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Abstract

Given a large pool of unlabelled data and a smaller amount of labels, prediction-
powered inference (PPI) leverages machine learning predictions to increase the
statistical efficiency of confidence interval procedures based solely on labelled data,
while preserving fixed-time validity. In this paper, we extend the PPI framework
to the sequential setting, where labelled and unlabelled datasets grow over time.
Exploiting Ville’s inequality and the method of mixtures, we propose prediction-
powered confidence sequence procedures that are asymptotically valid uniformly
over time and naturally accommodate prior knowledge on the quality of the predic-
tions to further boost efficiency. We carefully illustrate the design choices behind
our method and demonstrate its effectiveness in real and synthetic examples.

1 Introduction

Increasing the sample size of an experiment is arguably the single simplest way to improve the preci-
sion of the statistical conclusions drawn from it. However, in many fields — such as healthcare, finance,
and social sciences — obtaining labelled data is often costly and time-consuming. In these settings,
using machine learning (ML) models to impute additional labels represents a tempting alternative to
expensive data collection, albeit at the risk of introducing bias. Prediction-powered inference (PPI) [1]
is a recently introduced framework for valid statistical inference in the presence of a small labelled
dataset and a large number of unlabelled examples paired with predictions from a black-box model.

Formally, given an input/output pair (X,Y’) ~ P = Px x Py x, consider the goal of estimating

0* = argmin E[¢p(X,Y)], 1
feR

where {y(z, y) is a convex loss function parameterised by § € R. As an example, the mean 6* = E[Y]
is the estimand induced by the squared loss /g (x,y) = (6 — y)?/2. Fort = 1,2,. .., we observe a
sequence of independent random variables Z;, either drawn from P (labelled sample) or from Px
(unlabelled sample), and we are provided with a black-box prediction rule f that maps any input = to
a prediction f(x).

Let (X;,Y;)i>1 and (X),>1 denote the subsequence of labelled and unlabelled samples, respectively.
Forn =1,2,..., let N,, denote the number of unlabelled samples observed before the nth labelled
one, and assume that N,, > n, with N,, > n in typical settings. PPI constructs an (asymptotic)
1 — « confidence interval (CI) C2P for 6*, that exploits the auxiliary information encoded in f. To

a,n ‘
this end, under mild assumptions, 6* can be expressed as the solution to

g0+ = E[ly. (X,Y)] =0, 2)

*Equal contribution. Order decided by coin toss.
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where ¢}, is a subgradient of ¢y with respect to 6. The quantity gy in Equation (2) can be decomposed
as gg = myg + Ay, where

mg = E[(5(X, f(X))] and A :=E[((X,Y) — (X, f(X))], ©)

where my represents a measure of fit of the predictor, while Ay, the rectifier, accounts for the
discrepancy between the predicted outputs f(X) and the true labels Y. If C , isa (1 — a)

confidence interval for gy, then the PPI confidence interval C}Y, , defined as

e, ={o10ecs, .}, @

also achieves the desired coverage, i.e. Pr(6* € CFP,) > 1 — «. Constructing CJ , = naturally relies

on estimating gy, for which PPI defines an estimator that leverages both the unlabelled data and the
prediction rule f. The resulting method outperforms standard CI procedures based on the labelled
data alone when f is sufficiently accurate and N,, > n. Intuitively, this is because, in this case, Ay
is close to zero, while my can be estimated with low variance from the unlabelled data.

Crucially, coverage of the PPI CI (@) is guaranteed only at a fixed time, i.e., for a labelled sample size
n fixed in advance. This is undesirable in many practical settings — such as online learning, real-time
monitoring, or sequential decision-making — where it is essential to continuously draw conclusions as
new data arrive. In this work, we address this by proposing an anytime-valid extension of the PPI
CI @). That is, we define a confidence sequence (C3'hP),,>1, satisfying asymptotically the stronger
coverage guarantee
Pr(0* € C'PP foralln > 1) > 1 —a,

while still taking advantage of the prediction rule f. Analogously to standard PPI, we construct a
confidence sequence (Cf; e,n)n21 for gy and define C3*FP through Equation (4) for n > 1. While our
approach is agnostic to the specific form of the confidence sequence (CJ e,n)nzl’ we mainly focus on
asymptotic confidence sequences [13], as they provide a versatile time-uniform analogue of standard
CLT-based CIs that applies to the PPI framework above in full generality. Moreover, being based on
the method of mixtures [9} 4} 8]], they can readily accommodate prior information on the quality of
the prediction model f. In particular, by means of a zero-centred prior on the rectifier Ay, we obtain
tighter confidence sequences when the predictions are good, extending the fixed-time Bayes-assisted
approach of Cortinovis and Caron [6].

The remainder of the paper is organised as follows. Section [2] reviews related work. Section 3]
provides background on (asymptotic) confidence sequences and discusses how prior information
may be incorporated into their construction. Section[]presents PPI in the context of control-variate
estimators, whose asymptotic properties are crucial for our approach to anytime-valid, Bayes-assisted
PPI, which is described in Section[5] Section [6]demonstrates the benefits of our method on synthetic
and real data. Finally, Section[/|discusses limitations and further extensions of our approach. Proofs
and additional experiments are provided in the Supplementary Material.

2 Related Work

PPI was introduced by Angelopoulos et al. [1] as a general framework for valid statistical inference
with black-box machine learning predictors, and was later extended in Angelopoulos et al. [7]]. Closely
related ideas appear in the literatures on semi-supervised inference, missing-data methods, survey
sampling, and double machine learning [8,(9, 10, [11}[12]. More recently, Cortinovis and Caron [6] pro-
posed a Bayes-assisted variant of PPI. All of these contributions target fixed-time confidence intervals.

Confidence sequences were first introduced by Darling and Robbins [13] and developed further
by Robbins and Siegmund [4] and Lai [8], building on earlier work by Ville [9] and Wald [11].
Interest has surged again in recent years [15} [15], motivated by applications such as A/B testing.
The notion is closely linked to e-values [[17,[17]. Building on the e-value framework, and on earlier
work by Zrnic and Candes [18]] and Waudby-Smith and Ramdas [[15]], Csillag et al. [19] proposed an
exact, time-uniform PPI method that yields confidence sequences under stronger conditions (e.g.,
existence of bounded e-values) and does not leverage prior knowledge about the ML prediction
quality. Furthermore, application of their method requires an active-learning setup in which, for
each ¢, the observation Z; can be labelled with strictly positive probability. In particular, it is not
applicable to deterministic sequences of observations, such as those describing a large initial pool of
unlabelled data followed by a stream of labelled data — the main focus of our experiments.



In the setting of double machine learning and semiparametric inference, Dalal et al. [20] and Waudby-
Smith et al. [[15] derive asymptotic confidence sequences for target parameters in the presence of
high-dimensional nuisance components.

3 Asymptotic (Bayes-assisted) confidence sequences

In this section, we begin with background on (asymptotic) confidence sequences (CS). We then show
how prior information can be incorporated into asymptotic CS procedures, leading to asymptotic
Bayes-assisted confidence sequences.

3.1 Background

We start by defining an exact confidence sequence [[13]], a time-uniform analogue of classical CIs.
Definition 1 (Confidence sequence). Let (Co.1)i>1 be a sequence of random subsets of R. For
€ (0,1), (Cat)t>1is a 1 — a confidence sequence for a fixed parameter i € R if

Pr(pw € Coy forallt >1)>1—a. 5)

We now introduce the notion of an asymptotic confidence sequence (AsympCS) [[15} [20].

Definition 2 (Asymptotic confidence sequence). Let oo € (0,1) and (a;)¢>1 be a real sequence
such that limy_, o a; = 0. Let (jig)1>1 be a consistent sequence of estimators of u. The sequence
of random intervals (Cq 1)i>1, With Coy = [l — Ly, iy + U] and Ly > 0, Uy > 0, is said to be
an asymptotic confidence sequence with (little-o) approximation rate a; if there exists a (usually
unknown) confidence sequence (C}, ;)i>1, with C}, y = [fiy — Ly, iy + U], such that

Pr(peCy forallt>1)>1—a

and, almost surely as t — oo, max{L} — L, U} — U} = o(ay).

Thus, an asymptotic CS may be regarded as an approximation of an exact CS that becomes arbitrarily
accurate in the limit. It is worth noting that, while classical fixed-sample asymptotic CIs rely on
convergence in distribution of the scaled estimators, asymptotic confidence sequences rely on the
almost sure convergence at a given rate of the centred lower and upper bounds relative to those of an
underlying exact CS. The following is an example of an asymptotic CS that applies to i.i.d. data.

Theorem 1. Let (Y;);>1 be a sequence of i.i.d. random variables with mean p and such that

E|Y1|>T° < oo for some § > 0. Foranyt > 1, let Y ; be the sample mean, and G? be the sample vari-
ance based on the first t observations. For any parameter p > 0, the sequence of intervals defined as

=i () s ()

forms a (1 — a)-AsympCS with approximation rate 1/+/tlogt for pu.

Cfi‘,‘t (Ym ot;p) 1= (6)

For the sequel, it is useful to highlight some aspects of the proof of this theorem. First, if the
random variables (Y;);>1 were Gaussian with variance o, then C3, (Y, 03 p) would be an exact
CS. This follows from combining the method of mixtures for nonnegative martingales with Ville’s
inequality [9, 4, 8} [14]]. Second, the proof relies on KMT strong coupling [2| 3]: there exists i.i.d.
Gaussian random variables (W;);>1 with mean y and variance var(Y") such that

t t
1 1 1

— Y, = - W; a.s. ast — oo.
t; t; +O<\/tlogt) >

Such a coupling plays a central role in constructing asymptotic confidence sequences, serving as
a substitute for the CLT assumption underlying classical fixed-sample CIs. The construction in
Theorem [T]extends beyond the i.i.d. case, provided a similar coupling exists.

Theorem 2. Let ([i;):>1 be a consistent sequence of estimators of 1. Assume that there exists a
sequence of i.i.d. Gaussian random variables (W;);>1, with mean p and variance o, such that

t
1 1

Asz W; e .s. ast — oo. 7

Lt " 2 +0< tlogt> a.s. as 00 7)



Let (G2)1>1 be a consistent sequence of estimators of o2 with |5, — o| = o (101gt) a.s. Then, for
any parameter p > 0, the sequence of intervals (C3*(Jit, G¢; p))e>1 forms a (1 — o)-AsympCS with

approximation rate 1/+/tlogt for pu.

The asymptotic CS (6] includes a tuning parameter p, which can be chosen so as to minimise the
width of the interval at a specified time t; see [[15, Appendix B.2]. However, this method does not
allow the incorporation of prior information about the parameter of interest to yield tighter intervals
when the data align with those assumptions: the width of Equation @) is indeed independent of Y.

3.2 Asymptotic Bayes-assisted confidence sequences

To address this, we introduce a Bayes-assisted analogue of Theorem 1]

Theorem 3 (Bayes-assisted AsympCS — i.i.d. case). Let (Y;);>1 be a sequence of i.i.d. random
variables with unknown mean p and unknown variance o?, and such that E|Y1|**% < oo for some
§ > 0. Foranyt > 1, let Y be the sample mean, and G? be the sample variance based on the first t
observations. Let ny : R — (0,+/t/(2m)) be defined as

) = [ N ®)

where TUis a continuous and proper prior density on R, strictly positive in a neighbourhood of 11/ c.

Then
— Ot t
Y, + —/1 _
' ﬁ\/og <2704277t(yt/3t)2>] ®

forms a (1 — a)-AsympCS with approximation rate 1/+/tlogt for pu.

CzAt (?t, 8257 7'[) =

In Theorem [3} the density 7t encodes prior beliefs about the ratio p/o. Under this prior, 7; represents
the marginal density of the standardised mean Y; /o that would arise if the observations (Y;);>1 were
normally distributed. In contrast to the non-assisted AsympCS (6)), the width of the Bayes-assisted
AsympCS (O) varies with Y; /5;: when the data align with the prior, 7, (Y; /) is large and the interval
narrows; when they conflict, 7 (7t /ot) is small and the interval widens. It is worth emphasising that,
even when the prior is strongly misspecified, the Bayes-assisted AsympCS (9) remains valid. In the
case of a Gaussian prior 7 centred at 1o with variance 72, we obtain the following AsympCS :

(?t/at —#0)2
T2+ 1/t

=5 A~ - Et th + 1
CA (Y1, 005N (s p0,77) = |V £ \/E\/log < o2 ) + (10)
Setting p = 7 allows a direct comparison between (TI0) and its non-assisted counterpart (6). When
the data agree with the prior —i.e., Y /0 — p1o ~ 0 — the Bayes-assisted interval is narrower than

the non-assisted one. Conversely, if the data conflict with the prior, (Y;/5; — pg)? is large and the
Bayes-assisted AsympCS becomes wider than ().

The proof of Theorem 3|is similar to that of [15, Theorem 2.2]. First, note that C2*, (Y, var(Y'); )
would be an exact CS if the observations were normally distributed. This follows from an application
of the method of mixtures for nonnegative martingales, using the prior 7t as mixing density, together
with Ville’s inequality. Second, we use KMT strong coupling to approximate in an almost sure sense
Y'; by a sample average of i.i.d. Gaussian random variables. As in the non-assisted case, Theorem
can be extended to the non-i.i.d. setting, as long as one can find such a strong coupling.

Theorem 4 (Asymptotic Bayes-assisted CS — non-i.i.d. case). Consider the same notation and
assumptions as in Theorem[2} Let 7 be a continuous and proper prior density on R, strictly positive in
a neighbourhood of /o, and let 0, be the density @) for any t > 1. Then, the sequence of intervals
(CE~ (¢, O1; ) ) i1 forms a (1 — a)-AsympCS with approximation rate 1/+/tlogt for .

3.3 Asymptotic Type-I error control

The asymptotic confidence sequences defined above satisfy an asymptotic version of time-uniform
Type-I error control (in the sense of [15 §2.5]; see also [24])).



Theorem 5 (Asymptotic Type-I error control). Assume the hypotheses of one of Theorems|[I|to
and let (Cq ) be the corresponding (1 — o)-AsympCS for p. Then

liminf Pr (p € Cop forallt > m)>1—a. (11)
m— 00

4 Control variates and PPI: background and strong coupling

Prediction-powered inference (PPI) closely relates to control variates, a standard variance-reduction
method in Monte Carlo estimation [25, §4.1]. In fact, each PPI estimator can be expressed as
a control-variate estimator. We begin with a review of control variates and derive a KMT-type
strong-coupling result for these estimators, and then provide additional background on PPIL.

4.1 Control variates: definitions and KMT strong coupling

Let (U, V) be real-valued random variables with finite variance, and consider the goal of estimating
v = E[V] from an i.i.d. sample (U;, V;);_ . If p = E[U] is known, the control-variate estimator
(CVE) of ~ is defined as
1 n
/\lCV V U — ‘/; -\ Ui — , 12
T == 2 0= XT: = ) (12)

where U and V' denote the empirical means of (U;)"_, and (V;)I_,, respectively, A € R is a

tunable coefficient, and the term U; — p acts as a control variate. The estimator v‘c" is unbiased,
consistent, and has variance var(7\°V) = (var(V) — 2Acov(U, V) + A?var(U)) /n. Compared to the

standard sample mean estimator V, which attains variance var(V') = var(V')/n, using 7i¢" results in
variance reduction when A < 2cov(U, V) /var(U). The minimum variance is achieved at the optimal
coefficient \* = cov(U, V') /var(U), for which var(3\) = (1 — pg;y)var(V), where py,v is the
correlation between U and V. That is, stronger correlation leads to greater variance reduction.

In practice, both y and A* are typically unknown. When this is the case, given an additional i.i.d.
sample (U );V 1 1ndependent of (U;,Vi)!'_,, where U, has the same distribution as U, one can
estimate p by [ = N— Z i U ; and plug it into Equation (1 . For fixed A, this gives

n

A=V - \U -q) = %Z (Vi = AUi — 1)) - (13)

i=1

Similarly, \* may be estimated from data as A = cov((U;, V)", )/var((U;)?,), where var(-)
and cov(-) denote the sample variance and covariance, respectively. Plugging ) into defines

-~

AVt = ﬁ%", which is similar to the semi-supervised least squares estimator of Zhang et al. [[11}
Eq. (2.15)]. As discussed in Section 3] deriving an AsympCS requires a strong coupling between the
estimator and a sequence of i.i.d. Gaussian random variables. We now establish this coupling, a key
ingredient for AsympCS for CVEs (and, in particular, for PPI estimators).

Proposition 1 (Asymptotics for CVEs). Assume E|U|?>T and E|V|?*T? < oo for some 0 < § < 1.
Then, almost surely as n — 0o,

1 — — 1
AUt = A5y — | =V -XU-5 ——— 14
7 R +0(\/nlogn> ( M)+O<\/nlogn) 14

Proposition 2 (KMT coupling for CVEs). Assume E|U|**® and E|V|**% < oo for some 0 < § < 1.
Assume additionally that |3~ —r| = O(1/n*=*) with0 < a < 2/(2+ 6), for some r € (0,1]. Then,

there exist i.i.d. Gaussian random variables (W¢);>1 with mean -y and variance

V5 = var(V — AU) + rvar(\U) = var(V') — 2Xcov(U, V') + X3 (1 + r)var(U)

such that, almost surely as n — oo,

- 1
V=N Wy — ). 15
=L 2o o) 13



Similarly, there exist i.i.d. Gaussian random variables (W ') ;>1 with mean ~ and variance v+ :=

v =var(V) [1 - (1— r)p%]yv] such that, almost surely as n — oo,

1O 1
AVt = =y et — . 16
7 nz i o («/nlogn) (16)

i=1
The estimators

~cv n r7 1 - I/ TT7 n)\2 o r7 ~
(O Vilic, Up520) = =5 2 (Vi =V =AU = U)) + ey D (U =
i=1 nAsTn j=1

a7

(Vi) = NS w7 w2 S v T as)
=1 =1

. . . ~ N,
are consistent estimators of V5 and v, respectively, where [i = Ni > i1 U;.

4.2 PPI estimators: definitions and asymptotic properties

Owing to Equation (2), the PPI estimator 0,, is the value of 6 that solves the equation gy , = 0,

where Gp., = Mo.n + Ag . 18 an estimator of gg. Here, myg ,, and A9 » are estimators of mg and Ag,
respectively. A typical choice for 7 Mg,y is the sample mean of the unlabelled data,

N,
_ 12, = =
Fon = 1 O (X5, 1K), (19)
Different choices for ﬁg,n have been proposed in the literature, leading to different PPI estimators.

Standard PPI. Angelopoulos et al. [1] use the sample mean

n

~ 1
Afw = =D (X3, Vi) — £(Xi, (X)) (20)
i=1
as an estimator for Ay. Combining Equation with Equation (19),

- ([:LZ%(X%JC(XJ)] —ﬁle,n> (21)

is a CVE, with control variate £},(X;, f(X;)) — Mg, and control-variate parameter A = 1. For the
squared loss, the estimator 65 solving gi¥ = 0 also takes the control-variate form

R 1 n
~PP — n APP . él )(Z Yz
g@,n me, + 0,n n Z: 4 ( ) )

n n Nn
e 1 1 1 -
D D (B R [0 6 Ry P ¢ 22
0n ni:l T ni:1f( Z) Nn j:1f( J) 9 ( )
with control variate f(X;) — v E i (X j)and A = 1.

PPI++. Angelopoulos et al. [7] extend the standard PPI estimator (2I)) by allowing the control-
variate parameter A, which they call power-tuning parameter, to take values other than 1. The resulting

estimator is
N N ~ 1|
AP AP (N, =1 = g (X, F(X; — Mo 23
o,n 0,n ( 0, )<n L_l 9( af( ))] me, )7 (23)

where Ag_,, is the estimator Ag ,, = =cov ((05(X;,Yq), 0p( Xy, f(X3)))iy) /var ((€,( X, f(X5)))Ey)-
In this case, APP+ is a CVE with centred control variate £y (X;, f(X;)) — Mg, which depends only
on the black- box predictions. As a result of this choice,

— o < E > lol(Xs, f(Xi))] - ﬁze,n> (24)
=1

oo . [
ggpn 7m9n+APP = |fl ZE/H(XMY;)

i=1




is also a CVE. Under the squared loss, we obtain

Lo - Lo L N
:EZY;-—/\OJL EZf(Xz)_FZf(X]) 5 (25)
=1 i=1 ™ j=1

where in this case }\\g’n = Xg,n for all 6.

Standard asymptotic confidence intervals for PPI and PPI++ rely on CLTs for the estimators gg

Mg, and ﬁg’n. In contrast, constructing asymptotic confidence sequences requires almost sure
approximations by averages of i.i.d. Gaussian variables. Since the estimators for gg, mg and Ay are
all CVEs, the asymptotic results of Proposition[Ijand the KMT coupling of Proposition [2] both apply.

5 Anytime-valid, Bayes-assisted, prediction-powered inference

In this section, we show how the results of Sections [3]and 4 can be combined in the context of PPI to
obtain AsympCS for gg. For any § € R andz >1,letUp,; = ¢ (Xz,f( ) Ui = 0y ( Xy, f(X3))
and Vy; = (4(X;,Y;). Define Vy,, = Zl 1 Vb,; and U, = ZZ 1 Us,i. In the following,
we assume E|Up ;|29, E|Up ;|>+° and IE|V971|2+‘S < oo for some 0 < § < 1, and that |- — 7| =
O(1/n'=%) with 0 < a < 2/(2 + §) for some r € [0, 1].

5.1 Anytime-valid PPI

We first derive AsympCS that do not incorporate prior information on the accuracy of the black-box
predictor. The following result follows directly from Proposition E] and Theorem [2] owing to the
control-variate form of the PPI estimator gg",, (2I) and the PPI++ estimator gg' (24).

Proposition 3. Let Gy ,, be either the PPI @ or the PPI++ (Z4) estimator. For PPI, let (G} )% =
DY (Unis Vo) irs (Do) ) (see (TT). For PPL+, let (5,,)2 = 0 (Un.i, Vo )iy (see (TB)):
Then, for any p > 0, the sequence of intervals defined as ny,@’n = Cg‘?n (90,1, Eg’n; p) forms a
(1 — a)-AsympCS with approximation rate 1/+/nlogn for gy and asymprotic Type-I error control.

5.2 Anytime-valid, Bayes-assisted, PPI

In many modern applications, extremely accurate black-box predictors are available (e.g., [26} 27, 28]).
When this is the case, we can leverage this prior information to obtain tighter AsympCS for gy via a
zero-mean prior on Ag. Following the decomposition in Equation (3)), we combine an AsympCS for
mg (Proposition @) with a Bayes-assisted AsympCS for Ay (Proposition [5).

Proposition 4 (AsympCS for myg). Let Mg, and (8g,n)2 be the sample mean (19) and sample
variance of (£)(X;, f(f(])))jvgl Let § € (0,1). Forany p >0, Rs9.n = C3h, (76,1, Eg}n; p) forms
a (1 — §)-AsympCS with approximation rate 1/+/nlogn for mg and asymptotic Type-I error control.
Proposition 5 (Bayes-assisted AsympCS for Ag). For PPI, let 39 » and (’0\0A )2 be the sample mean
(20) and sample variance of (Vy,; — Ug ;). For PPI++, let Ag n be the control-variate estimator
@3) and (35',)* = vV ((Ugi, Vi — Ugﬂ)l:l) (see (I8)). Let k € (0,1). For any continuous
proper prior T, the sequence of Bayes-assisted intervals Ty 9., = Cz‘fn (Ag)n,ff\ﬁn; ) forms a
(1 — k)-AsympCS with approximation rate 1/+/nlogn for Ay and asymptotic Type-I error control.

Finally, for both PPI and PPI++, the confidence sequences Rs ¢, and To—s,6,» are combined via a

Minkowski sum to obtain a (1 — «)~AsympCS for gy with approximation rate 1/+/nlogn for p and
asymptotic Type-I error control, of the form

~ o 2mK2) -1 o 1+ N N 21
Can = Bt bg( e >)+¢Ln Tt o ()
Tin ”gen n

(26)



where gy, is either the PPI estimator (21)) or the PPI++ estimator (24). Solving Equation (@) gives

the confidence region for 6*. In the case of the squared loss, C3'F? is an interval, given by

~A ~f

~ Oon n o |14+ Nyp? Npp? +1

caer = |6, +{ 22 |1 = + 1
on v\ 8 <27m2nnmo,n/a@n)2> VN TN BT

27)

where 0, is either the PPI estimator (22) or the PPI++ estimator (23).

6 Experiments

We compare the PPI and PPI++ AsympCS procedures introduced in Section [5|— with and without
Bayes assistance — to the AsympCS relying solely on labelled data (obtained from Theorem [I]and
referred to as “classical”) on several estimation problems. Bayes-assisted methods are annotated
with (G), (L), or (T) to indicate Gaussian, Laplace, or Student-t priors with mean zero and scale
depending on the task and reported in the Supplementary Material. For the Student-t prior, we set the
degrees of freedom to 2 in all experiments. Since PPI is motivated by settings with scarce labelled
data and abundant unlabelled data, we consider the following experimental setting: labelled data
arrive sequentially, i.e., n = 1,2, .. ., while a large unlabelled dataset is available from the start, i.e.,
N, = N for all n, with N > n large enough to exclude any uncertainty on the measure of fit mgy. As
discussed by Cortinovis and Caron [6]], this simplifies the comparison between non-assisted and Bayes-
assisted PPI, as it rules out any potential loss of efficiency due to the Minkowski sum (26)), thereby
isolating the effect of the Bayes correction on the CS procedure. For synthetic data, we set N = oo to
guarantee the simplification holds. For real data, we empirically verify that N is large enough to justify
this assumption by confirming that anytime validity is preserved — specifically, that the cumulative
miscoverage rate remains below the chosen threshold o = 0.1 for all n. As with CLT-based CIs, the
n at which one starts counting the cumulative miscoverage rate of an asymptotic CS is inherently
arbitrary; unless otherwise stated, we choose n = 40, as we empirically find this to be a reasonably
small labelled sample size at which the KMT coupling generally provides a good approximation.

6.1 Synthetic data

The synthetic experiments below follow a general structure: we start with N = oo unlabelled samples
{x i Py and successively sample n labelled observations {(X;, Y;)}™ , X P with the goal

of estimating the mean 8* = E[Y]. We compare methods in terms of the average interval volume as n
increases across repetitions, and report the associated cumulative miscoverage rate in Appendix

Noisy predictions. This experiment demonstrates that our method can adapt to varying correlation

levels between predictions and true labels by using the PPI++ estimator (23). We sample Y; S
N(0,1), so that * = E[Y] = 0. The prediction rule is defined as f(X;) = Y; + ¢;, where X; is

only used for indexing and ¢; B N(0,0% ), with the noise level oy € {0.1,0.8,3}. In this case, the
optimal control-variate parameter is given by \j = A* = cov(Y, f(X))/var(f(X)) = (1 +0%)7 1,
which decreases with oy. Figure[I]compares the interval volume achieved by classical and non-
assisted CS procedures as a function of n, while results under informative priors are reported in
Appendix For small noise levels, PPI and PPI++ achieve similar performance, and greatly
outperform classical inference. As the noise level grows, the machine learning predictions become
less informative and standard PPI loses ground to the classical CS. By contrast, PPI++ adapts to the
noise level and always performs similarly to, or better than, the other baselines.

Biased predictions. This experiment illustrates the potential benefits of incorporating prior infor-

mation into our method. We sample X; id N(0,1)and Y; = X; + ¢;, where ¢; id tar(0, 1), so that
6* = E[Y] = 0. The prediction rule is defined as f(X;) = X; + v, where v € R controls its bias
level. For all v, A* = 1, so that PPI and PPI++ coincide. We vary v between —1.2 and 1.2, and
df € {5,10, o0} to study the impact of bias level and noise distribution on the AsympCS procedures.
Figure [2] compares the average interval volumes at n = 100 as a function of v for each value of
df. Classical inference and non-assisted PPI volumes remain essentially constant across bias levels,
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Figure 1: Noisy predictions study. The left, middle and right panels show average interval volume
over 1000 repetitions as a function of the labelled sample size n for noise levels oy € {0.1,0.8,3.0}.
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Figure 2: Biased predictions study. The left, middle and right panels show average interval volume
over 100 repetitions as a function of the bias level v for df = 5, 10, cc.

reflecting their lack of prior information, and with the latter consistently outperforming the former
by leveraging imputed predictions. On the other hand, the volume of the Bayes-assisted procedures
varies widely with the bias level v: the volume is reduced for small v, but grows with |v| as the priors
become increasingly misspecified. Notably, the volume under the Gaussian prior inflates the fastest
with |v|, while heavier-tailed Laplace and Student-t priors offer comparatively greater robustness.
These conclusions hold for all values of df, which controls the accuracy of the KMT coupling
approximation for a given n. Coverage results in Appendix show that, while smaller values of
df lead to slightly worse coverage, the approximation quality is overall satisfactory in this example.

6.2 Real data

We evaluate our method on several real-world datasets, which are described in Appendix [S6.2] While
each dataset s, in principle, static (providing label/prediction pairs {(Y;, f(X;))}*t""), we simulate
an online setting akin to Section [6.1] by randomly splitting the data into a labelled set of size n4,

which serves as a labelled data stream, and an unlabelled set of size V.

Figure [3] compares classical and PPI++ AsympCS procedures on the FLIGHTS, FOREST, and GALAX-
IES datasets, where the goal is mean estimation. By taking advantage of the unlabelled data, PPI
methods consistently yield smaller regions than the classical counterpart, while maintaining reliable
coverage. Moreover, Bayes-assisted approaches further improve efficiency for moderate labelled
sample sizes, as the quality of the predictions is generally high in these datasets.

Figure [STT|reports results for three additional estimation tasks: linear regression (CENSUS), logistic
regression (HEALTHCARE), and quantile estimation (GENES). For the first two tasks, the same
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Figure 3: Mean estimation. The top and bottom rows show the average interval volume and
cumulative miscoverage rate over 1000 repetitions for the FLIGHTS, FOREST, and GALAXIES datasets.

conclusions as for mean estimation hold: PPI methods consistently outperform classical inference,
with Bayes-assisted approaches providing an additional efficiency boost. For the quantile estimation
task, non-assisted PPI still improves over classical inference by leveraging the machine learning
predictions; however, the Bayes-assisted methods yield larger regions than the other approaches,
reflecting lower prediction quality in this dataset.

7 Discussion

We extended the PPI framework to the sequential setting via asymptotic confidence sequences,
which further allow for seamless integration of prior information about the quality of the auxiliary
predictions. However, several directions merit further investigation. The results developed here are
for scalar parameter values . Extensions to multivariate settings are discussed in Appendix [S4}
building on earlier work by Waudby-Smith et al. [15, §B.10]. In the non-assisted case, we focused
on asymptotic confidence sequences of the form (6], but other options are possible. In particular,
as discussed in Appendix [S8] the parameter-free CS proposed by Wang and Ramdas [19], which is
based on an improper prior, may be used as an exact reference CS in place of Equation (6).

The AsympCS derived in this paper are asymptotically valid for i.i.d. data under mild, nonparametric
assumptions. Promising directions include extensions to non-i.i.d. observations, as well as the
development of nonasymptotic, nonparametric Bayes-assisted confidence sequences under stricter
assumptions (e.g., bounded means), building on the work of Waudby-Smith and Ramdas [[15]. In
the non-assisted case, the parameter p was assumed to be fixed. Waudby-Smith et al. [15 §2.5]
considered delayed-start sequences C, (m) that may depend on the start time m; this includes
allowing the tuning parameter p to depend on m. Their asymptotic Type-I error control result, derived
under assumptions similar to those used here, also applies in our setting. Another interesting direction
would be to adapt similar ideas to the Bayes-assisted construction.

PPI AsympCS procedures share the computational considerations of their fixed-time counterparts. Be-
yond mean estimation (e.g., Figure[STT), they typically require constructing a grid over 6. When the
marginal density 7, is not available in closed form (e.g., for the Student-¢ prior), the Bayes-assisted ver-
sion involves numerical integration. If computation is a concern, the Laplace prior offers a good com-
promise: it has heavier tails than the Gaussian while still admitting a closed-form expression for 7;.
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Supplement to Anytime-valid, Bayes-assisted,
Prediction-Powered Inference

The supplementary material is organised as follows. Appendix [ST] gives additional background on
strong laws and couplings, and confidence sequences. Appendix [S2]states secondary results and
their proofs. Appendix [S3|presents the proofs of the main theorems and propositions. Appendix [S4]
extends the results to the multivariate setting. Appendix [S3]gives specific expressions for the case of
prediction-powered mean estimation. Appendix [S6]details the experimental setup used in the main
text. Appendix [S7|presents further experiments. Finally, Appendix [S8|discusses a parameter-free,
non-assisted, AsympCS, and provides some additional comparisons.

For clarity, all sections, theorems, propositions, and lemmas in the supplementary material are
prefixed with “S" to distinguish them from those in the main text.
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S1 Additional background

S1.1 Asymptotic theory of partial sums
S1.1.1 TIterated logarithm and Marcinkiewicz-Zygmund strong laws

Theorem S6. (Iterated Logarithm Law [I| Theorem 8.5.2]) Let (Y});>1 be i.i.d. random variables
with zero mean and unit variance. Let S; = 27;:1 Y;. Then,

N
im sup

t—oo V/2tloglogt

& O( 10g10gt> a.s. ast — oo.

=1 as.,

which implies

t t

Theorem S7. (Marcinkiewicz-Zygmund strong law of large numbers [I, Theorem 2.5.12]) Let
(Y2)e>1 be ii.d. random variables with zero mean and E|Y1|P < oo for some 1 < p < 2. Let
Sy = Zle Y;. Then,

St

—F =0 as. ast— oo.
ti/p

S1.1.2  Strong approximations

The following strong invariance result, attributed to Komlds, Major and Tusnady (KMT) [2,13] shows
that the partial sums of i.i.d. random variables can be approximated almost surely by a Brownian
motion path. The following theorem is from Csorgd and Hall [4, Theorem 3.2].

Theorem S8 (KMT strong coupling [2L3). Let (Yi):>1 be i.i.d. random variables with zero mean
and unit variance such that E|Y1|? < oo for some q > 2. Then, there exists a Brownian motion B

such that, if we write Sy = Zle Y, we have

S; — By = o(tl/q) a.s. ast — oo.

KMT strong coupling has been extended by Einmabhl [5] to random vectors (see also [6, Section
B11])).

Theorem S9. (Multivariate KMT strong coupling [3)]) Let (Y;);>1 be i.i.d. random vectors in R4

with zero mean, covariance matrix %, and such that E||Y1||? < oo for some ¢ > 2. Let Sy = 2;;1 Y.
Then, there exists a standard multivariate Brownian motion B such that,

»1/28, - B, = o(tl/q) a.s.ast — oo.

S1.2 Confidence sequences

S1.2.1 Confidence intervals vs. confidence sequences

Let (X;);>1 be an observed data stream and let ;1 € R denote a fixed but unknown parameter (e.g.,
a mean). Write F; = o(X1.;) for the natural filtration, and let o € (0, 1) be a pre-specified error
probability (so the confidence level is 1 — «).

Fixed-time confidence intervals. A (fixed-time) confidence interval (CI) for p at time ¢ is an
Fi-measurable random set C,, ; C R such that

Pr(u S Ca,t) > 1-—c.

This guarantee is marginal in t: it holds for any chosen, deterministic ¢, but it need not be valid if ¢ is
selected after looking at the data (e.g., by continual monitoring or a data-dependent stopping rule). In
particular, for a general J;-stopping time 7,

Pr(,u S CQ,T) canbe < 1— a,

unless the procedure is explicitly designed to be valid under optional stopping. Moreover, the family
(Cat)t>1 of fixed-time CIs need not be nested across ¢; disjoint intervals at different sample sizes
can occur with positive probability (see Figure[S4)), illustrating the lack of any simultaneous-in-time
guarantee.
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Confidence sequences. A confidence sequence (CS) at level 1 — « is a sequence of JF;-measurable
random sets (Cq ¢)¢>1 such that

Pr(,uECa,t foralltzl) >1—a.

Equivalently,
Pr(sup {u¢Cor}t= 1) < a.
t>1

The quantifier “for all ¢ lies inside the probability, yielding uniform-in-time (a.k.a. anytime-valid)
coverage. A key consequence is validity under arbitrary data-dependent stopping: for every (a.s.
finite) stopping time 7,

Pr(,u € CQ,T) >1—a.
Thus CSs support continual monitoring and sequential decision-making without inflating error rates.
Practically, CSs are typically wider than fixed-time Cls at the same ¢ (especially early on) because

they control the maximum over all times; widths often shrink with ¢ and can approach classical rates
up to iterated-logarithm factors.

CI vs CS

I My

CS — CI - True value

0 20 40 60 80 100

Figure S4: Comparison of fixed-time confidence intervals (CIs) and a confidence sequence (CS) for
data from A (0, 1). Two fixed-time CIs at different sample sizes happen to be disjoint (highlighted),
illustrating that marginal coverage at each ¢ does not imply simultaneous coverage over ¢. The CS is
more conservative at small £, but its coverage holds uniformly over all ¢.

Early examples of CSs go back to sequential analysis [7} 8], and modern constructions often proceed
via nonnegative supermartingales/test martingales and time-uniform concentration inequalities.

S1.2.2 Nonnegative supermartingale and Ville’s inequality

Definition S3 (Nonnegative supermartingale). M = (M;);>1 is a nonnegative supermartingale
(NSM) with respect to the filtration (F;)i>1 if My > 0 a.s, E[M,;] < oo forallt > 1, and

E[Mt+1 | ft} S Mt a.s.

If there is equality, then M is a nonnegative martingale.

Proposition S6 (Ville’s inequality [9]). Let (M;);>1 be a nonnegative supermartingale. For any
constant ¢ > 0,
E[M
Pr (suth > c) < M

t>1 c
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Ville’s inequality can be seen as a generalisation of Markov’s inequality. We have the following direct
corollary.

Proposition S7. Let (M,);>1 be a nonnegative supermartingale. For any o € (0, 1),

E[M
Pr(MtS[l]forallt21> >1—a.
«

S1.2.3 Method of mixture

Under the appropriate conditions, mixtures of martingales remain martingales:

Proposition S8 (Lemma B1, [10]). Let {(M:(1'))ien, i € R} be a family of (super)martingales on
a filtered probability space (Q, A, (Ft)ien, Pr), indexed by 1’ in a measurable space (R, B), such
that

1. each M(y') is Fy ® B-measurable; and
2. eachE [My(p') | Fi—1] is Fi—1 ® B-measurable.

Let 7t be a finite measure on (R, B) such that for all n,

Pr ®@m-almost everywhere My(y') >0, or E, i E[|[M;(p')]] < 00

Then the mixture (MO , where Mt = EulwﬁMt(,u’), is also a (super)martingale.
teN

This is useful as it leads to the method of mixtures : if we have a family of nonnegative supermartingale
(say) of the form M, (') for u’ € R which satisfy conditions 1 and 2 above and a mixture distribution
7t satisfying the assumptions of Proposition then we can conclude that fu,eR M (p)dr(p') is
also a supermartingale, and thus Ville’s inequality gives for any o € (0, 1)

1
Pr < My (' )dm(u') < = forall t > 1) >1—a. (528)
' ER «

The method of mixtures dates back at least to Ville [9] and was developed in the context of sequential
analysis by Wald [[1L1]]. It was then systematised and popularised by Darling and Robbins in the
late 1960s, by Robbins and Siegmund in a series of papers culminating in [7], and by Lai [8]. The
method of mixtures has found many applications, including confidence sequences [8, 12} 13|14} 115]],
PAC-Bayes analysis [[16} [10], anytime-valid testing [17]], and A/B testing [18]], to name but a few.

S2 Secondary results

S2.1 Strong coupling with i.i.d. Gaussian
The following proposition follows from KMT strong approximation (see Theorem [S8). It will be
used in the proofs of Theorem 3]and Proposition

Proposition 89. Let &1,&; ... be i.i.d. random variables with mean . and variance o such that
E[&1]|? < oo for some g > 2. Let (N,,),>1 be a strictly increasing sequence of positive integers with
Ny, > n. Letr € (0,1] and assume | 3= —r| = O(1/n'~*) with 0 < a < 2/q. Then, there exists a

sequence of i.i.d. Gaussian random variables (W;);>1 with mean 1 and variance ro? such that

n

1 1
nZW;—FO(nl_l/(I) a.s. asm — oo.

i=1

n

1 O
7 &=
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Proof. By Theoreml's_'gL there exists a Brownian motion B such that, a.s. as n — oo,

> = By, o (M)
i=1 g
=By, +o0 (nl/q)
N, N,
= =By, + (By, = ~"rBy,) + o (7). (529)

We have
N, Ny,
By, — 77"Bn/r = Bn, — Bn/r + Bn/T(l — 77‘).
n n
By, — By is a zero-mean Gaussian random variable with variance

var(By, — Bp/r) = [Ny —n/7|

N, n
_n.

r N,
= 0O(n%).

By an upper tail inequality for Gaussian random variables, for any € > 0,

Pr(|By, — B Vay <2 e
— < - '
I‘(l N, n/r‘ > €n ) = Z4€Xp ( var(BNn - Bn/'r))

For ng := ng(€) large enough, for all n > ny,

e2n?/a
P (‘ var(Bx, — Boyy)

1
2.2/
><exp(—en q a) <—n2.

By comparison,
Z Pr (|BN7L — By | > enl/q) < 0.

n>1
It follows from the Borel-Cantelli lemma that | By, — B,,/,| = o (n/?) a.s. as n — oo. Similarly,
By, (1—2x7) is a zero-mean Gaussian random variable with variance 2 (1—227)2 = O(n?*~1) =

O(n®). Using a similar proof, we obtain B,, /(1 — 22r) = o (n'/?) as. as n — oco. So, from

Equation (S29), we obtain

1 O 1 1
o Zlgi — E(nu +0rB,r) +o (nll/q) :

‘We have,

n n

np + UTBn/r = Z [/If + UT(Bi/r - B(z—l)/r)] = Z Wi7
=1 i=1

where W; = pu+or(B;/, — B(i—1),r) are i.i.d. Gaussian random variables with mean y and variance
ro?. This completes the proof. O

The following lemma will be useful in the proof of Proposition|I}

Lemma S1. Let (U;,V;), i =1,...,n, be i.i.d. copies of a pair of random variables (U, V). Assume

E|U|?>° and E|V|*19 < oo for some 0 < § < 1. Let \* = Cz‘;gl(JU‘)/) and \ = % Then
v)i=1

A= = o(n_ﬁ) a.s. asn — oo.
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Proof. Using the mean value theorem, we obtain

Ol v v
U)|V—1EV\+ |U EU|

var( var(

n

LS Wi - EOV)| +

~ 1
A=A <
| = var(U)

n

LS Wz - B

=1

+cov((Us, Vi)izy) Ky +cov((Us, Vi)j) ) K1 Ko |U — EU |

where K and K, are two constants, independent of n. By assumption, UV and U? have finite
moments of order 1 + §/2 and U and V" have finite moments of order 2 + § (and so of order 1 + 6/2)
thus we can apply Theoremwith p =1+ /2 to obtain the result. O

S2.2 Confidence sequence for i.i.d. Gaussian variables with known variance

An important step in the proof of all our results is the derivation of an exact confidence sequence for
i.i.d. Gaussian variables with known variance. The non-assisted confidence sequence is a well-known
result that can be found for instance in [7] or in the proof of Theorem 2.2 in [15]:

Theorem S10. Let W; A (i, 02). For any parameter p > 0, the sequence of intervals defined as

tp? +1
W, £ \/\/ 1+— og< o2 )

is an exact 1 — « confidence sequence for i, that is

Pr(pe Cg‘ft(Wt,a;p)forallt >1)>1-o.

Con(Wi,o5p) = (530)

We also establish such a confidence sequence under a general prior on the mean. While Wang and
Ramdas [19| Proposition C.1] propose an exact confidence sequence under a Gaussian prior, we
extend their result to any continuous and proper prior.

Theorem S11. Let W; S N (11, 02) and let e be a continuous and proper on i/, then

C(}iljt(wtv o; 7[) = \/ log ( ) 210g77t <o-t) ,

where 1 is defined in Equation (8), is an exact 1 — o confidence sequence for ji, that is

Pr(pe CH(Wy,o;m) forallt > 1) > 1 —a.

Of particular interest, we may consider the Gaussian prior N (ug, 72), which gives

(W./a — )’
(T2 +1/1)

= tr2 + 1
Cgﬁt(Wtao-;N(';,U/O?TQ)) = Wt:l:\/

Proof. The main idea is to apply the methods of mixture with the prior 7t. For each t > 1, let
pw(wl;t) be the joint density of the W1,..., W, with respect to A®* where \ is the Lebesgue
measure, for some unknown mean parameter y € R, where wy.; = (wy, ..., w;) € Rt To simplify
notations, we drop the subscript ¢ and simply write p, (w;.+) to denote this joint density. We have

g

E —
pu(wi,...,wy) = C(o,wi,...,w) X Py ( ¢ N)
where w; = 1 Zle w;, C(o,w1,. .., w;) does not depend on 4 and ¢;(w) denotes the pdf of a
zero-mean Gaussian random variable with variance 1/¢.

For any p € R, w4 € R, let
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ATV (,u') di,u’ (S31)

R Pu Wit o o
(;5 Et; ' / /
:/ t( )N(P‘>d/‘ (S32)
R ¢t (wt;#) g o
0t (W /o) (S33)

1 (Wh.t
We define M, (') = 2] = exp (— 5 (SL, (Wi — )2 = Sy (Wi — )?) ) - We con-

sider (F})sen, the filtration adapted to the sequence of random variable (W} ). For every p/ € R
we have

M) = Moca0) s 550 =) oo (5= ).

202

and so

BV | Foer] = Moca ) o0 (55302 = ) ) Bexw (= =)

1 2 1%
— / 2 !
= M;_1(p) x exp (202(# —p )) exp (—u o
= M1 (1)
Hence, {(M:(1t'))ten, ' € R} is a family of martingale with respect to the adapted filtration
(Ft)ten-

M, (1) is clearly continuous in W; for all ¢ € {1,...,t} and for 4 € R. Hence, it is 7; ® B(R)-
measurable. Similarly, E [M;(¢') | Fe—1] = Mi—1(¢') is Fr—1 ® B(R)-measurable.

1% "2
2 +20_2(,U/_M)>

Finally, we have M;(y’) > 0 Pr®A-almost everywhere, where A is the Lebesgue measure on
R (or any other measure dominated by the Lebesgue measure on R). Then, by Proposition [S8|
(M (W, 1))e>1 is a nonnegative martingale with respect to the adapted filtration (F3):en. So by
Ville’s inequality, we have :

Pr (Mt(Wt,u) < = forall t > 1> >1—a.

Q|+

It follows that the sequence

— S 1
szt(WuU;W) = {N | My (W, p) < a}

is an exact 1 — « confidence sequence for u. Finally,

~ 1 t — Wt \/27‘(’ 1
M, < = —(u— 2 )X <=
t(Wt7M)_a<:>eXP(202(M W) >77t( p ) i " a
t 2 Wt 2w
= 252 (= W¢)” +log (Ut <0> 7\/{5 > < —log(a)
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S2.3 Optimal control-variate parameter for PPI++

The next proposition follows from an application of Proposition []to the PPI++ estimators, identifying
the value of the optimal control variate parameter in this case.

Proposition S10 (Asymptotics for PPI++). Assume that, for any 6 € R, E|¢j,(X1,Y1)|? < oo and
E‘éle(Xl,f(Xl))P < o0. Let
cov (£y (X1, Y1), £5 (X1, £(X1)))

Ao = var(¢)(X1, f(X1)))

(S34)

Then, for any 0, almost surely as n — oo,

. 1O loglogn
PPt _ , o\ / _ I ==
Jo.n = [n ;:1 Co(Xi, Ya) | — Xo ([ E lo(Xi, f(X ] me) +o ( - ) , (S35)

RE= 3 (X0 Y) — (X F(X0) — (4~ 1) (}1 [Z %(Xi,ﬂxz»»] - m)

i=1

0 (,/k’gbg‘") ‘ (S36)
n

Additionally, in the case of the squared loss,

n N,
1 1 &, = [log1
gree — ZY p¥; Ezf(xi)—Nan(Xj) +0< og:gn) (S37)
i=1 j

with \§j = cov(Y1, f(X1))/var(f(X1)).

S3 Proofs

S3.1 Proofs of Theorem[Iland Theorem[2]
Theorem I]is a corollary of Theorem 2] so we start by proving Theorem 2]
S3.1.1 Proof of Theorem 2]
By assumption, we have, almost surely,
e =Wy + ey,
where e, = o (\/ﬂj) and W, =1 22:1 W;.

Using Theorem|S10) the sequence of intervals C3, (W, o5 p) = C¥, (fi¢ — &4, 05 p) = [fie — L7 i +
Uf], where

1 tp? +1
Li \[ og o2 + €t

is an exact confidence sequence for 1. We have Cg{‘t(ﬂt7 G4 p) = [1ie — Ly, iy + U], where

o 1 tp? +1
Ut:Lt:T; (1+tp2>10g(pa2 >
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Let a; = 1/+/tlogt. Then,
1 1[5 1 tp? +1
- =2 1+ =)
P ey c25
o 1 tp?+1
S S I B
7y (e e (V)
1 tp?+1 o 1 tp? +1
= 1+ =)
( o) () o g ()
oy —0) log? (
VT Vilogt) '~

Hence a% (Ly — L§) = o(1). Similarly, - - (Ur = Uf") = o(1). It follows that (ci)isa (1 - a)-
AsympCS with approximation rate 1/+/¢ log

o(1).

We have

S3.1.2 Proof of Theorem[Il

In order to apply Theorem [2in this setting, we need Equation (7) to be satisfied for the i.i.d. sequence
(Y2)¢>1. By KMT strong coupling (Theorem [S8), there exists a sequence of i.i.d. Gaussian random
variables (W7;);>1 with mean y and variance o such that, a.s.,

t
— 1 1 1
Yt = ? i:E - WZ + & where Et =0 (MM) =0 (tlogt) .

We also need to satisfied the condition on the variance. Under E[|Y |>*?] < oo, the Marcinkiewicz-
Zygmund strong law of large numbers (Theorem withp =1+ §/2 € (1,2) yields a polynomial

a.s. rate for Y, and Y;2; consequently |, — 0| = o(t~7) for some y > 0, which implies

- 1
|6r — ol =0 () a.s. ast — o0.
logt

The result follows.

S3.2 Proofs of Theorem 3 and Theorem[d

The following lemma is a direct consequence of Theorem 8.14(b) p. 242 [20].
Lemma S2. Let 7t be a proper and continuous probability density function on R?. Let (Z;) +~>1 bea

sequence of random vectors in R%, with Z; — c a.s. ast — oo. Let

9= [ Vg

Then
1:(Z¢) — m(c) almost surely as t — oco.

Theorem 3]is a corollary of Theorem ] so we start by proving Theorem 4}
S3.2.1 Proof of Theorem [4

By assumption, we have, almost surely,

ZWt + &,

1 W, = Lg¢ )
tlogt) and W; = t Zi:l Wi.

where ¢, = o (
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Using Theorem , the sequence of intervals CE*, (W, o.7) = CE*, (fiy — &¢, 03 70) = [l — L, [ie +

I/t*],where
U= —4/lo 7t — 2log, At t — &4, and
t \[ g 9 2 gt ts

ﬁt—Et
Ly \[\/ 210gnt< p )—‘ré‘t,

is an exact confidence sequence for 1. We have C3* (fit, 01; 1) = [fis — Ly, fir 4 Uy, where

oy t
Ut = Lt = \/%\/log (271_0[) —210g7]t (’ut>
Ot

Let a; = 1/+/tlogt. Then,

1 1| oy
— (L= L) ==Lt 1
o= [\/i °g<2

‘We have

o ! g ¢ ﬁt — &t
Vil —=/1 —21
\[\/Og <27ra2 \/i\/og (27ra2> 0g7}t< . )
Z {log(gm ) —2log (%)} - |:1Og(27ra ) — 2logn: (m Et):|
\[ 10g(2‘n’a2) _210gnt (gz>+gt\/log(2ﬂ—a2) 210g77t (/—Lf 6f>
logt
N(at—O') X o8 :0(
t
as, by Lemma[S2] we have
" (ﬁt> - ﬂ(ﬁ) and 7; (ut _Et) — 71(&> a.s. ast — oo.
Ot o o p

It follows that (C2*,) is a (1 — a)~AsympCS with approximation rate 1//¢log.

—_

logt

S3.2.2 Proof of Theorem

The result follows from Theorem [ by applying the same reasoning as for the proof of Theorem I}

S3.3 Proof of Theorem[5]

The idea of the proof is as follows Recall that the intervals (C,,;) of interest are approximations of
an exact CS (C;, ;). For any o’ > «, the narrower exact CS (C, t) is eventually (a.s.) contained in

(Cq,t) for all large ¢. A standard sandwiching argument using this eventual containment yields the
desired asymptotic Type-I control.

Let a; = 1/+/tlogt. For each construction (non-assisted/Bayes-assisted), the sequence of intervals
of interest are of the form C,, ; = [{i; £ U,,] where

3,5 1 tp2 —+ ].
Uyt = 1+ — )1
RV ( 7z > Og( a?
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for the non-assisted case, and

5, t 7
Unt = 2L Jlog [ —— | — 21 i
o= s () ~ 2w (51

for the Bayes-assisted case. C, : approximates a reference exact CS of the form C}, , = [l —
LY, 4, iy + U} 4], where

. o 1 tp?+1
Ua,t = \/i\/<1+tp2> 10g( pa2 ) — &t, and

. o 1 tp? +1
La’t:\/{\/<1+tp2> log< pa2 )+et,

for the non-assisted case, and

. o t ft — €
Unt = \/i\/bg <27ra2> — 2logn: ( ta t) —¢&¢, and

* o t //J/\t_Et
La,t:W 10g(27roﬂ>_210gm( - )+5t,

for the Bayes-assisted case, where e; = [i; — W; = o(a;) a.s. does not depend on «. In both cases,
(C3.+)t>1 is an exact CS (Theorems and[S11); hence, for £ = {u € C; , forall ¢ > 1},

Pr(EX) >1—q.

logt
Uai ~ ULy~ Ly~ oy Tg a.s. ast — 0o,

and, as shown in the proofs of Theorems |Z| and@ a.s.,

Uaﬂg — U;,t = O(Clt) and Ua,t — L;,t = o(at). (838)

Additionally,

Let o/ € (a,1). We now aim to show that, for some random, finite time T, Clr i C Caqt forall
t > T, . We have

Uz — (UL )?  o?/tlog @

Uk — Uy = A, o \/ﬁ ~ c(a, a')ay (S39)
a.s. as t — oo, where ¢(a, ') = o log(a//a) > 0. Similarly,
LY, — Ly ~cla,d)ag as. ast — oo. (S40)
Combining Equations (S39) and (S40) with Equation (S38), we obtain, a.s.
Uai — Ul o ~ cla,a’)ay (S41)
Loy — LYy ~ cla,a')ay. (542)

So, there exists a collection of events o with Pr(€y) = 1 such that for every w € g, there is a
finite T, (w) with

Uat(w) = Ul y(w) > >clo, 0 )ay (S43)

N |

Log(w) = Ly (w) > se(a, o )ay. (S44)

DN | =

forall t > T,/ (w). Therefore, Cor i C Coy forallt > T,y . It follows, that for every m > 1,
Pr(p € Copforallt > m) > Pr(EL N{Tw <m}) —meo Pr(Er) >1—0.
Hence, for any o/ € (o, 1), liminf,, oo Pr(p € Cyq forall t > m) > 1 — o thus
liminf,, o Pr(p € Cqo forallt > m) > 1 — a.
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S3.4  Proof of Proposition|l]
Let

en =T =5
=77 = (V-N(U - m)
— V=N =) — (X = N - ).
By the triangle inequality,
lenl <IN =AU = pl + |72 = p)).
By the Lemma[ST|we have
A= =0 (n72/(2+6)) a.s. asm — 0o

and, by the law of the iterated logarithm

— log 1 log 1
R e B (e

It follows that

1 loglogn 1
‘Gn‘ =0 <n2/(2+5) \/T) :0<W> a.s. asn — oQ. (846)

S3.5 Proof of Proposition 2]

We have
A =V =XU —p) + (i — ). (S47)

The random variables V — A(U — ) and \(7i — p) are independent and are both sample average of i.i.d.
random variables with finite moment of order ¢ for some ¢ =2+ § > 2. Note that 1 — 1/¢ > 1/2.

By KMT strong coupling (Theorem , there exist i.i.d. Gaussian random variables (G 51))1-21 with
mean +y and variance var(V — AU) such that

- 1 & 1
V—)\(U—u):nZGgl)—i—o(M) a.s. asn — oo.
i=1

If = 0, then n/N,, = O(1/n'~%). By the law of the iterated logarithm,

- loglog N, 1
A@—p) =0 <1/> =0 () a.s. as n — 0o.
N, Vvnlogn

If » > 0, then, by Proposition there exist i.i.d. Gaussian random variables (G )

i)i>1, independent

of (Ggl))izl, with mean 0 and variance rA\2var(U) such that,
)\(ﬁ—u)zlzn:G(?)—i-o L a.s.asn — oo
n ! ni-t/a ) " '

Setting W2V = Ggl) ifr =0and W = GZ(-I) + Gl(?) if » > 0 gives the Gaussian coupling
for 1§V, as ﬁ =0 (ﬁ) From this, using Equation , we deduce the coupling (T6)) for
VT, noting that

vV = =var(V) [1— (1= r)pfrv] - (S48)
We have

zn:(Vi —V = \NU; =U))? = var(V = \U) as.

=1

1
n—2

25



and

nA\2 Moo
B E (U; — )% = rA%var(U) as.
Na(No = 1)

therefore 7§¥ — 15" a.s. Finally, we show that 7V is a consistent estimator of v*VF. Set §; =
Vi =V = \U; —U). Wehave §; = V; — @ — BU; where @ = V — AU and 3 = ) are the least
squares estimates, minimising Y .-, (Vi — o — 8U;)?. It is well known [21} Theorem 2] that, for

(-t oty

(a*’ 5*) = argmiﬁnE[(V —a— ﬂU)z] _

)

we have

1 n
— > 67 S E[(V —a* = U =var(V)(1 - pfy) as.asn—o0.  (S49)
=1

Additionally, by the strong law of large numbers,
N,, n -
n/Nn N (Vi = V)2 = rvar(V) as.asn - oo, (S50)

=1

n—1
Hence,
Yt — (1 —r)var(V)(1 — sz,V) + rvar(V) = var(V)(1 — (1 — r)p%,’v)

almost surely as n — oco.

S3.6 Proof of Proposition [

We apply Theoremto the i.i.d. sequence (¢}, (X“ f()?i)))izl, to obtain an AsympCS (75,5’9’1')1'21
for mg with approximation rate 1/1/ilog . The subsequence (Rsg,n)n>1 With R4, = 7%579, N,
is also an AsympCS for my with approximation rate 1/+/n logn. Asymptotic Type-I error control
follows directly from Theorem [3]

S3.7 Proof of Proposition 5]

In the PPI case, the proof follows from a direct application of Theorem |I] (non-assisted) or Theorem 3|
(Bayes-assisted) to the sequence of i.i.d. random variables (Vp ; — U ;)7—,. In the PPI++ case, it
follows from an application of Theorem E] (non-assisted) or Theorem [Z_f] (Bayes-assisted), together
with Proposition 2] to the control variate estimator (23). Asymptotic Type-I error control follows
directly from Theorem 5]

S4 Multivariate AsympCS

In this section, we discuss how the results developed in this paper for scalar € can be extended to
obtain asymptotic confidence regions for § € RY.

We first provide the definitions of a multivariate confidence sequence and of an asymptotic spherical
confidence sequence. Let B(x,r) C R? denote the ball of radius r centered at .

S4.1 Definitions

Definition S4. (Confidence Sequence) Let (Co 1)i>1 be a sequence of random subsets of R?. For
a € (0,1), (Ca,t)e>1is a 1 — a confidence sequence for a fixed parameter p € R? if

Pr(p € Coy forallt >1)>1—a.

We now introduce the notion of an asymptotic spherical confidence sequence, inspired by [ 15} Section
B.10].
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Definition S5. (Asymprotic Spherical Confidence Sequence) Let o € (0,1) and (a;)¢>0 a real
sequence such as lim;_,., a; = 0. Let ([iy);>1 be a consistent sequence of estimators of j. The
sequence of random balls (Co, 1 )1>1, with Co. = B(fiy, Ry) and Ry > 0, is said to be an asymptotic
spherical confidence sequence with (little-o) approximation rate ay, if there exists a (usually unknown)
confidence sequence (C}, ,)i>1, with C, , = B(fis, Ry ), such that

Pr(peCy forallt>1)>1—a

and
|R: — Ry| = o(at) a.s. ast — +00.

S4.2 Nonasymptotic Bayes-assisted CS for i.i.d. Gaussian random vectors

Let Y1,Y5, ..., beiid. Gaussian random vectors with mean ;. € R? and known d-by-d positive defi-
nite covariance matrix Y. Let 7t be some prior on £ ~/2 and define 1,(2) = [ N (2;¢, La/t)m(¢)dC
where I; denotes the d-by-d identity matrix. By the method of mlxtures and Vllle s inequality
(similarly as in Theorem [STTJ), the sequence of ellipsoid regions defined by

_ — 1 td
Cot(Yi,Sim) = p e R IZ7V2(u=Y,)|| < —4/1 ( _ )
(Y, 5m) {M Ll (=Yl < NG 08 (21)da2n, (51727,

forms a (1 — «) confidence sequence for . One could also consider spherical confidence intervals
using Apax(X), the maximum eigenvalue of ¥, similarly to what is done in [13, Section B10]
for non-assisted confidence regions. In this case, the corresponding (more conservative) (1 — «)
confidence sequence for p is

max td
CEEA (Y1, 5 ) = {MGRdlllu V| < Mo %g )}

27r YdaZn, (B-1/2Y ;)2
(S51)

S4.3 Multivariate extension of Theorems 3] and [l

To illustrate that our results extend to the multivariate case, we provide multivariate (and tight)
versions of Theorem @ and Theorem 31
Theorem S12. (Multivariate version of TheoremE]) Let (fi¢)¢>1 be a consistent sequence of estima-

tors of u. Assume that there exists a sequence of i.i.d. Gaussian vectors with mean [ and positive
definite covariance matrix ¥ such that, a.s. ast — oo,

t
1 1

T, = = E w; h = —_ . S52

e n 2 +e; where € =0 ( tlogt) (852)

Let (it)tzl be a consistent sequence of estimators of X such that | S, — || = o(1/ logt) a.s. where
|| - || is the spectral norm, and 7 be a continuous and proper prior density on RY. Then, CoPi (1, S )
Sorms a (1 — «)-AsympCS with approximation rate 1/+/tlogt.

Proof. (Theorem[S12) By hypothesis, we have, almost surely,
i = Wi + ey,

where ¢, = o ( W) and W, =1 2221 W;. As stated in Appendix |S4.2| the sequence of balls
CoB (W, 55 m) = CRB (i — &4, 3; 1) forms an exact (1 — ) CS for p. Let

Rt — \/ max \/ td

277 Va2, (5172 (7, Et))z) + [leell-
As B (fig, Rf) 2 Co2} iy — &4, E; ) the sequence of random balls B (fi;, R}) also forms an exact
(1 — ) CS for pu. Define C2} (fi, S 7m) = B (i, Ry), where

Amax(it) d
R, = log t
t Vi @m)ta2n (S, )2 )

27




By the Courant-Fischer theorem, we have,
| Ammax (it) A (D) < IS — 2| = o1/ log t) as.
Additionally, by Lemma|[S2} we have

nt(it_lmﬁt) -7 (Eil/zu) and 0, (5"V2(f1y —ey)) = (271/2/1) a.s. ast — 0o.

It follows that
R} — (R — |l=tl)?
Ry + (Rf — ledl])
(Amax(zt) - Amax(z))logt
log t¢
Armax(X) 5=
= o(1/+/tlogt)
as. Then |R; — Rf| = o(1/+/tlogt) and so C2>! (¢, Sm)isa (1 — a)-AsympCS with approxima-
tion rate 1/+/tlog t. O

Theorem S13. (Multivariate version of Theorem Let (Y})¢>1 be a sequence of i.i.d. random
vectors in RY with mean v and such that E||Y1||*T° < oo for some § > 0. Then, C*2}(Y 1, Xy ) is

a (1 — a)-AsympCS with approximation rate 1/\/tlogt, where Yy is the sample mean and it the
sample covariance.

Ry — (R} — |ledll) =

td

~

Proof. (Theorem i By the strong law of large numbers, Y; and i‘t are consistent estimators of
and X, respectively. By the multivariate KMT coupling due to Einmahl [5]] (see Theorem[S9), there
exists a sequence of i.i.d. Gaussian random vectors (W;);>1 with mean 4 and covariance matrix X

such that
— 1 zt: 1 1
Yt = — Wi + & where gt =0 (1125) =0 () .
t = t1-1/(2+9) Vilogt
The result then follows from Theorem [S12] O

All other results can be extended to the multivariate case in a similar manner. In the case of Theorem[]
and Theorem E], we require a multivariate, non-assisted, exact confidence sequence for i.i.d. Gaussian
random variables with known variance. For any p > 0, Waudby-Smith et al. [6, Equation (29)]
propose to use

cih— e Re: ||7t — u|| <

a,t T

)

Amax(S¢) - 9d 1+ tp?
2 t2p2

)

although alternative constructions are possible. To extend our results on control variates and PPI to the
multivariate setting, the proofs can be adapted accordingly. In doing so, we will require multivariate
versions of the Marcinkiewicz-Zygmund strong law of large numbers (see Ledoux and Talagrand [22|
Theorem 7.9]) and of the law of the iterated logarithm (see Koval [23} Corollary 1]).

S5 Derivations for prediction-powered mean estimation
Throughout the main text, we report expressions of quantities related to the construction of prediction-
powered AsympCS for mean estimation. Here, we explicitly derive those expressions.

The convex loss associated with the estimand 6* = E[Y] is the squared loss /g (x,y) = (0 — y)?/2,
whose subgradient with respect to 6 is given by £ (x,y) = 0 — y. As aresult of this, the measure of
fit my takes the form

mg =60 —E[f(X)], (S53)
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whereas the rectifier Ay is given by
Ay =E[f(X)-Y]. (S54)

In particular, notice that, in the case of mean estimation, the rectifier is independent of 0, i.e. Ay = Aq
for all 6.

As discussed in Section E], PPI uses the sample mean as an estimator of mg, which in this case is
given by

1o
Mg =0~ 5 Z F(X5)- (855)

For Ay, either the PPI estimator ﬁg{’n (20) or the PPI++ estimator APP+ (23) may be used. In the case
of mean estimation, these are given by

n

i=1
~ - N T Lo
A=A = O =1 | 32 D) = D F(X) (s5)
" J=1 =1
1 n . R 1 Nn _
= o2 (Ronf (X0 = Yi) = G~ 2 S(X)), (558)
i=1 n =1
where -
N = cov (6o (X4, Ya), Ly (Xi, £(X4)))Py) _ cov((Yy, f( X))~ 1)' (559)
" var ((6(Xs, F(X)))i) A (X))

Again, the control-variate parameter Xg,n does not depend on 6, i.e. /):g’n = XO,n for all 6.

Given Mg, and an estimator ﬁo,n of Ay, the associated prediction-powered estimator of §* is found
by solving, in 6, the equation

GJon = Mo n + Do
For the two estimators of A discussed above, this quantity takes the form

i=1

N AL
Tom =0 — 5~ D2 F(X) + = (F(Xi) - Y)) (S60)

N,
:e—iZYJr( Zf lejf()?j) , (S61)
/

i=1 j=1
~Ppp+ N 1 all e 1L~
Y DI (COEED (/\omf(Xi) - Yi) (S62)
=1 i=1
1 ~ (1 1 Jn
ZH—EZYH-)\o,n EZf(Xi)—FZf(Xﬁ , (S63)
i=1 i=1 =1
whose zeroes are given by
1 & 1 & 1O
=" — | =D rX) - D F(X) |, (S64)
"= "= Nn j=1
1 & 1 & 1
PP+ — = ) = A X
= 3o Ao (0 - 5 3 ) (565)

which match the expressions in Equations and (25), respectively.
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As discussed in Section [I} a prediction-powered (1 — a)) AsympCS (C5'EP),,>; for 6 is defined
through Equation (4)) by first constructing a valid AsympCS (Cg 0, n)n>1 for ga.

Sectlondeﬁnes valid AsympCS for gy that incorporate no prior information. In particular, Ca o.n
is constructed as

C4 o = Cort(Go,n, 3 5 ) (S66)

59
N 1 np? +1
Jo.n = \f (1 + ) log ( o2 )

where C}}*,, is defined in Theoreml Jo,n is either the PPI estimator ggF, or the PPI++ estimator ggFy,
and (39 ) is the correspondlng variance estimator, as defined in Pr0p0s1t10nl More specifically,
under the squared loss, for g§" "> We have

; (S67)

2
1 « 1 <&

(agn)2 = Z (K- — f(X;) — - Z (Y — f(X;Q)) (S68)

i=1 k=1

2
n/Ny, ol > 1 -
while, for g*, we have
2
1—n/N, — 1 <&
(03H)2—7£/22<Y Ao f(X fﬁz(Yk—/\Onf Xk))) (S70)
i=1 k=1
2

n/N
n_lz<y-—ZYk> (S71)
Given the specific form of gy ,, under the squared loss, C3'hP can be explicitly expressed as

cavep = {9 loect, } (S72)

G 1 np? +1

which is an interval, and where é\ is either the PPI estimator é\pp or the PPI++ estimator @’P*.

; (873)

Similarly, Sectlon@] defines valid AsympCS for gy that incorporate prior information by means of a
zero-mean prior 7 on Ag. In particular, for 6 € (0, ), ProposmonE]ﬁrst construct a standard (1 — §)
AsympCS R g.n, for mg, which in the case of mean estimation takes the form

R0 = Cyt, (Mg.n, 54 3 p) (S74)

N, Af
“ 1 Npp? +1
0— — E f \/7 (1 p2> log (62) , (S75)

where (85@)2 is the sample variance of (Ze(Xi, f()?l)))f\jl, that is
(3.,)* = var((p(Xs, f(X0))) (876)
L SR R IS b
=¥ -1 ; <f<Xj) - ;;f(Xk>> : (S77)

Next, Propositionconstructs a Bayes-assisted (1 — (o — 0)) AsympCS To—s,0,n for Ag, which
under the squared loss takes the form

Tab.0. = C2 5 . (Bon, 5503 ) (S78)
N A _ S\2)—1

= (Ao 22 |log M 7 (S79)
v nn(AO’n/oaA,n)z
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a—6,n

where C*  and 7, are defined in Theorem Ao,n is either the PPI estimator Eglfn or the PPI++

estimator AFP* and (55',,)? is the corresponding variance estimator, as defined in Proposition In
the case of mean estimation, (52",,)? takes the form

n

@R = > (n (X -

n

2
> (V- f(Xk») , (S80)

S|

n :
=1 k=1

for PPI, and is given by

n n 2
Ggn)? = 1;#;\7” Z (m — Nonf(Xi) — %Z (Yk - Xoynf(Xk))> (S81)
i=1 k=1
n n 2
+ 72/?77{ > (Yi - [(Xi) - %Z (Vi — f(Xk))> (S82)
i=1 k=1

for PPI++. Finally, 7,_50,» and R, are combined via a Minkowski sum to construct a valid
(1 — a) AsympCS for gy as

Cz,o,n = Ta—s,0,n + Rson (S83)
G n@r(a—6)2)-1\ G4, 1 Npp? +1
gﬁ,n :t - IOg -~ ~ + - (1 + 2) log ( 2 )
\/ﬁ 77n<A07n/0'0A,n)2 \/Nn an o
(S84)

where gy ,, is either the PPI estimator g5, or the PPI++ estimator gi*'. As above, the form of gy ,

)
for mean estimation allows expressing C2PP explicitly as

cavep — {a 10e cgm} (S85)
QL EeA,n log n(2m(a — §)2)-1 . 85@ (1 N 1 )1 . (anz + 1)
= n - = O, = _— o) -
Vn (Do, /58,)2 VN, N, p? 52

(S86)
which matches the expression in Equation , and where tz)\n is either the PPI estimator @PLP or the

PPI++ estimator 677+

S6 Experimental details

S6.1 Implementation

Code implementing our method is written in Python and made available at https://github.com/
stefanocortinovis/ppi-cs, All experiments were run locally on an Apple Silicon M4 Pro CPU
with 24GB of memory.

S6.2 Datasets

Here we briefly describe each dataset used for the real data experiments in Section[6.2] The FLIGHTS
dataset eﬁas downloaded from Kaggleﬂ while all the others are available as part of the ppi-python
packag

Flights. For each of 103333 economy class flight tickets, the FLIGHTS dataset reports the ticket
price (Y; € R), as well as the prediction of a gradient-boosted tree for Y; (f(X;) € R). The goal is to
estimate the average price of a flight, i.e. * = E[Y] € R.

*https://wuw.kaggle.com/datasets/shubhambathwal/flight-price-prediction
*https://pypi.org/project/ppi-python/
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Forest. For each of 1596 parcels of land in the Amazon rainforest [24]], the FOREST dataset reports
whether the parcel has been subject to deforestation (Y; € {0,1}), as well as the prediction of a
gradient-boosted tree model for the probability of Y; being equal to one (f(X;) € [0,1]). The goal is
to estimate the fraction of Amazon rainforest lost to deforestation, i.e. 6* = E[Y] € [0, 1].

Galaxies. For each of 16743 images from the Galaxy Zoo 2 initiative [25], the GALAXIES dataset
reports whether the galaxy has spiral arms (Y; € {0, 1}), as well as the prediction of a ResNet50
model [26] for the probability of ¥; being equal to one (f(X;) € [0, 1]). The goal is to estimate the
fraction of galaxies with spiral arms, i.e. 0* = E[Y] € [0, 1].

Census. For each of 380091 individuals from the 2019 California census, the CENSUS dataset
reports the individual’s age (X; € R) and yearly income (Y; € R), as well as the prediction of a
gradient-boosted tree model trained on the previous year’s data for Y; (f(X;) € R). The goal is
to estimate the ordinary least squares (OLS) regression coefficient when regressing income on age.
We preprocess the data by excluding non-positive incomes (¥; < 0 or f(X;) < 0), and applying
a log-transformation to both the response Y; and the prediction f(X;). This results in a dataset of
268118 individuals.

Healthcare. For each of 318215 individuals from the 2019 California census, the HEALTHCARE
dataset reports the individual’s yearly income (X; € R) and whether they have health insurance
(Y; € {0,1}), as well as the prediction of a gradient-boosted tree model trained on the previous
year’s data for the probability of Y; being equal to one (f(X;) € [0, 1]). The goal is to estimate the
logistic regression coefficient when regressing health insurance status on income. As above, we
preprocess the data by excluding non-positive incomes (X; < 0), and applying a log-transformation
to the covariate X;. This results in a dataset of 270214 individuals.

Genes. For each of 61150 gene promoter sequences [27]], the GENES dataset reports the expression
level of the gene induced by the promoter (Y; € R), as well as the prediction of a transformer model
for Y; (f(X;) € R). The goal is to estimate the median expression level across sequences. We
preprocess the data by applying a log-transformation to the response Y.

S6.3 Predictor performance

Table [ST|reports the performance of the predictors used for each real data dataset above, measured in
terms of normalised root mean squared error (NRMSE) for regression (R) tasks (FLIGHTS, CENSUS,
GENES) and cross-entropy (CE) for the binary classification (C) tasks (FOREST, GALAXIES, HEALTH-
CARE). While we report these for completeness, we emphasise that non-assisted PPI improves

Table S1: Predictor performance on real data datasets.

Dataset Flights Forest Galaxies Census Healthcare Genes
Task R C C R C R
Performance  0.20 0.31 0.29 0.11 0.36 0.33

over classical inference in the presence of correlation between the predictions and the true labels,
regardless of the absolute predictive performance (see e.g. Figure 2). On the other hand, while
knowledge on the predictive performance can be used to choose a suitable prior for Bayes-assisted
PPI, the latter is placed on the rectifier Ay, which depends on the downstream inference task, thereby
making the relationship between predictive performance and efficiency gains less direct.

S6.4 AsympCS hyperparameters

Here we discuss the hyperparameters of the PPI and PPI++ AsympCS procedures defined in Section[5]

The non-assisted prediction-powered AsympCS discussed in Section[5.1|requires the specification
of the parameter p for Equation (6) in Theorem[I] As mentioned at the end of Section [3.1] p can
be chosen so as to minimise the width of the interval at a specified time. In particular, as shown in
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Waudby-Smith et al. [6, Appendix B.2], setting

. \/—Wl(—a:eixp(—D) - 1, (S87)

where W_1 is the lower branch of the Lambert I/ function, minimises the width of the interval at
time ¢*.

The Bayes-assisted prediction-powered AsympCS discussed in Section [5.2]requires the specification
of both the parameter p used for the non-assisted AsympCS for the measure of fit mg (Proposition )
and the scale parameter 7 of the prior 7 for the Bayes-assisted AsympCS for the rectifier Ay (Propo-
sition E[) While the former can be chosen as above, the same approach does not work for the latter, as
the prior scale that minimises the width of the Bayes-assisted interval at a specified time ¢ depends
on the observed value of Y;/5; in Equation @) of Theorem Instead, we propose the following

heuristic for choosing 7. If Z3, Zs, ... | s N (p, 12, then the posterior mean E[u|Z1, . .., Z;] after
)

t observations under a Gaussian prior g ~ N (g, 72) is given by
E[u|Zi,..., 2] = il (S88)
A EZ PR t_1+t7_2:u’0 1+ {72 ty

where the two terms on the right-hand side measure the influence of the prior and the data on the
posterior mean, respectively. Noticing that the Gaussian likelihood leading to the posterior mean
(S88) is of the same form as the one implicitly used for the construction of Bayes-assisted AsympCS
(see e.g. Equation (8)), we choose 7 so that the prior and the data have the same influence on the
posterior mean (S88)) at time ¢*, i.e.

1

N

Appendix [S7|reports the hyperparameter value used for each experiment in terms of ¢*. Notice that,
as discussed in Section[f] the initial IV,, is set large enough to rule out any uncertainty on the measure
of fit mg. As a result of this, the only hyperparameter that needs to be chosen for the Bayes-assisted
procedure is the prior scale .

T =

(S89)

S7 Additional experimental results

Additional experimental results to complement Section [6]are presented here. Legend names are as in
Section

S7.1 Synthetic data

S7.1.1 Noisy predictions
For this experiment, we set t* = 500 (see Appendix [S6.4) for all methods.

Figure [S5| reports the average cumulative miscoverage rate for the results shown in Figure [T} As
desired, the cumulative miscoverage rate lies below the threshold « for all n.

Figure[S6|shows the performance of the Bayes-assisted prediction-powered AsympCS procedures
under a Gaussian prior on the noisy predictions experiment in Section[6.1] The results are consistent
with those presented in Section[6.1] In particular, also with Bayes-assistance, PPI++ easily adapts
to increasing noise levels, while standard PPI fails to do so. Moreover, in this case, Bayes-assisted
PPI++ outperforms the non-assisted version across all noise levels. This is due to the fact that, in this
experiment, the predictions from f, while noisy, are unbiased for all values of oy . As a result of
this, the zero-mean prior used by the Bayes-assisted procedures is well specified, and any additional
shrinkage performed by the latter is beneficial.

S7.1.2 Biased predictions

For this experiment, we set t* = 500 (see Appendix[S6.4)) for all methods shown in Figures [2] and
The values of ¢* used for Figure [S8|are reported in the figure legend.
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Figure S5: Noisy predictions study. The left, middle and right panels show average interval volume
and cumulative miscoverage rate over 1000 repetitions for noise levels oy = 0.1, 0.8, 3.0.
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Figure S6: Noisy predictions study with Gaussian prior. The left, middle and right panels show
average interval volume and cumulative miscoverage rate over 1000 repetitions for noise levels
oy = 0.1,0.8, 3.0. Results for non-assisted PPI++ are shown for reference.

Figure|S7|reports the average cumulative miscoverage rate for the results shown in Figure [2]at v = 0.
As discussed in Section the cumulative miscoverage rate increases slightly as we decrease df,
but remains below the threshold « for all n, as desired.

Figure [S§|repeats the simulation of Figure [S7|for different values of ¢*, which affects the procedure-
specific hyperparameters as discussed in Appendix For non-assisted PPI, t* represents the time
at which the procedure’s interval width is minimised. Therefore, as expected, increasing ¢t* above
100 leads to larger intervals for n = 100. However, the qualitative behaviour of the non-assisted
methods as v varies is the same across all values of ¢*: their volume remain constant across bias
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Figure S7: Biased predictions study. The left, middle and right panels show average interval volume
and cumulative miscoverage rate over 1000 repetitions for df = 5,10, oco.

levels, reflecting the lack of prior information. On the other hand, for Bayes-assisted methods, a
larger t* implies a smaller prior scale 7. As a result of this, increasing t* above 100 leads to stronger
prior influence at n = 100. In particular, a large ¢* results in slightly smaller intervals for v ~ 0,
but larger intervals for |v| > 0. When comparing the results across different priors, the results are
consistent with those in Figure[2} the interval volume under heavier-tailed priors, such as the Laplace
and Student-t priors, grow at a lower rate with |v| compared to the Gaussian prior, thereby offering
greater robustness to prior misspecification.
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Figure S8: Biased predictions study with different hyperparameters. Each column correspond to one
of the prediction-powered methods in Figure 2] for ¢* = 100, 500, 1000. The top and bottom column
show average interval volume and cumulative miscoverage rate over 1000 repetitions with df = oo.

35



S7.1.3 Multivariate biased predictions

Here, we illustrate the multivariate AsympCS procedure described in Appendix |S4|in the context
of PPI. To do this, we study a simple multivariate version of the mean estimation task with biased
prediction described in Section In particular, for d = 5, we sample d-dimensional observations

Y; id N(0,%), where & € R%*4 is a Toeplitz covariance matrix with entries ;; = 0.5/i3! and

define Y; = f(X;) + €;, where ¢; id N(0, 1), so that * = E[Y] = 0. Then, we proceed as in
Section and define biased predictions f(X;) = X; + v, where v € R controls the bias level of
the predictor. In this setup, we compare classical inference, non-assisted PPI, and Bayes-assisted
PPI under a Gaussian prior with mean zero and isotropic covariance matrix using the spherical
multivariate AsympCS procedures described in Appendix[S4] The AsympCS hyperparameters are set
using natural extensions of the rules in Appendix [S6.4]to the multivariate case, with ¢* = 1000 for
all methods. Figure [ shows the average spherical interval volumes of each method as a function of
v, which we vary between —6 and 6, at n € {100, 250, 500}. The results are consistent with those

n = 100 n = 250 n = 500

classical PPI PPI (G)

Figure S9: Multivariate biased predictions study. The left, middle and right panels show average
spherical region radius over 1000 repetitions for n = 100, 250, 500.

in Figure 2] In particular, non-assisted PPI consistently outperforms classical inference, with both
methods yielding constant interval radii across bias levels. On the other hand, Bayes-assisted PPI
achieves smaller radii than the other baselines for small values of v, but its radius grows quickly
with |v] as the prior becomes increasingly misspecified. For this example, we do not report coverage
results, as we find that all methods achieve near perfect coverage across the values of v considered,
with cumulative miscoverage rates close to zero, likely due to the conservative spherical construction
mentioned in Appendix [S4]

S7.2 Real data

S7.2.1 Mean estimation

For each of the mean estimation experiments, we set t* (see Appendix [S6.4) equal to the largest n
considered in the experiment. In particular, for the FLIGHTS, FOREST, and GALAXIES datasets, we
set t* = 10000, 500, and 1000, respectively.

Figure[ST0]adds the results of the standard PPI procedures to the ones shown in Figure[3] For these
experiments, the improvement of PPI++ over standard PPI is small, and the results remain consistent
with those in Figure [3] That is, PPI methods consistently improve over classical inference, with
Bayes-assisted methods providing an additional efficiency boost for moderate labelled sample sizes.

S7.2.2  Other estimation tasks
The estimation tasks considered here involve linear regression (CENSUS dataset), logistic regression

(HEALTHCARE dataset), and median estimation (GENES dataset). As above, for each estimation task,
we set t* = 2000 (see Appendix [S6.4)), as that is the largest n considered in all experiments.
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Figure S10: Mean estimation. The top and bottom rows show the average interval volume and
cumulative miscoverage rate over 1000 repetitions for the FLIGHTS, FOREST, and GALAXIES datasets.

For these, AsympCS procedures relying on classical inference (obtained from Theorem|[I)) and PPI,
both non-assisted (Proposition[3) and Bayes-assisted (Equation (26)), require constructing a grid over
6 through Equation (4). To initialise the grid, we use the first n( labelled data points to compute a
preliminary estimate of 6*, which we then use to centre the grid. The same ny is also used as the
starting point to evaluate the AsympCS procedures and compute their cumulative miscoverage rate
reported in the figures below. We set ng = 100 for the CENSUS and HEALTHCARE datasets, and
ng = 40 for the GENES dataset.

Furthermore, some priors, including the Student-¢ prior, require numerical integration to compute the
marginal density 7; used in Equation (26). As a result, when Bayes-assisted PPI under such priors is
used, the computational cost grows significantly when Equation (26) is evaluated across many n and
0 values simultaneously. Because of this, we only report results for the Gaussian and Laplace priors,
which admit closed-form expressions for ;.

Figure compares classical and PPT AsympCS procedures on the three estimations tasks above
in terms of average interval volume and cumulative miscoverage rate as n increases. As discussed
in Section [6.2] PPI methods outperform classical inference for the linear and logistic regression
tasks, with Bayes-assisted methods further improving efficiency when n is moderate. For the median
estimation task, on the other hand, non-assisted PPI still improves over classical inference, while
Bayes-assisted PPI yield larger regions than the other methods due to the higher bias of the predictions
in this dataset. In all cases, coverage remains satisfactory.

As discussed in Appendix [S6.2] the CENSUS, HEALTHCARE, and GENES datasets are preprocessed by
applying a log-transformation to relevant positive skewed variables, as it is commonly done in the
literature. For instance, this is the case for the income variable Y; in the CENSUS dataset. In practice,
such a transformation improves the accuracy of the KMT coupling approximation for a given n,
essentially lowering the effective labelled sample size necessary to achieve satisfactory coverage.
To see this, we repeat the linear regression experiment on the CENSUS dataset without applying any
preprocessing to Y;. As shown in Figure[ST2] the results are strikingly different: all methods yield
significantly larger cumulative miscoverage rates compared to the preprocessed case in Figure[STT}
with non-assisted PPI violating the nominal guarantee around n ~ 500, in turn invalidating the
efficiency comparison. Without preprocessing, a substantially larger starting labelled sample size ng
is needed before the KMT coupling approximation is accurate enough for satisfactory uniform-time
coverage by the AsympCS procedures. This example highlights the importance of knowledge of
the data distribution when using AsympCS procedures in practice. A possible way to obtain such
knowledge in practice is to estimate the third moment of the data distribution, if it exists, from a
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Figure S11: Other estimation tasks. The top and bottom rows show the average interval volume
and cumulative miscoverage rate over 100 repetitions for the CENSUS, HEALTHCARE, and GENES
datasets.
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Figure S12: Linear regression on the CENSUS dataset without preprocessing. The top and bottom
rows show the average interval volume and cumulative miscoverage rate over 100 repetitions.

held-out validation set and use a Berry-Esseen-type bound [28, Theorem 2.1.4] to choose a starting
labelled sample size ng at which the KMT coupling provides a good approximation.

S8 Alternative non-assisted AsympCS

S8.1 Parameter-free AsympCS via improper prior

As discussed in Section the non-assisted asymptotic confidence sequence Cgft(Yt, a3 p) in
Equation (6] approximates the exact CS in Equation and becomes arbitrarily accurate as in the
limit. This suggests constructing alternative non-assisted AsympCS by approximating other exact
CSs for which adaptations of Theorems|[I]and 2] apply.
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One example is the parameter-free non-assisted CS of Wang and Ramdas [[19] Corollary 5.9]. Define
the continuous, strictly decreasing bijection g: [1,00) — (0, 1] by

g(x):=2 [1 - d (\/log(xz)ﬂ + 2+/log(x2)¢ (\/log(x2)) ,

with ® and ¢ the standard normal CDF and PDF, and let z,, := g~ !(«), which is well-defined. The
corresponding AsympCS is given by

o
NG

Notably, for i.i.d. Gaussian observations with known variance, the exact (nonasymptotic) counterpart
of (S90) is obtained by applying the method of mixtures for extended nonnegative martingales
[19] Def. 3.1] together with extended Ville’s inequality [19, Theorem 4.1], using a non-informative
improper prior as the mixing density.

Co (Y4, 81) = [Yt + —/log (tz(‘i)] - (S90)

S8.2 Experiments

We use Cgf‘; from (S90) as a parameter-free drop-in replacement for Cg’ft in the classical and prediction-
powered AsympCS procedures from the main text and repeat some of the experiments from Section|[6]
In figures, runs that use the alternative AsympCS are annotated (I) for “improper”. Compared with
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Figure S13: Noisy predictions study with alternative AsympCS . The left, middle and right panels
show average interval volume and cumulative miscoverage rate over 1000 repetitions for noise levels
oy = 0.1,0.8, 3.0. Results for non-assisted PPI++ based on Equation (6] are shown for reference.

the standard non-assisted AsympCS used in the main text, which depends on the hyperparameter p,
the parameter-free alternative typically performs slightly worse under our default choice of p (see
Appendix @I) Nonetheless, cg‘}; can represent an attractive choice when selecting p is problematic,
precisely because it avoids any tuning.
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Figure S14: Biased predictions study with alternative AsympCS . The left, middle and right panels
show average interval volume and cumulative miscoverage rate over 100 repetitions for df = 5, 10, co.
Results for non-assisted PPI based on Equation (6) are shown for reference.
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Figure S15: Real data study with alternative AsympCS . The top and bottom rows show the average
interval volume and cumulative miscoverage rate over 1000 repetitions for the FLIGHTS, FOREST,
and GALAXIES datasets. Results for classical inference and non-assisted PPI++ based on Equation (6)
are shown for reference.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s actual contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in our Discussion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Proofs of all results are included in full detail in the supplementary material,
except for some very classical results for which we provide only references. When relevant,
we also provide a sketch of the proof in the main text.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As stated in the supplementary material, the code used to perform our experi-
ments is made available online under a permissive licence.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As stated in the supplementary material, the code used to perform our experi-
ments is made available online under a permissive licence.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details necessary to understand the results are provided in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all experiments, results are averaged over many repetitions (100 or 1000
repetitions, depending on the experiment). Variations from the mean are negligible. Statisti-
cal guarantees (i.e. asymptotic time-uniform coverage) are checked empirically computing
the average cumulative miscoverage rate for all experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were run locally on an Apple Silicon M4 Pro CPU with 24GB
of memory, and implementation details are provided in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper is mainly theoretical and uses only
publicly available datasets, which do not contain any sensitive information.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work performed is mainly theoretical, and we do not foresee any societal
impact.

Guidelines:
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12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work performed is mainly theoretical and doesn’t pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets have permissive licenses and are properly credited in the supple-
mentary material.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: As stated in the supplementary material, the code used to perform our experi-
ments is made available online under a permissive licence.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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