
Under review as a conference paper at ICLR 2024

CONTINUAL MEMORY NEURONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning with neural networks by continuously processing a stream of data is very
related to the way humans learn from perceptual information. However, when data
is not i.i.d., it is largely known that it is very hard to find a good trade-off between
plasticity and stability, frequently resulting in catastrophic forgetting issues. In
this paper we follow a novel route, tackling the problem at the lowest level of
abstraction. We propose a neuron model, referred to as Continual Memory Neuron
(CMN), which does not only compute a response to an input pattern, but also
diversifies computations to preserve what was previously learned, while being
plastic enough to adapt to new knowledge. The values attached to weights are
computed as a function of the neuron input, which acts as a query in a key-value
map, with the goal of selecting and blending a set of learnable memory units. We
show that this computational scheme is motivated by and strongly related to the
ones of popular models that perform computations relying on a set of samples stored
in a memory buffer, including Kernel Machines and Transformers. Experiments on
class-and-domain incremental streams processed in online and single-pass manner
support CMNs’ capability to mitigate forgetting, while keeping competitive or
better performance with respect to continual learning methods that explicitly store
and replay data over time.

1 INTRODUCTION AND RELATED WORK

Learning from a data stream which is continuously provided by a given source represents one of the
most challenging learning settings for machines, despite it being very related to the way humans
learn from perceptual information (Betti et al., 2022). Neural networks are known to suffer from
catastrophic forgetting, being hard to find a good trade-off between plasticity and stability (Parisi
et al., 2019). This problem is the subject of many scientific papers in the existing literature on
continual/lifelong learning (Delange et al., 2021; Mai et al., 2022b). The variety of current existing
approaches is significant (Delange et al., 2021; van de Ven et al., 2022), and many of them assume to
work in very-specific experimental conditions, such as in problems in which data from different tasks
is sequentially streamed in large batches (Li & Hoiem, 2017; Aljundi et al., 2018a), possibly having
access to the task boundaries. When considering a general setting, it turns out that one of the most
simple and effective strategies consists in buffering and appropriately re-using (during learning) a
portion of the processed examples (Aljundi et al., 2019b; Zhang et al., 2022), either represented in the
input space (Prabhu et al., 2020; Zhou et al., 2023) or in some latent spaces (Buzzega et al., 2020).

In this paper, we face continual learning in its most essential form: we simply consider a stream
of data which, at each time instant t, yields a data sample x(t), possibly paired with some label
information y(t). Samples are expected to be presented in a not i.i.d. manner, and no other information
is available. Without any loss of generality, we focus on the most challenging setting, that is the one
of continual single-pass online learning, where the model is updated after having processed each
(x(t), y(t)). Of course, we assume that storing data is not a viable option to solve the problem, since
the data stream could be potentially infinite. Motivated by the aforementioned considerations on the
performance of memory-buffer-based models (being them simple rehearsal strategies (Zhang et al.,
2022) or structured architectures that also include memory buffers (Ermis et al., 2022; Wang et al.,
2022)), we propose to follow a direction that is orthogonal to the existing literature, to the best of our
knowledge. In particular, we rethink the way neural networks operate at a very low level, proposing
a novel neuron model, referred to as Continual Memory Neuron (CMN) which includes a special
type of learnable memory. A CMN is explicitly designed to learn from information coming from a

1

Under review as a conference paper at ICLR 2024

non-stationary distribution, allowing the network to perform almost isolated computations in different
regions of the input space, thus mitigating catastrophic forgetting but still keeping the capability of
being plastic (Fig. 1). CMNs are a generalization of classic neurons, where the values of the weights
entering the neuron become function of its input, and are obtained by blending internal memory units.
Hence, a CMN does not only compute a response, but it also internally selects the process that leads
to the response, i.e., what is the appropriate set of weights to use in a certain region of the input space.
The learnable memory units represent values in a key-value learnable map, where the neuron input
acts as a query to the map. When restricted to a single memory unit, CMNs degenerate to classic
neurons (Fig. 1). In principle, every existing neural network can gain continual learning skills by
replacing the neuron model with the one of CMNs (even if such an analysis goes beyond the scope of
this paper). Similarly, also existing continual learning approaches based on neural networks could be
revisited by exploiting CMNs. As a result, the goal of this paper is not to propose a state-of-the-art
continual learning strategy, but to validate a novel direction that might open important perspectives to
the scientific community. We show how this computational scheme is inspired by models that are
specifically designed to compute a response in function of data belonging to a memory buffer, such as
Kernel Machines (Schölkopf et al., 2002; Gnecco et al., 2015) (training data), Transformers (Vaswani
et al., 2017) (input tokens), and others. We evaluate CMNs in some carefully designed benchmarks
and class-and-domain incremental problems, showing how CMNs can overcome common methods
based on memory buffers and rehearsal, without storing or replaying past information.

In summary, our contributions: (1) we propose a novel neuron model with memory units, explicitly
designed for continual learning purposes and more general than classic neurons; (2) we show the
connections between the proposed scheme and well-established models in Machine Learning; (3)
we experimentally validate the quality of CMN-based networks, without any attempts to beat the
state-of-the-art, but with the aim of paving the way for future investigation in this very novel direction.

Related Work. In the context of continual learning, standard parameter isolation methods bypass task
interference by allocating different parameters to each task (Aljundi et al., 2019c; Mai et al., 2022b),
generally requiring task-related information to route the computations towards certain isolated model
components, both in fixed and dynamic architectures (Delange et al., 2021). Some works leverage
learned gating mechanisms implemented as autoencoders that route the computation toward different
experts (Aljundi et al., 2017). Our work shares with conditional computation (Lin et al., 2019; Abati
et al., 2020; Shazeer et al., 2017) the idea of making the parameters of the neural network a function
of the input. Lin et al. (2019) proposed a clipped version of maxout nets with partial conditional
computation. Parameters are partially shared among examples, with the purpose of locating a set
of examples to be replayed that interfere with the currently processed sample. Differently, in our
work we propose a general model of the neuron with a rich computational capability (keys and
memory units) completely avoiding any kind of exemplar replay. Abati et al. (2020) deal with
class-incremental continual learning by shifting the complexity from a class prediction to a task
prediction level. The requirement of clear task distinction holds in order to gain any benefit from this
architectural design. Conversely, our approach is general and completely agnostic of task boundaries.
Out of the scope of continual learning, Shazeer et al. (2017) trained gating mechanisms by gradient
descent, learning to route the computations towards different model components. Conversely, CMNs
build a natural parameter isolation scheme by leveraging a query-key-value mechanism. Several
works investigated the algorithmic side of continual learning keeping the architecture fixed (Mittal
et al., 2021; Rolnick et al., 2019; Zhang et al., 2020; Zhou et al., 2022), or evaluating the role of
standard architecture components (pooling, batch norm, etc.) and net structure (Mirzadeh et al.,
2022a;b), for example highlighting the role of width and depth of the neural layers. CMNs follow a
direction that is orthogonal to such literature, rethinking the way neural networks operate at a very
low level, being them novel neuron models explicitly designed to learn from information coming
from a non-stationary distribution. The key management of CMNs is also different from models that
cluster the network-input data, strongly depending on class-label information to organize an internal
storage of centroids (Ayub & Wagner, 2020). Ren et al. (2021) use a prototype-oriented memory
module based on similarity to input and probabilistic clustering, with additional loss terms to favour
cluster development. CMNs shares some intuitions with works based on winner-take-all strategies
(or on top-k sparsity (Bricken et al., 2023)) for continual learning (Aljundi et al., 2018b; Iyer et al.,
2022). Srivastava et al. (2013) used a local version of top-k, defining disjoint subsets of neurons in
each layer and applying top-k locally to each. Recently (Bricken et al., 2023) introduced a number of
modifications to MLPs resulting in a model capable of continual learning. While these method require

2

Under review as a conference paper at ICLR 2024

dot

dot

Figure 1: Classic neuron, computing the dot product between weights w and input x. (a-right) Continual
Memory Neuron, composed of learnable keys K and memory units M , returning w as the outcome of blending
(weighted average–avg) multiple memories in function of the input x.

to condition the top-k selection on an external signal (e.g., task-ID), our sparse routing mechanism is
implicitly implemented by a query-key-value mechanism completely agnostic of task-related info.

2 NEURON MODEL

Each neuron in a neural network is an elementary unit computing a scalar value given an input
x ∈ Ru, u > 0. A neuron is characterized by n learnable parameters w ∈ Ru, a learnable scalar bias
b, and a usually non-linear activation function σ. For the sake of simplicity, and without any loss of
generality, we avoid explicitly indicating σ and b, thus the output function of the neuron is

f(x,w) = w′x, (1)

being w′ the transpose of the weight vector w. Such a vector defines the way the neuron responds to
its input, and it is progressively developed during the learning process, i.e., it is the memory unit of
the neuron (Fig. 1, left).

A Continual Memory Neuron (CMN) is a novel model of neuron, designed with the idea of augment-
ing the computational mechanism of Eq. 1 with increased memorization capabilities. It is motivated
by the idea of making neurons better suited to deal with continual learning problems, where learning
from the currently streamed data should not destroy what was learned in the past (i.e., avoid strong
forgetting). In detail, a CMN generalizes the classic notion of neuron, introducing (a) a set of
m ≥ 1 learnable memory units that are appropriately blended to yield the weight vector w, and (b) an
additional computational mechanism that determines what memories to blend (and how) in function
of the neuron input x. In order to reach this goal, each memory unit is paired with a learnable u-sized
key, and an attention mechanism compares x with such keys, yielding stronger attention scores for
keys whose memories will have a stronger contribution in defining the weight vector (Fig. 1, right).
Formally, memory units are collected row-wise into the m× u matrix M , while the m× u matrix K
collects (row-wise) m keys. Eq. 1 becomes

f(x,K,M) = ŵ(x,K,M)′x, (2)

where function ŵ returns a weight vector ∈ Ru depending on the current input x, keys and memories,

ŵ(x,K,M) =M ′α(x,K, δ). (3)

while α determines the relevance of each memory unit according to the similarity between x and the
keys in K (δ will be described shortly). Notice the two-fold dependence on x in Eq. 2. Function
α returns a vector of m positive (attention) scores that sum to one, and it is characterized by three
main properties suitable for continual learning purposes. (i.) Attention scores are constrained to be
sparse, with the parameter δ ∈ [1,m) defining the maximum number of non-zero entries. Sparsity is
a crucial feature to implement a natural form of parameter isolation, that is typical of a large category
of continual learning methods (Delange et al., 2021). In fact, it guarantees that the excluded m− δ
memories will not be altered by the learning process, since the neuron output is not function of them,
preserving the information they store and mitigating catastrophic forgetting. (ii.) Moreover, α is
expected to return high values for keys “close” to x, in the sense inducted by the way such similarity
function is implemented. This means that similar neuron inputs will trigger the same memory units
and yield similar attention scores, while significantly different inputs will trigger different memories.
Two inputs that are not close and not distant might trigger sets of memory units that intersect, giving
the same or different emphasis to the shared units, thus favoring a transfer of information between
nearby regions of the input space, which is another important property in continual learning. (iii.)

3

Under review as a conference paper at ICLR 2024

Ideally, α should be computationally simple in practical implementations. Additionally, it is easy to
verify that CMNs formally extends vanilla neurons with augmented memory.

Theorem 1. Neurons in artificial neural networks are CMNs with a single memory unit.

Proof. When the number m of memory units is 1, α necessarily returns 1 for all x and K, due to the
constraint of returning m positive values that sum to 1, thus making ŵ independent on x and K. M
is a single-row matrix, thus ŵ(x,K,M) =M ′1 is a column vector that corresponds to w in Eq. 1,
making Eq. 1 and Eq. 2 equivalent.

Implementation. Referring to the three aforementioned requirements i., ii., and iii., we define α by
means of softmaxδ, which is the softmax function restricted to the top-δ logits, setting to 0 all the
excluded components in the output of softmaxδ , thus ensuring the δ-sparsity requirement (i.),

α(x,K, δ) = softmaxδ(γ · sim(ψ(x),K)), (4)

where γ > 0 is a temperature parameter that tunes its sharpness and sim(·) is a similarity function
(ii.) comparing ψ(x), which is a simplified representation of x, with the keys in K, and returning
m similarity scores. The function ψ is a fixed transformation that maps x toward a customizable
space in which it might be easier to compute similarities (iii.). It is desirable to select ψ so that
it will not be particularly sensitive to small variations of x, to promote stability in the matching
process, but nothing prevents ψ to be the identity function.1 There exist several different ways of
implementing sim, such as the dot product (scaled by the square root of the key size), the cosine
similarity, RBF kernels

[
exp

(
− 1

2σ̃∥ψ(x)−Ki∥2
)]m
i=1

, being ∥ · ∥ the L2 norm, and others. In our
experience, we used the RBF implementation in 2-dim cases, while the the cosine similarity in all the
other experiments of this paper. When CMNs belong to the same layer, sharing the exact same input
x, it is convenient to share K among them, since the key-update operations only depend on x. This is
not only useful to save memory and computational time, but also to keep learning more stable.

2.1 INSIGHTS ON THE COMPUTATIONAL SCHEME

The foundations of the proposed neuron stands on two widely known topics in the field of machine
learning, that are Kernel Methods (Schölkopf et al., 2002) and Attention Models (Vaswani et al.,
2017). CMNs also share interesting analogies with Ensemble Methods (Zhou, 2012) and ReLUs
(Hara et al., 2015; Xu et al., 2015).

Kernel Machines. Let us consider a set of training samples {x1, . . . , xh}, stored (row-wise) into
matrix X . The popular Representation Theorem (Schölkopf et al., 2002) in Kernel Methods indicates
the form of the optimal solution to a learning problem defined by pointwise constrains (Gnecco et al.,
2015) evaluated on the training samples, and regularized in a Reproducing Kernel Hilbert Space
induced by the selected kernel function k(·, ·), i.e., f(x,X) =

∑h
i=1 ξik(x, xi). This form clearly

shows how f depends on the given training examples. In turn, since k(a, b) := ⟨ϕ(a), ϕ(b)⟩, being ϕ
the implicit (usually unknown) feature map of the selected kernel (Schölkopf et al., 2002), we get
f(x, ξ,X) =

∑h
i=1 ξi⟨ϕ(x), ϕ(xi)⟩ = ⟨ϕ(x),

∑h
i=1 ξiϕ(xi)⟩, being ξ the vector collecting all the

learnable coefficients ξi’s. In the case of a linear kernel k(a, b) = ⟨a, b⟩ = a′b, we have that ϕ is the
identity function, and

f(x, ξ,X) = ⟨ϕ(x),
h∑
i=1

ξiϕ(x
′
i)⟩ = ⟨x,

h∑
i=1

ξixi⟩ = (X ′ξ)′x. (5)

Eq. 5 shows that training examples are blended by means of a weighted sum, and then multiplied (dot
product) with the input x. This is the same form of the computational model used in CMNs, where
memories are treated as the training examples in Kernel Methods. In fact, once we replace X ←M
and we set ξ ← α(x,K, δ) in Eq. 5, we get back the CMN model of Eq. 2. In Kernel Methods, ξ is
learnable, and X is given and fixed. CMNs relax the previous statement in two different manners.
First of all, we let the neuron learn to adapt X (M) and, second, we let the ξ be the outcome of a
function α that depends on x.

1That is what we did in our experiments. There is room for investigating the way ψ could be defined—beyond
the scope of this paper. For example, if x is an image/feature map, ψ(x) could be a down-scaling operation.

4

Under review as a conference paper at ICLR 2024

Attention & Transformers. The attentive function α clearly traces the connection with Attention
Models, that are frequently described by means of key-value maps, mapping a query to a certain output
(Vaswani et al., 2017). The neuron input x represents a query, while memory units inM are the values
associated to the set of keys in K. Transformers (Vaswani et al., 2017) use (self-)attention to process
the information starting from a set of learnable embeddings. Each input embedding is transformed
into a new representation, that is further elaborated (usually projected again, normalized, etc.) and
passed to the next attention-based encoding block. CMNs borrow the idea of exploiting learnable
embeddings blended through an attention mechanism to elaborate the information. Differently from
Transformers, CMNs do not use attention to map x onto a novel representation, while they use it to
determine what is the weight vector w = ŵ(x,K,M) that projects x toward the neuron output.

Ensemble Methods & ReLUs. Another interesting connection exists between CMNs and Ensemble
Methods (Zhou, 2012), where the outputs of a pool of classifiers are combined. Replacing ŵ of Eq. 2
with its definition in Eq. 3, we get

f(x,K,M) = α(x,K, δ)′Mx = α(x,K, δ)′ [Mix]
m
i=1 ,

that shows how a CMN is virtually a combination (weighted by α) of the output of m classic neurons
[Mix]

m
i=1, even though the way they are combined is continual learning-oriented due to the way α

is defined. Sparse Mixture of Experts can be described following the same notation, where α is
implemented by a learnable gating mechanism that selects only δ experts at once, propagating the
gradients towards all of them. The general form of CMNs also intersects the one of classic neurons
that exploit the largely known Rectifier Linear Units (ReLUs) (Hara et al., 2015), although in a
degenerate case. The output of a ReLU-based neuron is either w′x (when w′x > 0) or 0 (otherwise).
Let us consider a CMN with m = 2 memory units, where M1 = w and M2 = 0, i.e., a vector of
zeros. Let K1 = w and K2 = −w, and let γ →∞, forcing the softmax function in α to return 1-hot
scores only. This implies that α will return [1, 0]′ if w′x > 0 and [0, 1]′ otherwise,2 that will trigger
M1 = w or M2 = 0, respectively. It is trivial to see that such CMN, without any additional activation
function, is equivalent to a a ReLU-based classic neuron. Similar arguments can be used to show the
CMN counterpart of leaky-ReLUs (Xu et al., 2015).

3 CONTINUAL LEARNING

We consider a stream of data which, at each time instant t, yields a data sample x(t), possibly paired
with some label information y(t). In principle, gradient-based online continual learning with CMNs
is immediately possible once we replace the classic neuron model with the one of Eq. 2. However, in
CMNs multiple memory units (up to δ) are blended to generate a weight vector. On one hand, this is
important in terms of transfer of information, on the other hand, this might have drawbacks in terms
of catastrophic forgetting, since making a gradient step during the latter task will alter all the involved
units, and it is hard to say in advance what will be the impact on the previously learned information.
Moreover, limiting the computations to the top δ memory units (Eq. 3) could end up emphasizing just
a few common keys, and not using the other ones in K.

Blended Inference, WTA Updates. In order to overcome the first issue, we follow the most
conservative route, updating only the memory unit (and key) associated to the largest attention score,
in a Winner-Take-All (WTA) fashion. In this way, CMNs still benefit from the transfer of information
at inference stage, while they will focus on specializing only the “winning” memory unit (key) when
learning from data. The second issue suggests rethinking the procedure to update K, not only in
order to avoid degenerate cases (where a single key is used) but also to bias the update dynamics
in function of the requirements of continual learning. As a matter of fact, keys can be interpreted
as “representatives” that should be located in different regions of the neuron input space, so that
they will blend different subsets of memory units, allowing the neuron to eventually behave in a
different/specialized manner. For example, when the properties of the streamed data change, a
different key is expected to receive large attention, generating a weight vector that mostly depends on
a different memory unit. We propose to update the keys in K with an online WTA procedure that is
inspired by online K-Means (Zhong, 2005). Consistently with the selected implementation of the
similarity function in Eq. 4, if K† is the winning key for the current x, then

K† = K† + β∇sim(ψ(x),K†), (6)
2The case in which w′x is zero must be specifically handled. As a matter of fact, it is the point which requires

a special handling also in ReLUs, to deal with the discontinuity in the first derivative.

5

Under review as a conference paper at ICLR 2024

where β > 0 tunes the strength of the update operation. Eq. 6 is a gradient step in the direction that
maximizes the similarity between ψ(x) and the winning key, so that the winning key K† is slightly
moved toward the current ψ(x). Attention scores are refreshed according to the updated K.

Avoiding Weak Keys. In order to favour the development of all the available keys, each CMN
computes basic statistical quantities about the way keys are exploited, namely the absolute usage
µ and the absolute age η, that are vectors with m components (one-per-key). The former counts
how many times each key turned out to be a winning key (usage), while the latter counts how many
time steps have passed since the last time a specific key was the winning one (age). The i-th key
is marked as not used enough if µi < τµ, while it is too old if ηi ≥ τη, given two custom positive
thresholds τµ and τη . We label as weak a key that fulfills both the conditions. Vector µ is initialized
with zeros, while the entries in η are set to τη, so that, at the beginning, all keys are weak. Before
updating keys with Eq. 6, if there exists at least a weak key and x falls “far away” from K†, i.e.,
the maximum similarity score returned by sim is smaller than τα (indicating that x is somewhat
different from all the entries of K), the CMN replaces the weak key with x itself (actually ψ(x)),
zeroing its usage counter.3 Moreover, instead of randomly re-initializing the memory unit associated
to the replaced key, the CMN initializes it to M†, to favour a warm-start of the memory values.
Algorithm 1 summarizes continual learning in a CMN (see Appendix A for the case of mini-batches).

Algorithm 1 Learning with a Continual Memory Neuron: WTA up-
dates of memory units and keys.
Require: Stream S; generic loss function loss(. . .); learning rates ρ, β; K ← rand, M ←
rand, µ← 0’s, η ← τη’s.
while true do
x← next neuron input(S)
a, s← α(x,K, δ) ▷ Attn. scores (Eq. 4) and similarities
† ← argmaxj∈{1,...,m}{aj} ▷ Index of the winning key
K,M , †, µ←

SCRAMBLE(x,K,M, s, †, µ, η) ▷ Possibly replace a key
K† ← K† + β∇sim(ψ(x), K†) ▷ Upd. winning key, Eq. 6
a← REFRESH(x, s,K†, †) ▷ Refresh a (dummy)
µ† ← µ† + 1, η† ← 0 ▷ IncreaseK† usage, reset its age
η = η + 1 ▷ Increase all ages
w ←M ′a ▷ Generate weights, Eq. 3
o← w′x ▷ Compute neuron output, Eq. 2
M† ←M† − ρ∇M† loss(o) ▷ Upd. winning memory unit

end while
function SCRAMBLE(x,K,M , s, †, µ, η)
W ← {z : µz < τµ ∧ ηz ≥ τη} ▷ Indices of weak keys
if s† < τα ∧W ̸= ∅ then ▷ If the current match is loose
j ← argmaxz∈W{ηz} ▷ The weakest key is the oldest
Kj ← ψ(x) ▷ Replace weakest key
Mj ←M† ▷Warm-start for replaced memory unit
µj ← 0 ▷ Reset usage counter
† ← j ▷ Update winning key index

end if
returnK,M , †, µ
end function

Original nf: 0.25 nf: 0.5

Original σ: 0.1 σ: 0.2

Figure 2: Samples from
the NS-IMAGENET dataset.
Samples are perturbed to
create different distributions
by adding Gaussian noise
with noise factor nf and
standard deviation σ.

4 EXPERIMENTS

Setup. CMNs do not introduce any constraints on the specific type of continual learning problem
to be faced, differently from what it is indeed common in the existing literature (task incremental,
class incremental, domain incremental, etc. (van de Ven et al., 2022; Delange et al., 2021)). For
experimental purposes, we consider a setting that is structured to make it more controllable, but
without using any of its properties for learning purposes. Data is continuously streamed from a
source S , that, at each time instant t, yields a single example x(t) and its class label information y(t),
learning in a single-pass online manner. The lifetime [1, T] of the learning agent is partitioned into
N non-overlapping ranges, [1, T] = ∪Nj=1Ij , with Ij ∩ Ir = ∅, ∀j, r, featuring data sampled from
different distributions. We simulate three types of experiences, namely CI (class incremental), CDI
(class and domain incremental), CDID (class and domain incremental with dependent sampling),
exploiting data belonging to c classes, as we describe in the following. In CI, each time interval is
about data from one class, N = c. Data is sampled in an independent manner within each interval.

3There might be multiple weak keys. We select the oldest one.

6

Under review as a conference paper at ICLR 2024

CDI provides one class after the other for c contiguous intervals, then the class distributions changes
and the process is repeated multiple times over the same classes. We consider q different distributions
per class, thus N = cq. CDID is the same as CDI, but data is sampled in a dependent manner
within each interval. In all the experiments of this paper, we selected the optimal values of the hyper-
parameters by maximizing the average accuracy on a held-out validation set after having processed
N/2 intervals–coherently with recent work (Cai et al., 2021) and differently from approaches that
identify the best models on test data (Lopez-Paz & Ranzato, 2017; De Lange & Tuytelaars, 2021).

Data, Metrics. We sampled 2D data, referred to as MODES, belonging to c = 4 mutually exclusive
categories, where each class involves data distributed as a bi-modal distribution (the two modes are
jointly used in CI, while separately sampled to simulate the CDI, q = 2), while the CDID setting is
implemented by sorting data samples for ascending values of their first coordinate. The case in which
the two Gaussian modes are replaced with two arc-shaped distributions is also considered, named
MOONS (Fig. 4-left). Additionally, we performed experiments on two standard CL benchmarks,
hereinafter referred to as MNIST-CI and CIFAR10-CI, that follow the CI setting. Both the experiences
were characterized by c = 10 and q = 1. We also considered a real-world dataset proposed for
continual online learning in (Mai et al., 2022b), NonStationary-MiniImageNet, indicated with NS-
IMAGENET, designed for the challenging CDI scenario. It is composed of images belonging to
c = 100 classes, at the resolution of 84 × 84. We considered q = 3 domains, sampling data from
the original distribution plus two perturbed distributions adding Gaussian noise (see Fig. 2). In total,
we obtain 180K images, 20% of which are used for testing and 10% for validating. Coherently with
the other experiences of this paper, we used validation data only from the first N/2 intervals (recall
N = cq). For all experiments, performance is measured using common metrics, as defined in (Mai
et al., 2022b): average accuracy at time T , average forgetting at time T , as well as forward transfer
(backward transfer was not significant in our comparisons). See Appendix B.

Compared Models. We compared a CMN net equipped with a layer of CMNs with architectures
that store samples in a memory buffer (one hidden layer with h hidden neurons, hyperbolic tangent
activation). Buffers are either used for continuous replay purposes, such as Experience Replay
(ER) (Rolnick et al., 2019), using Random Sampling (RND) or the more advanced Reservoir (RES)
Sampling (Chrysakis & Moens, 2020), or to set up the GDUMB approach (Prabhu et al., 2020), that
is focused on retraining the network from the buffer data only, keeping it balanced with respect to
the class labels. We also compared to state-of-the-art continual learning approaches such as MIR
(Aljundi et al., 2019a), that features specifically designed retrieval operations on the buffer, and A-
GEM (Chaudhry et al., 2019), with gradient-based memories, ASER (Shim et al., 2021), BIC-inspired
Knowledge Distillation (Mai et al., 2022a), DER and DER++ (Buzzega et al., 2020). These methods
have been proven to represent the SOTA in online continual learning without explicit task boundaries
(Mai et al., 2022a; Wang et al., 2023). We also considered ENSEMBLE models (Zhou, 2012), where
the outputs of 10 networks are combined either by averaging them or learning a gating function
(Mixture of Experts (MOE) (Shazeer et al., 2017)), and VANILLA networks with classic neurons.

In Appendix C we formally analyze and compare the memory and computational burden of CMN-
networks vs. classic-nets, to setup a fair comparison (Zhou et al., 2023). In MODES and MOONS we
set m = 8 memory units (the max number of intervals N), and we equipped competitors with a buffer
of size 8, h ∈ {5, 25}. Notice that even when replaying only a sample per step, the computational
burden of the competitors is always larger than the CMN-net. In MNIST-CI, CIFAR10-CI, and
NS-IMAGENET we considered m ∈ {10, 25, 50, 100}, while competitors leverage a 10c-exemplars
buffer (i.e., 100, 100, and 1000 exemplars, respectively) sampled with a batch size of 10 samples,
following the experience of Mai et al. (2022b), and an architecture with h ∈ {50, 100}. In NS-
IMAGENET, a ResNet50 backbone processed the images, extracting representations of size u = 512.
See Appendix D for a detailed description of the grid of values for each hyper-parameter and the
resulting optimal values. The code of CMNs can be found at http://see-attached-code.

Results. We first compare the average test accuracy at time T on the 2D datasets, MODES and MOONS
in Fig. 3. Our CMN net, thanks to its pool of weights, is able to effectively separate the data, achieving
an average accuracy that doubles the performance of most competitors on the MODES dataset. A
similar behavior is observable for the MOONS dataset, although the gap between CMN and other replay
memory is thinner. It can be noted how the vanilla networks are not able to capture the non-stationary
nature of the data distributions, while some competitors equipped with memory buffers can almost
double its performance. CMN is able to overcome all of them both in the CDI and CI settings,
confirming its capability of driving the memorization of the properties of the data distributions in

7

http://see-attached-code

Under review as a conference paper at ICLR 2024

Table 1: MNIST-CI, CIFAR10-CI, NS-IMAGENET. Performance on the test data (1st-best, 2nd/3rd-best).

MNIST-CI CIFAR10-CI NS-IMAGENET
MODEL ACC. ↑ FORGET ↓ FWD. T. ↑ ACC. ↑ FORGET ↓ FWD. T. ↑ ACC. ↑ FORGET ↓ FWD. T. ↑
VANILLA 31.5 ± 1.5 23.2 ± 8.1 0.4 ± 0.7 19.8 ± 0.8 60.1 ± 1.3 1.4 ± 0.2 6.8 ± 0.6 13.2 ± 0.6 1.6 ± 0.1
AGEM 35.5 ± 1.9 15.8 ± 9.2 0.4 ± 0.7 20.5 ± 0.7 58.0 ± 1.4 1.4 ± 0.2 6.4 ± 0.3 93.9 ± 0.3 2.0 ± 0.1
ASER 70.2 ± 0.4 30.7 ± 0.4 0.0 ± 0.0 25.2 ± 1.4 40.0 ± 3.4 1.0 ± 0.3 54.0 ± 0.2 32.3 ± 0.4 21.0 ± 0.3
BIC-KD 46.6 ± 0.9 3.9 ± 0.6 0.0 ± 0.0 24.7 ± 0.6 4.3 ± 0.1 2.2 ± 0.4 13.0 ± 0.6 1.1 ± 0.1 4.6 ± 0.3
DER 77.6 ± 0.8 23.8 ± 0.9 0.0 ± 0.0 26.1 ± 1.0 58.3 ± 2.1 2.1 ± 0.3 46.5 ± 4.9 53.5 ± 5.0 15.6 ± 2.1
DER++ 78.2 ± 1.2 23.0 ± 1.4 0.0 ± 0.0 26.9 ± 0.9 51.9 ± 2.2 2.3 ± 0.3 55.9 ± 1.0 43.4 ± 1.1 25.0 ± 0.4
ER-RANDOM 21.0 ± 5.6 73.3 ± 8.3 0.1 ± 0.1 17.3 ± 1.4 79.4 ± 3.9 1.0 ± 0.4 22.4 ± 0.1 76.8 ± 0.3 9.0 ± 0.1
ER-RESERVOIR 70.3 ± 0.6 32.0 ± 0.7 0.0 ± 0.0 24.0 ± 1.3 46.4 ± 0.4 0.9 ± 0.1 49.9 ± 0.3 49.4 ± 0.3 21.5 ± 0.0
ENSEMBLE 49.8 ± 9.3 40.8 ± 9.6 0.0 ± 0.0 20.5 ± 0.4 63.9 ± 0.4 1.0 ± 0.2 22.9 ± 2.2 35.2 ± 1.5 4.1 ± 0.4
GDUMB 14.3 ± 1.7 43.3 ± 7.2 0.9 ± 0.7 18.1 ± 1.0 28.2 ± 2.8 1.5 ± 0.5 6.0 ± 0.6 61.4 ± 1.3 4.7 ± 0.0
MIR 70.9 ± 0.3 31.4 ± 0.4 0.0 ± 0.0 23.8 ± 1.5 46.6 ± 0.4 0.9 ± 0.1 53.7 ± 0.3 45.8 ± 0.3 24.4 ± 0.2
MOE 23.2 ± 10.1 64.4 ± 15.2 0.7 ± 0.3 18.4 ± 0.3 59.6 ± 2.9 1.4 ± 0.5 1.7 ± 0.7 86.3 ± 1.7 1.2 ± 0.0
CMN (Ours) 78.8 ± 0.2 13.9 ± 0.2 0.5 ± 0.4 27.9 ± 0.3 26.3 ± 0.4 1.8 ± 0.2 57.8 ± 0.1 24.3 ± 0.1 24.2 ± 0.1

MODES MOONS

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

vanilla

agem

aser

bic-kd

der

der++

er-rnd

er-res

ensemble

gdumb

mir

MoE

cmn

Figure 3: MODES and MOONS data, test accuracy and std in the three setting we analyzed (CI, CDI, CDID).

an effective manner. For completeness, in Appendix F we show that even when selecting the best
hyper-parameters according to the test set, the CMN net still overcomes the competitors. Switching to
the more demanding datasets (MNIST-CI, CIFAR10-CI, NS-IMAGENET), results in Tab. 1 show that we
achieve the highest accuracy across all competitors. Interestingly, in the case of the NS-IMAGENET
and across all the models, only CMN, MIR, DER, ASER, and ER-RESERVOIR are able to provide
appreciable forward transfer capabilities, confirming that the weights learned by our method can
indeed be shared across distributions and effectively used throughout training. More importantly,
CMN is among the few methods that do not dramatically suffer from forgetting issues. Only VANILLA
yields less forgetting, paired with lower accuracy (coherently with (Mai et al., 2022b)).

Insights. Since MODES and MOONS are two-dimensional datasets, we can inspect what the network is
learning. In Fig. 4-left we show how the decision boundaries are shifting during training. Interestingly,
the CMN model is adapting portions of the space to different distributions, incrementally as they are
observed. At the same time, the VANILLA counterpart forgets previously learned boundaries in favor
of the last distributions that are shown to the model. We also plot the keys of the continual memory
neurons in the 2D-plane. As expected, keys shift during training to effectively cover the modes of
the distributions, ignoring empty regions. In fact, we can trace which keys are used throughout the
learning process. In Fig. 4-right we show a histogram of winning key activations for each interval
in the lifespan of the agent, i.e. when data of a certain distribution is presented to the model. Keys
are mostly non-overlapping across distributions (MOONS data are less spread over the input space),
supporting the hypothesis of parameter isolation that we aimed to achieve with CMNs.

Ablations. We perform an ablation study to quantify the importance of the components of the
proposed approach, focusing on the strategies presented in Section 2: WTA updates and the key
update strategy of Eq. 6. In Fig. 5 (a-b) we compare our proposed approach against modified versions
of CMN. We denote with aM a global update involving memories corresponding to all the top-δ keys
instead of the best-scoring one (as in the WTA approach). Similarly, gK indicates a gradient-based
update of the keys instead of using the proposed update strategy. It can be seen how switching off
WTA updates on memories (aM) has the effect of favoring forgetting since multiple sets of memories
are updated at the same time, leading to lower accuracies. Gradient-based updates of keys instead
yield an even worse drop in accuracy consistently across all datasets with a more pronounced amount
of forgetting. We attribute this result to a less predictable behavior of keys when using gradient-based
updates. In fact, the amount of update for a key is modulated by the quality of the predictions since
gradients scale with the loss. This can lead to unwanted behaviors with respect to Eq 6, such as too
big updates or no update at all, depending on the fitting quality of each individual sample. As one
would expect, combining both gK and aM does not help. In Figure 5 (c-d) we investigated the role

8

Under review as a conference paper at ICLR 2024

MODES

C
L

A
S

S
IC

C
M

N

MOONS

C
L

A
S

S
IC

C
M

N

Class 0 Class 1 Class 2 Class 3 Keys

MODES

0 1 2 3 4 5 6 7
Keys

0
1

2
3

4
5

6
7

D
is

tri
bu

tio
ns

0

25

50

75

100

MOONS

0 1 2 3 4 5 6 7
Keys

0
1

2
3

4
5

6
7

D
is

tri
bu

tio
ns

0

25

50

75

Figure 4: Left: Decision boundaries over time (left-to-right) with different learning settings, in MODES and
MOONS. Samples are provided one-by-one and each picture is relative to the timestep where a new distribution
is completely processed (i.e., after having processed the last sample in each distribution). We compare CMN with
classic neurons. Right: Data distributions of MODES and MOONS along with key activations during training in a
CDI setting. Each interval in the lifespan of the agent (corresponding to a different data distribution) activates
different keys favoring parameter isolation.

(a-Accuracy) (b-Forgetting) (c-Accuracy) (d-Forgetting)

Figure 5: Ablation studies. (a-b): proposed approach against modified versions of CMN. aM is a global update
that involves the Memories corresponding to all the top-δ keys instead of the winning one only; gK indicates a
gradient-based update of the Keys instead of the proposed update strategy. (c-d): Similarity function. In both the
cases, we report the average accuracy at T (a-c, higher is better) and forgetting at T (b-d, lower is better).

of the similarity function sim (Eq. 4). In 2-dim datasets, the RBF kernel implementation is the one
that provides the best performance, as expected. In real-world experiences, by leveraging cosine
similarity the keys can better disentangle the high-dimensional data representation.

5 CONCLUSIONS AND FUTURE WORK

We proposed a novel model of neuron for continual learning purposes, named Continual Memory
Neuron (CMN). CMNs are memory-equipped neurons that can generate their own weights based on
the current input, aiming for plasticity but less subject to catastrophic forgetting issues. We evaluated
CMNs in continual learning benchmarks, showing that CMN-based nets overcomes classic-neuron-
based nets, even when they exploit additional memory buffers and replays. These results open to
a novel research perspective, since, to our best knowledge, focusing on a novel neuron model is
different to what is commonly done in related works. In principle, CMNs can be plugged into any
neural architecture. Their interactions in different classes of deep networks and the way they behave
with other learning approaches will be the subject of future work.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and
Babak Ehteshami Bejnordi. Conditional channel gated networks for task-aware continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3931–3940, 2020.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3366–3375, 2017.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018a.

Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Selfless sequential learning. arXiv preprint
arXiv:1806.05421, 2018b.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019a.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2019b.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. Advances in neural information processing systems, 32, 2019c.

Ali Ayub and Alan R Wagner. Cognitively-inspired model for incremental learning using a few ex-
amples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pp. 222–223, 2020.

Alessandro Betti, Marco Gori, and Stefano Melacci. Deep Learning to See: Towards New Foundations
of Computer Vision. Springer, 2022.

Trenton Bricken, Xander Davies, Deepak Singh, Dmitry Krotov, and Gabriel Kreiman. Sparse
distributed memory is a continual learner. arXiv preprint arXiv:2303.11934, 2023.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribution
shifts: An empirical study with visual data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8281–8290, 2021.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In International Conference on Learning Representations, 2019.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data.
In International Conference on Machine Learning, pp. 1952–1961. PMLR, 2020.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
stationary data streams. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 8250–8259, October 2021.

M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars.
A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021. doi: 10.1109/TPAMI.2021.3057446.

Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cedric Archambeau. Memory
efficient continual learning with transformers. Advances in Neural Information Processing Systems,
35:10629–10642, 2022.

10

Under review as a conference paper at ICLR 2024

Giorgio Gnecco, Marco Gori, Stefano Melacci, and Marcello Sanguineti. Foundations of support
constraint machines. Neural computation, 27(2):388–480, 2015.

Kazuyuki Hara, Daisuke Saito, and Hayaru Shouno. Analysis of function of rectified linear unit used
in deep learning. In 2015 international joint conference on neural networks (IJCNN), pp. 1–8.
IEEE, 2015.

Abhiram Iyer, Karan Grewal, Akash Velu, Lucas Oliveira Souza, Jeremy Forest, and Subutai Ahmad.
Avoiding catastrophe: Active dendrites enable multi-task learning in dynamic environments.
Frontiers in neurorobotics, 16:846219, 2022.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

Min Lin, Jie Fu, and Yoshua Bengio. Conditional computation for continual learning. arXiv preprint
arXiv:1906.06635, 2019.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022a. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.10.021. URL https:
//www.sciencedirect.com/science/article/pii/S0925231221014995.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022b.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and
Mehrdad Farajtabar. Wide neural networks forget less catastrophically. In International Conference
on Machine Learning, pp. 15699–15717. PMLR, 2022a.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu, Dilan
Gorur, and Mehrdad Farajtabar. Architecture matters in continual learning. arXiv preprint
arXiv:2202.00275, 2022b.

Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essentials for class incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3513–3522, 2021.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp. 524–540. Springer, 2020.

Mengye Ren, Tyler R Scott, Michael L Iuzzolino, Michael C Mozer, and Richard Zemel. Online
unsupervised learning of visual representations and categories. arXiv preprint arXiv:2109.05675,
2021.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=B1ckMDqlg.

11

https://www.sciencedirect.com/science/article/pii/S0925231221014995
https://www.sciencedirect.com/science/article/pii/S0925231221014995
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

Under review as a conference paper at ICLR 2024

Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang. Online
class-incremental continual learning with adversarial shapley value. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 9630–9638, 2021.

Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jürgen Schmidhu-
ber. Compete to compute. Advances in neural information processing systems, 26, 2013.

Gido M van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, pp. 1–13, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. arXiv preprint arXiv:2302.00487, 2023.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankan-
halli. Attacks which do not kill training make adversarial learning stronger. In International
conference on machine learning. PMLR, 2020.

Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, and Alvin Jia.
A simple but strong baseline for online continual learning: Repeated augmented rehearsal. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022.

Shi Zhong. Efficient online spherical k-means clustering. In Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., volume 5, pp. 3180–3185. IEEE, 2005.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars:
Towards memory-efficient class-incremental learning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
S07feAlQHgM.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models, 2022. URL https://openreview.net/forum?id=OgCcfc1m0TO.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

12

https://openreview.net/forum?id=S07feAlQHgM
https://openreview.net/forum?id=S07feAlQHgM
https://openreview.net/forum?id=OgCcfc1m0TO

Under review as a conference paper at ICLR 2024

A BATCHED COMPUTATIONS

In Algorithm 2 we report the same operations of Algorithm 1 when a mini-batch of size b is provided
by the stream at each time instant. The case of batched computations is pretty straightforward, with
a major difference in the key scrambling routine. As a matter of fact, scrambling would require to
serialize the processing of the element in the mini-batch, that is not a desirable feature. For this
reason, we restrict to 1 the number of weak keys that can be potentially replaced for each mini-batch,
selecting the one associated to the batch element that is returning the smallest similarity score with
respect to K.

Algorithm 2 Learning with a Continual Memory Neuron when a batch of b samples is provided
at each time instant by the stream. Notice that X is the mini-batch matrix (b × d), function α is
intended to compute attention scores for each element of the batch, † and o are now arrays of length b.
Scrambling involves up to 1 key for each mini-batch (function SCRAMBLEONE).

Require: Stream S; generic loss function loss(. . .), learning rates ρ, β; K ← rand, M ← rand, µ ← 0’s,
η ← τη’s.
while true do

X ← next neuron inputs(S) ▷ X is a b× d matrix
A,S ← α(X,K, δ) ▷ A and S are b×m matrices
†h ← argmaxj∈{1,...,m}{Ahj}, h = 1, . . . , b

▷ Indices of the winning keys
K, M , †, µ← SCRAMBLEONE(X,K,M,S, †, µ, η)

▷ Possibly replace a weak key
K†h ← K†h + β∇sim(ψ(Xh),K†h), h = 1, . . . , b,

▷ Upd. winning keys, Eq. 6
A← α(X,K, δ) ▷ Refresh attention (from scratch)
µ†h ← µ†h + 1, η†h ← 0, h = 1, . . . , b

▷ Increase winning keys usages, reset ages
η = η + b ▷ Increase all ages
W ← AM ▷ Generate weights, Eq. 3, W is a b× d matrix
oh ←WhX

′
h, h = 1, . . . , b ▷ Compute output, Eq. 2

M† ←M† − ρ∇M† loss(o) ▷ Upd. winning memory unit
end while
function SCRAMBLEONE(X , K, M , S, †, µ, η)
W ← {z : µz < τµ ∧ ηz ≥ τη} ▷ Set of weak keys (if any)
k ← argminh∈{1,...,b}{Sh†h

}
▷ Idx of the sample with lowest similarity to its winning key

if Sk†k < τα ∧W ̸= ∅ then ▷ If the current match is loose
j ← argmaxz∈W{ηz} ▷ The weakest key is the oldest
Kj ← ψ(Xk) ▷ Replace weakest key with data sample
Mj ←M† ▷ Warm-start for replaced memory unit
µj ← 0 ▷ Reset usage counter
†k ← j ▷ Update winning key index

end if
return K, M , †, µ
end function

B METRICS

Following the notation of Section 4, we are given a data stream S partitioned into non-overlapping
time intervals, and we indicate with tj the last time instant of the j-th interval Ij , with tN = T . In the
following description, we assume class indices to be ordered with respect to the time in which they
become available, to keep the notation simple. We indicate with p(x|Ii) the data distribution in the
i-th interval, with θj is the model developed up to tj (being it a CMN-based network or the network
of another competitor), while Di is an held out test set with data sampled from p(x|Ii). Then, we
indicate with

acc
θj
i = accuracy(Di, θj)

13

Under review as a conference paper at ICLR 2024

the accuracy on data sampled from p(x|Ii) computed using the model parameters at tj , i.e., θj . We
collect the following matrix of accuracies during the learning procedure,

Model/Test Data D1 D2 . . . Dj . . . DN
θ1 accθ11 accθ12 . . . accθ1h . . . accθ1N
θ2 accθ21 accθ22 . . . accθ2j . . . accθ2N
. .

θj acc
θj
1 acc

θj
2 . . . acc

θj
j . . . acc

θj
N

. .

θN accθN1 accθN2 . . . accθNj . . . accθNN


that we indicate as continual confusion matrix (CCM, being CCMj the matrix up to tj), and we
exploit it to compute the following measures. Notice that it is a square matrix.

• The average accuracy at tz is defined as the average of the z-th row of the CCM, up to the
z-th column (included),

avg accuracy(CCMz) =
1

z

z∑
i=1

accθzi ,

and we commonly measure the average accuracy (ACC of Section 4) at the end of training,
tz = tN .

• The average forgetting at tz can be defined as

avg forgetting(CCMz) =
1

z − 1

z−1∑
i=1

(
acc⋆i − accθzi

)
,

where acc⋆i is the best accuracy obtained on data Di so far, i.e., maxθk∈{θ1,...,θz−1} acc
θk
i

(maximum of the i-th column up to row z−1). We commonly measure the average forgetting
(FORG of Section 4) at the end of training, tz = tN .

• Forward transfer measures how learning at checkpoint tz (positively) influences predictions
on data introduced in future intervals,

forward(CCMz) =
2

z(z − 1)

z−1∑
i=1

z∑
j=i+1

acc
θj
i ,

i.e., it is the average of the upper-triangular portion of the CCM (excluding the diagonal).
Similarly to the previous cases, we commonly measure it at tz = tN , yielding FWD of
Section 4.

C COMPUTATIONAL COST

A classic neuron model in a neural network requires u products to compute the output score, being u
the size of the input, Eq. 1. We compare this cost in terms of the operations performed by CMNs,
still using products as a reference. Computing the output of a CMN involves three main operations:
(1) evaluating ψ(x), whose cost is C(ψ), that transforms the neuron input in a customizable manner,
being ũ the size of the ψ-output; (2) computing the attention scores by α, Eq. 4, with cost mũ plus
the cost of the softmaxδ operation, that is δ; (3) blending memories, δu products, due to the sparsity
of the attention scores; (4) computing the usual output function as in a classic neuron, u products. In
total, we have C(ψ) +mũ+ δ + δu+ u. The cost of a layer of n classic neurons trivially becomes
un, while the cost of a layer of CMNs that share the same K is

C(ψ) +mũ+ δ + δun+ un, (7)

where only the last two terms depends on n, since the first three ones are about operations that are
performed only once, being K shared. In order to reasonable relate the cost of classic and CM
neurons, some basic considerations must be introduced. First of all, the cost C(ψ) is expected
to be way smaller than the cost of the whole layer. For example, when ψ is just limited to the

14

Under review as a conference paper at ICLR 2024

L2 normalization of x. Moreover, depending on the considered problem, there could be room for
designing ψ such that ũ is smaller than u. Of course, this does not always hold. It is reasonable to
assume the term δ in Eq. 7 to be way smaller than the other ones (being it a strong sparsity index,
always < m), thus we discard it. As a result, we can compute the ratio R between the cost of a CMN
layer and the corresponding classic layer,

RC =
mũ+ (δ + 1)un

un
=
mũ

nu
+ δ + 1. (8)

In case of multi-layer nets, with ℓ layers, we have

RC =

∑ℓ
i=1m(i)ũ(i) + (δ(i) + 1)d(i)n(i)∑ℓ

i=1 d(i)n(i)
, (9)

being i the layer index. In terms of memory consumption, a layer of n CMNs stores matrix K and n
matrices of memory units (M), that is a total of mũ+mun floating point numbers, while in a classic
layer only the weight matrix is stored (un floating point values). The ratio RM for ℓ layer is then,

RM =

∑ℓ
i=1m(i)ũ(i) +m(i)u(i)n(i)

u(i)n(i)
(10)

while the additional memory usage introduced by ℓ CMN layers is
UM = m(i)ũ(i) + (m(i) − 1)u(i)n(i). (11)

A candidate way to compare CMN-based net with models that replay data from memory buffers, is to
use the exact same network architecture, using classic neurons in place of CMNs. Then, we allow
replay-based methods to sample RC − 1 examples from the buffer at each time step. In fact, these
buffer-based models make a prediction on a mini-batch of buffer data in addition to the currently
streamed sample, according to the continual online learning setting experimented in this paper. Of
course, when comparing with models that have more layers that the CMN-net, it is harder to keep
a perfect balance in term of computational cost, so we allowed competitors to have a cost that is
slightly larger than the one of the CMN-net, making the comparison more challenging. Moreover, we
recall that the replay-based methods learn by exploiting the label-related information they store on
the replay-buffer, while no-label-information is stored by the CMN-net (this the comparison becomes
unfair when using very large replay buffers).

D HYPER-PARAMETERS

We evaluated multiple combinations of values for the main hyper-parameters of CMNs and competi-
tors, that we summarize in the following, in addition to the already described parameter values of the
main paper. In the case of CMN-based nets, in MODES and MOONS, we selected m = 8 memory
units with δ = 2, while we tested β ∈ {10−4, 10−3, 10−2, 1}, τµ ∈ {50, 200}, τη ∈ {50, 200},
τα ∈ {0.85, 0.95}, γ ∈ {1, 5, 25}. In NS-IMAGENET we considered m ∈ {10, 25, 50, 100},
δ ∈ {2, 5}, β ∈ {10−3, 10−2}, τµ ∈ {50, 500, 5000}, τη ∈ {50, 500, 5000}, τα ∈ {0.7, 0.85, 0.95},
γ ∈ {1, 5, 25}. The hidden layer size has been evaluated in h ∈ {5, 25} for 2D data, while
in h ∈ {50, 100} for NS-IMAGENET. In all the models, we considered a learning rate ρ ∈
{10−4, 10−3, 10−2, 1}, and trained with fixed-step-size gradient descent. We also evaluated the
case of Adam, which yielded lower results on average. Indeed, adopting optimizers with memory
such as Adam may be tricky: at every step, the model might select a different set of weights to be
updated, making the statistics of the optimizer invalid. We leave the investigation about the effect
of such optimizers for future work, restricting our analysis to memoryless optimizers, which do
not suffer from this issue. We also considered a weight decay factor DECAY for the optimizers
∈ {10−4, 10−3, 0}. We trained GDumb for 10 epochs on the buffer data. Other minor internal param-
eters of the competitors were set to the values suggested in the respective papers. The results reported
in the main paper are averaged over three runs with different seeds in {1234, 123456, 12346578}.
For all the experiments in this work we used PyTorch, running on a Linux machine–NVIDIA GeForce
RTX 3090 GPU (24 GB).

D.1 OPTIMAL HYPER-PARAMETERS

We report in Table 2 the best selected hyperparameters for the CMN model in all the considered
datasets and settings described in the main paper.

15

Under review as a conference paper at ICLR 2024

Table 2: Optimal parameters. The best selected hyperparameters for the proposed CMN model, drawn from the
grids described in the text, for the datasets. See the code for further details.

MODES MOONS NS-IMAGENET

Parameters CI CDI CDID CI CDI CDID -

δ 2 2 2 2 2 2 5
β 10−2 10−2 10−2 10−2 10−2 10−1 10−3

ρ 10−2 10−1 10−2 10−1 10−2 10−2 10−4

γ 25 25 25 25 25 5 1
m 8 8 8 8 8 8 100
τα 0.95 0.95 0.95 0.95 0.95 0.85 0.7
τη 50 50 50 50 200 200 5000
τµ 50 50 50 50 50 50 500

DECAY 0. 0. 0. 0. 0. 10−3 10−3

MODES MOONS

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

ci cdi cdid

0.2

0.4

0.6

0.8

1.0

vanilla

agem

aser

bic-kd

der

der++

er-rnd

er-res

ensemble

gdumb

mir

MoE

cmn

Figure 6: MODES and MOONS data, best test accuracy (reference only) and std in the three setting we analyzed
(CI, CDI, CDID).

E NETWORKS OF CMNS

We report in Figure 7 a more detailed view of the process of input projection, memory blending and
WTA update occurring in each CMN. We now briefly discuss the specific case of convolutional layers
and on networks with multiple stacked CMN-based layers.

In a convolutional layer, each spatial coordinate is associated with a neuron4 whose input is differently
shifted with respect to every other neuron of the layer. At a first glance, this makes less obvious how
to share keys (if need) among the neurons of the layer. However, neurons are still expected to share
the same weights/filter, thus the key-attention scores should be the same for all of them, in order to
coherently blend memories and generate the same filter. In this case, it is convenient to go back to
the standard definition of convolution operation, where the whole input map of the layer is one of
its operands, thus ψ(x) is a projection of the whole input of the layer, and it is the same for all the
neurons. As a result, the attention scores are computed only once per layer, independently of the
resolution of the input map.

Layers of CMNs can be stacked into multi-layer networks, as usual. However, while the input of
the first layer is not affected by CMN dynamics, the input of any other layer comes from the CMNs
of the layer below. The proposed WTA key update scheme is not gradient-based, so that we also
avoid gradients to propagate through the key-matching process, i.e., we consider ŵ(x,K,M) of
Eq. 2 to not depend on x for gradient computation purposes. As a result, gradients flow from the

4We consider a single filter/output-feature-map in this description, for simplicity. For the same reason, and
without any loss of generality, we describe infinitely supported filters.

16

Under review as a conference paper at ICLR 2024

output layer down to the output of the layer below, as usual, and not through ŵ. Another intuition
that we followed is that CMNs belonging to the lower layers in a deep convolutional network should
have a smaller number of memory units than CMNs on the top layers, since lower-level features are
likely to be more shared across inputs than the higher-level ones, where the semantics emerge (e.g.,
edge-like filters in the lowest levels vs. objects/object-parts related filters in the highest ones). Of
course, in non-convolutional nets this is harder to say in advance, but we still follow the same intuition
motivated by the need of reducing the variability in the outputs of the lower layers, to favor stability
in the learning process of the upper layers. Investigating the interaction among layer requires specific
studies that go beyond the scope of this paper. Indeed, we focused on networks in which the input of
the CMNs was not affected by the learning dynamics, both when using backbones with several layers
or when directly classifying data in their original representations. Each CMN virtually and softly
partitions its input space, dynamically learning how to do it and how to behave in each partition. In
multiple layers of CMNs, the progressive-compositional development of such partitions can lead to
instabilities or difficulties in quickly learning in an online manner. Preliminary investigations on fully
connected networks, obtained by stacking multiple layers of CMNs, did not result in significant gain
with respect to shallow architectures. Interestingly, when multiple layers are stacked, on average
we observe a slight decrease in accuracy, both for our method and for the competitors. This finding
confirms that larger models tend to perform better than deeper models for continual learning, due
to exploding gradients leading to forgetting in the earliest layers, as discussed in Mirzadeh et al.
(2022a;b).

F ADDITIONAL EXPERIMENTAL RESULTS

In Fig. 6 we report the upper-bound of the results presented in the main paper, obtained by selecting
the best-performing model on the test data. Of course, these results are only intended to be a
reference to understand the maximum performance each model could achieve, and not a way to make
comparisons across different approaches. We remark that this is different from what we did in the
main paper (Fig. 3), where we cross-validated the hyper-parameter values on the validation part of
the stream and evaluated performance on the out-of-sample test sets.

Comparing Fig. 6 with Fig. 3, we notice that the CMN-based net is actually able to reach similar
performance, thus being able to make the most out of the validation procedure. Since the validation
set is limited to the first part of the streamed data, this results is very promising in terms of what can
be achieved when working on longer streams with limited time-span dedicated to the validation of
the parameters.

d
o
t

p
r
o
d
u
c
t

dot

Figure 7: Larger instance of the contents of Fig. 1, for better readability.

17

	Introduction and Related Work
	Neuron Model
	Insights on the Computational Scheme

	Continual Learning
	Experiments
	Conclusions and Future Work
	Batched Computations
	Metrics
	Computational Cost
	Hyper-parameters
	Optimal Hyper-parameters

	Networks of CMNs
	Additional Experimental Results

