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Abstract

This work presents an empirical study on the design and training of iterative
neural networks for image reconstruction from tomographic measurements with
unknown geometry. It is based on insights gained during our participation in the
recent AAPM DL-Sparse-View CT challenge and a further analysis of our winning
submission (team name: robust-and-stable) subsequent to the competition
period. The goal of the challenge was to identify the state of the art in sparse-
view CT with data-driven techniques, thereby addressing a fundamental research
question: Can neural-network-based solvers produce near-perfect reconstructions
for noise-free data? We answer this in the affirmative by demonstrating that an
iterative end-to-end scheme enables the computation of near-perfect solutions on
the test set. Remarkably, the fanbeam geometry of the used forward model is
completely inferred through a data-driven geometric calibration step.

1 Introduction

In recent years, deep learning methods have been successfully applied to problems of the natural
sciences [11, 17, 6]. A prominent example of such scientific machine learning is the development
of efficient solutions strategies for inverse problems [2, 13], such as those encountered in medical
imaging. Despite unprecedented empirical performance in various practical scenarios, a sound
theoretical understanding of data-driven reconstruction methods seems to be out of reach to date.

For this reason, more and more critical voices are heard, pointing out a lack of evidence for the relia-
bility of deep-learning-based solution strategies. For instance, Sidky et al. [18] have recently demon-
strated that post-processing of filtered backprojection images with the prominent UNet-architecture
may not yield satisfactory recovery precision in sparse-view computed tomography (CT). This gave
rise to the recent AAPM Grand Challenge “Deep Learning for Inverse Problems: Sparse-View
Computed Tomography Image Reconstruction”. The goal of the challenge was “to identify the
state-of-the-art in solving the CT inverse problem with data-driven techniques” [19] and thereby to
evaluate whether deep-learning-based schemes can achieve (near-)exact precision, similarly to the
model-based benchmark of total variation (TV) minimization.

This article presents an analysis of our winning submission to the AAPM challenge (team name:
robust-and-stable). Besides a description of the underlying methodology, our main objective is
to distill several key insights regarding the design and training of our iterative network that are of
broader interest. In a nutshell, our approach is rooted in the following (debatable) observation:
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Figure 1: Example data.
One example of a triple of
128-view sinogram, filtered
backprojection, and ground
truth phantom image taken
from the AAPM challenge
training dataset.

High reconstruction accuracy is only possible if the forward model is explicitly incorporated
into the solution map, e.g., by an iterative promotion of data-consistency.

We propose a conceptually simple, yet powerful deep learning pipeline which turns a post-processing
UNet [16] into an iterative reconstruction scheme. While many of its technical ingredients have
been previously reported in the literature, the overall strategy is novel. Our design differs from
more common unrolled networks in several aspects, most notably: (a) we make use of a pre-trained
UNet as the computational backbone, and (b) data-consistency is inspired by an ℓ2-gradient step, but
employs the filtered backprojection (FBP) instead of the regular adjoint.

A specific difficulty of the AAPM challenge setup was an unknown (fanbeam) forward model.
Therefore, a crucial first step of our strategy consists in the data-driven estimation of the underlying
fanbeam geometry. We accomplish this by fitting a generic, parameterized fanbeam operator to the
provided sinogram-image pairs.

Regarding the actual inversion method, our main findings can be summarized as follows:

(i) End-to-end neural networks can achieve near-perfect accuracy on the prescribed CT recon-
struction task.

(ii) Our iterative scheme invokes the (learned) forward operator only 5 times (FBP 6 times), in
stark contrast to classical model-based solvers with hundreds or thousands of iterations.

(iii) A careful training procedure is more important than specific details of the network architecture.

The proposed approach could be useful for other inverse problems as well, given that it outperforms
state-of-the-art approaches, such as the learned primal-dual algorithm [1], by an order of magnitude.

AAPM Challenge and Dataset. The challenge data consists of synthetic 2D grayscale images
comparable to real-world mid-plane breast CT scans, see [19] for details. A fanbeam geometry with
128 projections over 360 degrees was used to create sinograms and FBPs, see Fig. 1 for an example.
The exact fanbeam geometry was unknown to the challenge participants, see Step 1 in Section 2.
A training set of 4000 triples of 512× 512 phantom images, 128-view sinograms, and FBPs, was
provided. A test set of 100 tuples of sinograms and FBPs without (publicly available) ground truth
phantoms was used for the final challenge evaluation. Initially, about 50 international teams have
participated out of which 25 submitted their method for the final evaluation.

2 Methodology

In this section, we give an overview of our approach and motivate its design choices. A public code
repository can be found under https://github.com/jmaces/aapm-ct-challenge.

Step 1: Data-Driven Geometry Identification. The first step of our reconstruction pipeline learns
the unknown forward operator from the provided training data. The continuous version of tomographic
fanbeam measurements is based on computing line integrals p(s, φ) =

∫
L(s,φ)

x0(x, y) d(x, y),
where x0 is the unknown image and L(s, φ) denotes a line in fanbeam coordinates, i.e., φ is the
fan rotation angle and s encodes the sensor position; see [4] for more details. In an idealized1

situation, the fanbeam model is specified by few geometric parameters (see Fig. 6). In the AAPM
challenge, the resulting forward operator is severely ill-posed, since only the measurements of a

1We have found that this basic model was enough to accurately describe the AAPM challenge setup.
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few fan rotation angles are acquired. Furthermore, the exact geometric setup is not disclosed to the
challenge participants — it is only known that fanbeam measurements are taken. We have addressed
this lack of information by a data-driven estimation strategy that fits the geometry parameters to
the given training data pairs of discrete images x0 ∈ R512·512=N and fanbeam measurements
y0 ∈ R128·1024=m. In fact, the parameters in Fig. 6 are redundant and it suffices to estimate a smaller
subset of parameters, see Appendix B for details.

To that end, we have implemented a discrete fanbeam transform (and corresponding filtered back-
projection) from scratch in PyTorch. A distinctive aspect of our implementation is the use of a
vectorized numerical integration that enables the efficient computation of derivatives with respect
to the geometric parameters by means of automatic differentiation. This enables a data-driven pa-
rameter identification. We estimate the free parameters θfan of the implemented forward operator
F [θfan] ∈ Rm×N from the collection of M = 4000 sinogram-image pairs {(yi

0,x
i
0)}Mi=1 by solving

minθfan
1
M

∑M
i=1

∥∥F [θfan](x
i
0)− yi

0

∥∥2
2

(1)

with a variant of gradient descent. Subsequently, we determine additional free parameters θfbp of the
implemented filtered backprojection FBP[θfan,θfbp] ∈ RN×m by solving

minθfbp
1
M

∑M
i=1

∥∥xi
0 − FBP[θfan,θfbp](y

i
0)
∥∥2
2
, (2)

while keeping the already identified parameters θfan fixed. Finally, we still recognized a systematic
error in our forward model, presumably caused by subtle differences in the numerical integration in
comparison to the true forward model of the AAPM challenge. In compensation, we compute the
(pixelwise) mean error over the training set, as an additive correction of the model bias. From now
on, we will use the short-hand notation F and FBP for the estimated operators, respectively.

Step 2: Pre-Training a UNet as Computational Backbone. The centerpiece of our reconstruction
scheme is a UNet-architecture U [θ] : RN → RN [16]. It is first employed as a residual network to
post-process sparse-view filtered backprojection images, resulting in the reconstruction mapping

UNet[θ] : Rm → RN , y 7→ [U [θ] ◦ FBP] (y). (3)

The learnable parameters θ are trained by (approximately) solving

minθ
1
M

∑M
i=1

∥∥xi
0 − UNet[θ](yi

0)
∥∥2
2
+ µ · ∥θ∥22 , (4)

where we choose µ = 10−3. This is tackled by 400 epochs of mini-batch stochastic gradient descent
and the Adam optimizer [9] with initial learning rate 0.0002 and batch size 4.

Step 3: Constructing an Iterative Scheme. Our main reconstruction method, called ItNet, in-
corporates the (approximate) forward model F from Step 1 via the following iterative procedure:

ItNetK [θ] : Rm → RN , y 7→
[
⃝K

k=1

(
DCλk,y ◦U [θ̃k]

)
◦ FBP

]
(y), (5)

with learnable parameters θ = {θ̃k, λk}Kk=1, and the k-th data-consistency layer

DCλk,y : RN → RN , x 7→ x− λk · FBP(Fx− y).

ItNet is trained analogously to (4) with µ = 10−4. The UNet-parameters θ̃k are initialized by the
weights obtained in Step 2. In summary, the central aspects of the architecture in (5) and important
design choices are:

(i) The computational centerpiece is the UNet-architecture. This contrasts earlier generations of
unrolled iterative schemes, which rely on basic convolutional blocks instead, e.g., see [1, 23].
Other recent state-of-the-art architectures also rely on more advanced sub-networks, e.g.,
see [10, 12, 7, 15, 20].

(ii) The data-consistency layer is inspired by a gradient step x 7→ x− λk · F T(Fx− y) on the
loss x 7→ λk

2 ∥Fx− y∥22. However, we replace the unfiltered backprojection F T by its filtered
counterpart FBP for two reasons: (a) counteracting the fact that the unfiltered backprojection is
smoothing, and (b) producing images with pixel values at the right intensity scale.
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Table 1: Comparison evaluation. Average RMSE on a subset of 125 validation images from the
AAPM data. See Appendix C for details on ItNet4 and ItNet-post trained for the challenge.

Baselines Our Network Variants Comparison Networks

Chall. FBP Our FBP UNet ItNet4 ItNet-post ItNet-post (ens.) Tiramisu LPD

5.72e-3 3.40e-3 3.50e-4 1.64e-5 1.05e-5 6.42e-6 2.24e-4 1.24e-4

Figure 2: Reconstruction results. We display reconstructions and errors for a validation image. We
compare a post-processing Tiramisu with ItNet-post. The ground truth image is omitted, since it is
visually indistinguishable from ItNet-post. See Fig. 7 for the corresponding FBP reconstructions.

(iii) It is crucial to initialize the UNet-parameters θ̃k by the weights from Step 2. This increases
both the speed of convergence and the final accuracy (see Fig. 8). In other words, a careful
initialization of the UNet-block leads to a better local minima. To the best of our knowledge,
such an effect has not been reported in the literature yet.

In our experiments, we witnessed only minor effects by computing more than K = 5 iterations in (5).
We discuss the choice of K in more detail in Appendix A, in particular, see Fig. 4.

3 Results and Analysis

In terms of quantitative similarity measures, we restrict ourselves to reporting the average root-mean-
squared-error (RMSE), which was the main evaluation metric for the AAPM challenge.

Winning the Challenge. With an ensembling of ten ItNet5 (more precisely a variant thereof
referred to as ItNet-post, see Appendix C) we were able to achieve near-exact recovery and win the
AAPM challenge with a margin of about an order of magnitude compared to the runners-up teams.
Notably, four out of the five best performing teams estimated the forward fanbeam operator and made
use of the sinogram data. Two out of them obtain a TV minimization solution that is further processed
by a learned network. This requires a much higher number of iterations compared to our ItNet-post.

Comparison Evaluations. We compare variants of ItNet with different baselines and other state-of-
the-art methods.2 More precisely, we consider a post-processing of the FBP by the (in comparison to
the UNet-architecture) more advanced Tiramisu-architecture [3, 5, 8] as well as the iterative learned
primal-dual (LPD) scheme [1] (modified by replacing the unfiltered backprojection with the FBP).
The average results are reported in Table 1. To give a visual impression as well, reconstructions of an
image from the validation set can be found in Fig. 2 and 7.

Additional experiments regarding the aspects of data-consistency and number K of iterations can be
found in Appendix A.

2We report the RMSE on a subset of 125 images from the training set used for validation. Hence, values differ
slightly from the actual results on the official test set. In the final challenge evaluation, ItNet-post has achieved an
RMSE of 6.37e-6, see https://www.aapm.org/GrandChallenge/DL-sparse-view-CT/winners.asp.
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4 Discussion

We have demonstrated that, using only few evaluations of the forward model, data-driven approaches
can achieve (near-)exact recovery on sparse-view CT tasks. While our approach provides first
evidence of feasibility, several aspects are beyond the scope of this work. The reconstruction error of
ItNet-post reported in Table 1 is not zero. However, it is close to numerical precision, and from a
practical viewpoint, the inverse problem of the AAPM challenge can be considered ‘solved’ by our
method. The academic setup of the challenge has provided an ideal experimental area to test our
research hypothesis that (near-)exact recovery is possible. Although this is an important reliability
check, a foundational understanding of learned reconstruction methods is still in its infancy. Similar
case studies for different inverse problems and more realistic data are natural steps for future research.
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Figure 3: Data consistency. We analyze the accuracy of our forward model by displaying the error
y0 − Fx0 for sinogram-image pairs (y0,x0) from the validation set (left). The visualization of
y0 − F · ItNet(y0) is visually nearly indistinguishable (second from left), which shows that ItNet
inherits the inaccuracies from the forward model. Indeed, ItNetSim allows for a much reduced
consistency error in the case of an exact forward model (right). Computing y0 − F · Tiramisu(y0)
reveals a lack of data-consistency of the Tiramisu post-processing (second from right). All images
are shown in the same dynamical range.

A Additional Results and Analysis

We provide further experiments and results complementing Section 3.

Data-Consistency. We analyze the aspect of data-consistency, i.e., the term y0 − F · ItNet(y0), in
Fig. 3. We observe that the consistency error is dominated by the error from estimating the forward
model in Step 1 (see Section 2) indicating that the performance of ItNet can be improved if the exact
forward model is available. To verify this hypothesis, we train an ItNet on sinogram data simulated
from the ground truth phantom images using our estimated forward model. As expected, the resulting
ItNetSim shows an improved reconstruction accuracy (about factor 2) and a much reduced data-
consistency error (see Fig. 3 right image). It is also interesting to note that y0 − F · Tiramisu(y0)
is about a factor 20 larger than the consistency error of ItNet, revealing that the post-processing by
Tiramisu suffers from a lack of data-consistency.

The Deeper the Better? Incorporating the forward operator is an essential ingredient for highly
accurate reconstruction schemes. A central question is how many forward/adjoint operator evaluations
are required. We address this by training ItNetK for different numbers of iterations.3 Fig. 4 shows
that, in contrast to classical model-based methods like TV-minimization, only a few forward operator
evaluations suffice to achieve near-exact recovery using ItNet. Here, we observe a trade-off between
increasing the model capacity and the difficulty of optimizing the resulting network. One possibility
to overcome some of the difficulties is sharing the UNet parameters between iterations, i.e., setting
θ̃1 = · · · = θ̃K .

In Fig. 4, we observe that (a) not sharing the UNet weights consistently outperforms weight sharing by
a small margin independent of the number of iterations; (b) there is a sweetspot at about K = 5 after
which the improvement in accuracy resulting from increasing K is negligable and only the training
time increases. Fig. 5 clearly demonstrates that weight sharing also changes the reconstruction
dynamic within the ItNet. Earlier iteration steps of the ItNets trained with weight sharing are more
effective while the non-weight-shared counterparts draw most of the performance from the later steps.
We conjecture that an improved training strategy of networks without weight sharing might unlock
the potential of the earlier UNet-blocks. This could lead to an even wider performance gap between
the final reconstruction accuracy of ItNets with and without weight sharing. A systematic study of
this aspect is left to future research.

3Due the immense computational effort required to conduct such an experiment, this was done on subsampled
256× 256 phantom images and simulated 64-view sinograms.
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Figure 4: The deeper the better? Accuracy of ItNetK for different K with (blue) and without
(orange) UNet weight sharing. The radii of the circles are proportional to the training time. The
mean RMSE (± standard deviation) on a hold-out evaluation data set is reported over five different
training/validation splits. The original challenge data was subsampled to the half resolution 256×256
for this experiment.

Figure 5: A look inside. Accuracy of ItNet4
and ItNet8 with (blue) and without (orange) UNet
weight sharing when using only the first k iter-
ation steps and discarding the rest. The mean
RMSE (± standard deviation) on a hold-out evalu-
ation data set is reported over five different train-
ing/validation splits. The original challenge data
was subsampled to the half resolution 256 × 256
for this experiment.

B Details on Step 1: Data-Driven Geometry Identification

The fanbeam model is specified by the following geometric parameters (see Fig. 6):

• dsource – the distance of the X-ray source to the origin,
• ddetector – the distance of the detector array to the origin,
• ndetector – the number of detector elements,
• sdetector – the spacing of the detector elements along the array,
• nangle – the number of fan rotation angles,
• φ ∈ [0, 2π]nangle – a discrete list of rotation angles.

In order to fit the above set of parameters to the given training data, we first observe that the
parametrization is redundant, and without of loss of generality, we may assume that sdetector = 1 (by
rescaling ddetector appropriately). Further, if the field-of-view angle γ is known, then the relation

ddetector =
ndetector · sdetector

2 tan γ
− dsource (6)

can be used to eliminate another parameter. Thus, the fanbeam geometry is effectively determined
by the reduced parameter set (dsource, ndetector, nangle,φ), where nangle = 128 and ndetector = 1024

8
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Figure 6: Fanbeam geometry. Illustration of the parameters determining the geometry of the
fanbeam CT model.

can be directly derived from the provided training data. We determine the field of view angle as
γ = arcsin(256/dsource), so that the maximum inscribed circle in the discrete image is exactly
contained within each fan of lines, which is a common choice for fanbeam CT. Hence, (6) leads to

ddetector = 2 · sdetector ·
√

d2source − 2562 − dsource .

The main difficulty of Step 1 in Section 2 lies in the estimation of the remaining parameters (dsource,φ).
To that end, we have implemented a discrete fanbeam transform from scratch in PyTorch (together
with corresponding filtered backprojection). More precisely, we use a ray-driven numerical integration
for the forward model and a pixel-driven and sinogram-reweighting-based filtered backprojection
(with a Hamming filter) [4, Sec. 3.9.2]. In addition to the parameters (dsource,φ), we introduce
learnable scaling factors sfwd and sfbp for the forward and inverse transform, respectively. They
account for ambiguities in chosing discretization units of distance compared to actual physical units.

As indicated in Section 2, we estimate the free parameters θfan = (sfwd, dsource,φ) ∈ R130 of the
implemented forward operator F [θfan] ∈ Rm×N in a deep-learning-like fashion: The ability to com-
pute derivatives dF

dθfan
allows us to make use of the M = 4000 sinogram-image pairs {(yi

0,x
i
0)}Mi=1

by solving, cf. (1),
minθfan

1
M

∑M
i=1

∥∥F [θfan](x
i
0)− yi

0

∥∥2
2

(7)
with a variant of gradient descent (see remark (i) below). Finally, we determine θfbp = sfbp by
solving, cf. (2),

minsfbp
1
M

∑M
i=1

∥∥xi
0 − FBP[θfan, sfbp](y

i
0)
∥∥2
2
, (8)

while keeping the already identified parameters fixed. Some final remarks regarding the identification
of the forward model:

(i) The formulation (7) is non-convex and therefore it is not clear whether gradient descent enables
an accurate estimation of the underlying fanbeam geometry. Indeed, standard gradient descent
was found to be sensitive to the initialization of θfan and got stuck in bad local minima. To
overcome this, we solve (7) by a block coordinate descent instead, alternatingly optimizing over
sfwd, dsource, and φ with individual learning rates. This strategy was found to effectively account
for large deviations of gradient magnitudes of the different parameters. Indeed, we observed a
fast convergence and a reliable identification of θfan, independently of the initialization.

(ii) In principle, the strategy of (7) requires only few training samples to be successful. However,
when verifying the robustness of the outlined strategy against measurement noise, we observed
that it is beneficial to employ more training data.

An example reconstruction comparing the estimated FBP with the FBP provided by the challenge is
shown in Fig. 7, which complements Fig. 2.
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Figure 7: FBP reconstruction results. We display reconstructions and errors for a validation
image. We compare the challenge FBP with our own FBP obtained from Step 1. See Fig. 2 for the
corresponding network reconstructions.

C Details on the Exact Challenge Setup

To ensure reproducability, we give an exact account of how we trained our winning method ItNet-post
for the AAPM challenge. Since the systematic investigation of Section 3 and Appendix A of several
aspects of ItNet was done after the competition period, it became clear that not all of the following
details have a significant impact on the performance.

We start by training an ItNet4 (with weight sharing) for 500 epochs of mini-batch stochastic gradient
descent and Adam optimizer with an initial learning rate of 8 · 10−5 and a batch size of 2 (restarting
Adam after 250 epochs). Then we improve the accuracy by the following post-training strategy:
First, the ItNet is extended by one more iteration to obtain an ItNet5 and all θ̃k are initialized by
the optimized weights of the previously trained ItNet4. Then, ItNet-post is fine-tuned by keeping
the weights θ̃1 = θ̃2 = θ̃3 of the first three UNets fixed and training only the last two iterations
(without weight sharing). Hoping for an additional speed-up of the training, we use the initialization
(λ1, λ2, λ3, λ4) = [1.1, 1.3, 1.4, 0.08] for training ItNet4, which was found by pre-training. Then,
λ1, λ2, λ3 of ItNet-post are kept from the final values of ItNet4, while initializing λ4 = 1.0 and
λ5 = 0.1 for the post-training.

To improve the overall performance of our networks, we have additionally applied the following
“tricks” for fine tuning, which are ordered by their importance:

(i) Due to statistical fluctuations, the networks typically exhibit slightly different reconstruction
errors, despite using the same training pipeline. For the computation of our final reconstructions,
we therefore ensemble ten networks, each trained on a different split of the training set.

(ii) Due to the training with small batch sizes, we replace batch normalization of the UNet-
architecture by group normalization [21].

(iii) We equip the UNet-architecture with a few memory channels, i.e., one actually has that
U [θ] : RN × (RN )cmem → RN × (RN )cmem (cf. [14, 1]). While the original image-enhancement
channel is not altered, the output of the additional channels is propagated through ItNet, playing
the role of a hidden state (in the spirit of recurrent neural networks). For our experiments, we
have selected cmem = 5.

(iv) It was beneficial to occasionally restart the training of the networks, e.g., see Fig. 8.

The following modifications did not lead to a gain in performance and were omitted:

(i) Improving the FBP in Step 1 by making some of it components learnable (e.g., the filter),
cf. [22]. Although this is advantageous for the reconstruction quality of the FBP itself, it leads
to worse results for UNet and ItNet. This suggests that a combination of model- and data-based
methods benefits most from precise and unaltered physical models.

(ii) Adding additional convolutional-blocks in the measurement domain of ItNet.
(iii) Modifying the standard ℓ2-loss by incorporating the RMSE or the ℓ1-norm.
(iv) Utilizing different optimizers such as RAdam, AdamW, SGD, or MADGRAD.

In Fig. 8, we visualize the RMSE loss curves of all phases of our complete training pipeline including
optimizer restarts, i.e., UNet → ItNet4 + restart → ItNet-post + 2× restart.
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Figure 8: Loss curves and network training. The first two plots demonstrate that ItNet4 improves
the RMSE by approximately an order of magnitude in comparison to a post-processing by UNet.
Furthermore, the gain of our UNet-initialization strategy can be seen in the second graph. The last
two plots illustrate the advantages of restarting and of the post-training strategy, respectively. Note
that we display the RMSE on the training and validation sets instead of the actual ℓ2-losses, which
behave similarly.
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