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Abstract

Linear probes have been used to demonstrate that LLM activations linearly encode1

high-level properties of the input, such as truthfulness, and that these directions2

can evolve significantly during fine-tuning and training. However, despite their3

seeming simplicity, linear probes can have complex geometric interpretations,4

leverage spurious correlations, and lack selectivity. We present a method for5

decomposing linear probe directions into weighted sums of as few as 10 model6

activations, whilst maintaining task performance. These probes are also invariant7

to affine transformations of the representation space, and we demonstrate that, in8

some cases, poor base to fine-tune probe generalization performance is partially9

due to simple transformations of representation subspaces, and the structure of the10

representation space changes less than indicated by other methods. Anonymized11

code is available here.12

1 Introduction13

Linear probes, simple classifiers trained on the activations of frozen models, are a key tool for14

interpreting neural networks. Early work found that linear probes can recover high-level features of15

the input from model activations [Alain and Bengio, 2017], for example refusal [Arditi et al., 2024],16

sentiment [Tigges et al., 2024], spatial and temporal relationships [Gurnee and Tegmark, 2023], and17

truthfulness [Marks and Tegmark, 2023]. Applying linear probes at different checkpoints during18

training [Qian et al., 2024] and between base and fine-tuned models [Du et al., 2025, Mosbach et al.,19

2020] has revealed how model representations change during optimisation. They have also been used20

to show that models know when they are being tested [Nguyen et al., 2025], and predict when models21

will produce jail-broken answers [Zou et al., 2023], provide harmful information to a malicious user22

[Roger et al., 2023], or output falsehoods [Orgad et al., 2024].23

Given the importance of linear probes in understanding and monitoring model behavior, we would24

want them to be reliable and interpretable. However, they can leverage spurious correlations in their25

training dataset and even overfit in high dimensions [Belinkov, 2022]. There is also limited empirical26

research into the features they capture [Kunz and Kuhlmann, 2020, Choi et al., 2024, Sharkey et al.,27

2025].28

In this work we introduce a method for decomposing linear probes called analogous probing, that is29

based on the MetaSAEs method for decomposing sparse autoencoder (SAE) decoder matrices [Leask30

et al., 2025a], and the Inference-Time Decomposition of Activations (ITDA) method for decomposing31

unseen model activations into a dictionary of sampled model activations in a sparse dictionary32

learning setting [Leask et al., 2025b]. These decompositions are based on relative representation33

methods [Moschella et al., 2022], which are invariant to linear transformations. We use this property34
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Figure 1: The performance of probes when constructed from a fixed number of training samples, for
each of the three datasets, averaged over models. We trained mass-mean probes and logistic probes
on 30 random subsets of the dataset and selected the best performing of those at each sparsity level.
We also trained a logistic probe using the deterministically selected examples that are used in the
analogous probe decomposition. The dashed line represents the performance achieved by a logistic
regressor on the full training dataset. See Section C.3 for details of the probing methods.

to demonstrate that some of the difference in probe performance when transferring probes between35

base and fine-tuned models, and different pretraining checkpoints, is due to linear transformations of36

the representation space. This gives new insight into how the model representation space develops37

throughout training, and suggests the changes are less significant than previously thought.38

Analogous probes have a simple geometric interpretation, similar to activation engineering [Zou39

et al., 2023] approaches to probing, such as mass-mean probing [Marks and Tegmark, 2023], whilst40

achieving performance similar to trained linear probes. Simpler explanations are generally preferred41

in the interpretability literature, and we propose that these sparse probe decompositions may be useful42

for constructing interpretable probes. We provide examples of decompositions, but leave proper43

interpretability experiments to future work (see Section E).44

See Appendix A for a detailed literature review of sparse dictionary learning, probing, relative45

representation similarity methods, and activation engineering.46

2 Analogous Probing47

Let LM be a frozen language model with L transformer layers. For an input sequence x =48

(x1, . . . , xT ) we write hℓ,t(x) ∈ Rd for the normalized hidden state of token t at layer ℓ with49

1 ≤ ℓ ≤ L, 1 ≤ t ≤ T . In the binary setting, a linear probe s is a shallow classifier that maps this50

representation to a supervised label y ∈ {0, 1} (e.g. TRUTHFUL = 1, FALSE = 0) without updating51

the weights of LM.52

s(x) = θ⊤hℓ,t(x) + b (1)
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source_model Linear Aligned Linear Mass-Mean Analogous ∆ Analogous

gemma-2-2b 79.59% 86.29% 75.29% 84.32% -1.96%
gemma-2-2b-it 82.91% 83.59% 75.11% 78.81% -4.78%
Llama-3-8B 69.05% 67.50% 69.55% 84.61% 15.06%
Llama-3-8B-Instruct 77.29% 77.98% 65.61% 89.25% 11.27%
Mistral 99.29% 99.37% 96.59% 98.77% -0.59%
mistral-instruct 98.79% 98.73% 91.44% 98.86% 0.06%

Table 1: Performance of probes when transferred between base and fine-tuned variants of the same
model. ∆ Analogous is the difference between the performance of the analogous probe and the best
performance of the other probes.

Where the weight vector θ ∈ Rd and bias b are parameters that are trained on a labeled dataset T of53

model inputs using standard cross-entropy loss. It is this weight vector θ that we decompose.54

Similarly to ITDA [Leask et al., 2025b], we decompose θ into a dictionary of activations D. In55

our case, we are only interested in decomposing a single vector, so rather than collect a dictionary56

of activations as in ITDA, we use the entire probe training dataset T as our D. We then solve the57

following sparse coding problem to obtain the coefficients a:58

min
a∈Rn

||θ − aD|| subject to ||a||0 ≤ L0 (2)

where ||·|| is the l0-pseudo-norm (the number of non-zero elements), and L0 is a pre-specified sparsity59

level (the number of latents used to represent each θ). More specifically, we use orthogonal matching60

pursuit [Mallat and Zhang, 1993] (see Algorithm 1) to find an approximation to this solution.61

Our analogous probe is then defined as the approximate solution a to the sparse coding problem,62

and we can reconstruct the probe direction through matrix multiplication. We call these probes as63

analogous as they are constructed by reference to examples of activations, rather than optimisation.64

To transfer an analogous probe to another model ˆLM , we generate a training dataset T ˆLM using the65

same dataset as was used to generate the original training dataset. This means that activations at the66

same index in each dataset corresponds to the activations of the two different models on the same67

prompt and token. This gives a dictionary D ˆLM that we use to reconstruct our probe aD ˆLM .68

3 Results69

We evaluate analogous probe in two settings. Firstly, the setting where LM = L̂M. Here, we are70

interested in the performance of our probes at various levels of sparsity, and example decompositions.71

Secondly, on the setting where we transfer probes between different models. Here, we are interested72

in the performance gap between analogous probes, which are invariant to linear changes of basis in73

the representation space [Moschella et al., 2022], and logistic probes, which are not (Section C.4).74

In both sets of experiments we use six probing datasets from Marks and Tegmark [2023], which75

consist of true and false statements in three different domains. We use models from three families of76

LLM [Team et al., 2024, Dubey et al., 2024, Jiang et al., 2023]. Across our experiments, we train77

the probe on the final content token position, i.e. not including special tokens, and on layer 12. See78

Appendix C for more experimental details.79

3.1 Same-Model Reconstruction Performance80

When decomposing probes into the entire activation dataset, i.e. no sparsity, the reconstructed probe81

achieves similar performance to the original logistic probe, and significantly better performance than82

the mass-mean probe (Table 2). Figure 1 shows the average performance of the three probing methods83

when constructed from a fixed number of samples. The analogous probes can achieve the same84

performance as the logistic probes with an L0 in the single digits. In Section D.2 we provide example85

probe decompositions, however do not investigate the interpretability of these decompositions further.86
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Figure 2: Performance of analogous probes when transferring between checkpoints of the LLM360
Amber model on the left, and the performance difference between the analogous probe and the naively
transferred linear probe on the right. For linear probe performance see Figure 4.

Base and Fine-Tuned Models Various papers [Qian et al., 2024, Du et al., 2025, Mosbach et al.,87

2020] have used linear probes to evaluate the effect of training and fine-tuning on LLM represen-88

tations of input features. A decrease in the performance of the linear probe is considered evidence89

that the model representations have somehow changed, however, this does not account for affine90

transformations (scaling, rotations) of the representation space, which decrease linear probe perfor-91

mance but may not reflect changes in model computation. These representation spaces can be aligned92

through linear regression [Mikolov et al., 2013b], however this is a global alignment and may not be93

sensitive to transformations of representation subspaces, and local alignment may not be possible due94

to the high dimensionality of the representations. In Table 1, we compare these methods to analogous95

probes, which are invariant to transformations of subspaces. We find that for Mistral 8b, the logistic96

probe transfers well anyway; and that for Gemma 2, none of the probes transfer well, suggesting97

changes to the structure of the representation space. However, on the Llama models we note that98

analogous probes perform significantly better than the other methods - this suggests that some of the99

drop in probe performance is due to a subspace transformation, rather than a structural change.100

Pretraining Checkpoints We evaluate the generalization performance of probes trained on check-101

points of LLM 360 Amber [Liu et al., 2023]. Due to computational constraints we only evaluated102

analogous probes and naively transferred linear probes, i.e. without learning a linear regressor103

between the activations of the models, however will address this in future work. We find that there is104

a significant performance difference between the two probing methods when transferring from an105

early checkpoint of Amber to a late checkpoint and vice versa, with the linear model maintaining its106

performance in a broad region around the leading diagonal of the heatmap. This again suggests that107

truth may be established earlier during training that previously thought, but undergoes transformation108

throughout training.109

4 Discussion110

Analogous probes offer a novel perspective on probing: using a weighted sum of just a handful of111

activations, they can match the performance of logistic probes and far exceed that of mass-mean112

probes; they are also defined by relation to activations, rather than absolute vectors, and so are less113

impacted by transformations of representation spaces. In future work, we plan to develop a better114

understanding of probe interpretability, and how analogous probing can contribute to that agenda. In115

particular, we will use them in downstream interpretability tasks to validate their usefulness. We also116

want to understand better why analogous probes transfer so much better on Llama than other probes,117

and analogous probes on other LLMs. See Section E for an detailed list of limitations.118
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A Related Work306

Activation Probing: Alain and Bengio [2017] found that high-level concepts can be decoded307

from the middle layers of models using linear probes. This has been further validated on specific308

concepts in LLMs such as refusal [Arditi et al., 2024], sentiment [Tigges et al., 2024], spatial and309

temporal relationships [Gurnee and Tegmark, 2023], and truthfulness [Marks and Tegmark, 2023].310

Furthermore, probes have been used to demonstrate that models know when they are being tested311

[Nguyen et al., 2025], and predict when models will produce jailbroken responses [Zou et al., 2023],312

harmful information to malicious users [Roger et al., 2023], or falsehoods [Orgad et al., 2024].313

Limitations of Probing: Probes can leverage spurious correlations in their training dataset, rather314

than true features of the model; and even linear probes can overfit when the representation dimension315

is high enough Belinkov [2022]. There is also little empirical research into the features that linear316

probes capture [Kunz and Kuhlmann, 2020, Belinkov, 2022, Choi et al., 2024, Sharkey et al., 2025].317

Linear probes also transfer imperfectly between base and fine-tuned models [Du et al., 2025, Mosbach318

et al., 2020], and have variable performance across training checkpoints [Qian et al., 2024].319

SAEs for Mechanistic Interpretability: Sparse Autoencoders (SAEs) have been used to recover320

sparse, monosemantic, and interpretable features from the representations of LLMs [Bricken et al.,321

2023, Cunningham et al., 2024, Templeton, 2024]. The decompositions found by these SAEs are322

often manually inspected using feature dashboards [Bricken et al., 2023, Lin, 2023], automatically323

described through automated interpretability techniques [Gao et al., 2025, Paulo et al., 2024], and324

evaluated with the SAEBench benchmarking suite [Karvonen et al., 2024]. SAEs have been used for325

circuit analysis [Marks et al., 2025] in the vein of [Olah et al., 2020, Olsson et al., 2022]; to study326

the role of attention heads in GPT-2 [Kissane et al., 2024a]; and to replicate the identification of a327

circuit for indirect object identification in GPT-2 [Makelov et al., 2025]. Transcoders, a variant of328

SAEs, have been used to simplify circuit analysis and applied to the greater-than circuit in GPT-2329

[Dunefsky et al., 2024]. Whilst the application of SAEs to mechanistic interpretability is supported by330

qualitative and quantitative evidence, their usefulness is highly dependent on hyperparameterisation331

[Leask et al., 2025a].332

A number of SAE variants have been proposed that modify either the activation function or the loss333

term [Gao et al., 2025, Rajamanoharan et al., 2025, Bussmann et al., 2024, Rajamanoharan et al.,334

2024, Braun et al., 2024, Thasarathan et al., 2025, Fel et al., 2025, Hindupur et al., 2025]. Leask335

et al. [2025b] introduced Inference-Time Decomposition of Activations (ITDA), which decomposes336

activations into an iteratively constructed dictionary of activations at inference time using matching337

pursuit [Mallat and Zhang, 1993]. [Costa et al., 2025] similarly applied matching pursuit as an338

encoder, but with an optimized dictionary.339

In their investigation into the canonicality of SAE latents, Leask et al. [2025a] introduced MetaSAEs,340

a second-order application of SAEs, that are trained on the problem of reconstructing SAE decoder341

vectors using a sparse and overcomplete bottleneck. MetaSAEs decompose these latents into a sparse342

sum of second-order latents; for example, the decoder vector of a first-order latent activating on the343

token "Einstein" in a GPT-2 SAE was decomposed in second-order latents relating to "Germany",344

"Words starting with E-", "Prominent Figures", "Space and Galaxies", and "Science and Scientists".345

Whilst the first-order latents seem to correspond to atomic and interpretable concepts, so do the346

second-order latents.347

Representation Engineering and Steering: Since the classic word2vec result that “king - man +348

woman = queen" [Mikolov et al., 2013a], there has been significant interest in performing arithmetic349

on model activations. Guiding the generations of models by modifying neuron activations at inference350

time has been used to mitigate gender bias in models Bolukbasi et al. [2016], and steer review351

sentiment [Radford et al., 2017]. Steering vectors that are added to model activations at inference352

time to modify behavior have been found through training classifiers [Dathathri et al., 2019] and353

simply taking the difference in activations between contrastive pairs of prompts Turner et al. [2023].354

Contrastive pairs of prompts have also been used to construct simple prompts to detect sleep agents355

[MacDiarmid et al., 2024]. These methods form the foundation of the emerging field of representation356

engineering as described by [Zou et al., 2023]. Contrast-consistent search used pairs of positive and357

negative activations to construct probes without optimizing for classification performance on a target358
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variable [Burns et al., 2022], and mass-mean probing uses the difference in means between positive359

and negative examples to find a probe direction [Marks and Tegmark, 2023].360

Representation Similarity: A range of methods for comparing representations between neural361

networks has been developed. Inspired by Erhan et al. [2010], Olah [2015] applied t-SNE, a362

dimensionality reduction technique [Van der Maaten and Hinton, 2008], to the representations of363

vision and language models. Lenc and Vedaldi [2015], Bansal et al. [2021] stitched layers of two364

frozen models with a trained intermediate adapter layer, and evaluated the similarity of the model’s365

representations by the performance of the stitched model. Representation similarity metrics compare366

the alignment of the representation subspaces of different models, and include Singular Vector367

Canonical Correlation Analysis (SVCCA) [Raghu et al., 2017] and Centered Kernel Alignment368

(CKA) [Kornblith et al., 2019]. The performance of linear probes trained on the representations of369

different models can provide insight into what information the representations represent [Alain and370

Bengio, 2017, Hewitt and Manning, 2019]. Li et al. [2016] investigated whether different neural371

networks converge to the same representations, and [Garipov et al., 2018, Zhao et al., 2020] find that372

different models are occupied by low-loss paths in the parameter space. Olah et al. [2020] provide373

examples of potential universal features, such as curve detectors, in vision models, and Olsson et al.374

[2022] find evidence of induction heads in language models of different sizes. Bricken et al. [2023]375

found similar SAE latents in different models, and Kissane et al. [2024b] found examples of SAEs376

that transfer between base and fine-tuned versions of the same language model. Lindsey et al. [2024]377

used Crosscoders, SAEs trained on the representations of multiple models, to find features present378

in a fine-tuned version of an LLM that were not present in the base model. Relative representation379

methods are kernel methods Hofmann et al. [2008] that measure similarity against a set of prototype380

inputs [Moschella et al., 2022], which avoids learning model specific parameters from absolute model381

representations. Lan et al. [2024] compared the feature spaces of different models using SAEs, and382

Leask et al. [2025b] did the same with ITDA.383

B Orthogonal Matching Pursuit384

We decompose probe directions using orthogonal matching pursuit [Mallat and Zhang, 1993] as385

described in Algorithm 1. Our dictionary A is the model activations on the training dataset, and our y386

are probe directions.387

Algorithm 1 Orthogonal Matching Pursuit (OMP)

Require: A ∈ Rm×n with columns aj
(
∥aj∥2 = 1

)
, y ∈ Rm, sparsity k ∈ N; optional tolerance

ε ≥ 0 (default 0)
Ensure: Support S ⊆ {1, . . . , n}, estimate x̂ ∈ Rn

1: S ← ∅, r ← y, t← 0
2: while t < k and ∥r∥2 > ε do
3: t← t+ 1
4: j⋆ ← argmaxj /∈S |a⊤j r| ▷ Maximal correlation
5: S ← S ∪ {j⋆}
6: xS ← argminz∈R|S| ∥y −ASz∥2 ▷ e.g., xS = A†

Sy
7: r ← y −ASxS

8: end while
9: x̂← 0 ∈ Rn; x̂S ← xS

10: return S, x̂
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C Experiment Details388

This section contains further details of the datasets, models, and probe transfer methods that we use389

in Section 3.390

C.1 Datasets391

We use six datasets of the twelve true/false datasets used in Marks and Tegmark [2023]. Details of392

these datasets are given in Table C.1. Unlike Marks and Tegmark [2023], we merge the positive and393

negative datasets for each task into a single dataset. The negative datasets consists of the negation394

of the positive dataset, eg. “The city of [city] is in [country]”becomes “The city of [city] is not in395

[country]”. These datasets are small, and limited in that they probe for a single target variable, truth;396

we will improve the diversity of our datasets in future work.397

Name Description Rows
cities “The city of [city] is in [country].” 2992
larger_than “x is larger than y.” 3960
sp_en_trans “The Spanish word ’[word]’ means ’[English word]’.” 708

C.2 Models398

We use LLMs from the Gemma [Team et al., 2024], Llama [Dubey et al., 2024], and Mistral [Jiang399

et al., 2023] families. We also use a range of checkpoints from LLM360 Amber [Liu et al., 2023].400

Details of the models are included in Table C.2.401

Model ID Family Params Hugging Face
Gemma 2 2B Gemma [Team et al., 2024] 2B HF
Gemma 2 2B IT Gemma [Team et al., 2024] 2B HF
Llama 3 8B Llama [Dubey et al., 2024] 8B HF
Llama 3 8B Instruct Llama [Dubey et al., 2024] 8B HF
Mistral 7B v0.3 Mistral [Jiang et al., 2023] 7B HF
Mistral 7B v0.3 Instruct Mistral [Jiang et al., 2023] 7B HF
Amber 7B LLM360 [Liu et al., 2023] 7B HF

C.3 Probing Baselines402

We compare analogous probes to logistic probes [Berkson, 1944] and mass-mean probes [Marks and403

Tegmark, 2023], which are described below, with details on how they are transferred between models.404

Mass-mean probing Given labeled dataD = {(xi, yi)} with yi ∈ {0, 1}, compute the class means405

µ+ = 1
|{i:yi=1}|

∑
i:yi=1 xi and µ− = 1

|{i:yi=0}|
∑

i:yi=0 xi. Define the direction θmm = µ+ − µ−406

and the probe407

pmm(x) = σ(θ⊤mmx).

For IID evaluation use a covariance–whitened variant408

piidmm(x) = σ(θ⊤mmΣ
−1x),

where Σ is the covariance of the class–centered datasetDc = {xi−µ+ : yi = 1}∪{xi−µ− : yi = 0}.409

We refer to pmm and piidmm as mass-mean probes. In our experiments we evaluate only mass-mean410

probes, rather than whitened mass-mean probes, which we will also evaluate in future work.411

Unwhitened mass-mean probes can be understood as analogous probes where, for a training dataset412

consisting of P positive examples and N negative examples, the weight given to each positive413

activation is 1/P and each negative activation is −1/N . When we transfer unwhitened mass-mean414

probes between models, we use these weights in the same way we would for analogous probes;415

however, because the weights are independent of the values of the activations, this is the same as416

retraining the mass-mean probe on the target model.417
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When comparing mass-mean probes to analogous probes at a fixed L0, as we do in Section 3.1, we418

construct them from a training subset of size L0. This is because selecting the optimal subset of419

training data points for mass-mean probing is of combinatorial complexity. However, we select the420

best performing of the probes trained on 30 subsets of the training data for comparison. This value421

of 30 subsets was chosen to balance performance with the computational cost of training on many422

random subsets, a case study of the number of random subsets required to achieve analogous probe423

performance is presented in Figure 3.424

Figure 3: Maximum performance of linear probes on a specific model and task when trained on
x subsets. I.e. for x=30, linear probes were trained on 30 different subsets of the dataset, and the
plotted value is the performance of the best probe. To achieve within 0.1% of the performance of the
analogous probe, the maximum must be taken over 336 random probes, which is too computationally
expensive to run for all the experiments in this paper, and unlikely to be useful in practice.

Logistic probing Given labeled dataD = {(xi, yi)}with yi ∈ {0, 1}, fit a linear logistic-regression425

probe on the representations xi. The probe is426

plr(x) = σ(θ⊤x+ b), σ(t) = (1 + e−t)−1.

Estimate (θ, b) by minimizing the negative log-likelihood427

min
θ,b
−
∑
i

[
yi log plr(xi) + (1− yi) log

(
1− plr(xi)

)]
+ λ∥θ∥22,

with optional ℓ2 regularization λ ≥ 0. For hard predictions use I[plr(x) ≥ 1/2]. We refer to this as a428

logistic probe.429

When comparing linear probes to analogous probes at a fixed L0, we also select the best performing430

probe from 30 random subsets of the training data again because choosing the best training dataset of431

a fixed size is of combinatorial complexity. We also train linear probes on the training samples that432

are used in the analogous probe decompositions.433

When we transfer probes from a source to target model, we always use the full training dataset to do434

so. Analogous probes we transfer as described in Section 2. Mass-Mean probes can be thought of435

analogous probes where each positive and negative training sample is given the same weight when436

constructing the probe coefficient, so we construct these from the activations of the target model437

directly. We transfer linear probes naively by not updating their coefficient vector, but also by learning438

a logistic regressor between the activation spaces of the source and target models that we trained on a439

generic pretraining dataset [Gao et al., 2020]. In all of these cases, we estimate a new bias for the440

probe on the target model training data as below, as some methods do not estimate this parameter441

directly.442
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Given a fixed weight vector w ∈ Rd and data X ∈ Rn×d with labels y ∈ {0, 1}n, compute the443

projections pi = x⊤
i w for i = 1, . . . , n. Fit only a bias b ∈ R by maximizing empirical accuracy of444

the threshold classifier445

ŷi(b) = I[ pi > b ].

The estimate is446

b⋆ ∈ argmax
b∈R

1

n

n∑
i=1

I
(
ŷi(b) = yi

)
.

Implementation detail: initialize b at median(p1, . . . , pn) and minimize the negative accuracy with447

Powell’s method. The routine returns the scalar b⋆.448

C.4 Invariance of Analogous Probes to Affine Transforms449

Let D = [h1, . . . , hn] ∈ Rd×n collect activations hi ∈ Rd and let θ ∈ Rd be the probe. Consider the450

sparse reconstruction451

a⋆ ∈ arg min
a∈Rn

∥θ −Da∥2 s.t. ∥a∥0 ≤ L0, 1
⊤a = 1,

and set θ̂ := Da⋆. For any invertible affine map T (x) = Ax + c with A ∈ GLd(R) and c ∈ Rd,452

define453

D′ := AD + c1⊤, θ′ := Aθ + c.

Then the reconstruction co-transforms:454

θ̂′ := D′a⋆ = T (θ̂) = Aθ̂ + c.

By direct expansion and the constraint 1⊤a⋆ = 1,455

θ̂′ = (AD + c1⊤)a⋆ = ADa⋆ + c(1⊤a⋆) = Aθ̂ + c.

If c = 0 (pure change of basis), the same statement holds without the constraint 1⊤a = 1: for456

D′ = AD and θ′ = Aθ, one has D′a⋆ = A(Da⋆).457

In our setting, we do not have c = 0, however we center and normalize the activations to reduce458

the effect of translations. We confirmed this empirically by training linear and analogous probes on459

the activations of Gemma 2 2B in the cities probing task, both achieving 98.6% accuracy. We then460

applied 100 random affine transformations to the activations, keeping the target variable the same.461

The average performance of the linear regressor dropped to 57.7%, with the analogous probe only462

falling to 98.5% accuracy.463
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D Further Results464

This section includes further results from the experiments in Section 3.465

D.1 Reconstructed Probe Performance466

Table 2 shows the performance of logistic, mass-mean, and analogous probes trained on the full467

training dataset and evaluate on the source model.468

probe_type Logistic Mass-Mean Analogous
dataset model

cities google/gemma-2-2b 98.83% 97.00% 99.17%
google/gemma-2-2b-it 98.83% 74.79% 99.17%
meta-llama/Meta-Llama-3-8B 99.83% 99.33% 99.83%
meta-llama/Meta-Llama-3-8B-Instruct 99.33% 98.50% 99.33%
mistralai/Mistral 99.17% 98.16% 98.66%
mistralai/mistral 99.67% 97.66% 99.67%

larger_than google/gemma-2-2b 99.75% 88.89% 99.62%
google/gemma-2-2b-it 100.00% 97.73% 100.00%
meta-llama/Meta-Llama-3-8B 99.12% 87.50% 99.12%
meta-llama/Meta-Llama-3-8B-Instruct 96.59% 80.43% 96.72%
mistralai/Mistral 99.87% 98.36% 99.87%
mistralai/mistral 99.75% 97.47% 99.75%

sp_en_trans google/gemma-2-2b 95.77% 69.01% 96.48%
google/gemma-2-2b-it 97.18% 78.87% 97.18%
meta-llama/Meta-Llama-3-8B 97.89% 88.03% 98.59%
meta-llama/Meta-Llama-3-8B-Instruct 97.89% 82.39% 97.89%
mistralai/Mistral 97.89% 78.17% 97.89%
mistralai/mistral 98.59% 92.96% 98.59%

Table 2: Comparison of analogous probes to the original logistic probe and mass-mean probe when
using all training samples in the reconstruction, excluding a held-out validation set of samples from
the dataset. The row-wise maximum of the analogous probe and mass-mean probe is bold.

D.2 Probe Decompositions469

Tables 3, 4, and 5 show the decomposition by orthogonal matching pursuit of the linear probes on470

three models for the cities task into training dataset examples. The probes are trained on the final471

position residual stream value after layer 12, and decomposed into those values again, with the472

Statement referring to the prompt that caused that hidden state. For a more in-depth explanation of473

how this works, and the justification for these dashboards as an interpretability tool, see Leask et al.474

[2025b].475

Statement Label Weight

The city of Anqing is in Brazil. 0 9.623209
The city of Vilnius is in Lithuania. 1 4.178972
The city of Nagpur is in India. 1 4.011485
The city of Sambhaji Nagar is in India. 1 3.853475
The city of Sanmenxia is in China. 1 3.150570
The city of Managua is in Nicaragua. 1 2.030811
The city of Cankaya is in Turkey. 1 -1.492452
The city of Pyongyang is not in North Korea. 0 -2.965898
The city of Kota Kinabalu is in Malaysia. 1 -5.339108
The city of Belo Horizonte is not in Brazil. 0 -5.700376

Table 3: Decomposition of the Gemma 2 2B cities probe with L0=10.
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Statement Label Weight

The city of Sapporo is not in Mexico. 1 12.681614
The city of Sharjah is not in China. 1 9.578495
The city of Saratov is in Indonesia. 0 7.903430
The city of Kagoshima is in Japan. 1 4.766314
The city of Linyi is not in Iraq. 1 3.978264
The city of Luohe is not in China. 0 -5.803697
The city of Perm is not in China. 1 -5.939833
The city of Conakry is not in Belarus. 1 -6.163413
The city of Bien Hoa is in Vietnam. 1 -6.799433
The city of Ashgabat is in Bangladesh. 0 -9.745727

Table 4: Decomposition of the Gemma 2 2B Instruct cities probe with L0=10.

Statement Label Weight

The city of Mbuji-Mayi is in Pakistan. 0 10.500116
The city of Jalandhar is not in India. 0 3.402439
The city of Bursa is in Turkey. 1 3.336683
The city of Malatya is not in Russia. 1 3.074517
The city of Hamadan is in Iran. 1 2.856083
The city of Macapa is not in Brazil. 0 -3.195982
The city of Chandigarh is in India. 1 -3.892706
The city of Fort Worth is not in Russia. 1 -3.902153
The city of Taguig is in the Philippines. 1 -4.046275
The city of Kampung Baru Subang is in the Philippines. 0 -5.100050

Table 5: Decomposition of the Llama 3 8B Instruct cities probe with L0=10.

D.3 Pretraining Generalization476

Figure 4 shows a heatmap of the generalization performance when transferring linear probes between477

different checkpoints of LLM360 Amber [Liu et al., 2023], averaged across datasets. Note the worse478

performance on transfers far off the leading diagonal.479
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Figure 4: Performance of linear probes when transferred between checkpoints of the LLM360 Amber
model. See Figure 2 for analogous probing results and a comparison.

Figure 5 shows the generalization performance of linear and analogous probes as a function of the480

number of steps between the source and target training checkpoint.481

Figure 5: Performance of linear and analogous probes when transferring between checkpoints of
certain separations, i.e. when transferring from the model checkpoint at step i to that at step j, then
the x-axis is equal to j − i, and the y-axis is the average performance of the accuracies at that x value.
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E Limitations482

1. Whilst we hypothesize that analogous probes transfer better because of their invariance483

to transformation [Moschella et al., 2022], we do not investigate these results deeply. For484

example, we wonder why analogous probes outperform other methods by so much on the485

Llama models.486

2. We only use six of the datasets, merging both positive and negative variants, from Marks487

and Tegmark [2023]. In future work we intend to include the rest of the datasets, and further488

datasets from other papers.489

3. We do not evaluate the interpretability of our probe decompositions on downstream tasks.490

We intend to address this in future work using selectivity experiments: i.e., given the491

decompositions of a real probe and one trained to predict an unrelated target, can a human492

differentiate the probes.493

4. There are other probing methods against we could compare, such as whitened mass-mean494

and contrast-consistent search [Burns et al., 2022]; and we also need to include results for495

linearly-aligned baseline to the Amber results. We note the general lack of literature on this496

problem from which to construct strong baselines, however.497

5. Whilst we evaluated the method on diverse model families, all the chosen models are small498

and we only targeted a single layer in each of the models. Further ablations would increase499

our confidence in our results further, especially finding more cases where analogous probe500

performance is dramatically different to other probes.501
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