, 2017.

José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy search
for efficient global optimization of black-box functions. Advances in neural information processing systems,
27, 2014.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the description
length of the weights. In Proceedings of the sixth annual conference on Computational learning theory,
pages 5–13, 1993.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima. Advances in
neural information processing systems, 7, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Stanisław Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and
Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic generalization
measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

14

Under review as submission to TMLR

Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded random
processes. Journal of hydrology, 46(1-2):79–88, 1980.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approximation for
natural gradient descent. Advances in neural information processing systems, 32, 2019.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon
emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. Advances in neural information processing systems, 31, 2018.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1):
6765–6816, 2017.

Suvodeep Majumder, Nikhila Balaji, Katie Brey, Wei Fu, and Tim Menzies. 500+ times faster than deep
learning. In Proceedings of the 15th International Conference on Mining Software Repositories. ACM, 2018.

Neeratyoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer, Luigi
Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of deep learning.
arXiv preprint arXiv:2306.12370, 2023.

Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is stochastically
larger than the other. The annals of mathematical statistics, pages 50–60, 1947.

David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual conference on
Computational learning theory, pages 164–170, 1999.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. 2011.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role of
implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in
deep learning. Advances in neural information processing systems, 30, 2017.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Supratik Paul, Vitaly Kurin, and Shimon Whiteson. Fast efficient hyperparameter tuning for policy gradient
methods. Advances in Neural Information Processing Systems, 32, 2019.

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. Yahpo gym-
an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In International
Conference on Automated Machine Learning, pages 3–1. PMLR, 2022.

Jorma Rissanen. A universal prior for integers and estimation by minimum description length. The Annals
of statistics, 11(2):416–431, 1983.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization? Advances in neural information processing systems, 31, 2018.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Sihyeon Seong, Yegang Lee, Youngwook Kee, Dongyoon Han, and Junmo Kim. Towards flatter loss surface
via nonmonotonic learning rate scheduling. In UAI, pages 1020–1030, 2018.

15

Under review as submission to TMLR

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size,
momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural networks. In
International conference on machine learning, pages 2171–2180. PMLR, 2015.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto. Automated
parameter optimization of classification techniques for defect prediction models. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pages 321–332, 2016. doi: 10.1145/2884781.
2884857.

Ngoc Tran, Jean-Guy Schneider, Ingo Weber, and A Kai Qin. Hyper-parameter optimization in classification:
To-do or not-to-do. Pattern Recognition, 103:107245, 2020.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pages 681–688, 2011.

Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize sharpness
to achieve better generalization. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta Dey,
and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv preprint arXiv:2301.08727,
2023.

Eugene P Wigner. On the distribution of the roots of certain symmetric matrices. Annals of Mathematics, 67
(2):325–327, 1958.

Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient descent. In
International Conference on Machine Learning, pages 37656–37684. PMLR, 2023.

Hengshuai Yao, Dong-lai Zhu, Bei Jiang, and Peng Yu. Negative log likelihood ratio loss for deep neural
network classification. In Proceedings of the Future Technologies Conference (FTC) 2019: Volume 1, pages
276–282. Springer, 2020.

In-Kwon Yeo and Richard A Johnson. A new family of power transformations to improve normality or
symmetry. Biometrika, 87(4):954–959, 2000.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

16

Under review as submission to TMLR

A Related Work

Hyper-parameter optimization. There is significant prior work in hyper-parameter optimization (Agrawal
et al. (2019); Cowen-Rivers et al. (2022); Li et al. (2017); Bergstra et al. (2011); Bergstra and Bengio (2012);
Falkner et al. (2018); Eriksson et al. (2019); Ansel et al. (2014b)). Indeed, as learning systems become more
intricate, it is crucial that we eke out the most performance. However, this is a non-trivial problem, as
evidenced by the long line of research in this direction.

The simplest form of hyper-parameter search is random search, which tries n randomly chosen hyper-parameter
configurations. Opentuner (Ansel et al. (2014a)) is a multi-armed bandit meta-technique with a sliding
window that incorporates an exploration/exploitation trade-off based on the number of times a specific
technique is used. It combines DE, a greedy bandit mutation technique, and hill-climbing methods.

Bayesian Optimization (BO) has emerged as the most popular technique for HPO. Bergstra et al. (2011)
propose the Tree of Parzen Estimators (TPE) algorithm. Rather than model p(y|x), TPE models p(x|y) as

p(x|y) =
{

l(x) y < y∗

g(x) y ≥ y∗

where y∗ is chosen so that p(y < y∗) = γ for some quantile γ. The functions l(x) and g(x) are kernel
density estimates. TPE optimizes the EI, which they show is equivalent to maximizing l(x)/g(x). Snoek
et al. (2012) use Gaussian Process (GP) models as the surrogate function in Bayesian optimization. They
use Expected Improvement (EI) as the acquisition function. Similarly, Hernández-Lobato et al. (2014) use
predictive entropy search (PES) as the acquisition function. Swersky et al. (2014) exploit iterative training
procedures in their Bayesian optimization framework, which they call freeze-thaw Bayesian optimization.
Snoek et al. (2015) use neural networks for modeling distributions over functions that yields an approach that
scales linearly over data size (rather than cubically as in GP-based Bayesian optimization). BOHB (Falkner
et al. (2018)) combines the BO-based TPE with HyperBand (Li et al. (2017)), replacing the initial random
configurations with a model-based search. Notably, BOHB uses a single multi-dimensional KDE instead
of hierarchical single-dimensional KDEs used by TPE. The authors of HEBO (Cowen-Rivers et al. (2022))
note that (i) even simple HPO problems can be non-stationary and heteroscedastic (ii) different acquisition
functions can conflict. To tackle the former, they use the Box-Cox (Box and Cox (1964)) and Yeo-Johnson
(Yeo and Johnson (2000)) output transformations and the Kumaraswamy (Kumaraswamy (1980)) input
transformation. It also uses NSGA-II to optimize a multi-objective acquisition function. TuRBO (Dou et al.
(2023)) assumes the hyper-parameter to performance mapping is Lipschitz, and generates pseudo-points
to improve convergence of vanilla BO. It also uses an ensemble of learners to predict performance, and if
the prediction is poor, uses it to instead update the GP model. Finally, we mention PriorBand (Mallik
et al. (2023)), which incorporates an expert’s prior beliefs about good configurations, but maintains good
performance even if that prior is bad.

We defer to (Feurer and Hutter (2019)) and (Bischl et al. (2023)) for recent reviews on hyper-parameter
optimization techniques. There is also a long line of work studying neural architecture search, which aims
to find optimal architectures for a dataset. We refer the reader to White et al. (2023) for a comprehensive
review of the field.

Several benchmarks have been proposed for hyper-parameter optimization: notable ones include YAHPO
Gym (Pfisterer et al. (2022)), HPO-B (Arango et al. (2021)), and HPOBench (Eggensperger et al. (2021)).

Flat minima and generalization. The idea of flat minima was first studied by Hochreiter and Schmidhuber
(1994). In particular, they define “flat minima” as large connected regions where the weights are ϵ−optimal.
Hochreiter and Schmidhuber (1997) intuit that because sharper minima require higher precision, flatter
minima require less bits to describe. They use this intuition to show that flat minima correspond to minimizing
the number of bits required to describe the weights of a neural network. This notion of minimum description
length (MDL) (Rissanen (1983); Grünwald (2007)) was also exploited early on by Hinton and Van Camp
(1993). Flat minima were revisited by Chaudhari et al. (2019), who noted that minima with low generalization
error have a large proportion of their eigenvalues close to zero. They then construct a modified Gibbs
distribution corresponding to an energy landscape f , and minimize the negative local entropy of this modified

17

Under review as submission to TMLR

distribution, and approximate the gradient via stochastic gradient Langevin dynamics (SGLD) (Welling and
Teh (2011)). However, their assumptions were, admittedly unrealistic. Keskar et al. (2016) show that when
using large batch sizes, optimizers converge to sharp minima, which are characterized by many large positive
eigenvalues of the Hessian. Further, they define the notion of sharpness as a generalization measure as the
robustness to adversarial perturbations in the parameter space:

ζ(w; ϵ) =
max

|v|≤ϵ(|w|+1)
f(w + v)− f(w)

1 + f(w) (3)

and compute this using 10 iterations of L-BFGS-B (Byrd et al. (1995)) with ϵ = {10−3, 5 ·10−4}. In particular,
the above is closely related to the largest eigenvalue of ∇2f(w). This notion of sharpness was also endorsed
by Jiang et al. (2019), who performed a large-scale study of many complexity measures on two datasets, with
2,187 convolutional networks. In particular, they endorse the following metrics for generalization: (i) variance
of gradients (ii) squared ratio of magnitude of parameters to magnitude of perturbation, à la Keskar et al.
(2016) (iii) path norm (Neyshabur et al. (2017)) (iv) VC-dimension (inversely correlated).

A line of work in physics (Baldassi et al. (2015; 2016)) showed that in the discrete weight scenario (a much
more difficult problem), isolated minima were rare, but there existed accessible, dense regions of subdominant
minima, and that these were robust to perturbations and generalized better. These authors devised algorithms
explicitly designed to search for nonisolated minima. In the continuous weight space, nonisolated minima
correspond to flat minima. Dziugaite and Roy (2017) obtain nonvacuous generalization bounds for deep
overparameterized neural networks using the PAC-Bayes framework (McAllester (1999)). Neyshabur et al.
(2014) showed that increasing the number of hidden units (which in turn, increases the number of trainable
parameters) can lead to a decrease in generalization error with the same training error. Neyshabur et al.
(2017) showed that sharpness as computed by (3) is not sufficient to capture the generalization behavior (but
noting that “combined with the norm, sharpness does seem to provide a capacity measure”), and advocate
for expected sharpness in the PAC-Bayesian framework, similar to Dziugaite and Roy (2017). They show
that plots of expected sharpness versus KL divergence in PAC-Bayes bounds for varying dataset sizes capture
generalization well. Li et al. (2018) showed that the sharpness of the loss surface correlates well with the
generalization error. In their seminal paper, Jastrzebski et al. (2017) showed that SGD is a Euler-Maruyama
discretization of a stochastic differential equation whose dynamics are influenced by the ratio of learning rate
to batch size (which they call “stochastic noise”), and that SGD finds wider minima with higher stochastic
noise levels than sharper minima. Wu and Su (2023) study the flat minima hypothesis through the lens of
dynamical stability, and show that SGD will escape from overly sharp (measured by the Frobenius norm
of the Hessian), low-loss areas exponentially fast. We note that they use the associate empirical Fisher
matrix (AEFM) as an approximation for the Hessian, which holds for low empirical risk (and converges to
the Hessian, see Kunstner et al. (2019)).

In search of flatter loss surfaces, Seong et al. (2018) propose the use of non-monotonic learning rate schedules.
They advocate for large learning rates, which enable the optimization algorithm to escape sharp minima,
and descend into flatter minima. The seminal works of Dauphin et al. (2014) and Choromanska et al. (2015)
showed both theoretically and empirically that local minima are more likely to be located close to the global
minimum. In particular, Dauphin et al. (2014) showed using the perspectives of random matrix theory (via
the eigenvalue distribution of Gaussian random matrices (Wigner (1958))), statistical physics (via the analysis
of critical points in Gaussian fields by Bray and Dean (2007)), and neural network theory (Saxe et al. (2013))
that saddle points are exponentially less likely than local minima.

Most recently, Wen et al. (2023) showed that sharpness is neither necessary, nor sufficient for generalization,
by studying some simple architectures, showing that generalization depends on the data distribution as well
as the architecture; for example, merely adding a bias to a 2-layer MLP makes generalization impossible for
the XOR dataset.

Of course, it is not possible to discuss generalization in deep learning without discussing the results of Zhang
et al. (2021), who showed that deep learners can fit with zero training error on random labels using an
architecture that generalizes well when fit to the correct labels. Bartlett et al. (2019) and Harvey et al. (2017)
found that the VC-dimension for deep ReLU networks is O(WL log W) and Θ(WU) respectively, where W is

18

Under review as submission to TMLR

the number of parameters, L the number of layers, and U the number of units. Hardt et al. (2016) show that
stochastic gradient methods are uniformly stable8, which implies generalization in expectation.

B Background

Definition 1 (Strong convexity). A function f : X → R∗ is µ−strongly convex with respect to ∥·∥ if ∀x, y in
the relative interior of dom f and α ∈ (0, 1),

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)− 1
2µα(1− α)∥x− y∥2

Definition 2 (Smoothness). A function f : X → R is β−smooth with respect to ∥·∥ if f ∈ C1 and if
∀x, y ∈ dom f ,

f(x + y) ≤ f(x) + ⟨∇f(x), y⟩+ 1
2β∥y∥2

B.1 The standard covering number guarantee

We reiterate the standard bound under the covering argument from (Duchi (2023)) here. This bounds the
deviation of the mini-batch approximation of the supremum from the true value.

Let f(x) = sup
∥∥∇2E(x)

∥∥ be drawn from some set of functions F , each of whose elements map from X to R.

Define a point-mass empirical distribution on {xi}m
i=1 as Pm = 1

m

m∑
i=1

δxi where δ is the Dirac delta. For any

function f : X → R ∈ F , let

Pmf ≜ EPm [f(X)] =
m∑

i=1
f(xi)

be the empirical expectation over a mini-batch and let

Pf ≜ EP [f(X)] =
∫

f(x)dP (x)

denote the general expectation under a measure P . Suppose the functions in F are bounded above by β
(trivially, they are bounded below by 0), and define the metric over F as ∥f − g∥∞ = sup

x∈X
|f(x)− g(x)|.

Denote by N(δ, Θ, ρ), the covering number for a δ−cover of a set Θ with respect to a metric ρ. Then, we use
the standard covering number guarantee (cf. Duchi (2023) Ch. 4) to get

P

(
sup
f∈F
|Pmf − Pf | ≥ t

)
≤ exp

(
− mt2

18β2 + log N(t/3,F , ∥·∥∞)
)

C Auxiliary Proofs

Lemma 3. Let f : Rd → R be a differentiable function. Then, µ−strong convexity implies:
[(i)]

1. (Polyak-Łojasiewicz (PL) inequality)

1
2∥∇f(x)∥2 ≥ µ(f(x)− f(x∗))

2.
∥∇f(x)−∇f(y)∥ ≥ µ∥x− y∥

8An algorithm A is ϵ−uniformly stable if ∀S, S′ ∈ Z for some space Z, such that the datasets S and S′ differ by at most one
example, sup

z

EA[f(A(S); z) − f(A(S′); z)] ≤ ϵ

19

Under review as submission to TMLR

3.
(∇f(x)−∇f(y))T (x− y) ≤ 1

µ
∥∇f(x)−∇f(y)∥2

Proof. [(i)]

Strong convexity implies

f(y) ≥ f(x) +∇f(x)T (y − x) + µ

2 ∥y − x∥2

Minimizing with respect to y yields the result.

1.2. Strong convexity gives us:

(∇f(x)−∇f(y))T (x− y) ≥ µ∥x− y∥2 (4)

Applying Cauchy-Schwarz inequality gives us:

∥∇f(x)−∇f(y)∥∥x− y∥ ≥ (∇f(x)−∇f(y))T (x− y)
≥ µ∥x− y∥2

where the last step comes from (4).

3. Set ϕx(z) = f(z) − ∇f(x)T z. It is easy to see that ϕx is also µ−strongly convex. Applying the
Polyak-Łojasiewicz inequality to ϕx(z) with z∗ = x,(

f(y)−∇f(x)T y
)
−
(
f(x)−∇f(x)T x

)
= ϕx(y)− ϕx(z∗)

≤ 1
2µ
∥∇ϕx(y)∥2

≤ 1
2µ
∥∇f(y)−∇f(x)∥2

Swapping x and y in the above,(
f(x)−∇f(y)T x

)
−
(
f(y)−∇f(y)T y

)
≤ 1

2µ
∥∇f(x)−∇f(y)∥2 (5)

Adding (5) and (5) yields the result.

Lemma 4. If f : Rn → R is smooth and µ−strongly convex, then
1

2µ
∥∇f(x)∥2 ≥ f(x)− f(x∗) ≥ µ

2 ∥x− x∗∥2

Proof. The first part is the Polyak-Łojasiewicz inequality. The second part follows from the definition of
strong convexity and setting y = x, x = x∗ and using f(x∗) ≥ min

y
f(y).

Theorem 2 (Smooth and strongly convex gradient descent). Suppose f : Rn → R be β−smooth and
µ−strongly convex. Then with the gradient descent update rule

xk+1 = xk −
1
β
∇f(xk)

where 1
β is the learning rate, we have

f(xk)− f(x∗) ≤
(

1− µ

β

)k

(f(x0)− f(x∗))

Consequently, we require β
µ log f(x0)−f(x∗)

ϵ iterations to find an ϵ−optimal point.

20

Under review as submission to TMLR

Proof. From the above results,
f(xk+1) ≤ f(xk)− 1

2β
∥∇f(xk)∥2

and Lemma 4 gives us
∥∇f(xk)∥2 ≥ 2µ(f(xk)− f(x∗))

Therefore,

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 1
2β
∥∇f(xk)∥2

≤ f(xk)− f(x∗)− µ

β
(f(xk)− f(x∗))

=
(

1− µ

β

)
(f(xk)− f(x∗))

f(xk)− f(x∗) ≤
(

1− µ

β

)k

(f(xk)− f(x∗))

≤ exp
(
−µk

β

)
(f(x0)− f(x∗))

Therefore we need k = β
µ log f(x0)−f(x∗)

ϵ iterations for ϵ−optimality.

Note that strong convexity guarantees optimality. β−smoothness can only assure ϵ−criticality. This implies
the existence of global minima.

Strong convexity is a necessary condition for learnability, as along with β−smoothness, it can be shown that
such problems are learnable (Shalev-Shwartz and Ben-David (2014)). Additionally, strong convexity provides
a quadratic lower bound on the growth of the loss function, which implies that the convexity condition will
never be violated in the local domain of the function in the context of deep regression with regularization.

D Additional details on experimental setup

Table 3 shows the hyper-parameter space for our experiments on the image and OpenML datasets. For our
Bayesmark experiments, we use the default hyper-parameter space.

E Additional loss landscapes

This section shows examples of loss landscapes with low and high strong convexity for more datasets (as
done in Figure 1). For brevity, we use btsc to mean the blood-transfusion-service-center dataset.

F On using one epoch as a heuristic

R6ZG2:W7 In this section, we show additional experimental verification that using the sharpness after one
epoch is a reasonable choice (and more informative than the validation loss). Figure 5 shows plots of our
sharpness measure and the validation loss over epochs for the HPOBench and image datasets.

Note that the goal of computing an estimate of the sharpness after one epoch is to obtain an upper bound
on the sharpness across the entire space. Therefore, we expect that the sharpness ζ, if expressed as a
function of epochs t (so that ζ(t) is the sharpness measured after epoch t), has the property that for some t0,
ζ(t) ≤ ζ(1)∀t > t0.

This trend is observed in the plots of Figure 5. Across all plots, the red line indicates the validation loss, and
the green line indicates the sharpness. With the exception of the vehicle, blood-transfusion-service-center,
and segment datasets, all datasets show the property we described above. Moreover, we note that we expect

21

Under review as submission to TMLR

(a) btsc (low) (b) btsc (high)

(c) car (low) (d) car (high)

(e) credit-g (low) (f) credit-g

(g) kcl (low) (h) kcl (high)

22

Under review as submission to TMLR

(i) phoneme (low) (j) phoneme (high)

(k) segment (low) (l) segment (high)

(m) vehicle (low) (n) vehicle (high)

Figure 4: More loss landscapes with low and high strong convexity values.

23

Under review as submission to TMLR

Table 3: Hyper-parameters used in this study. Ranges are inclusive. Unless specified, the ranges are linear.
For Bayesmark, we use the default hyper-parameter set, whose size is 134M.

OpenML

Hyper-parameter Range

Network depth (1, 4)
Network width (16, 1024), log2
Batch size (4, 256), log2
Initial learning rate (10−5, 1.0), log10

MNIST

Hyper-parameter Range

Number of filters (2, 6)
Kernel size (2, 6)
Padding Valid, same
Number of conv blocks (1, 3)

SVHN

Hyper-parameter Range

Number of filters (2, 6)
Kernel size (2, 6)
Padding Valid, same
Number of conv blocks (1, 3)
Dropout rate (0.2, 0.5)
Final dropout rate (0.2, 0.5)
Number of units (32, 512), log2

Table 4: Details of configurations and performance for landscapes of Figure 4. BS = batch size; α = L2
regularization factor. Acc and AUC show training accuracy and AUC, and generalization error in parentheses.
Datasets where the sharper landscapes outperformed the flatter minima are in red.

Dataset Depth Width BS α LR µ Acc AUC

btsc 3 128 4 10−7 10−5 0.57 88.71 (10.05) 91.55 (12.90)
3 1024 4 10−5 10−5 1.08 93.18 (21.56) 98.10 (39.84)

car 4 16 256 10−8 1.0 0.16 70.03 (0.09) 85.70 (-0.43)
1 32 16 10−6 10−4 1.09 94.22 (1.78) 99.68 (0.16)

credit-g 2 32 32 10−5 1.0 0.03 70 (0) 50.92 (0.92)
1 128 4 10−3 10−4 0.78 100 (32) 100 (31.57)

kcl 4 32 32 10−3 10−5 0.13 96.10 (9.84) 95.79 (13.18)
1 128 4 10−6 10−4 1.79 98.58 (15.25) 99.59 (21.69)

phoneme 1 16 8 0.1 10−5 0.08 100 (26.99) 100 (34.55)
1 64 4 0.1 10−3 0.97 100 (28.89) 100 (45.23)

segment 3 128 4 10−3 10−5 0.03 99.42 (23.66) 100 (4.85)
3 256 16 1.0 10−5 0.08 99.66 (27.37) 100 (6.02)

vehicle 2 16 8 10−4 10−4 0.11 100 (40) 100 (17.13)
1 16 64 0.01 10−4 0.33 92.52 (36.57) 98.63 (12.04)

the validation loss to go down over time, and as such it is not informative as a metric for choosing one
hyper-parameter configuration over another.

24

Under review as submission to TMLR

(a) HPOBench datasets (b) Image datasets

Figure 5: Progression of validation loss and sharpness over epochs on HPOBench and image datasets

Moreover, we found that the IoU metric between the 10 lowest validation errors after one epoch with those
after 10 epochs (the same experimental setup used in Figure 3) was significantly lower. This makes sense,
since hyper-parameters influence training dynamics over epochs as well, which leads to validation loss being
an unreliable predictor for future performance.

25

	Introduction
	Related Work
	Method
	Notation and Assumptions
	FGHPO: Flatness-guided HPO
	Computing the sharpness

	Experiments
	Runtime
	The exploration-exploitation trade-off

	Limitations
	Related Work
	Background
	The standard covering number guarantee

	Auxiliary Proofs
	Additional details on experimental setup
	Additional loss landscapes
	On using one epoch as a heuristic

