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ABSTRACT

Recursive transformers reuse parameters and iterate over hidden states multiple
times, decoupling compute depth from parameter depth. However, under matched
compute, recursive models with fewer parameters often lag behind non-recursive
counterparts. By probing hidden states, we trace this performance gap to two
primary bottlenecks: undifferentiated computation, where the core is forced to
adopt a similar computational pattern at every iteration, and information over-
load, where long-lived and transient information must coexist in a single hidden
state. To address the issues, we introduce a Memory-as-State-Highways (MeSH)
scheme, which externalizes state management into an explicit memory buffer
and employs lightweight routers to dynamically diversify computation across it-
erations. Probing visualizations confirm that MeSH successfully resolves the
pathologies by inducing functional specialization across iterations. On the Pythia
suite (160M-6.9B), MeSH-enhanced recursive transformers consistently improve
over recursive baselines and outperforms its larger non-recursive counterpart at
the 1.4B scale, improving average downstream accuracy by +1.06% with 33%
fewer non-embedding parameters. Our analysis establishes MeSH as a scalable
and principled architecture for building stronger recursive models. Our code is
available at https://github.com/LivingFutureLab/MeSH/.

1 INTRODUCTION

Scaling up model parameters and data has been a primary driver of improvements in the general
capabilities of large language models (LLMs) (Kaplan et al., 2020; Hoffmann et al., 2022; Brown
et al., 2020; Wei et al., 2022; Chowdhery et al., 2023; Grattafiori et al., 2024; OpenAI, 2023; Snell
et al., 2024; Liu et al., 2024; Comanici et al., 2025) . However, further gains along this axis face
headwinds: the supply of high-quality text is nearing exhaustion (Villalobos et al., 2022; Muen-
nighoff et al., 2023) , empirical scaling curves show signs of saturation (Hackenburg et al., 2025;
Hoffmann et al., 2022), and distributed pre-training incurs substantial, often super-linear, communi-
cation overheads as models grow (Narayanan et al., 2021; Pati et al., 2023; Li et al., 2024; Patterson
et al., 2021; Momeni et al., 2025).

As a parameter-efficient architectural response to the scaling bottlenecks of large models, recursive
transformers have recently attracted growing interest (Geiping et al., 2025; Bae et al., 2024; 2025;
Zeng et al., 2025; Saunshi et al., 2025). The core idea behind is to decouple computational depth
from parameter depth by repeatedly applying a compact, weight-shared core block in a loop. By
breaking the tight coupling between these two depths, recursive transformers natively enable dy-
namic computation: they can, in principle, allocate computational budgets adaptively based on task
difficulty to reduce inductive bias (Bae et al., 2025), and open up a new scaling axis of computational
depth, complementing model size and data volume (Zhu et al., 2025b; Geiping et al., 2025; Saunshi
et al., 2025).

However, a critical challenge remains: under matched compute, recursive models with fewer pa-
rameters often lag behind their non-recursive counterparts (i.e., they exhibit higher perplexity or
lower accuracy compared to standard Transformers with equivalent FLOPs but unique parameters

† Equal contribution B Corresponding author
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(c) Loop representational collapse
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Figure 1: Diagnostic visualizations of the recursive transformer. Analyses are performed on
a Pythia-410M-based model with the Prelude-Reccurent-Coda architecture (3 core loops). Hidden
state matrices (h ∈ Rseq×dim) are extracted from 500 samples from the Pile dataset. The states
hemb,h

(0) . . .hout refer to the initial token embeddings, the states to each block, and the final output
state. We leave further experimental details and analysis to Section 4.1. (a) Skewed computational
pattern. Plots the relative magnitude of the state update, calculated for each computational block (f )
as 2||f(h)−h||F /(||f(h)||F + ||h||F ), where || · ||F is the Frobenius norm, which serves as a proxy
for the computational effort of each block. The x-axis tracks the flow from Prelude through con-
secutive Core iterations to Coda within the common Prelude-Recurrent-Coda structure (Geiping
et al., 2025). Bars show the mean and standard deviation across 500 samples. (b) Representational
stagnation. Displays the pairwise Centered Kernel Alignment (CKA) (Kornblith et al., 2019) simi-
larity with an RBF kernel between the hidden state matrices. High CKA values between consecutive
loop states (h(t), h(t+1)) indicate that the representation has ceased to evolve, trapping the model in
a fixed point. (c) Loop representational collapse. Shows the top 50 normalized singular values
(σi/σ0) for each hidden state matrix on a logarithmic Y-axis. The decay rate of the spectrum indi-
cates the effective rank or intrinsic dimensionality of each state matrix.

per layer). In this work, we provide measurable evidence that the performance gap stems from
fundamental bottlenecks: undifferentiated computation and information overload, quantified by
three observables as skewed computation, representational stagnation, and dimensional collapse. To
address the pathologies, we propose the Memory-as-State-Highways (MeSH) scheme, a principled
architectural modification that replaces the overloaded hidden state with an explicit memory buffer
governed by lightweight, step-wise routers. The proposed design separates persistent memory from
transient computation, effectively converting the implicit challenge of state management into a clear,
learnable routing problem for recursive transformers.

2 WHY NAIVE RECURSION FAILS: A DIAGNOSTIC ANALYSIS

The core premise of a recursive transformer is to reuse a weight-shared computational block, yet
the design introduces a fundamental limitation: the block lacks any explicit information about its
progress within the iterative sequence, which prevents effective functional specialization and leads to
inefficient computation. This also forces a single hidden state to handle multiple conflicting informa-
tion. We define these two primary bottlenecks as undifferentiated computation and information
overload.

Undifferentiated computation. The inability to differentiate between loop steps prevents the
model from assigning specialized roles to each iteration. This leads to two distinct failure modes.
First, the model exhibits a skewed computational pattern, as shown in Figure 1a. The first core loop
performs the vast majority of the computational work, while the update magnitudes of subsequent
iterations drop to near zero. This sharp decay suggests that the features stabilize prematurely, indi-
cating that the model fails to effectively utilize the computational depth of later loops or distribute
its processing logic over multiple steps. Second, consecutive loop states exhibit high representa-
tional similarity, indicating representational stagnation (Figure 1b). We employ Centered Kernel
Alignment (CKA) (Kornblith et al., 2019) to measure this, as it provides a robust similarity metric
invariant to orthogonal transformations. High CKA similarity (Kornblith et al., 2019) between con-
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secutive loop states (i.e., h(t) ≈ h(t+1)) reveals that the model becomes trapped in a fixed-point
attractor, repeatedly applying a near-identical transformation instead of progressively refining its
representation.

Information overload. In principle, coordinating multiple functional roles across recursive steps
benefits from higher-dimensional representations; under naı̈ve recursion, however, the model is con-
strained to a single hidden state, making such separation difficult in practice. Concurrently, the single
hidden state vector is forced to be the sole carrier for all information, creating a severe bottleneck,
where the single state could be forced to manage multiple, often conflicting, roles simultaneously:

• Long-term Memory: Preserving key information from the initial input to prevent catastrophic
forgetting and maintaining stability across repeated iterations.

• Working Memory: Preparing intermediate features for the subsequent iteration and supporting
high-plasticity, transient computations within each step.

This single-state constraint induces a trade-off between stability and plasticity. Empirically, naı̈ve
recursive models tend to prioritize long-term stability to avoid forgetting, leading the representation
to converge toward a stable, shared “common ground” that favors persistence over flexible pro-
cessing. The information overload on the hidden state forces the model to find a low-dimensional
“common ground” representation that can safely survive multiple transformations, which directly
causes loop representational collapse. We quantify this by analyzing the normalized singular value
spectrum of the hidden state matrices, a proxy for their effective rank (see Figure 1c). The singular
value spectrum of the loop states decays much more rapidly than that of the initial state, indicating
a collapse into a lower-dimensional subspace and a significant loss of expressive capacity. Comple-
menting this, a subspace analysis across iterations shows that the variance of hidden states concen-
trates within a shared, low-dimensional subspace—consistent with a dominant long-term component
(Appendix E.8). Taken together, these observations are consistent with the hypothesis that, under
naı̈ve recursion, information overload biases the system toward a stable, low-rank manifold that pre-
serves global context at the expense of the high-dimensional capacity required for transient, stepwise
processing.

The diagnosis of undifferentiated computation and information overload directly motivates our so-
lution, MeSH, which is specifically designed to address these identified problems.

3 METHODOLOGY: ALLEVIATING INFORMATION OVERLOAD AND
ENABLING FUNCTIONAL SPECIALIZATION

The pathologies diagnosed in Section 2—undifferentiated computation and information over-
load—stem from the architectural limitations of naive recursion. In this section, we develop a
methodology aimed at alleviating these core issues. We first review common heuristic-based re-
currence schemes, which use fixed, additive connections to supplement the context at each step,
that can be seen as attempts to mitigate information overload but do little to address the prob-
lem of undifferentiated computation. We then introduce our proposed solution, MeSH, a general
framework designed to systemically alleviate both information overload and the lack of functional
specialization.

3.1 PRELIMINARIES: ARCHITECTURE OF RECURSIVE TRANSFORMERS

Overall Architectural Structure. Recursive transformers achieve computational depth by repeat-
edly applying a shared, weight-tied core block, fcore(·). The central idea is to refine a hidden state
h(t) ∈ RL×D (where L is the sequence length and D is the hidden dimension) over a sequence of
K iterations. Starting from an initial state h(0), the simplest form of recurrence updates the state as
h(t+1) = fcore(h

(t)). The core recurrence loop could be embedded within a broader network topol-
ogy that defines how the initial state h(0) is produced and how the final state h(K) is consumed. We
adopt the Prelude-Recurrent-Coda structure (Geiping et al., 2025) (also called Middle-Cycle (Bae
et al., 2025)), which augments the core recursive block with specialized, non-tied prelude and coda
networks. The framework first uses a prelude block, fpre, to process the initial token embeddings
(hemb) and prepare the first state for the loop: h(0) = fpre(hemb). The recursive loop then runs for K
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steps, after which its final output state, h(K), is passed to a coda block, fcoda, to produce the model’s
final representation: hfinal = fcoda(h

(K)).

Core Recurrence Variants. While the base recurrence, h(t+1) = fcore(h
(t)), represents a straight-

forward cascade of computations, it may struggle with information retention, as each iteration can
overwrite or forget crucial aspects of its input. To alleviate this representational burden on the core,
the state update can be augmented with historical information. We summarize several common vari-
ants, which represent different strategies for information propagation (illustrated in Figure 2). The
general update rule with such a context supplement is:

h(t+1) = fcore(h
(t)) + h(t)

sup (1)

where h
(t)
sup is a supplementary context. Common choices for this context include:

• Residual: Setting h
(t)
sup = h(t) introduces a standard skip connection between adjacent iterations,

which allows the core to learn a residual update, enabling the model to incrementally refine the
representation and aggregate information from all preceding steps (Yu et al., 2025; Zeng et al.,
2025; Bae et al., 2025).

• Anchor: Setting h
(t)
sup = h(0) explicitly tethers each iteration to the initial state that entered the

loop. The intuition is to prevent the iterative process from drifting too far from the initial seman-
tics by continuously reinforcing the starting context (Yang et al., 2023; Mohtashami et al., 2023;
Geiping et al., 2025).

• Anchor*: An alternative, h(t)
sup = hemb, anchors each iteration to the raw token embeddings.

The heuristic connectivity schemes can be seen as attempts to mitigate information overload. By
providing a direct, additive path for historical information (like the initial state h(0) or the previ-
ous state h(t)), they partially offload the burden of memory from the main hidden state pathway.
Note that these refer strictly to state-passing mechanisms to improve information flow, distinct from
parameter-addition methods like that specialize weights (Bae et al., 2024). This allows the core to
focus more on transformation rather than just preservation. However, it is important to note that
these are rigid, non-adaptive solutions. The choice among them is often a heuristic design deci-
sion that requires careful empirical validation. Crucially, they do little to address the problem of
undifferentiated computation, as the core block remains blind to its position in the loop.

3.2 MESH: MEMORY–AS-STATE-HIGHWAYS FOR RECURSIVE TRANSFORMERS

We move beyond fixed recurrence rules by introducing the Memory–as-State-Highways (MeSH), a
mechanism that replaces the simple state-passing scheme. As shown in Figure 2, MeSH externalizes
state management into an explicit state buffer controlled by learnable, step-wise read-write routers.
This design decouples transient computation within the recursive core from persistent memory, al-
lowing the model to dynamically manage iteration-specific information flow. The MeSH-augmented
loop consists of several lightweight components:

1. State Buffer and Initialization. MeSH maintains a state buffer M with B memory slots,
M = {m0,m1, . . . ,mB−1}, where each slot mb ∈ RL×D shares the same dimensions as the
hidden states. Before the loop begins, the buffer is initialized by placing the raw token embeddings,
hemb, into the first slot. This designated slot, m0, serves as a initial anchor to the original input. All
other slots are initialized to zero:

m
(0)
0 = hemb, and m

(0)
b>0 = 0 (2)

2. Core Computation and Dynamic Routers. The core block fcore remains the central compu-
tational unit. The interface to the buffer is managed by step-wise Write and Read Routers (R(t)

write

and R
(t)
read), which have unique parameters for each iteration t = 0, . . . ,K − 1. At each step, they

compute routing weights based on the current hidden state h(t) ∈ RL×D:

w
(t)
write = Softmax(Linear(t)write(h

(t))), w
(t)
read = Softmax(Linear(t)read(h

(t))) (3)
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(a) General Recursive Architecture
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Figure 2: Comparison of recurrence schemes. (a) The general architecture of a recursive trans-
former involves the general dataflow passing a state h(t) through a core computational block fcore to
produce the next state h(t+1). (b) Common heuristic variants employ a fixed, additive state update
to optimize the information flow, where the core output is supplemented by historical states hsup

(e.g., initial state h(0) for anchor or previous state h(t) for residual). (c) Our proposed MeSH
replaces this rigid addition with a dynamic memory mechanism, which explicitly manages historical
states via learnable write and read operations, allowing the model to flexibly retrieve and combine
information to form the next state h(t+1).

Each Linear(t) function is a one-layer projection that maps the D-dimensional hidden state of each
token to a vector of B logits, corresponding to the number of buffer slots. A softmax function is
then applied along the slot dimension for each token to normalize these logits, producing the final
weight matrices w(t)

write and w
(t)
read, both of shape RL×B .

3. MeSH-Augmented Recurrence and Integration. The fixed context supplementation is re-
placed by a memory update logic, as illustrated in Figure 2b. At each step t, the core first computes
its output h(t)

m from the current state h(t):

h(t)
m = fcore(h

(t)) (4)

The buffer is then updated via a distributed write operation for a soft insertion of the state, where the
output h(t)

m is scaled by the computed write weights before being added to the memory slot:

m
(t+1)
b = m

(t)
b + h(t)

m ⊙w
(t)
write,b, for b = 0, . . . , B − 1 (5)

where⊙ denotes element-wise multiplication with broadcasting. Subsequently, the state for the next
iteration, h(t+1), is synthesized via a read operation from the updated buffer:

h(t+1) =

B−1∑
b=0

m
(t+1)
b ⊙w

(t)
read,b

In the prelude-recurrent-coda setting, a dedicated transitional write-read cycle first processes the
prelude’s output fpre(hemb) to synthesize the initial state h(0). After the main loop, a final read
operation computes the output h(K) from the memory buffer before passed to the coda. The full
computational process is detailed in the pseudocode in Appendix C.
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3.3 HOW MESH ADDRESSES THE DIAGNOSED PATHOLOGIES

The architectural design of MeSH, centered on state externalization and dynamic routing, directly
counteracts the core pathologies diagnosed in Section 2.

Enabling Functional Specialization via Dynamic State Composition. MeSH explicitly breaks
the cycle of undifferentiated computation by replacing the rigid, additive update rule of heuris-
tic methods with a dynamic read-write cycle controlled by step-wise routers. Since each router
(R(t)

write, R
(t)
read) has its own unique set of learnable parameters for each iteration t, the model is no

longer forced to apply a single, universal transformation. Instead, at each step, it learns to dy-
namically synthesize the next state by retrieving a context-specific mixture of information from the
memory buffer, which contains all relevant historical states. This flexibility allows MeSH to learn
and dynamically switch between complex recurrence behaviors. The ability to adapt the recurrence
rule on the fly is the implicit mechanism to enables functional specialization.

Alleviating Information Overload via State Externalization. MeSH directly alleviates infor-
mation overload by decoupling persistent memory from transient computation. The external state
buffer M serves as a dedicated, multi-slot highway for long-lived information. This design relieves
the primary hidden state h(t) from the burden of simultaneously storing historical context and serv-
ing as the workspace for the core block. The hidden state can now utilize its full dimensionality for
complex, transient computations, knowing that essential long-term information is safely preserved
in the buffer and can be retrieved on demand by the read router. This allows the model to maintain
high-dimensional, expressive representations throughout the entire iterative process.

In essence, MeSH replaces the single, overloaded information channel of standard recurrence with
a multi-slot memory buffer and dynamic, state-aware routers. The principled design provides a
systemic and highly expressive solution to the core problems in recursive transformers, subsuming
prior heuristic approaches into a more general framework (see Appendix D for more discussion).

4 EXPERIMENTS

We pretrain our models from scratch, closely following the methodology of the Pythia suite (Bi-
derman et al., 2023). We employ the same GPT-NeoX-based architecture and train on a dedu-
plicated subset of the Pile dataset (Gao et al., 2020), curated by EleutherAI. For evaluation, we
assess two primary aspects of model performance. We report perplexity scores on the validation
sets of the Pile (Gao et al., 2020), Wikitext, and the Lambada (both OpenAI and Standard versions)
datasets (Paperno et al., 2016) to measure language modeling capabilities. We also evaluate down-
stream performance on a suite of 9 few-shot benchmarks using the LM Evaluation Harness frame-
work (Gao et al., 2024). Detailed training configurations and evaluation procedures are described in
Appendix B.

4.1 A COMPARATIVE DIAGNOSTIC ANALYSIS OF RECURRENCE SCHEMES

In Section 2, we identified three critical symptoms arising from naive recursive transformers: a
skewed computational pattern, representational stagnation, and loop representational collapse. We
conduct a detailed analysis of the internal dynamics of four model variants: a base recursive model,
two common heuristic variants (+residual and +anchor), and our proposed +mesh architec-
ture. The analysis is performed on a Pythia-410M model with configuration of 3+6R3+3, averaging
results over 500 samples from the Pile dataset.

MeSH mitigates the skewed computational pattern. Figure 3 visualizes the computational effort
of each block, confirming the pathology of naive recursion. The base model exhibits an extreme
computational imbalance: the first core loop (1stfcore) accounts for the vast majority of the work,
while subsequent loops contribute negligibly, demonstrating a classic case of diminishing returns.
While the +residual and +anchor heuristics offer partial relief, the computational effort still
decays sharply. In stark contrast, the +meshmodel achieves a remarkably balanced computational
distribution, with all three core loops contributing significantly. This demonstrates that MeSH’s
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Figure 3: Skewed Computational Pattern. Plots the relative magnitude of the state update, calcu-
lated for each computational block (f ) as 2||f(h)− h||F /(||f(h)||F + ||h||F ), where || · ||F is the
Frobenius norm, which serves as a proxy for the computational effort of each block. Bars show the
mean and standard deviation across 500 samples.

dynamic read-write mechanism endows the model with a sense of iterative progress, allowing it to
assign distinct and meaningful computational roles to each step.
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Figure 4: Representational Stagnation. Displays the pairwise Centered Kernel Alignment (CKA)
similarity with an RBF kernel between hidden state matrices (h ∈ Rseq×dim) at different stages of
the model. The matrix shows the mean similarity across 500 samples. High similarity (values near
1.0) between consecutive loop states indicates that representations have stopped evolving.

MeSH breaks representational stagnation. Figure 4 displays the CKA similarity (Kornblith
et al., 2019) between hidden states. High similarity between consecutive loop states (h(1), h(2),
h(3)) signals that the model is trapped in a fixed-point attractor. The base model’s loop states ex-
hibit very high CKA similarity, confirming severe representational stagnation. The +mesh model
reduces the similarity between consecutive loop states, proving it has broken free from stagnation
while its memory buffer allows it to maintain a strong connection to the initial context.
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Figure 5: Loop Representational Collapse. Shows the top 50 normalized singular values (σi/σ0)
for key hidden state matrices on a logarithmic Y-axis. The decay rate of the spectrum indicates the
effective rank or intrinsic dimensionality of each state matrix. A faster decay signifies a collapse
into a lower-dimensional representation. Lines and shaded areas represent the mean and standard
deviation across 500 samples.

MeSH prevents loop representational collapse. Figure 5 plots the singular value spectrum for
hidden states. In the basemodel, the loop states (h(1), h(2), h(3)) show a much faster spectral decay
than the input state (h(0)), confirming loop representational collapse into a low-dimensional sub-
space as a result of a forced “representational compromise”. The heuristic fixes offer only marginal
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Table 1: Comparison of MeSH, Recursive and Vanilla Transformers. Performance is
measured by perplexity (PPL↓) on four datasets and average accuracy (Avg. acc↑) on a suite
of 10 downstream tasks. The percentage reduction in non-embedding parameters for recur-
sive models is shown in parentheses. The Layers for recursive models follow the format
‘{Lprelude}+{Lcore}R{Nloop}+{Lcoda}’, indicating the number of layers in the prelude, core, coda.
∆acc shows the absolute accuracy change relative to the Vanilla non-recursive baseline. LD-O
and LD-S refer to Lambada OpenAI and Standard. The best results within each recursive block are
bolded, and second best results are underlined.

Structure Perplexity↓ Task Avg. acc↑ / ∆acc (%)
Scheme Layers Variant Pile Wiki LD-O LD-S 0-shot 5-shot

16
0M

Vanilla 12 — 11.31 30.32 42.86 129.89 39.88 40.54

Recursive
(-33.3%) 2+4R2+2

base 11.79 32.32 53.06 217.87 38.90 / -0.98 39.29 / -1.25
+anchor 11.63 31.69 50.38 195.11 38.81 / -1.07 40.15 / -0.39
+mesh 11.37 30.43 46.60 178.77 39.41 / -0.47 40.60 / +0.06

Py
th

ia
-4

10
M

Vanilla 24 — 9.07 21.79 19.48 65.86 43.87 45.31

Recursive
(-33.3%) 4+8R2+4

base 9.31 22.74 22.57 53.76 43.26 / -0.61 45.03 / -0.28
+anchor 9.19 22.12 20.37 52.55 43.70 / -0.17 45.68 / +0.37
+mesh 9.09 21.84 19.63 42.51 44.12 / +0.25 45.56 / +0.25

Recursive
(-50.0%) 3+6R3+3

base 9.65 23.88 26.76 81.75 41.94 / -1.93 44.01 / -1.30
+residual 9.69 24.05 26.31 76.76 42.16 / -1.71 44.24 / -1.07
+anchor 9.49 23.31 24.49 72.30 42.85 / -1.02 44.90 / -0.41
+mesh 9.35 22.80 20.72 52.07 43.53 / -0.34 46.04 / +0.73

Py
th

ia
-1

B

Vanilla 16 — 7.96 17.66 13.53 33.65 46.95 49.07

Recursive
(-31.3%) 3+5R2+3

base 8.20 18.64 14.44 36.39 45.72 / -1.23 47.75 / -1.32
+residual 8.19 18.46 14.18 35.54 46.19 / -0.76 47.85 / -1.22
+anchor* 8.07 18.06 12.90 30.56 46.85 / -0.10 49.18 / +0.11
+anchor 8.10 18.15 13.32 32.34 46.73 / -0.22 48.83 / -0.24
+mesh 7.90 17.54 12.19 26.71 47.53 / +0.58 49.51 / +0.44

Py
th

ia
-1

.4
B

Vanilla 24 — 7.44 15.97 10.51 22.81 49.50 51.93

Recursive
(-33.3%) 4+8R2+4

base 7.63 16.64 11.38 23.69 48.89 / -0.61 50.99 / -0.94
+residual 7.58 16.44 10.91 20.44 49.50 / +0.00 51.18 / -0.75
+anchor* 7.51 16.27 10.81 19.14 49.29 / -0.21 51.83 / -0.10
+anchor 7.51 16.25 10.71 19.37 49.39 / -0.11 51.27 / -0.66
+mesh 7.39 15.84 9.72 19.39 50.56 / +1.06 52.79 / +0.86

gains. The +mesh model, however, demonstrates the ability to preserve representational rich-
ness, allowing the hidden state to maintain a high-dimensional, expressive structure throughout the
iterative process.

4.2 MAIN RESULTS

We conducted experiments on Pythia models ranging from 160M to 1.4B parameters, creating recur-
sive variants with approximately 33% fewer non-embedding parameters to compare against standard
Vanilla baselines (non-recursive models with unique parameters) and simpler recursive schemes
(Table 1). While naive recursion (base) degrades performance and fixed schemes like +anchor
offer only partial recovery, our MeSH-enhanced models (+mesh) consistently outperform all other
variants. The +mesh models can even surpass their larger, more parameter-heavy Vanilla coun-
terparts. For instance, the Pythia-1.4B +mesh model, despite its smaller footprint, improves 0-shot
and 5-shot average accuracy by +1.06% and +0.86% respectively over the Vanilla version, while
also achieving state-of-the-art perplexity scores across all datasets. Furthermore, the performance
advantage scales favorably with model size, confirming that MeSH’s dynamic state management is
not only effective but also a highly efficient and scalable architectural principle.
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Figure 6: Training Dynamics of Recursive Variants. Comparison of training loss and downstream
0-shot accuracy for the 1.4B-Pythia-based recursive models. (Left) Training loss curve over 120k
steps on a logarithmic x-axis. (Right) Downstream average 0-shot accuracy evaluated at checkpoints
along a linear x-axis.
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Figure 7: Scaling Analysis of MeSH vs. Baselines. Performance of Vanilla (non-recursive),
naive Recursive, and +mesh models plotted against non-embedding parameter counts. (Left)
Average downstream accuracy (0-shot and 5-shot). (Right) Evaluation loss.

4.3 FURTHER ANALYSIS AND ABLATION STUDIES

Analysis of Training Dynamics. To understand not just the final performance but also the learning
process itself, we visualize the training dynamics of the 1.4B-parameter recursive variants in Fig-
ure 6. By juxtaposing pre-training loss with downstream accuracy evaluated at various checkpoints,
we can assess both the learning efficiency and the rate at which models acquire useful capabilities.
The training loss curves (Figure 6, left panel) reveal that the +mesh model consistently achieves
a lower loss throughout pre-training. This indicates superior learning efficiency, as MeSH is able
to fit the training data more effectively at every stage compared to the base, +residual, and
+anchor variants. The training advantage translates directly into stronger downstream perfor-
mance. The right panel of Figure 6 shows that the +mesh model not only starts from a stronger
initial checkpoint but also exhibits a steeper and more consistent improvement in 0-shot accuracy.
The superiority provides compelling evidence that MeSH’s architectural modifications fundamen-
tally enhance the model’s ability to acquire and retain useful knowledge throughout the entire pre-
training process, rather than being just a final-step improvement.

Scaling Properties and Parameter Efficiency. We provide scaling results in Figure 7, revealing the
parameter efficiency of the MeSH architecture. While naive recursive models (blue lines) con-
sistently underperform their standard vanilla counterparts (green lines) despite saving about 33%
of parameters, our +mesh models (purple lines) not only decrease the performance degradation but
could even outperform the Vanilla baselines at large scales. For example, our 805M-parameter
+mesh model achieves 50.6% (0-shot) and 52.8% (5-shot) accuracy, surpassing the 1.2B-non-emb-
parameter Vanilla model’s 49.5% (0-shot) and 51.9% (5-shot), which translates to a 1.46x im-
provement in parameter efficiency, allowing a MeSH-enhanced model to achieve the same level
of evaluation loss as a Vanilla model with almost a third fewer parameters.

Impact of Layer Distribution and Parameter Scaling. To further dissect the architectural bene-
fits of MeSH, we conduct a control study on the distribution of layers within the prelude-loop-coda
framework. Using the Pythia-410M architecture as a testbed, we train several recursive models with
varying configurations while keeping the total compute equivalent to the 24-layer non-recursive
Vanilla model. We plot the validation perplexity against the percentage of non-embedding pa-
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a function of non-embedding parameters, shown as a percentage relative to the Vanilla baseline.
Each point represents a different distribution of layers (prelude, core, coda). The total computational
depth for all models is aligned with the 24-layer non-recursive Vanilla.

rameters relative to the Vanilla baseline, with the results shown in Figure 8. The +mesh archi-
tecture (purple line) consistently achieves lower perplexity than the baseline recursive model
(blue line) across all parameter allocations, demonstrating its robust performance advantage. MeSH
also shows remarkable parameter efficiency against the non-recursive baseline. As a trend, the
performance of +mesh (purple line) approaches that of the full 24-layer Vanilla model (green
dashed line) while using approximately 30% fewer non-embedding parameters. The study shows
that MeSH is not just an additive improvement but a powerful architectural principle that enhances
the parameter efficiency and scaling properties of recursive transformers.

5 CONCLUSION

In this work, we diagnose the underperformance of recursive transformers, tracing it, through the
lens of quantified observables, to the systemic pathologies of undifferentiated computation and infor-
mation overload. We further propose MeSH as a principled architectural solution that externalizes
state management into an explicit memory buffer controlled by dynamic, step-wise routers. Our
experiments validate that MeSH successfully addresses the diagnosed pathologies while also deliv-
ering substantial performance gains on recursive backbones. We conclude that this work establishes
explicit, routed state management as a scalable and effective principle for building stronger recursive
models, offering a promising architectural path forward as the field seeks more sustainable scaling
paradigms.
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A RELATED WORK

Recursive Transformers and Loop-based LLMs. The idea of iterating a Transformer layer in a
loop originates from the Universal Transformer (UT) (Dehghani et al., 2018), which showed that re-
peatedly applying a single, weight-shared layer can achieve the expressive power of a much deeper
Transformer while allowing variable computation per input. UT also introduced an Adaptive Com-
putation Time mechanism (Graves, 2016) that dynamically adjusts how many iterations to run for
each token, together with a trainable positional signal that distinguishes time steps. Since UT, a
series of works have extended the concept of looped Transformers (Tan et al., 2023; Giannou et al.,
2023; Li & Li, 2021; Takase & Kiyono, 2021; Elbayad et al., 2019; Yang et al., 2023; Zhang et al.,
2024; Fan et al., 2024; Hay & Wolf, 2024; Chen et al., 2025b; Nguyen & Lin, 2025; Li et al., 2025a;
Aleksandrov et al., 2025; Bae et al., 2025). Recent studies (Saunshi et al., 2025; Zhu et al., 2025b;
Geiping et al., 2025) demonstrated—both empirically and theoretically—that increasing depth by
looping a small Transformer can match or surpass a far deeper fixed-depth model on challenging
reasoning tasks. Later, Zeng et al. (2025) reinforced the view that iterative “pondering” could be
critical for test-time scaling and linked the behavior of looped Transformers to an implicit chain-
of-thought process. Collectively, these efforts underscore the promise of recursive transformers for
adaptive depth and latent reasoning.

Parameter Sharing and Iteration Differentiation. A central challenge for recursive transformers
is to preserve expressiveness even though all iterations reuse the same parameters. An empirical
study of parameter sharing in Transformers showed that naı̈vely sharing every layer—as in the orig-
inal UT (Dehghani et al., 2018) —often degrades performance on language tasks, implying that
additional mechanisms are required to alleviate representational bottlenecks (Ng & Wang, 2024).
Several strategies have been explored: Learned loop-index embeddings. By injecting a small train-
able vector or matrix that encodes the iteration number, models can behave slightly differently at
each step while still sharing the main weights (Dehghani et al., 2018; Mohtashami et al., 2023).
However, element-wise addition of such embeddings practically produces limited gains (Geiping
et al., 2025; Zhu et al., 2025a). LoRA per iteration. In a similar spirit, recent works (Heo et al.,
2025; Bae et al., 2024) attach a separate low-rank adaptation (LoRA) module to each repetition of
a pre-trained model, granting every loop its own lightweight set of parameters and mitigating the
drawbacks of strict sharing. Mixture-of-Experts in a loop. MoEUT (Csordás et al., 2024) combines
weight sharing with a Mixture-of-Experts (MoE) at every layer: the base layer is reused across it-
erations, while expert gating adds conditional capacity. MoEUT slightly outperforms a non-loop
Transformer of equal compute, underscoring the value of learnable gating and expert routes within
a loop architecture. Our work proposes a different paradigm. Instead of adding unique parame-
ters to the loop core to differentiate iterations, we focus on dynamically managing the information
flow itself. We propose MeSH to externalize state management into a memory buffer and employ
lightweight, step-wise routers to control what is read from and written to it. This externalizes the
functional specialization into a routing problem, keeping the core block purely weight-shared and
non-invasive.

Skip Connections and Dense Connectivity. In deep networks, skip or shortcut connections have
long been essential for training very deep architectures effectively (He et al., 2016). Residual Net-
works (ResNets) and Highway Networks showed that adding identity skip paths improves gradient
flow and allows each layer to learn a simpler “update function” on top of an identity mapping He
et al. (2016); Srivastava et al. (2015). DenseNet (Huang et al., 2017) further generalized this idea
by connecting every layer to all previous layers, so that each layer receives the feature maps of all
preceding layers as input; this dense feed-forward architecture promotes feature reuse, mitigates
vanishing gradients, and even reduces parameter count. More recently, Hyper-connections (Zhu
et al., 2024) widen the hidden state into multiple parallel streams and use learnable coefficients
to mix these streams, effectively replacing the standard residual path with a more complex, multi-
lane data highway. MUDDformer (Xiao et al., 2025) introduced dense connections into standard
decoder-only Transformers, generalizing residuals by adding multiple learnable skip paths between
layers; dynamic dense skips allowed a 2.8 B model to match the perplexity of a 6.9 B model with
only minimal overhead (Xiao et al., 2025). While conceptually related to dense connectivity, our
work focuses on block-to-block (loop-to-loop) connectivity in the recursive setting rather than layer-
to-layer wiring. We diverge from direct connections by introducing an external memory buffer and
lightweight, step-wise routers. The system facilitates a flexible read-write cycle for managing infor-
mation flow across iterations, rather than simply gating feed-forward paths. The mechanism is both
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principled and more native to the recursive design, as it is explicitly engineered to enable functional
specialization between iterations.

Latent Reasoning and Chain-of-Thought. Loop-based LLMs are closely related to the idea of
latent (hidden) chain-of-thought (Hao et al., 2024; Shen et al., 2025). Instead of explicitly outputting
intermediate reasoning steps in natural language, a loop-based model processes those steps internally
in vector form (Zhu et al., 2025a; Xu & Sato, 2025). Recent research has examined the differences
between prompting a model with an explicit chain-of-thought versus giving it the capacity to “think”
silently via latent reasoning (Chen et al., 2025a; Fedorenko et al., 2024; Hao et al., 2024; Pfau et al.,
2024). In general, loop offers a promising way to achieve the benefits of multi-step reasoning
without incurring the cost of longer outputs or the need for supervised intermediate steps (Li et al.,
2025b). Our work contributes to this area by improving the recursive architectural foundation on
which latent reasoning unfolds. By enhancing how information is preserved and combined across
iterative steps, we aim to make iterative execution more effective. While approaches like CoTFormer
inject special tokens to mimic multi-step reasoning inside the model (Mohtashami et al., 2023),
most of recursive transformers focus on intrinsic connectivity of loop iterations (Zeng et al., 2025;
Geiping et al., 2025; Saunshi et al., 2025). These two methodologies can be seen as complementary,
as we can imagine a loop-based LLM that also uses latent CoT training signals. Indeed, analysis
of hidden state evolution under different connection schemes can be viewed as an interpretability
study of latent reasoning – shedding light on whether the model is gradually refining a solution or
oscillating, and how much it relies on initial information versus newly computed results at each step.

Memory-Augmented Transformers. Our work is situated within the broad field of memory-
augmented Transformers (Omidi et al., 2025), including diverse approaches to enhance neural net-
works with memory modules. A historic line of memory-augmented neural networks use memory
for long-term knowledge storage and algorithmic reasoning, evolving from the cell state in LSTMs
(Hochreiter & Schmidhuber, 1997) to architectures with explicit external memory matrices, such as
the Neural Turing Machine (Graves et al., 2014) and its sparse-access variants (Rae et al., 2016). In
the Transformer era, a line of work uses memory to address the fixed context-length limitation of
Transformers. This began with Transformer-XL (Dai et al., 2019) caching hidden states from previ-
ous segments, was improved by Compressive Transformer (Rae et al., 2020) which compresses older
states, and was further developed by models like RMT (Bulatov et al., 2022) and Memformer (Wu
et al., 2020) that introduce dedicated memory tokens or slots. More recent models, such as LONG-
MEM (Wang et al., 2023) and the Memorizing Transformer (Wu et al., 2022), employ retrieval-
based augmentation, where key-value pairs from past segments are stored in an external bank and
a retrieval mechanism is used to pull relevant information into the current context. The shared ob-
jective of these varied approaches is to enable information flow across long temporal sequences or
distinct, sequential input segments for knowledge storage or context extension. In contrast, our pro-
posed MeSH mechanism operates on a single, fixed-length input, where the memory buffer manages
the intermediate hidden states generated during successive computational iterations over that same
input. The function of MeSH is to structure the information flow within a token-wise recursive
computation, a target distinct from long-term knowledge storage or long-context extension.

B EXPERIMENTAL DETAILS

Pre-training. All models are pretrained from scratch, closely following the methodology of the
Pythia suite (Biderman et al., 2023). Our training is conducted on a 250B-token deduplicated subset
of the Pile dataset (Gao et al., 2020), using the original GPT-NeoX tokenizer with a vocabulary size
of 50,257. All models are trained for one epoch.

Model Architecture. Our implementations are based on the GPT-NeoX architecture provided by
the Pythia suite (Biderman et al., 2023). For recursive models, we adopt the prelude-loop-coda
structure. We denote the layer distribution using the notation Lpre+LcoreRNloop+Lcoda. For ex-
ample, a 4+8R2+4 configuration corresponds to a model with a 4-layer prelude (Lpre), an 8-layer
shared core (Lcore) that is looped twice (Nloop), and a 4-layer coda (Lcoda). Our +mesh variant is
implemented by inserting a state buffer and step-wise routers at the boundaries of these conceptual
blocks. Each router consists of a single linear layer followed by a softmax function to generate dy-
namic routing weights. The buffer size B is set following the empirical B = Nloop +3 derived from
our ablation study (see Appendix E.2). Following standard Transformer practice (Vaswani et al.,
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2017), we scale the input embeddings by a factor of
√
dmodel before they enter the first layer. To

ensure training stability in these deep computational graphs, we employ a depth-aware weight ini-
tialization, scaling the standard deviation of output projection weights by 1/

√
2×Ncompute, where

Ncompute is the total number of layers in the unrolled computation graph.

Training Hyperparameters. We use the AdamW optimizer with β1 = 0.9, β2 = 0.95, and a
weight decay of 0.01. The learning rate follows a cosine decay schedule with a 1% warmup, decay-
ing to 10% of the peak value. The peak learning rate is scaled according to model size, ranging from
6.0 × 10−4 for the 160M model to 2.0 × 10−4 for the 1.4B model. All models are trained with a
consistent global batch size of 512 and a sequence length of 4096 tokens. To improve training effi-
ciency, we utilize BF16 mixed-precision and FlashAttention-2 (Dao, 2023). Our distributed training
setup is managed by DeepSpeed with ZeRO Stage 0.

Downstream Task Evaluation. To assess model performance, we evaluated few-shot accuracy
on 9 benchmarks using the Language Model Evaluation Harness framework (Gao et al., 2024). The
evaluation suite includes: Lambada (Paperno et al., 2016) in both its OpenAI (LD-O) and Standard
(LD-S) versions, PIQA (PQ) (Bisk et al., 2020), HellaSwag (HS) (Zellers et al., 2019), WinoGrande
(WG) (Sakaguchi et al., 2021), ARC-Easy (ARC-E) and ARC-Challenge (ARC-C) (Clark et al.,
2018), SciQ (Welbl et al., 2017), and continuation-MMLU (cMMLU) (Hendrycks et al., 2020). We
report accuracy normalized by the byte length of the target string for PIQA, HellaSwag, ARC-E,
ARC-C, and SciQ and standard accuracy for Lambada, WinoGrande, and cMMLU. All evaluations
are conducted in both 0-shot and 5-shot settings. All measurements were performed on a single
NVIDIA H20 GPU. Detailed results are shown in Table 2.

C PSEUDOCODE

We provide detailed pseudocode for the recursive architectures discussed in the main paper. Algo-
rithm 1 outlines the implementation of common recursive variants, which rely on fixed, heuristic-
based state-passing schemes. In contrast, Algorithm 2 details our proposed MeSH-augmented re-
currence, which replaces the rigid logic with a dynamic, memory-based system.

Algorithm 1 Recursive Transformers with Common Variants

1: Input: Token embeddings hemb, Prelude fpre, Core fcore, Coda fcoda
2: Hyperparameters: Loop iterations K, Variant type ∈ {base, residual, anchor}

3: # 1. Prelude
4: h(0) ← fpre(hemb) {Compute initial state for the loop}

5: # 2. Main Recursive Loop
6: for t = 0 to K − 1 do do
7: # — Select supplementary state based on variant —
8: h

(t)
sup ← 0

9: if Variant type is residual then
10: h

(t)
sup ← h(t)

11: else if Variant type is anchor then
12: h

(t)
sup ← h(0)

13: else if Variant type is anchor* then
14: h

(t)
sup ← hemb

15: end if
16: h(t+1) ← fcore(h

(t)) + h
(t)
sup {Apply core and add supplement}

17: end for

18: # 3. Final Coda Processing
19: hfinal ← fcoda(h

(K))
20: return hfinal
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Table 2: Detailed downstream evaluation results (stacked). For each model variant, performance is
shown for both 0-shot and 5-shot settings. We report accuracy values for all tasks. The average ac-
curacy (“Avg.”) is computed over the 9 preceding tasks. Dataset abbreviations correspond to: LD-O
(Lambada OpenAI), LD-S (Lambada Standard), HS (HellaSwag), PQ (PIQA), WG (WinoGrande),
ARC-E (ARC-easy), ARC-C (ARC-Challenge), SciQ (SciQ), and cMMLU (MMLU-continuation).

Structure Downstream Task Performance
Scheme Layers Variant LD-O LD-S HS PQ WG ARC-E ARC-C SciQ cMMLU Avg.

Py
th

ia
-1

60
M

Vanilla 12 — 0-shot 32.31 23.64 31.14 62.46 50.59 39.56 23.21 70.3 25.69 39.88
5-shot 27.11 24.22 31.38 62.95 50.67 42.21 22.53 78.2 25.55 40.54

Recursive
(-33.3%) 2+4R2+2

base 0-shot 29.30 20.18 30.85 60.72 49.57 40.03 23.21 70.9 25.30 38.90
5-shot 24.32 19.43 30.76 61.43 51.14 41.75 22.53 76.5 25.75 39.29

+anchor 0-shot 30.04 21.11 30.93 60.39 51.14 38.13 23.81 68.3 25.40 38.81
5-shot 26.16 21.23 31.44 61.15 50.75 41.71 23.04 80.2 25.70 40.15

+mesh 0-shot 31.32 21.48 31.02 60.66 53.43 39.06 22.27 69.7 25.73 39.41
5-shot 26.43 21.00 31.48 60.72 51.93 42.93 23.04 81.9 26.00 40.60

Py
th

ia
-4

10
M

Vanilla 24 — 0-shot 41.74 29.65 37.65 64.80 51.93 43.60 25.68 73.1 26.68 43.87
5-shot 35.59 28.92 38.01 67.19 50.36 50.08 25.43 85.2 27.03 45.31

Recursive
(-33.3%) 4+8R2+4

base 0-shot 39.47 30.43 36.71 63.71 53.59 42.59 24.57 71.8 26.47 43.26
5-shot 35.22 28.26 36.71 64.91 52.88 48.86 25.77 85.7 26.95 45.03

+anchor 0-shot 41.45 31.24 36.82 64.09 52.80 43.14 23.72 73.6 26.39 43.70
5-shot 36.56 30.06 37.13 65.62 51.30 49.24 25.43 88.8 26.94 45.68

+mesh 0-shot 41.92 32.33 37.27 64.20 53.83 42.30 25.09 73.5 26.66 44.12
5-shot 36.25 31.71 38.00 65.40 51.22 49.37 24.49 87.0 26.93 45.56

Recursive
(-50.0%) 3+6R3+3

base 0-shot 37.32 25.93 35.43 63.44 50.67 41.79 23.38 72.8 26.68 41.94
5-shot 30.97 25.64 35.95 64.96 51.93 47.73 24.40 87.7 26.77 44.01

+residual 0-shot 37.80 27.98 35.60 64.64 52.01 42.30 23.98 68.7 26.42 42.16
5-shot 33.13 28.45 35.65 65.29 50.20 47.39 25.00 86.3 26.78 44.24

+anchor 0-shot 38.33 29.11 36.01 65.45 51.46 43.18 22.78 72.8 26.56 42.85
5-shot 33.92 29.44 36.61 65.56 53.04 47.22 23.89 87.8 26.65 44.90

+mesh 0-shot 41.88 31.87 36.86 65.51 52.17 42.26 24.15 70.9 26.15 43.53
5-shot 37.84 31.85 37.08 65.34 53.20 48.82 25.60 87.8 26.79 46.04

Py
th

ia
-1

B

Vanilla 16 — 0-shot 46.73 34.02 43.61 66.87 52.01 48.53 26.28 76.6 27.86 46.95
5-shot 40.60 34.41 43.98 68.44 52.33 54.46 28.75 89.9 28.71 49.07

Recursive
(-31.3%) 3+5R2+3

base 0-shot 45.76 33.84 41.57 66.87 52.25 45.83 25.77 72.0 27.55 45.72
5-shot 38.31 31.21 42.54 68.12 52.09 53.41 26.62 89.1 28.33 47.75

+residual 0-shot 45.70 34.06 41.85 66.49 52.49 47.10 26.02 74.4 27.61 46.19
5-shot 38.15 32.78 42.50 67.52 53.43 52.78 26.11 89.0 28.35 47.85

+anchor* 0-shot 47.62 35.15 43.06 67.25 53.35 46.51 25.68 75.1 27.97 46.85
5-shot 42.46 34.58 43.24 68.55 52.01 55.22 27.82 90.3 28.42 49.18

+anchor 0-shot 46.17 34.68 42.62 67.68 53.51 46.80 25.26 75.9 27.99 46.73
5-shot 39.92 32.89 43.26 69.15 53.12 55.05 27.22 90.0 28.83 48.83

+mesh 0-shot 48.40 36.95 44.36 67.03 52.01 46.93 26.54 77.6 27.91 47.53
5-shot 42.62 34.87 44.68 67.95 52.96 55.14 27.22 91.4 28.71 49.51

Py
th

ia
-1

.4
B

Vanilla 24 — 0-shot 51.08 39.82 47.74 68.83 55.41 50.04 26.11 77.3 29.18 49.50
5-shot 46.17 39.69 48.01 69.64 54.22 59.22 29.27 91.2 29.95 51.93

Recursive
(-33.3%) 4+8R2+4

base 0-shot 49.56 39.32 46.50 69.37 53.67 49.79 27.56 75.9 28.34 48.89
5-shot 44.95 38.04 46.73 69.59 54.30 56.82 28.58 90.4 29.52 50.99

+residual 0-shot 51.08 41.10 47.10 69.04 53.12 49.03 26.79 79.6 28.66 49.50
5-shot 47.20 38.81 47.06 69.26 54.30 56.23 27.65 90.9 29.18 51.18

+anchor* 0-shot 51.35 41.28 47.28 67.90 55.09 49.16 27.47 75.3 28.76 49.29
5-shot 45.88 40.17 47.72 69.31 53.75 58.25 28.75 93.0 29.61 51.83

+anchor 0-shot 50.75 40.93 47.65 69.75 53.75 48.40 26.62 78.0 28.62 49.39
5-shot 45.99 40.95 47.85 69.37 52.96 56.82 26.79 91.0 29.65 51.27

+mesh 0-shot 53.46 41.84 48.58 69.53 54.85 49.75 27.82 80.3 28.89 50.56
5-shot 49.14 42.69 49.21 69.70 54.78 57.79 29.35 92.7 29.76 52.79

D DISCUSSION: EXPRESSIVE POWER OF MESH AS A GENERAL
RECURRENCE

The baseline recurrences described in Section 3.1 employ a fixed, non-adaptive state update rule: the
output of the core block, h(t)

m = fcore(h
(t)), is always supplemented by a predetermined state (e.g.,

zero, the previous state h(t), or the initial state h(0)). We propose that MeSH offers a more general
and powerful alternative by replacing this rigid addition with a learnable, dynamic state composition
mechanism.
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Algorithm 2 MeSH-Augmented Recurrence within a Prelude-Recurrent-Coda Structure

1: Input: Token embeddings hemb, Prelude fpre, Core fcore, Coda fcoda

2: Parameters: MeSH buffer M, Routers {R(t)
write, R

(t)
read}

K−1
t=−1

3: Hyperparameters: Loop iterations K, Buffer slots B

4: # 1. Initialize MeSH Buffer
5: M(0) ← zeros {Initialize buffer with zeros}
6: m

(0)
0 ← hemb {Place embeddings in the first slot}

7: # 2. Prelude
8: h

(−1)
m ← fpre(hemb) {Compute prelude output}

9: w
(−1)
write ,w

(−1)
read ← Routers(t=−1)(h

(−1)
m ) {Use transitional routers}

10: for b = 0 to B − 1 do do
11: m

(0)
b ←m

(0)
b + h

(−1)
m ⊙w

(−1)
write,b {Write prelude output to buffer}

12: end for
13: h(0) ←

∑B−1
b=0 m

(0)
b ⊙w

(−1)
read,b {Synthesize first loop state}

14: # 3. Main Recursive Loop
15: for t = 0 to K − 1 do do
16: h

(t)
m ← fcore(h

(t)) {Core computation}
17: w

(t)
write,w

(t)
read ← Routers(t)(h(t)) {Compute step-wise weights}

18: M(t+1) ←M(t)

19: for b = 0 to B − 1 do do
20: m

(t+1)
b ←m

(t+1)
b + h

(t)
m ⊙w

(t)
write,b {Update buffer with a distributed write}

21: end for
22: h(t+1) ←

∑B−1
b=0 m

(t+1)
b ⊙w

(t)
read,b {Synthesize next state}

23: end for

24: # 4. Final Coda Processing
25: hfinal ← fcoda(h

(K)) {Use the state after the last read}
26: return hfinal

Proposition 2.1. The MeSH recurrence, defined by the compute-write-read cycle, generalizes the
concept of additive state updates (as in residual and anchor variants) by learning to dynamically
retrieve and combine historical states from memory to form the state for the next iteration.

Demonstration. To reveal the underlying mechanics, we can unroll the MeSH update equations.
The state for the next iteration, h(t+1), is formed by reading from the just-updated memory M(t+1):

h(t+1) =

B−1∑
b=0

m
(t+1)
b ⊙w

(t)
read,b

=

B−1∑
b=0

(
m

(t)
b + h(t)

m ⊙w
(t)
write,b

)
⊙w

(t)
read,b

=

B−1∑
b=0

m
(t)
b ⊙w

(t)
read,b︸ ︷︷ ︸

Retrieved Historical Summary

+

(
B−1∑
b=0

w
(t)
write,b ⊙w

(t)
read,b

)
︸ ︷︷ ︸

Gating Factor

⊙h(t)
m (6)

Let us analyze the two resulting components. The second term is the core’s output, h(t)
m , scaled by

a learned gating factor. The first term is a dynamic retrieval of information from the memory state
m(t) before the current write operation. Note that this term is distinct from the previous state h(t),
which was formed using the read weights from the prior step, w(t−1)

read .
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The formulation reveals that the next state h(t+1) is a generalized residual update composed of:

1. A retrieved historical summary that dynamically combines states presented in the buffer. The
read router learns what historical information is most relevant at this step.

2. A gated output of the current core block, h(t)
m , scaled by a learned gating factor.

The dynamic process generalizes the fixed baseline recurrences, as we can conceptually unroll the
retrieved historical summary even further as a weighted combination of the initial memory state
and all previous core outputs {h(0)

m , . . . ,h
(t−1)
m } that have been written to the buffer. Therefore,

the next state h(t+1) can be viewed as a comprehensive, dynamic aggregation of all computations
performed so far:

h(t+1) = αt ⊙ h(t)
m +

t−1∑
i=−1

αi ⊙ h(i)
m + αemb ⊙ hemb (7)

where all coefficients α are implicit coupled with write and read weights during previous iterations.
The perspective makes the generalization self-evident:

• Simulating anchor (h(t)
m + hemb): This is achieved by learning a routing scheme where the

coefficients in Eq. 7 are set as follows: the weight for the current computation, αt, approaches 1;
the weight for the initial embedding, αemb, approaches 1; and all other historical weights, αi<t,
are driven to zero. MeSH can learn to adopt this specific weighting only when needed, rather than
being hard-wired to it.

• Simulating residual (h(t)
m + h(t)): To approximate this, MeSH needs to reconstruct the previous

state, h(t), as its historical summary. This is naturally achievable. Since h(t) is itself a weighted
sum of {hemb,h

(0)
m , . . . ,h

(t−1)
m }, the routers at step t can learn to compute the appropriate coef-

ficients (αemb, α0, . . . , αt−1) to reconstruct or closely approximate h(t). More powerfully, MeSH
can choose to form a “better” historical summary by up-weighting more relevant past states (e.g.,
h
(t−5)
m ) and down-weighting irrelevant ones (e.g., h(t−1)

m ), thus forming more effective long-range
dependencies.

• Adaptive Combination: The core advantage is that the coefficients α are not fixed. They are
functions of the current state h(t), allowing the model to change its recurrence rule on the fly.
It can learn to behave like an Anchor in early steps, transition to a Residual-like update, and
synthesize a complex summary from multiple past states for the final output, all within a single
forward pass.

In conclusion, MeSH does not just replicate the fixed recurrences; it subsumes the underlying prin-
ciple of combining past and present information into a flexible, learnable framework. It replaces the
hard-coded “what to add” (e.g., h(0) or h(t)) with a learned “what to retrieve and combine,” offering
a substantially more expressive mechanism for managing state in recursive transformers.

E MORE RESULTS

E.1 SCALING TO LARGER RECURSIVE MODELS

To further investigate the scalability of MeSH, we conducted additional experiments on larger Pythia
models, specifically at the 2.8B and 6.9B scales. For these models, we employed a recursive config-
uration of 6+10R2+6, which achieves a non-embedding parameter reduction to 68.75% compared
to their non-recursive counterparts. We compared the performance of the base recursive model
(rec) against the MeSH-enhanced version (+mesh) in Table 3. The results show that the benefits
of MeSH scale effectively to larger models. At the 2.8B and 6.9B scales, MeSH still delivers sub-
stantial improvements across the board, significantly lowering perplexity on all four datasets and
boosting 0-shot and 5-shot average accuracy. This scaling experiment provides strong evidence that
MeSH is a robust and effective method for enhancing the performance of recursive language models
at multi-billion parameter scales.
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Table 3: Performance of MeSH on larger-scale models (Pythia-2.8B and 6.9B). Both models
use a 6+10R2+6 recursive configuration. Since no vanilla counterparts were trained, ∆acc for the
+mesh variant shows the absolute accuracy change relative to its base recursive counterpart. Best
results within each model block are bolded.

Structure Perplexity↓ Task Avg. acc↑
Scheme Layers Variant Pile Wiki LD-O LD-S 0-shot 5-shot

Pythia-2.8B Recursive
(-31.25%) 6+10R2+6 base 6.90 14.18 8.41 16.87 52.49 54.92

+mesh 6.70 13.60 7.30 11.36 54.71 56.85

Pythia-6.9B Recursive
(-31.25%) 6+10R2+6 base 6.29 12.14 6.34 10.29 56.67 59.43

+mesh 6.09 11.64 5.48 8.66 58.83 60.49

Table 4: Ablation on MeSH buffer length across multiple datasets for the Pythia-410M recursive
model (4+8R2+4). Performance is measured in perplexity (↓).

Scratchpad Slots (k) Buffer Length(
B = (Nloop + 1) + k

) Perplexity↓
Pile Wiki LD-O LD-S

0 (2 + 1) + 0 = 3 9.1231 21.9348 20.8286 55.9474
1 (2 + 1) + 1 = 4 9.1003 21.8439 20.6861 48.9034
2 (2 + 1) + 2 = 5 9.0944 21.8351 19.6316 42.5129
3 (2 + 1) + 3 = 6 9.1088 21.9120 19.7172 56.5541

E.2 ABLATION STUDY: MESH BUFFER LENGTH

To establish a principled heuristic for setting the MeSH buffer length (B), we hypothesize that its
capacity should scale with the number of major computational states generated during the recursive
process. For a model with Nloop iterations, this includes the initial state from the prelude network
plus the output from each of the Nloop core blocks, totaling Nloop + 1 essential states. We therefore
model the buffer size as B = (Nloop +1)+ k, where k is the number of auxiliary “scratchpad” slots
available for flexible composition.

We conduct an ablation study to find the optimal k using the Pythia-410M model with a 4+8R2+4
configuration, where Nloop = 2, evaluating the performance across four the evaluation datasets. The
results are shown in Table 4. Performance improves as we add scratchpad slots, peaking at k = 2.
This configuration, corresponding to a total buffer length of B = 5, achieves the lowest perplexity on
all four datasets. Performance slightly degrades at k = 3, suggesting a point of diminishing returns.
This indicates a sweet spot where the buffer has dedicated slots for each major computational state,
plus two auxiliary slots for managing intermediate representations, without making the routing task
overly complex. Based on empirical results, we adopt the general rule B = Nloop + 3 for all MeSH
models in our main experiments.

E.3 ABLATION STUDY: HEURISTIC STATE-PASSING SCHEMES

While individual heuristic schemes like +anchor and +residual improve over the base recur-
sive model, a natural question arises: can we achieve further gains by combining them, and can
the model learn the optimal combination? To investigate this, we conducted an ablation study on
the Pythia-410M model (4+8R2+4 configuration) exploring both fixed additive combinations and
learnable linear combinations of supplementary states (h(t)

sup). For the learnable schemes, we de-
fine the supplementary state as a combination of the base, anchor, anchor*, and residual states:
h(t) = α1h

(t)
m + α2h

(0) + α3hemb. We test two variants for the coefficients αi:

• Static Combination: The coefficients are trainable scalar parameters that are fixed after training
(Ng & Wang, 2024).

• Dynamic Combination: The coefficients are dynamically computed at each iteration based on
the previous state h(t−1).
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The results, summarized in Table 5, reveal the brittleness of heuristic design. Simply adding
all states (+residual+anchor+anchor*) degrades performance, yielding a higher perplex-
ity (9.24) than using +anchor alone (9.19). This confirms that a naive “more is better” approach is
not a reliable strategy. While a carefully hand-picked combination (+anchor+anchor*) achieves
the best result among all explicit schemes (9.17 PPL), this requires manual tuning. The learnable
static and dynamic combinations effectively avoid the worst-case performance degradation but
fail to match the best-performing heuristic.

Table 5: Ablation on combinations of supplementary context schemes for Pythia-410M (4+8R2+4).
We report evaluation loss and perplexity on the Pile dataset. While a hand-picked combination
(+anchor+anchor*) works best among heuristics, MeSH surpasses all explicit schemes.

Scheme Loss ↓ PPL ↓
vanilla 2.2047 9.0675
recursive-base 2.2358 9.3542

Single Heuristic Baselines

+anchor 2.2178 9.1867

Fixed Additive Combinations

+residual+anchor 2.2251 9.2541
+residual+anchor+anchor* 2.2237 9.2415
+anchor+anchor* 2.2159 9.1694

Learnable Combinations

+static comb. 2.2163 9.1731
+dynamic comb. 2.2176 9.1851
+mesh (ours) 2.2077 9.0944

This suggests that while explicit, learnable weighting can provide a “safe” baseline by ignoring detri-
mental combinations, it lacks the expressive capacity to discover optimal synergistic interactions.
In sharp contrast, our +mesh model (9.09 PPL) significantly outperforms all heuristic-based ap-
proaches. Instead of being constrained to an explicit, low-dimensional linear combination of prede-
fined states, MeSH learns a complex, non-linear function for retrieving and composing information
from its memory buffer. This allows it to discover implicit, high-dimensional combinations, effec-
tively breaking through the performance ceiling imposed by simpler, explicit state-passing schemes.

E.4 COMPLEXITY ANALYSIS

Table 6: Parameter counts for Pythia-1.4B variants. Percentages show the change relative to the
vanilla baseline for total and non-embedding parameters.

Model Variant Config Total Params Non-Embedding
Params

Router
Weights

Pythia-1.4B

vanilla 24 1,423,036,416 1,208,602,624 /

recursive 4+8R2+4 1,020,170,240
(-28.310%)

805,736,448
(-33.333%)

/

+mesh 4+8R2+4
(B = 5)

1,020,231,710
(-28.306%)

805,797,918
(-33.328%)

61,470
(+0.005%)

Parameter Overhead. MeSH introduces a set of lightweight, step-wise routers for its read and
write operations. The total number of additional parameters is determined by (Nloop+1)×Dhidden×
B × 2, where Nloop is the number of loop iterations, Dhidden is the hidden size, B is the buffer
length, and the factor of 2 accounts for both read and write routers. This overhead is negligible
compared to the significant parameter savings achieved through recursion. As detailed in Table 6,
for our Pythia-1.4B model in a 4+8R2+4 configuration, the recursive structure reduces the non-
embedding parameters by 33.33% compared to its vanilla counterpart. The MeSH routers add a
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mere 61,470 parameters (0.005% relative to the non-embedding part), which shows that MeSH
achieves its substantial performance gains with virtually no cost to parameter efficiency, making it
an architecturally lightweight yet powerful enhancement.

Table 7: FLOPs overhead analysis for Pythia-1.4B recursive variants. The total GFLOPs are
measured for a single forward pass with an input of size [1, 4096]. The overhead is calculated
relative to the base recursive model.

Model Variant Config Total GFLOPs
(1e9)

Extra GFLOPs
(1e9)

Pythia-1.4B

recursive (base) 4+8R2+4 5373.792 /

+residual 4+8R2+4 5373.809 0.0168
(+0.000312%)

+anchor 4+8R2+4 5373.809 0.0168
(+0.000312%)

+mesh 4+8R2+4
(B = 5)

5374.547 0.7551
(+0.014051%)

Computational Overhead. To quantify the computational cost, we measured the FLOPs for a
single forward pass using the fvcore library on our Pythia-1.4B model with a 4+8R2+4 recursive
configuration and a standard input tensor of shape [1, 4096]. We report the computational overhead
of the +residual, +anchor and +mesh variants relative to the base recursive model in Ta-
ble 7. The analysis reveals that the overhead from MeSH is negligible, adding only approximately
+0.014% for a single forward pass. This efficiency is theoretically grounded. Let bs be the batch
size, Slen the sequence length, Dhidden the hidden dimension, Nloop the number of loops, and B
the buffer length. The total extra FLOPs for MeSH are given by:

∆FLOPsmesh = (Nloop + 1) · (6 · bs · Slen ·Dhidden ·B) (8)

For our configuration (Nloop = 2, bs = 1, Slen = 4096, Dhidden = 2048, B = 5), this formula
yields ≈ 0.755 GFLOPs, matching the empirically measured overhead. The analysis confirms that
the significant performance and stability gains provided by MeSH are achieved with a minimal
and practically insignificant increase in computational requirements, highlighting its architectural
efficiency.

E.5 DETAILED TRAINING DYNAMICS ON DOWNSTREAM TASKS

To provide a more granular view of the training dynamics presented in Section 4.3, Figure 9 shows
the performance of the 1.4B-parameter models on 9 individual downstream tasks and their average
accuracy, evaluated at various checkpoints throughout the pre-training process.

E.6 APPLYING MESH TO NON-RECURSIVE ARCHITECTURES

In our main experiments, the recursive+mesh model for Pythia-1.4B surpasses its larger
Vanilla counterpart, even with 33.3% fewer parameters. The result suggests that the MeSH
mechanism might offer architectural benefits beyond the the recursive setting. We hypothesize that
if the performance bottleneck of parameter sharing were removed, the benefits of MeSH could be
even more pronounced. We conduct an experiment applying a MeSH-like structure to a standard,
non-recursive Vanilla transformer. We conceptually partition the 24 layers of the Pythia-1.4B
Vanilla model into blocks that mirror our 4+8R2+4 recursive design: a 4-layer prelude, two
distinct 8-layer core blocks (core 1 and core 2), and a 4-layer coda. Crucially, unlike in the re-
cursive setup, core 1 and core 2 do not share weights. The MeSH mechanism, with its memory
buffer and routers, is then inserted at the boundaries between these conceptual blocks to manage
information flow. Results are shown in Table 8. The vanilla+mesh model achieves a lower
perplexity (7.26) than the standard Vanilla baseline (7.44), confirming that MeSH provides a
direct performance uplift even without the constraint of parameter sharing. This finding provides
a compelling explanation for the strong performance of our main recursive+mesh model: the
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Lambada OpenAI
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0-shot 5-shot

SciQ
0-shot 5-shot

MMLU-Continuation
0-shot 5-shot

Avg. Accuracy
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HellaSwag
0-shot 5-shot
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0-shot 5-shot

vanilla recursive (base)
recursive (+residual)

recursive (+anchor)
recursive (+anchor*)recursive (+mesh)

Figure 9: Detailed Training Dynamics of 1.4B Recursive Variants on Downstream Tasks. Each
panel displays the 0-shot and 5-shot accuracy for one of the 9 individual downstream tasks or their
overall average (“Avg. Accuracy”), evaluated at different checkpoints throughout the 120,818-step
pre-training process.
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architectural benefits of MeSH are potent enough to not only compensate for the performance loss
typically incurred by weight sharing but to exceed the original baseline.

Table 8: Performance comparison of applying MeSH to recursive and non-recursive (Vanilla) back-
bones on the Pythia-1.4B scale. All metrics are evaluated on the Pile dataset.

Variant Config Non-Emb
Params (%) Loss ↓ PPL ↓

vanilla 24 layers 100% 2.0070 7.4406
vanilla+mesh 4+8+8+4 100% 1.9818 7.2559

recursive (base) 4+8R2+4 66.7% 2.0317 7.6267
recursive+mesh 4+8R2+4 66.7% 1.9996 7.3865

While our MeSH framework was considered in recursive transformers, the result indicates that its
core principle of explicit, routed state management has broader applicability. Exploring MeSH
as a general architectural primitive for enhancing deep, non-recursive transformers is a promising
direction for our future research.

E.7 APPLYING MESH TO MOE-BASED ARCHITECTURES

Table 9: Performance of MeSH on a MoE-based backbone. Results for a 2.6B-parameter OL-
MoE model with 512M activated parameters. The recursive variants use a 4+8R2+4 configuration.
PPL↓ is reported on Pile, Wikitext (Wiki), Lambada-OpenAI (LD-O) and Lambada-Standard (LD-
S). Task Avg. acc↑ is reported for 0-shot and 5-shot settings.

Structure Perplexity↓ Task Avg. acc↑ (%)
Scheme Layers Variant Pile Wiki LD-O LD-S 0-shot 5-shot

Vanilla 24 – 7.31 14.93 11.29 22.29 49.83 51.87

Recursive
(-33.3%) 4+8R2+4 base 7.60 15.97 11.99 22.52 48.96 50.83

+mesh 7.46 15.72 11.61 22.40 49.51 51.53

Mixture-of-Experts (MoE) models (Fedus et al., 2022; Dai et al., 2024), as a common technique
in large language models (Liu et al., 2024; Llama Team, 2025; Yang et al., 2025), also leverage
dynamic routing. However, the objective of this routing differs significantly: while MoE aims for
computational sparsity by selecting a subset of experts within a feed-forward layer, MeSH is specif-
ically designed to manage information flow across iterations in recursive architectures. This makes
them orthogonal approaches that can be complementary in principle. To empirically validate that
MeSH remains effective on a MoE-based recursive backbone, we adapted the open-source OLMoE
architecture (Muennighoff et al., 2024). Our non-recursive vanilla baseline is an OLMoE model
with 2.6B total and 512M activated parameters, configured with a hidden size of 1024 and 24 layers.
For the recursive variants, we adapted this non-recursive backbone into a 4+8R2+4 configuration,
aligning with our main experimental setup. The MoE-specific settings, such as using dropless token-
choice routing to select 2 out of 16 experts (with an expert hidden dimension of 2048), were kept
consistent. All models were pre-trained on the Pile dataset with a learning rate of 3e-4. As shown
in Table 9, the results confirm that while naive recursion (base) leads to performance degradation,
the +mesh variant successfully mitigates this drop. It recovers performance to a level comparable to
the vanilla counterpart under matched compute, demonstrating MeSH’s effectiveness on MoE-based
backbones.

E.8 SUPPLEMENTAL ANALYSIS: SHARED SUBSPACE COLLAPSE

To provide a more direct and intuitive visualization of the loop representational collapse identified in
our main analysis (Figure 1c), we conduct a supplemental subspace analysis based on Singular Value
Decomposition (SVD). Our central hypothesis is that the pathology we term information overload
that leads to representational conflict, forcing the naive recursive model to make a dire trade-off.
To ensure stability, the model sacrifices its role as an “Information Processor” and degenerates into a
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simple “Information Preserver”, forcing all iterative states to converge to a simple, low-dimensional
“common ground” representation.

(a) Naive Recursive Model (base) (b) Mesh-enhanced Model (+mesh)
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Figure 10: Subspace Analysis. Visualization results of how information is structured within the
recursive loop for (a) a naive recursive model and (b) our MeSH-enhanced model. Both models
are based on the Pythia-410M backbone with a 3+6R3+3 recursive configuration. We first define
a “Shared Subspace” by performing SVD on the concatenated hidden states of all loop iterations
(h(0),h(1),h(2),h(3)) and using the top singular directions as the shared basis. The plots then show
the cumulative variance of each individual state when projected onto this shared subspace. In (a), the
states of the naive model dramatically collapse onto the shared subspace, where variance is almost
entirely explained by the first few singular directions, indicating severe structural redundancy and a
failure to generate new information. In (b), the states of the MeSH model maintain distinct, high-
dimensional structures, where variance is distributed across many components, demonstrating that
each iteration preserves unique information and avoids collapse. Lines and shaded areas represent
the mean and standard deviation across 500 samples.

As shown in Figure 10, we construct the shared subspace that captures the most dominant and
consistent feature directions across all loop iterations. We then project each individual state back
onto this shared basis and measure how much of its variance is explained. The results provide a
stark contrast. In the naive recursive model (Figure 10a), the representations of all loop states (h(1)

through h(3)) collapse onto the shared subspace. Their variance curves are extremely steep and
nearly identical, indicating that their entire structure is almost completely contained within the first
few dimensions of the shared subspace. This provides compelling evidence of profound structural
redundancy. The model is not generating new, diverse information at each step; instead, it is trapped
in a low-dimensional attractor, merely preserving a static set of features. This is the hallmark of
a system that has abandoned its “Processor” role. Conversely, the MeSH-enhanced model (Fig-
ure 10b) completely averts this pathology. Each state exhibits a distinct and gracefully rising curve,
signifying that each state preserves a significant amount of unique, high-dimensional information
not captured by the others. By offloading the duty of information preservation to its external mem-
ory, MeSH liberates the hidden states to engage in meaningful, high-dimensional computation at
each step. The result provides visual evidence that MeSH resolves the representational bottleneck
caused by the representational conflict, enabling progressive refinement of information across the
recursive loop.

F CASE STUDY: UNPACKING THE INTERNAL DYNAMICS OF MESH

To provide a more granular, qualitative view of MeSH’s internal mechanisms, we provide a case
study on a single input sequence. Figure 11 unpacks the model’s dynamics, showing how MeSH
organizes information flow across recursive iterations. Panel (a) visualizes the router weights, reveal-
ing how the model learns to route information with both iteration-level and token-level specificity.
The ‘Write’ router learns a clear policy: on average, it directs the output of each iteration to a distinct
memory slot (e.g., Iteration 1 targets Slot 1, Iteration 2 targets Slot 4), where the memory organizes
information from different computational stage. Furthermore, the stark difference between the aver-
age weights and those for the specific token highlights that routing is a highly dynamic, token-wise
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Figure 11: Visualization of Internal Dynamics. The analysis is performed on a MeSH-enhanced
Pythia-410M model with a 3+6R3+3 configuration. Case study: “The failure of his handcrafted
novel to become a bestseller was the ultimate wake-up call, forcing him to second-guess every-
thing.” The visualizations show: (a) Write (red) and Read (green) router weights, shown for the
sequence average and for an intermediate token “gu” (idx 27). (b) State composition analysis. The
coefficients shown quantify the causal contribution of each source state (hemb, h(i)

m ) to the formation
of a subsequent input state (h(t)). These are derived from the router weights and reflect the unrolled
recurrence relation as Eq. 7. Here, h(−1)

m is the prelude output, and h
(t)
m is the core output at loop

iteration t.

decision. The state composition analysis in panel (b) shows how information is integrated across
iterations. For instance, the state h(3), which serves as the input to the final loop, is composed of
information from the prelude output h(−1)

m as well as the core outputs from previous loops and h
(1)
m .

This illustrates a sophisticated recombination strategy, where the model maintains a strong con-
nection to the initial “anchor-like” state while flexibly incorporating information from intermediate
steps, thereby effectively managing the information flow throughout the recursive process.

G LIMITATIONS AND FUTURE WORK

While this work establishes MeSH as a promising architectural principle for recursive transformers,
we recognize several limitations that open up avenues for future research. First, our experiments
have validated the effectiveness of MeSH on models up to the Pythia-6.9B scale, trained on the
deduplicated Pile dataset. It remains unclear whether the parameter-efficiency gains persist at larger
scales and under different training regimes. A natural and important direction for future work is
to apply and evaluate the MeSH architecture on state-of-the-art foundation models at much larger
scales. Second, although our ablation study reveals that MeSH can also benefit non-recursive trans-
formers, a comprehensive investigation beyond recursive backbones falls outside the scope of this
paper. Exploring MeSH as a general-purpose architectural primitive for improving information flow
remains a promising direction for our future work.

H STATEMENT ON LARGE LANGUAGE MODELS USAGE

We used large language models only for language editing to improve the clarity and readability of
the paper. The LLMs did not contribute to the research ideation, methodology and the experimental
implementation. All substantive content is original and was verified by the authors.
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