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ABSTRACT

Environment annotations are essential for the success of many out-of-distribution
generalization methods. Unfortunately, these are resource-intensive to obtain, and
their relevance to model performance is limited by the expectations and percep-
tual biases of human annotators. Therefore, to enable robust AI systems across
applications, we must develop algorithms to automatically discover environments
inducing broad generalization. Current proposals, which divide examples based
on their training error, suffer from one fundamental problem. These methods add
hyper-parameters and early-stopping criteria that are impossible to tune without a
validation set with human-annotated environments, the very information subject
to discovery. In this paper, we propose CROSS-RISK MINIMIZATION (XRM)
to address this issue. XRM trains two twin networks, each learning from one
random half of the training data, while imitating confident held-out mistakes made
by its sibling. XRM provides a recipe for hyper-parameter tuning, does not require
early-stopping, and can discover environments for all training and validation data.
Domain generalization algorithms built on top of XRM environments achieve ora-
cle worst-group-accuracy, solving a long-standing problem in out-of-distribution
generalization.

1 INTRODUCTION

AI systems pervade our lives, spanning applications such as finance (Hand and Henley, 1997),
healthcare (Jiang et al., 2017), self-driving vehicles (Bojarski et al., 2016), and justice (Angwin et al.,
2016). While machines appear to outperform humans on such tasks, these systems fall apart when
deployed in testing conditions different to their experienced training environments (Geirhos et al.,
2020). For instance, during the COVID-19 pandemic, it was shown that thoracic x-ray classifiers
latched onto spurious correlations—such as patient age, scanning position, or text fonts—as shortcuts
to minimize their own training error (Heaven, 2021). This resulted in “an alarming situation in which
the systems appear accurate, but fail when tested in new hospitals” (DeGrave et al., 2021).

Generally speaking, AI systems perform worse on groups of examples under-represented in the
training data (Barocas et al., 2019). To drive this point home, consider the left side of figure 1,
illustrating the Waterbirds problem (Sagawa et al., 2019). This task considers two class labels,
landbirds and waterbirds, collected in two landscape environments, land and water. These combine
into four groups: a majority group of waterbirds in water (73% of training examples), landbirds
in land (22%), waterbirds in land (4%), and a minority group of landbirds in water (1%). On this
problem, learning machines latch onto the landscape spurious feature, because it can separate the
majority of examples, exhibits a larger signal-to-noise ratio, and yields the maximum-margin classifier
amongst those with zero training error. For instance, consider an empirical risk minimization (Vapnik,
1998, ERM) baseline, which ignores environment information. As shown in the right panel of figure 1,
ERM results in a worst-group-accuracy of 61%—attained, in fact, on the minority group.

To improve upon ERM, researchers have developed a myriad of domain generalization (DG) algo-
rithms (Zhou et al., 2022a; Wang et al., 2021). These methods consider environment annotations
to uncover invariant (environment-generic) patterns and discard spurious (environment-specific)
correlations (Arjovsky et al., 2019). As figure 1 shows, the DG algorithm group distributionally
robust optimization (Sagawa et al., 2019, GroupDRO) achieves a worst-group-accuracy of 87%. This
outperforms ERM by over twenty five points, a sizeable gap!

While promising, DG algorithms require environment annotations. These are resource-intensive to
obtain, and their relevance to downstream model performance is limited by the expectations, precision,
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Figure 1: (a) Waterbirds classification problem, containing four groups: a majority group of waterbirds
in water, landbirds in land, waterbirds in land, and a minority group of landbirds in water. Learning
machines latch onto spurious landscape features, as it allows to classify the majority of examples,
exhibits a larger signal-to-noise ratio, and yields the maximum-margin classifier amongst solutions
with zero training error. (b) Worst-group-accuracy (minority-group-accuracy) for different methods.
(Dotted line) An ERM baseline ignoring group annotations achieves 61%. (Dashed line) The
GroupDRO domain generalization method with human group annotations, considered our oracle,
achieves 87%. (Dashdot blue line) Prior work to discover groups requires early-stopping with surgical
precision. This is an impossible ask without a validation set with human group annotations, the very
information subject to discovery. Realistically, these methods would converge at 68%. (Solid red
line) Our proposed XRM enables an oracle performance of 87% at convergence.

and perceptual biases of human annotators. Moreover, no fixed environment annotations that we
may choose and revise can serve the idiosyncrasies of all the different DG algorithms. In extremis,
and by virtue of the combinatorial-explosion of ways in which two examples can be similar or
dissimilar (Goodman, 1972), the patterns that deceive a learning system could be alien or invisible to
our human eyes (Goodfellow et al., 2014). Because of these reasons, robust AI systems are currently
confined to small data collections, and their promise in the large-scale setting remains unfulfilled.

In light of the above, some researchers began developing algorithms for the automatic discovery
of environments from data (Bao and Barzilay, 2022; Zheran Liu et al., 2021; Zhang et al., 2022b;
Lahoti et al., 2020; Dagaev et al., 2021; Creager et al., 2020; Nam et al., 2020). In broad strokes,
these methods build a robust system in two phases. In phase-1, these methods learn a label predictor
to distribute training examples in two environments, based on their training error. In phase-2, a DG
algorithm is trained on top of the discovered environments to produce the robust system of interest.
Unfortunately, this pipeline suffers from one fundamental issue. In particular, phase-1 needs to control
the capacity of the label predictor with surgical precision, such that the discovered environments
differ only in spurious correlation. As illustrated in figure 1, these methods discover environments
that yield strong phase-2 systems only at the knife’s edge of very precisely early-stopped phase-1
training iterations—yielding a decent but still worse than oracle performance of 79%—and otherwise
converge to a worst-group-accuracy of 68%. Unfortunately, we lack a signal for such a fine call, so
methods for environment discovery resort to a validation set with human environment annotations. In
practice, this wraps phase-1 and phase-2 with a cross-validation envelope to directly select a model
maximizing validation worst-group-accuracy. Alas, at least in our view, this defeats the raison d’être
of environment discovery.
Contribution We propose CROSS-RISK MINIMIZATION (XRM), a simple method for environment
discovery that requires no human environment annotations whatsoever. XRM trains two twin label
predictors, each holding-in one random half of the training data. During training, XRM instructs
each twin to imitate confident held-out mistakes made by their sibling. This results in an “echo-
chamber” where twins increasingly rely on bias, converging on a pair of environments that differ in
spurious correlation, and share the invariances that fuel downstream out-of-distribution generalization.
After twin training, a simple cross-mistake formula allows XRM to annotate all of the training and
validation examples with environments. As our experiments show, XRM endows DG algorithms with
oracle-like performance across benchmarks, solving a long-standing problem in out-of-distribution
generalization. Returning one final time to figure 1, we observe that XRM+GroupDRO converges to
87% worst-group-accuracy on Waterbirds, matching the oracle!
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The sequel is as follows. Section 2 reviews the setup of DG, pointing environment annotations
as one of its major shortcomings. Section 3 surveys prior works on environment discovery, their
issues surrounding hyper-parameter tuning and early-stopping, and their consequent reliance on
validation sets with human environment annotations. For a more exhaustive review, see section 6.
Section 4 introduces XRM, a novel objective to discover machine-tailored environments for all

training and validation data. Experiments in Section 5 show that DG algorithms built on top of XRM
environments achieve oracle-like performance, and Section 6 closes with thoughts for future work.

2 LEARNING INVARIANCES ACROSS KNOWN ENVIRONMENTS

In domain generalization (DG), our goal is to build learning systems that perform well beyond
the distribution of the training data. To this end, we collect examples under multiple training
environments. Then, DG algorithms search for patterns that are invariant across these training
environments—more likely to hold during test time—while discarding environment-specific spurious
correlations (Arjovsky et al., 2019). More formally, we would like to learn a predictor f to classify
inputs x into their appropriate labels y, and across all relevant environments e ∈ E :

f ∈ argmin
f̃

sup
e∈E

Re(f̃), (1)

where the risk Re(f) = E(x,y)∼P e [ℓ(f(x), y)] measures the average loss ℓ incurred by the predictor
f across examples from environment e, all of them drawn iid from P e.

In practical applications, the DG problem (1) is under-specified in two important ways. Firstly, we
only get to train on a subset of all of the relevant environments E , called the training environments
Etr ⊂ E . Yet, the quality of our predictor continues to be the worst classification accuracy across all
environments E . Secondly, and for each training environment e ∈ Etr, we do not observe its entire
data distribution P e, but only a finite set of iid examples (xi, yi, ei = e). In sum, the information
at our disposal to address the DG problem (1) is the training dataset Dtr = {(xi, yi, ei)}ni=1, where
(xi, yi) is an input-label pair drawn from the distribution P ei associated to the training environment
ei ∈ Etr. Armed with Dtr, we approximate (1) by the observable optimization problem

f ∈ argmin
f̃

sup
e∈Etr

Re
n(f̃), (2)

where Re
n(f) =

1
|De

tr |
∑

(xi,yi)∈De
tr
ℓ(f(xi), yi) is the empirical risk (Vapnik, 1998) across the data

De
tr = {(xi, yi) ∈ Dtr : ei = e} from the training environment e ∈ Etr.

Environments and groups In its full generality, domain generalization is an admittedly daunting task.
To alleviate the burden, much prior literature considers the simplified version of group shift (Sagawa
et al., 2019). The problem formulation is equivalent: we observe each input xi together with some
attribute ei and label yi, and define one group g ≡ e× y per attribute-label combination. (We use
the terms “environment” and “attribute” interchangeably.) Again, we assume access to one training
set of triplets (xi, yi, ei) to learn our predictor, and one similarly formatted validation set available
for hyper-parameter tuning and model selection purposes. Next, we put in place one important
simplifying assumption E = Etr, namely no new environments appear during test time. Consequently,
the quality of our predictor can be directly estimated as the worst-group-accuracy in the validation
set. Because most learning algorithms focus on minimizing average training error, oftentimes the
worst-group-accuracy happens to be the accuracy at the minority group.

In practice, different DG algorithms (Gulrajani and Lopez-Paz, 2020; Zhou et al., 2022a; Wang et al.,
2021; Yang et al., 2023) target different types of invariance, learned across training environments Etr,
assumed to hold across testing environments Ete, and implemented as various innovations to the
objective (2). As discussed in section 1, some DG algorithms outperform by a large margin methods
ignoring environment (cf. attribute, group) information, such as ERM.

Despite their promise, the main roadblock towards large-scale domain generalization is their reliance
on humanly annotated environments, attributes, or groups. These annotations are resource-intensive
to obtain. Moreover, the expectations, precision, and perceptual biases of annotators can lead
to environments conducive of sub-optimal out-of-distribution generalization. Different machine
learning models fall prey to different kinds of spurious correlations. In addition, there are plenty
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of complex and subtle interactions between environment definition, function class, distributional
shift, and cultural viewpoint (Lopez-Paz et al., 2022). Therefore, environment annotations are helpful
only when revealing spurious and invariant patterns under the lens of the learning system under
consideration. Could it be possible to design algorithms for the automatic discovery of environments
tailored to the learning machine and data at hand?

3 DISCOVERING ENVIRONMENTS Nature does not shuffle data—Bottou (2019)

Let us reconsider the problem of domain generalization without access to environment annotations.
This time it suffices to talk about one training distribution P tr and one testing distribution P te. Our
training data is a collection of input-label pairs (xi, yi), each drawn iid from the training distribution.
While the training distribution P tr may be the mixture of multiple environments describing interesting
invariant and spurious correlations, this rich heterogeneity is shuffled together and unbeknown to
us. But, if we could “unshuffle” the training distribution and recover the environments therein, we
could invoke the domain generalization machinery from the previous section and hope for a robust
predictor. This is the purpose of automatic environment discovery.

To discover environments and learn from them, most prior work implements a pipeline with two
phases. On phase-1, train a label predictor and distribute each training example into two environments,
depending on whether the example is correctly or incorrectly classified. On phase-2, train a DG
algorithm on top of the discovered environments. Crucially, one must control the capacity of the label
predictor in phase-1 with surgical precision, such that it relies only on prominent, easier-to-learn
spurious correlations. If the environments discovered in phase-1 differ only in spurious correlation,
as we would like, then the DG algorithm from phase-2 should be able to zero-in on invariant patterns
more likely to generalize to the test distribution P te. On the unlucky side, if phase-1 produces a
zero-training-error predictor, we would be providing phase-2 with one non-vacuous, non-informative
environment—the training data itself!

As a result, proposals for environment discovery differ mainly in how to control the capacity of the
phase-1 label predictor. For example, the too-good-to-be-true prior (Dagaev et al., 2021) employs a
predictor with a small parameter count while correct-n-contrast (Zhang et al., 2022b, CnC) applies
strong weight decay regularization. Just train twice (Zheran Liu et al., 2021, JTT) and environment
inference for invariant learning (Creager et al., 2020, EIIL) train a phase-1 predictor for a limited
number of epochs. Learning from failure (Nam et al., 2020, LfF) biases the predictor towards the use
of “simple” features by applying a generalized version of the cross entropy loss. Other proposals,
such as learning to split (Bao and Barzilay, 2022, LS) and adversarial re-weighted learning (Lahoti
et al., 2020, ARL) complement capacity control with adversarial games.

However regularized, all of these methods suffer from one fundamental problem. More specifically,
these phase-1 strategies add hyper-parameters and early-stopping criteria, but remain silent on how to
tune them. As illustrated in figure 1 for Waterbirds, methods like the above discover environments
leading to competitive generalization only when phase-1 is trained for a number of iterations that fall
within a knife’s edge. Quickly after that, the performance of the resulting phase-2 system falls off a
cliff, landing at ERM-like worst-group-accuracy.

Prior works keep away from this predicament by assuming a validation set with human environment
annotations. Then, it becomes possible to simply wrap phase-1 and phase-2 into a cross-validation
pipeline that promotes validation worst-group-accuracy. Alas, this defeats the entire purpose of
environment discovery. In fact, if we have access to a small dataset with human environment
annotations, these examples suffice to fine-tune the last layer of a deep neural network towards
state-of-the-art worst-group-accuracy (Izmailov et al., 2022). Looking forward, could we develop an
algorithm for environment discovery that requires no human annotations whatsoever, and robustly
yields oracle-like phase-2 performance?

4 CROSS-RISK MINIMIZATION (XRM)

We propose CROSS-RISK MINIMIZATION (XRM), an algorithm to discover environments without the
need of human supervision. XRM comes with batteries included, namely a recipe for hyper-parameter
tuning and a formula to annotate all training and validation data. As we will show in section 5,
environments discovered by XRM endow phase-2 DG algorithms with oracle performance.
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The blueprint for phase-1 with XRM is as follows. XRM trains two twin label predictors, each
holding-in one random half of the training data (section 4.1). During training, XRM biases each twin
to absorb spurious correlation by imitating confident held-out mistakes from their sibling (section 4.2).
XRM chooses hyper-parameters for the twins based on the number of imitated mistakes (section 4.3).
Finally, and given the selected twins, XRM employs a simple “cross-mistake” formula to discover
environment annotations for all of the training and validation examples (section 4.4). Algorithm 1
serves as a companion to the descriptions below; appendix G contains a real PyTorch implementation.
The runtime of phase-1 with XRM is akin to one ERM baseline on the training data.

Algorithm 1 CROSS-RISK MINIMIZATION (XRM)
Input: training examples {(xi, yi)}ni=1 and validation examples {(x̃i, ỹi)}mi=1
Output: discovered environments for training {ei}ni=1 and validation {ẽi}mi=1 examples

• Fix held-in training example assignments ma
i ∼ Bernoulli( 12 ) and mb

i = 1−ma
i

• Init two label predictors fa and f b at random; calibrate softmax temperatures on held-in data
• Until convergence:

– Compute held-in softmax predictions pin
i = ma

i f
a(xi) +mb

if
b(xi)

– Compute held-out softmax predictions pout
i = mb

if
a(xi) +ma

i f
b(xi)

– Update fa and f b to minimize the class-balanced held-in cross-entropy loss ℓ(pin, y)

– Flip yi into yout
i = argmaxjp

out
i,j , with prob. (pout

i,yout
i
− 1/nclasses) · nclasses/(nclasses − 1)

• Define cross-mistake function e(x, y) = J(y /∈ argmaxjf
a(x)j) ∨ (y /∈ argmaxjf

b(x)j)K
• Discover training ei = e(xi, yi) and validation ẽi = e(x̃i, ỹi) environments

4.1 TWIN SETUP, HOLDING-OUT OF DATA

We start by initializing two twin label predictors fa and f b. Without loss of generality, let these
predictors return softmax probability vectors over the nclasses classes in the training data. We split
our training dataset {(xi, yi)}ni=1 in two random halves. Formally, we construct a pair of training
assignment vectors with entries ma

i ∼ Bernoulli( 12 ) and mb
i = 1 − ma

i , for all i = 1, . . . , n. For
predictor fa, examples with ma

i = 1 are “held-in” and examples with ma
i = 0 are “held-out”;

similarly for f b. Therefore, we will train predictor fa on training examples where ma
i = 1, and

similarly for predictor f b. Before learning starts, we calibrate the softmax temperature of the twins
via Platt scaling (Guo et al., 2017). See appendix G for implementation details.

By virtue of this arrangement, we may now estimate the generalization difficulty of any example
by looking at the prediction of the twin that held-out such point. This contrasts prior methods
for environment discovery, which consume the entire training data, and may therefore conflate
generalization and memorization. Here, however, if a point is misclassified when held-out, we see this
as evidence of such example belonging to the minority group. Feldman and Zhang (2020) proposes
a similar “error when holding-out” construction as a measure of memorization. CrossSplit (Kim
et al., 2023) also employs this mechanism to avoid memorization of noisy labels in the context of
label-noise robustness. As a last remark, we recommend choosing the twins to inhabit the same
function class as the downstream phase-2 DG predictor, to discover environments tailored to the
paticular learning machine.

4.2 TWIN TRAINING, FLIPPING LABELS

As figure 1 shows, the test worst-group-accuracy of an ERM baseline on Waterbirds is 62%. This
suggests that, if using ERM to train our twins, each would be able to correctly classify roughly one
half of the minority examples. If using these machines to discover environments based on prediction
errors, we would dilute the spurious correlation evenly across the two discovered environments.
Consequently, it would be difficult for a phase-2 DG algorithm to tell apart between invariant and
spurious patterns. Albeit counter-intuitive, we would like to hinder the learning process of our
twins, such that they increasingly rely on spurious correlation. In the best possible case, the twins
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would correctly classify all majority examples and mistake all minority examples, resulting in zero
worst-group accuracy.

To this end, we propose to steer away our twins from becoming empirical risk minimizers as follows.
Let pout

i = mb
if

a(xi) + ma
i f

b(xi) be the held-out softmax prediction for example (xi, yi). Also,
let yout

i = argmaxj p
out
i,j be the held-out predicted class label, equal to the index of the maximum

held-out softmax prediction. Then, at each iteration during the training of the twins,

flip yi into yout
i , with probability (pout

yout
i
− 1/nclasses) · nclasses/(nclasses − 1), (3)

and let each twin take a gradient step to minimize their held-in class-balanced—according to the
moving targets—cross-entropy loss.

The overarching intuition is that the label flipping equation (3) implements an “echo chamber”
reinforcing the twins to rely on spurious correlation. Label flipping happens more often for confident
held-out mistakes and early in training. These are two footprints of spurious correlations, since these
are often easier and faster to capture. (In the context of neural networks, this is often referred to as
a “simplicity bias” (Shah et al., 2020b; Pezeshki et al., 2021).) Overall, the purpose of equation (3)
is to transform the labels of the training data such that they do not longer represent the original
classes, but spurious bias. Finally, the adjustment of equation (3) in terms of nclasses ensures low
flip probabilities at initialization, where most mistakes are due to weight randomness, and not
due to spurious correlation. The aligning “echo chamber” effect from label-flipping is a crucial
novelty compared to methods that use multiple networks to either disagree with or diversify spurious
features. (Nam et al., 2020; Cha et al., 2021; Rame et al., 2022; Wortsman et al., 2022; Lee et al.,
2023; Pagliardini et al., 2023; Lin et al., 2023; Eastwood et al., 2023).

4.3 TWIN MODEL SELECTION, COUNTING LABEL FLIPS

Before discovering environments, we must commit to a pair of twin predictors. Since these have their
own hyper-parameters, XRM would be incomplete without a phase-1 model selection criterion (Gul-
rajani and Lopez-Paz, 2020). We propose to select the twin hyper-parameters showing a maximum
number of label flips (3) at the last iteration, and across the training data. To reiterate, by “counting
flips” we simply compare the vector of current labels with the vector of original labels—therefore,
we do not accumulate counts of double or multiple flips per label. To understand why, recall that
each label flip signifies one example that is confidently misclassified when held-out. Therefore, each
label flip is evidence about reliance on spurious correlation, which consequently brings us closer to a
clear-cut identification of the minority group.

4.4 ENVIRONMENT DISCOVERY, USING CROSS-MISTAKE FORMULA

Having committed to a pair of twins, we are ready to discover environments for all of our training and
validation examples. In particular, we use a simple “cross-mistake” formula to annotate any example
(x, y) with the binary environment

e(x, y) = J(y /∈ argmaxjf
a(x)j) ∨ (y /∈ argmaxjf

b(x)j)K. (4)

where “∨” denotes logical-OR, and “J K” is the Iverson bracket. If operating within the group-shift
paradigm, finish by defining one group per combination of label and discovered environment. Notably,
the ability to annotate both training and validation examples is a feature inherited from holding-out
data during twin training. More particularly, every example—within training and validation sets—is
held-out for at least one of the two twins, as subsumed in equation (4) by the logical-OR operation.

While (4) partitions data into “only” two environments, we do not believe that XRM is identifying
“one spurious correlation”, but a generic “direction of spuriousness”. We suspect that an Oracle with
perfect knowledge about the test domain would be able to split the training data in two environments
that maximally reveal the train-test drift. Furthermore, alternative equations to (4) could quantize
continuous loss values into multiple bins to generate many environments with XRM.

We are now ready to train the phase-2 DG algorithm of our choice on top of the training data with
environments discovered with XRM. When doing so, we can perform phase-2 DG model selection
by maximizing worst-group-accuracy on the validation data with environments discovered by XRM.
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5 EXPERIMENTS

Our experimental protocol has three moving pieces: datasets, phase-2 domain generalization algo-
rithms, and the source of environment annotations. For a tour on various versions of the ColoredM-
NIST benchmark providing intuitions on when XRM may work or fail, please refer to section 6. For
results on the popular DomainBed benchmark, please refer to section 6.

Datasets We consider six standard datasets from the SubpopBench suite (Yang et al., 2023). These
are the four image datasets Waterbirds (Wah et al., 2011), CelebA (Liu et al., 2015), MetaShift (Liang
and Zou, 2022), and ImageNetBG (Xiao et al., 2020); and the two natural language datasets
MultiNLI (Williams et al., 2017) and CivilComments (Borkan et al., 2019). We invite the reader to
Appendix B.1 from Yang et al. (2023) for a detailed description of these. For CelebA, predictors
map pixel intensities into a binary “blonde/not-blonde” label. No individual face characteristics,
landmarks, keypoints, facial mapping, metadata, or any other information was used to train our
CelebA predictors. We also conduct experiments on ColorMNIST (Arjovsky et al., 2019), but keep a
strict protocol. More specifically, we set both training and validation data to contain two environments,
with 0.8 and 0.9 label-color correlation, while the test environment shows 0.1 label-color correlation.
This contrasts Arjovsky et al. (2019), who used the test environment for model selection.

Phase-2 DG algorithms We consider ERM, group distributionally robust optimization (Sagawa et al.,
2019, GroupDRO), group re-weighting (Japkowicz, 2000, RWG), and group sub-sampling (Idrissi
et al., 2022, SUBG). When group information is available, we tune hyper-parameters and early-
stopping by maximizing worst-group-accuracy. Otherwise, we tune for worst-class-accuracy. Fol-
lowing standard praxis, image datasets employ a pretrained ResNet-50, while text datasets use a
pretrained BERT. For more details, see appendix D.

Environment annotations For each combination of dataset and phase-2 DG algorithm, we compare
group annotations from different sources. None denotes no group annotations. Human denotes
ground-truth annotations, as originally provided in the datasets, and inducing oracle performance.
XRM denotes group annotations from the environments discovered by our proposed method. In some
experiments we compare XRM to other environment discovery methods, these being learning from
failure (Nam et al., 2020, LfF), environment inference for invariant learning (Creager et al., 2020,
EIIL), just train twice (Zheran Liu et al., 2021, JTT), correct-n-contrast (Zhang et al., 2022b, CnC),
automatic feature re-weighting (Qiu et al., 2023, AFR), and LS (Bao and Barzilay, 2022).

Metrics Regardless of how training and validation groups are discovered, we always report test
worst-group-accuracy over the human group annotations provided by each dataset. The tables hereby
presented show averages over ten random seeds. For tables with error bars, see appendix F.

5.1 XRM VERSUS HUMAN ANNOTATIONS

Table 1 shows that XRM enables oracle-like worst-group-accuracy across datasets. The performance
gains are remarkable in the challenging ColorMNIST dataset, where XRM perfectly identifies digits
appearing in minority colors, discovering a pair of environments conducive of stronger generalization
than the ones originally proposed by humans. For the commonly-reported quartet of Waterbirds,
CelebA, MultiNLI, and CivilComments, human annotations induce an average oracle worst-group-
accuracy 80.6%, while XRM environments endow a super-human performance of 80.9%.

5.2 XRM VERSUS OTHER METHODS FOR ENVIRONMENT DISCOVERY

Table 2 shows the worst-group-accuracy of GroupDRO when built on top of environments as
discovered by different methods. As seen in the previous subsection, XRM achieves 80.4%, nearly
matching oracle performance. The second best method with no access to environment information,
JTT, drops to 58.9%. The best method accessing a validation set with human environment annotations,
AFR, lags far from XRM, with 78%. The computational burden to complete the results from LS
was prohibitive. For example, one run of LS for Waterbirds, the smallest dataset, took 20 hours.
An XRM run for this same dataset, on the same 32GB Volta GPU, takes 10 minutes. As detailed
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Table 1: Worst-group-accuracies across datasets and algorithms average over ten random runs, with
XRM showing oracle-level results. Remark 1: Class labels substitute group labels when the latter are
not available. Remark 2: ERM, while not trained with group labels, can still benefit from validation
group labels for hyperparameter tuning, leading to better performance.

ERM GroupDRO RWG SUBG
None Human XRM None Human XRM None Human XRM None Human XRM

Waterbirds 70.4 76.1 75.3 71.7 88.0 86.1 74.8 87.0 84.5 73.0 86.7 76.3
CelebA 62.7 71.9 67.6 68.8 89.1 89.8 70.7 89.5 88.0 68.5 87.1 87.5
MultiNLI 54.8 65.3 65.8 69.7 76.1 74.3 69.3 71.1 73.3 53.7 72.8 71.3
CivilComments 55.1 59.7 61.4 59.3 69.3 71.3 54.0 65.8 73.4 58.7 64.0 72.9
ColorMNIST 10.1 10.1 26.9 10.0 10.1 70.5 10.1 10.2 70.2 10.1 10.0 70.8
MetaShift 70.8 67.7 71.2 70.8 73.7 71.2 66.5 70.8 69.7 70.0 73.5 69.2
ImagenetBG 75.6 76.9 76.9 73.0 76.1 75.9 76.9 76.5 77.0 75.0 75.0 76.4

Average 57.1 61.1 63.6 60.5 68.9 77.0 60.3 67.3 76.6 58.4 67.0 74.9

Table 2: Average/worst accuracies comparing methods for environment discovery. We specify access
to annotations in training data (etr) and validation data (eva). Symbol † denotes original numbers.

Waterbirds CelebA MNLI CivilComments Average
etr eva Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst

✓ ✓
ERM 86.1 76.1 93.5 71.9 78.6 65.3 82.9 59.7 85.3 68.3
GroupDRO 92.6 88.0 93.3 89.1 82.0 76.1 81.4 69.3 87.3 80.6

✗ ✓

ERM† 97.3 72.6 95.6 47.2 82.4 67.9 83.1 69.5 89.6 64.3
LfF† 91.2 78.0 85.1 77.2 80.8 70.2 68.2 50.3 81.3 68.9
EIIL† 96.9 78.7 89.5 77.8 79.4 70.0 90.5 67.0 89.1 73.4
JTT† 93.3 86.7 88.0 81.1 78.6 72.6 83.3 64.3 85.8 76.2
CnC† 90.9 88.5 89.9 88.8 — — — — — —
AFR† 94.4 90.4 91.3 82.0 81.4 73.4 89.8 68.7 89.2 78.6

✗ ✗

ERM 85.3 70.4 94.5 62.7 77.9 54.8 80.9 55.1 84.6 60.8
LfF† 86.6 75.0 81.1 53.0 71.4 57.3 69.1 42.2 77.1 56.9
EIIL† 90.8 64.5 95.7 41.7 80.3 64.7 — — — —
JTT† 88.9 71.2 95.9 48.3 81.4 65.1 79.0 51.0 86.3 58.9
LS† 91.2 86.1 87.2 83.3 78.7 72.1 — — — —
BAM† 91.4 89.1 88.4 80.1 80.3 70.8 88.3 79.3 87.1 79.8
XRM 90.6 86.1 91.8 91.8 78.3 74.3 79.9 71.3 85.2 80.9

in appendix E, we found that by varying some of the fixed hyper-parameters in the official LS
repository, performance on Waterbirds varied by as much as ±7% in worst-group accuracy.

5.3 SOME VISUALIZATIONS

Figure 2 explores some of the behaviors of XRM on the Waterbirds dataset. In particular, the left
panel justifies the use of “percentage of label flipped at convergence” as a phase-1 model selection
criterion for XRM, as it correlates strongly with downstream phase-2 worst-group-accuracy. The two
middle panels showcase the clear separation of the minority group “landbirds/water” by XRM, as
no landbirds in land are in the cross-mistake area. The right panel shows that label flipping happens
almost exclusively for minority groups, and converges alongside XRM training. This provides XRM
with a degree of stability, removing the need for intricate early-stopping criteria.

Figure 3 applies XRM to the CIFAR-10 dataset (Krizhevsky et al., 2009). While CIFAR-10 does not
contain environment annotations, the discovered environments by XRM for the “plane” and “deer”
classes reveal one interesting spurious correlations, namely background color. As a final remark,
we ablated the need for (i) holding-out data, and (ii) performing label flipping, finding that both
components are essential to the performance of XRM.
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Figure 2: XRM on the Waterbirds problem, concerning waterbirds in water, waterbirds in
land, landbirds in water, landbirds in land. The first panel shows that “percentage of XRM
label flipped at convergence” is a strong indicator of “worst-group-accuracy in phase-2”, making
flips a good criterion to select twin hyper-parameters. The two middle panels show the signed
margin of the twins on each ground-truth group. From each of these class-dependent plots, XRM
discovers two environments: one for points in the “mistake-free” white area, and one for points in
the “cross-mistake” gray areas. Notably, XRM is able to allocate the two smallest groups to
dedicated environments. Another notable observation is that the two middle plots appear as straight
lines, indicating that the twin networks agree on their predictions. The fourth panel shows that label
flipping happens almost exclusively for the two smallest groups, and stabilizes as training progresses.

(d) Misclassified deers(c) Well-classified deers(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images of CIFAR-10 from groups identified by XRM. The twin net-
works show interesting patterns in their mistakes. Notably, well-classified examples are prototypical.

6 DISCUSSION

We have introduced CROSS-RISK MINIMIZATION (XRM), a simple algorithm for environment
discovery. XRM provides a recipe to tune its hyper-parameters, does not require early-stopping, and
can discover environments for all training and validation data—dropping the requirement for human
annotations at all. More specifically, XRM trains two twin label predictors on random halves of the
training data, while encouraging each twin to imitate confident held-out mistakes by their sibling.
This implements an “echo-chamber” that identifies environments that differ in spurious correlation,
and endow domain generalization algorithms with oracle-like performance.

We highlight two directions for future work. Firstly, how does XRM relate to the invariance principle
Y ⊥ E | Φ(X)? What is the interplay between revealing relevant labels Y and relevant environments
E as to afford invariance? To our knowledge, XRM is the first environment discovery algorithm
tampering with labels Y , thus exploring invariance—and the violation thereof—from a new angle.
Because relabeling happens with a probability proportional to confidence, we expect model calibration
to play a role in understanding the theoretical underpinnings of XRM, as it happened with other
invariance methods (Wald et al., 2021). Overall, the theoretical analysis of XRM will call for new
tools, because label-flipping steers XRM away from the Bayes-optimal predictor.

Secondly, we would like to further understand the relationship between XRM and the multifarious
phenomenon of memorization. Good memorization affords invariance (Where did I park my car?),
and therefore depends on the collection of environments deemed relevant. Bad memorization happens
due to “structured over-fitting”, commonly incarnated as a bad learning strategy “use a simple feature
for the majority, then memorize the minority”. Does XRM discover environments that promote
features that benefit all examples?
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APPENDIX

A RELATED WORK (NEWLY ADDED)

The literature on domain generalization spans a decade and comprises a vast amount of works. In
the review below, we survey (i) some of the major milestones in domain generalization research, (ii)
advances in the sub-problem of sub-population shift, the problem attacked with our XRM proposal,
(iii) the multifarious connections between domain generalization and causal inference, (iv) efforts
to learn domains, sub-populations, or environments from pooled collections of training examples
previous to our XRM proposal, and (v) their limitations in terms of annotation requirements and
impossibility results.

(i) The first works in domain generalization proposed algorithms that summarize each domain
as a kernel mean embedding of the respective distribution of inputs (Blanchard et al., 2011;
Muandet et al., 2013); these were later extended to the realm of deep neural networks (Zhang
et al., 2021). One common avenue toward domain generalization is to learn a predictor where
the feature representation has the same distribution across domains (Sun and Saenko, 2016;
Ganin et al., 2016). Another major strategy is to enforce learning a richer feature space (Zhang
et al., 2022a), which can be done by combining the weights of multiple models with different
hyper-parameter configurations (Cha et al., 2021; Rame et al., 2022; Wortsman et al., 2022;
Lin et al., 2023), or biasing training to make them disagree with each other (Nam et al., 2020;
Pagliardini et al., 2023; Lee et al., 2023). Learning from combinations of examples, by means
of mixup (Zhang et al., 2018), is also a promising route to diminish the impact of spurious
correlations (Yao et al., 2022; Giannone et al., 2022). All in all, there are multiple frameworks
that evaluate dozens of domain generalization algorithms across a variety of benchmark datasets,
such as DomainBed (Gulrajani and Lopez-Paz, 2020) and WILDS (Pang Wei Ko et al., 2021).
We recommend the reader to consult recent surveys (Zhou et al., 2022a; Wang et al., 2021) for a
taxonomy of the vast array domain generalization algorithms on offer.

(ii) Sub-population shift is a particular type of domain generalization problem, where environments
are direct annotations of a spurious attribute, and one can assume that the test domain will be
equal a subdistribution—group—of the training data. The gold-standard for addressing sub-
population shifts is group distributionally robust optimization (Sagawa et al., 2019, GroupDRO).
Group subsampling and reweighting schemes, albeit simple, also provide state-of-the-art accu-
racy (Idrissi et al., 2022). To achieve good performance, it is known that it suffices to finetune
the last layer of a deep neural network with a small training set with balanced groups (Izmailov
et al., 2022). The framework of SubpopBench compares twenty algorithms for sub-population
shift across a dozen benchmark datasets (Yang et al., 2023).

(iii) The goal of domain generalization can be understood as finding predictors invariant across a
family of relevant environments (Arjovsky et al., 2019). This establishes an intimate link between
domain generalization and causality under the interventionist account, where causation is defined
as invariance across interventions (Woodward, 2005). A pioneering method attacks the problem
domain generalization as finding invariant causal predictors (Peters et al., 2016, ICP). The
framework of invariant risk minimization (Arjovsky et al., 2019, IRM) extends ICP to deep neural
networks, advocating the invariance principle of “finding a feature representation such that the
optimal classifier matches across environments”. Researchers have proposed multiple variants
of the original IRM formulation, with notable examples being risk extrapolation (Krueger et al.,
2021, vREX) and sparse risk minimization (Zhou et al., 2022b). The IRM framework has found
multiple applications, with fair face recognition Ma et al. (2023) being a recent example.

(iv) The main factor limiting the application of domain generalization and sub-population shift
machinery is their requirement of domain, environment, or group annotations. Unfortunately,
these are resource-intensive to obtain and are limited by human annotators’ biases, as the biases
they identify may not align with those learned by models, and vice versa (Bell and Sagun, 2023).
Consequently, a wide array of methods has been recently proposed to estimate these annotations
from pooled collections of training data. Learning from failure (Nam et al., 2020, LfF) learns a
biased network, and a final network that focuses on the examples misclassified by the biased
network. Environment inference for invariant learning (Creager et al., 2020, EIIL) searches
for an environmental partition that violates the IRM principle. Just-train-twice (Zheran Liu
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et al., 2021, JTT) trains one first network for a few iterations, and a final network to focus
more on the examples from the first network. Correct and Contrast (Zhang et al., 2022b, CNC)
leverages ERM failures and contrastive learning to learn a robust representation. Automatic
feature reweighting (Qiu et al., 2023, AFR) learns a first network for a few iterations, and then
fine-tunes the last layer to focus on mistakes. Learning to split (Bao and Barzilay, 2022, LS)
and adversarial re-weighted learning (Lahoti et al., 2020, ARL) implement adversarial games to
find a split of the training data inducing maximum out-of-sample error. Bias amplification (Li
et al., 2023, BAM) incorporates per-example “slack variables” to absorb the fast learning of
spurious correlations. No subclass left behind (Sohoni et al., 2020, GEORGE) clusters the hidden
representation of a neural network to construct different environments. (Teney et al., 2021)
manually identify variables to stratify pooled collections of training examples into environments.
In the field of label noise robustness, CrossSplit (Kim et al., 2023) and XRM share a similar
approach by training two networks. While XRM relies on confident held-out mistakes to indicate
environment annotation, CrossSplit uses them as indicators of a model’s memorization of noisy
labels.

(v) One important note to the environment discovery methods described above is that they still
require group annotations in a validation set, used for selecting a model with good worst-group-
accuracy. In the complete absence of environment annotations, learning invariant predictors is
an impossible task in its full generality (Lin et al., 2022a; Tan et al., 2023; Chen et al., 2023).
Because we have proposed XRM as an alternative to surmount such daunting task, the next
section provides intuitions to identify success and failure cases of our method.

B WHEN DOES XRM WORK, AND WHEN DOES IT FAIL? (NEWLY ADDED)

The problem of learning invariant predictors in the absence of appropriate environment annotations is
an impossible problem in its full generality (Lin et al., 2022a). In particular, the issue of dividing
data into invariance-affording environments parallels the problem of “controlling for” the right set of
variables to deconfound causal relationships (Pearl, 2009). Researchers in domain generalization and
causal inference both agree that, in order to reveal the true relationship between an input Xinv and a
target Y of interest, one must “control-for” a set of variables E that satisfy

Y ⊥ E | Xinv. (5)

This formula is referred to as the invariance principle in domain generalization (Arjovsky et al.,
2019), where the variable E receives the name of environments. In causal inference, the conditional
independence statement (5) is known as conditional exchangeability, and the variable E receives
the name of valid adjustment set (Pearl, 2009; Hernán and Robins, 2010). As commonly suggested
in clinical trials, one should control-for pre-treatment variables, while discourage to control-for
post-treatment variables. For instance, stratifying based on or controlling for E on data with causal
structure Xinv → Y → E would bias our estimate about the regression coefficient from Xinv to Y .

Different causal structures can produce the same observational data Peters et al. (2017), so identifying
an appropriate E requires knowledge about causal structure—this is why researchers in public policy
and epidemiology spend a lot of time justifying why, for the problem at hand, certain E is a valid
instrumental variable or adjustment set to control-for. Alas, there is no universal recipe to de-confound
a relationship between two variables without admitting extra knowledge about the causal structure
behind our data, and XRM is not an exception of such free lunch.

Therefore, we would expect XRM to work well in instances where the estimated environments E
satisfy the conditional independence statement (5), and we should anticipate trouble in those cases
where the discovered environments violate (5). However, and as discussed in (Lin et al., 2022a),
evaluating (5) requires knowing the invariance-inducing feature Xinv, which is the variable subject
to discovery. This makes assumptions such as (5) difficult to verify in practice when collecting our
environments E, and the best we can do is to offer some canonical examples of successes and failures,
that can guide our choices of when to apply XRM.

So, we exemplify with four different versions of the ColorMNIST dataset (Arjovsky et al., 2019). All
four versions instantiate a colored digit classification task, differing on whether the robust feature is
“digit shape” or “digit color”, and which one of these two variables bear the strongest correlation to
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CMNIST
Arjovsky et al. (2019)

InverseCMNIST
Zhang et al. (2022a)

InverseMCOLOR
(No citation)

MCOLOR
Lin et al. (2022b)

training, e = 1

training, e = 2

training, pooled

testing

S Y C
0.75 0.80

S Y C
0.75 0.90

S Y C
0.75 0.85

S Y C
0.75 0.10

S Y C
0.85 0.70

S Y C
0.85 0.80

S Y C
0.85 0.75

S Y C
0.85 0.10

S Y C
0.750.80

S Y C
0.750.90

S Y C
0.750.85

S Y C
0.750.10

S Y C
0.850.80

S Y C
0.850.70

S Y C
0.850.75

S Y C
0.850.10

inv. feature? complex, weak complex, strong simple, weak simple, strong

ERM 0.37± 0.10 0.67± 0.02 0.75 ± 0.01 0.85 ± 0.01

XRM 0.71 ± 0.02 0.82 ± 0.02 0.40± 0.01 0.57± 0.01

Oracle 0.75 0.85 0.75 0.85

Table 3: Four ColoredMNIST versions, where the environment E influences digit shape S and color
C, forming our input X = (S,C). We depict the causal structure for each dataset version, and
the correlation between variables. The invariant feature may be the complex digit shape (CMNIST
versions) or the simple digit color (MCOLOR versions), which in turn could bear the strongest or
weakest correlation to the target variable—producing four versions of the ColoredMNIST problem.
Note that CMNIST-MCOLOR and InverseCMNIST-InverseMCOLOR are indistinguishable from
pooled training data alone. At the bottom, test accuracies of ERM, XRM+GroupDRO, and an Oracle
which relies solely on the invariant feature.

the target label. Overall, we expect “digit color” to be faster (easier) to learn, leading to generalization
issues when “digit shape”—more difficult and slower to learn—is the desired invariant feature.

We show in table 3 the average-test-accuracy of ERM and XRM followed by GroupDRO for the four
versions of the ColoredMNIST dataset. We also show what a hypothetical oracle, relying solely on
the invariant feature, would achieve. ERM performs well when the invariant feature is the simplest of
the two. XRM performs well when the invariant feature is the most complex of the two. We highlight
that the datasets CMNIST and MCOLOR are observationally equivalent from pooled data alone—and
a similar remark follows for InverseCMNIST and InverseMCOLOR. This echoes the impossibility
results of (Lin et al., 2022a), namely learning invariant predictors in the absence of environment
annotations is impossible in its full generality: for instance, based on training data alone, we would
never know if we are dealing with InverseCMNIST or InverseMCOLOR, and therefore we are at a
loss of whether to apply ERM or XRM. Nevertheless, XRM remains an state-of-the-art solution for
those problems were we would like our learning machine to ignore the fastest-to-learn feature, often
being a spurious shortcut (Geirhos et al., 2020; Shah et al., 2020a; Pezeshki et al., 2021), in order to
focus on more complex patterns with a higher potential for invariance.
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Table 4: The average and worst test test environment accuracies for five datasets in the DOMAINBED
benchmark (Gulrajani and Lopez-Paz, 2020). Three methods are compared: 1) ERM with no
environment annotations, 2) CORAL with human-annotated environments, and 3) CORAL with
XRM-inferred environments. The model selection is done according to the average accuracy over
validation environments.

VLCS PACS OfficeHome TerraInc DomainNet
Method (annotations) Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst

ERM (None) 77.97 64.85 83.35 72.55 65.47 52.25 47.02 34.60 31.69 9.30
CORAL (Human) 77.87 65.00 84.99 77.70 67.74 53.55 48.51 37.15 41.97 13.25
CORAL (XRM) 77.66 66.15 83.81 77.30 67.01 53.90 49.60 38.00 35.87 11.60

C RESULTS ON DOMAINBED (NEWLY ADDED)

Table 4 presents additional domain generalization results on the DOMAINBED benchmark (Gulrajani
and Lopez-Paz, 2020). Experiments compare three settings: ERM without any environment annota-
tions, the CORAL domain generalization algorithm (Sun and Saenko, 2016) with human-annotated
environments, and CORAL with environments discovered by XRM. As a note, CORAL is the best
performing single-model (non-ensembling) method in the DomainBed suite. Results suggest that
the performance when using XRM-inferred annotations is comparable to that of human-annotated
environments.

C.1 FURTHER DETAILS

We adhere to the original codebase from DOMAINBED (Gulrajani and Lopez-Paz, 2020). For
each dataset, we consider hold out each possible environment as the test domain, and train on the
remaining environments. In table 5, we report the results for each environment when selected as the
test environment. Additionally, we report the average and worst environment test accuracies.

In settings without environment annotations (ERM), we combine all training environments and
then split into one training and one validation set. In those cases with annotations, whether human-
annotated or discovered by XRM, each training environment is divided into as many training and
validation sets as the number of environments. For each triplet of (dataset, method, test environment),
we sweep over 16 different hyper-parameter combinations. We perform model selection based on
the average accuracy over the validation environments, which is referred to as the ‘training domain
validation set’ in the DOMAINBED paper. The same procedure is followed for XRM, except that
model selection is done with respect to the flip rate.

D EXPERIMENTAL DETAILS

For the results in table 1, we follow SubpopBench’s experimental protocol (Yang et al., 2023) with
a notable exception: for model selection, we forgo the ’oracle (test-set) model selection’ used in
SubpopBench and instead adhere to the standard practice of utilizing the validation set. Therefore,
image datasets use a pretrained ResNet-50 (He et al., 2016) unless otherwise mentioned, and text
datasets use a pretrained BERT (Devlin et al., 2018). All images are resized and center-cropped
to 224 × 224 pixels, and undergo no data augmentation. We use SGD with momentum 0.9 to
learn from image datasets unless otherwise mentioned, and we employ AdamW (Loshchilov and
Hutter, 2017) with default β1 = 0.9 and β2 = 0.999 for text benchmarks. For the ColorMNIST
experiment (Arjovsky et al., 2019), we train a three-layer fully-connected network with layer sizes
[2 ∗ 14 ∗ 14, 300, 300, 2] and use ReLU as the activation function. The network is optimized using
the Adam optimizer with a learning rate of 1e− 3, and default parameters β1 = 0.9 and β2 = 0.999.
For the experiment on CIFAR-10 (Krizhevsky et al., 2009), we train a VGG-16 model (Simonyan
and Zisserman, 2014) using SGD with a learning rate of 1e − 2 and a momentum of 0.9 We train
XRM and phase-2 algorithms for a number of iterations that allows convergence within a reasonable
compute budget. These are 5,000 steps for Waterbirds and Metashift, 10,000 steps for ImageNetBG,
20,000 steps for MultiNLI, and 30,000 steps for CivilComments.
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Table 5: Results for the DOMAINBED suite.

VLCS C L S V Avg Worst

ERM (None) 96.70 64.85 74.20 76.15 77.97 64.85
CORAL (Human) 97.35 65.00 72.80 76.35 77.87 65.00
CORAL (XRM) 95.55 66.15 72.45 76.50 77.66 66.15

PACS A C P S Avg Worst

ERM (None) 84.65 80.65 95.55 72.55 83.35 72.55
CORAL (Human) 84.90 80.75 96.60 77.70 84.98 77.70
CORAL (XRM) 81.90 77.30 96.90 79.15 83.81 77.30

OfficeHome A C P R Avg Worst

ERM (None) 59.50 52.25 74.15 76.00 65.47 52.25
CORAL (Human) 64.00 53.55 76.15 77.25 67.73 53.55
CORAL (XRM) 61.80 53.90 74.85 77.50 67.01 53.90

TerraIncognita L100 L38 L43 L46 Avg Worst

ERM (None) 54.80 42.30 56.40 34.60 47.02 34.60
CORAL (Human) 58.20 39.25 59.45 37.15 48.51 37.15
CORAL (XRM) 59.20 45.10 56.10 38.00 49.60 38.00

DomainNet clip info paint quick real sketch Avg Worst

ERM (None) 47.40 14.75 37.45 9.30 42.10 39.15 31.69 9.30
CORAL (Human) 60.05 20.25 47.90 13.25 59.95 50.45 41.97 13.25
CORAL (XRM) 50.40 16.80 42.30 11.60 50.40 43.70 35.87 11.60
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D.1 PHASE-1 XRM MODEL SELECTION

For phase-1, we run XRM with 16 random combinations of hyper-parameters, each over k1 = 10
random seeds. (We repeat runs with null accuracy on one of the classes.) For each of the 16 hyper-
parameter combinations, we average the number of flipped labels appearing at the last iteration
(early-stopping is not necessary with XRM) across the 10 seeds. This will tell us which one of the 16
hyper-parameter combinations is best. For that combination, we average the training and validation
logit matrices across the 10 random seeds. Finally, we discover environments using equation (4).

D.2 PHASE-2 DG MODEL SELECTION

For all phase-2 domain generalization algorithms (ERM, SUBG, RWG, GroupDRO), we search
over 16 random combinations of hyper-parameters. We select the hyper-parameter combination
and early-stopping iteration yielding maximal worst-group-accuracy (or, in the absence of groups,
worst-class-accuracy). We re-run the best hyper-parameter combination for k2 = 10 random seeds
to report avg/std for test worst-group-accuracies (always computed with respect to the ground-truth
group annotations). The k1 random seeds from phase-1 do not contribute to error bars.

D.3 HYPER-PARAMETER SAMPLING GRIDS

algorithm hyper-parameter ResNet BERT

learning rate 10Uniform(−4,−2) 10Uniform(−5.5,−4)

XRM, ERM, weight decay 10Uniform(−6,−3) 10Uniform(−6,−3)

SUBG, RWG batch size 2Uniform(6,7) 2Uniform(3,5.5)

dropout — Random([0, 0.1, 0.5])

GroupDRO η 10Uniform(−3,−1) 10Uniform(−3,−1)

E LEARNING TO SPLIT ON WATERBIRDS

We benchmarked the official learning to split code-base https://github.com/YujiaBao/ls
on the WaterBirds dataset. We assessed the method’s sensitivity to two hyperparameters: the number
of epochs used for early stopping (patience argument in the codebase) and the pre-supposed ratio
of groups (based on the ratio argument in the code). For patience we swept over (2, 5, 10) with
5 being the default value. For ratio, we swept over (0.25, 0.5, 0.75) with 0.75 being the default
value based on the paper. We found worst group performance using a fixed GroupDRO phase-2
training varied by as much as ±7% on Waterbirds.

F EXPERIMENTAL RESULTS WITH ERROR BARS

ERM GroupDRO RWG SUBG
None Human XRM None Human XRM None Human XRM None Human XRM

Waterbirds 70.4 ±2.99 76.1 ±2.37 75.3 ±1.96 71.7 ±4.09 88.0 ±2.61 86.1 ±1.28 74.8 ±2.50 87.0 ±1.63 84.5 ±1.53 73.0 ±2.75 86.7 ±1.00 76.3 ±8.41

CelebA 62.7 ±2.73 71.9 ±3.48 67.6 ±3.48 68.8 ±1.29 89.1 ±1.67 89.8 ±1.39 70.7 ±1.32 89.5 ±1.45 88.0 ±2.56 68.5 ±2.13 87.1 ±2.70 87.5 ±2.54

MultiNLI 54.8 ±4.04 65.3 ±3.02 65.8 ±3.41 69.7 ±2.65 76.1 ±1.29 74.3 ±1.88 69.3 ±1.77 71.1 ±1.60 73.3 ±1.56 53.7 ±2.97 72.8 ±0.66 71.3 ±1.58

CivilComments 55.1 ±3.46 59.7 ±5.77 61.4 ±4.48 59.3 ±2.05 69.3 ±2.32 71.3 ±1.35 54.0 ±4.58 65.8 ±6.30 73.4 ±0.93 58.7 ±2.56 64.0 ±7.63 72.9 ±1.12

ColorMNIST 10.1 ±0.51 10.1 ±2.40 26.9 ±2.27 10.0 ±0.51 10.1 ±2.37 70.5 ±0.98 10.1 ±0.51 10.2 ±1.85 70.2 ±1.00 10.1 ±0.51 10.0 ±2.21 70.8 ±1.09

MetaShift 70.8 ±2.99 67.7 ±4.62 71.2 ±3.95 70.8 ±3.91 73.7 ±4.42 71.2 ±4.81 66.5 ±4.55 70.8 ±4.45 69.7 ±4.86 70.0 ±3.38 73.5 ±3.49 69.2 ±5.58

ImagenetBG 75.6 ±3.04 76.9 ±1.89 76.9 ±1.93 73.0 ±3.43 76.1 ±1.40 75.9 ±1.69 76.9 ±2.42 76.5 ±2.65 77.0 ±2.66 75.0 ±3.55 75.0 ±3.55 76.4 ±1.79
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G XRM IN PYTORCH

1 import torch
2

3 def balanced_cross_entropy(p, y):
4 losses = torch.nn.functional.cross_entropy(p, y, reduction="none")
5 return sum([losses[y == yi].mean() for yi in y.unique()])
6

7 def xrm(x_tr, y_tr, x_va, y_va, lr=1e-2, max_iters=1000):
8 # init twins, assign examples, and calibrate (Section 4.1)
9 nc = len(y_tr.unique())

10 net_a = torch.nn.Linear(x_tr.size(1), nc)
11 net_b = torch.nn.Linear(x_tr.size(1), nc)
12 ind_a = torch.zeros(len(x_tr), 1).bernoulli_(0.5).long()
13

14 # Platt temperature scaling
15 temp_a = torch.nn.Parameter(torch.ones(1, nc))
16 temp_b = torch.nn.Parameter(torch.ones(1, nc))
17 logits_a = net_a(x_tr).detach()
18 logits_b = net_b(x_tr).detach()
19 cal = torch.optim.SGD([temp_a, temp_b], lr)
20

21 for iteration in range(max_iters):
22 logits = logits_a / temp_a * ind_a + logits_b / temp_b * (1 - ind_a)
23 cal.zero_grad()
24 balanced_cross_entropy(logits, y_tr).backward()
25 cal.step()
26

27 net_a.weight.data.div_(temp_a.t().detach())
28 net_b.weight.data.div_(temp_b.t().detach())
29

30 # training (Section 4.2)
31 opt = torch.optim.SGD(
32 list(net_a.parameters()) + list(net_b.parameters()), lr)
33

34 for iteration in range(max_iters):
35 pred_a, pred_b = net_a(x_tr), net_b(x_tr)
36 pred_hi = pred_a * ind_a + pred_b * (1 - ind_a)
37 pred_ho = pred_a * (1 - ind_a) + pred_b * ind_a
38

39 opt.zero_grad()
40 balanced_cross_entropy(pred_hi, y_tr).backward()
41 opt.step()
42

43 # label flipping, useful for model selection (Section 4.3)
44 p_ho, y_ho = pred_ho.softmax(dim=1).detach().max(1)
45 is_flip = torch.bernoulli((p_ho - 1 / nc) * nc / (nc - 1)).long()
46 y_tr = is_flip * y_ho + (1 - is_flip) * y_tr
47

48 # environment discovery (Section 4.4)
49 cm = lambda x, y: torch.logical_or(
50 net_a(x).argmax(1).ne(y),
51 net_b(x).argmax(1).ne(y)).long().detach()
52

53 return cm(x_tr, y_tr), cm(x_va, y_va)

The code above may be helpful to clarify our exposition in the main text. For an end-to-end example
running linear XRM and GroupDRO, see: https://pastebin.com/0w6gsxQw.
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