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ABSTRACT

Finetuning language models for a new domain inevitably leads to the deterioration
of their general performance. This becomes more pronounced the more limited the
finetuning data resource.
We introduce minifinetuning (MFT), a method for language model domain adap-
tation that considerably reduces the effects of overfitting-induced degeneraliza-
tion in low-data settings and which does so in the absence of any pre-training
data for replay. MFT demonstrates 2-10x more favourable specialization-to-
degeneralization ratios than standard finetuning across a wide range of models
and domains and exhibits an intrinsic robustness to overfitting when data in the
new domain is scarce and down to as little as 500 samples.
Employing corrective self-distillation that is individualized on the sample level,
MFT outperforms parameter-efficient finetuning methods, demonstrates replay-
like forgetting mitigation properties, and is composable with either for a combined
effect.

1 INTRODUCTION

Finetuning (FT) as a method for specializing models for new domains remains to be the dominant
approach for reliable language model customization despite its relative maturity in the field (Liu
et al., 2022). However, FT on a limited data budget can also lead to catastrophic forgetting that hin-
ders model performance on the general domain (Kumar et al., 2022). This is illustrated in Figure 1,
which plots specialization (improvement on the specialized domain) and degeneralization (detriment
on the general domain) in terms of test perplexities for various data budgets throughout the process.

Figure 1: The specialization-degeneralization dynamics of domain adaptation finetuning computed
as fractions of starting perplexity for various token budgets (1-8M) on PubMed corpus throughout
1K-step finetuning. Left. A joint visualization of specialization (% relative perplexity decrease on
specialized domain) and degeneralization (% relative perplexity increase on the general domain)
throughout a FT (4M) training instance. Middle. Degeneralization when using traditional hard-label
finetuning. Right. Minifinetuning exhibits nine-fold lower levels of degeneralization consistently
across all budgets.
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There are two common remedies to the issue of finetuning-induced degeneralization. Replay stems
from the classical literature on continual learning of neural networks (Sun et al., 2020; Peng et al.,
2024; Shi et al., 2024) and consists of the re-introduction of some of the pre-training samples during
FT. This requires access to pre-training (or equivalent) data and leads to a considerable increase in
the compute budget. Moreover, generalist language models tend to come already finetuned for a
wide range of tasks, and crude replay on the approximate distribution of the pre-training data risks
tipping the carefully honed balance of changes introduced by post-training refinements (Dubey et al.,
2024). Parameter-efficient finetuning (PEFT) is a more recent class of techniques conceived with the
aim of reducing the computational and memory requirements for LLM finetuning (Houlsby et al.,
2019; Hu et al., 2021; Liu et al., 2022; 2024). While the computational savings are the main benefit,
PEFT methods also impose an often-tight constraint on the amount of representational power avail-
able for the model’s adaptation to the new domain as a side effect. This acts as a natural backstop
against model overfitting on the FT data (since the trainable representation capacity is insufficient to
overwrite too much of the pre-trained knowledge), but being at a distance from the training process,
it does not in any way guarantee that any amount of previous knowledge will be preserved. This
can be fatally detrimental to generation, which in the longer span rests on entire sequences of tokens
being predicted appropriately for the context. Marginal methods such as parameter ensembles and
averaging or tailored adjustments to the optimization process also exist (Lin et al., 2024; Parmar
et al., 2024).

Given the known shortfalls of the above remedies, it is desirable to have a technique that relies
neither on modifications to the model nor on external data, but is largely independent and could be
combined with them for an even better outcome. To this end, we introduce minifinetuning (MFT),
which affects solely the finetuning training objective. At the heart of MFT is the construction of
a per-token individualized, corrected distribution that combines the predicted distribution of the
original model before finetuning and the ground truth token label of the finetuning data, but only to
an extent that is not too destructive to the general knowledge of the model. Thoroughly ablating for
every component of the distribution correction process, we find that “moving the goal posts” in the
form of correcting the original unfinetuned model prediction towards the ground truth individually
for every token is necessary for the model to improve by finetuning without significant detriment to
the model’s knowledge.

Property Method

FT Replay LoRA DoRA IA3 MFT (ours)

specialization (S) ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
degeneralization (DG) ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆

designed to mitigate DG ✗ ✓ ✗ ✗ ✗ ✓
controllable DG-S trade-off ✗ ✓ ✓ ✓ ✗ ✓

original data not required ✓ ✗ ✓ ✓ ✓ ✓

Table 1: A qualitative comparison of available methods for LM low-data domain adaptation tuning.
Replay (Sun et al., 2020), LoRA (Hu et al., 2021), DoRA (Liu et al., 2024), and IA3 (Liu et al.,
2022) have been proposed by previous work.

MFT effectively amounts to algorithmically controlled adaptive self-distillation, in which a copy of
the unfinetuned model acts as a teacher, the MFT corrective formula acts as an automated negotiator
of teacher’s knowledge with the incoming finetuning data, and the model under finetuning acts as a
student (cf. Figure 4). In this sense, it is the teacher’s predictions that act as the anchor preventing
distant deviations from the pre-training data by communicating a compressed replacement for replay
data in the form of soft labels.

We focus exclusively on generative language model adaptation for language generation on a new,
specialized domain (e.g. a company knowledge base or literary works of one author), and do not
examine cases in which the model undergoes FT for particular tasks or abilities (e.g. translation,
summarization, reasoning). These cases, although too potential beneficiaries of minifinetuning, are
not studied. Further, we consider domain adaptation finetuning to operate in low-data regime if the
total data available is around or less than the amount of tokens in one batch used to pre-train the
given model – usually in the order of millions for small- and medium-sized models – and firmly
out of reach of in-context learning methods for such models. Such scenarios arise when tuning a
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language model for a low-resource language (Cruz & Cheng, 2019), domain-specific terminology
adaptation (Jeong, 2024), or language style transfer (Wang et al., 2019). In our experiments, we
consider data budgets between 500 and 4000 full-text samples, corresponding to 1-8M tokens of
text.

Contributions.

• We introduce MFT, a method for adapting models to new domains that exhibits markedly
better trade-offs between forgetting of general domain and learning of specialized domain
in low data settings (Section 2). MFT dwells in the modification of the training objective
and is freely composable with existing dataset- and model-oriented methods that share this
aim.

• We demonstrate the benefits of using MFT across a wide range of models and domains,
evaluating MFT both in comparison to and in combination with replay and PEFT methods
and showing 2-10x improvement in terms of the degeneralization-specialization trade-off
(Section 3).

• We perform a thorough incremental ablation for each component of the MFT algorithm,
demonstrating the necessity of the final formula (Section 4).

• We examine the response of FT/MFT finetuning to lowering data budgets, showing the
eminent desirability of MFT over FT in low-data scenarios (Section 5).

The paper concludes with comparisons to related work and a discussion of limitations.

2 MINIFINETUNING

MFT consists of two components: (i) a self-distillation teacher-student setup; and (ii) a distribution
correction formula DC (⋅).

Algorithm 1: MFT training loop.
Input: dataset D, frozen teacher model T ,

trainable student model S
Output: minifinetuned student model S

for batch B from D do
pT , pS ← T (B) , S (B)

pC ← DC (pT )

ℓ← CROSSENTROPY (pS , pC)
BACKWARD (ℓ, S)
STEP (S)

end

Self-distillation setup. Before commencing
training, an identical clone – the teacher –
of the model to undergo MFT – the student
– is created. One then proceeds to iterate
through the provided data. For each batch,
teacher/student forward passes are performed
to find the teacher/student distributions. The
teacher distribution is corrected according to
the MFT distribution correction formula. The
cross-entropy loss between the corrected distri-
bution and the student distribution is computed,
a backward pass is performed, and the weights
are updated. See Algorithm 1. The training
continues reusing data if needed until the termi-
nation by the user. This might be due to achiev-
ing the desired level of specialization or exceeding the maximum level of degeneralization permitted.

Distribution correction. The distribution correction is performed individually for every token in
every sample in the batch. Given a token position in a sample, let l be the ground truth label (token
vocabulary index), pT be the teacher distribution, and let 1i be the one-hot distribution concentrated
at i. Denote the i-th element of a distribution p by pi.

If argmax pT ≠ l, we want to make the minimal adjustment to the information of pT such that its
most likely token becomes l by some chosen target margin τ . We formulate the “minimal adjust-
ment” as follows: We want a new distribution pC whose argmax is l, whose argmax is separated
in this new distribution from the previous (incorrect) argmax by a target correction τ , and whose
ratios of probabilities for every possible token pair except of l-pairs is preserved. This is easy to
achieve: uniformly scale down the entire vector pT and add weight at pTl so that pCl is separated
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from pTargmax pT by exactly τ . Formally, we want

pC = (1 − α)pT + α1l

where α is a scaling factor such that

(1 − α)pTl + α1 = (1 − α)p
T
argmax pT + τ.

Solving for α, we get

α =
pTargmax pT − p

T
l + τ

1 + pTargmax pT − p
T
l

.

If argmax pT = l, we want the probability of the token l to improve as much as possible, but still be
related to the previous (albeit correct) distribution. We therefore simply find a scaling factor β such
that pCl =min (1, pTl + τ). This is at

β =
min (1, pTl + τ) − p

T
l

1 − pTl

We define the distribution correction function

DC (pT ) = {
(1 − α)pT + α1l if argmax pT ≠ l

(1 − β)pT + β1l otherwise.

Observe that if τ = 1 then α,β = 1 and this effectively reduces MFT to traditional finetuning. An
illustration of the effect of the distribution correction is given in Figure 5, and the effect of τ is
experimentally analyzed in Section 3.3 and Appendix F.

Training cost. In the most general setting, MFT requires two forward passes instead of one be-
cause of the addition of the teacher forward pass. Likewise, the memory required to store the model
weights doubles when changing from FT to MFT. However, while twice the amount of memory
is needed to store all parameters, the total training memory footprint is far from doubled. This is
because the number of trainable parameters remains the same, and the main driver for the memory
footprint is the optimizer state and is as much as 12 bytes (3-6x the parameter footprint) for Adam in
mixed-precision (Rajbhandari et al., 2020). Furthermore, PEFT methods such as LoRA, DoRA, or
IA3 (Hu et al., 2021; Liu et al., 2024; 2022) preserve original model parameters and thus duplicat-
ing model weights can be avoided when MFT is used, although two separate forward passes remain
necessary.

3 EVALUATION

3.1 METHODOLOGY

We compare MFT to FT across a range of models on several domain-specialized datasets, and in
combination with both replay and various PEFT methods.

Models. The general evaluation is performed on OpenELM 270M, OpenELM 450M, and
OpenELM 1.1B (Mehta et al., 2024). These models all share the same tokenizer, the same pre-
training recipe and datasets, and have undergone the same post-training adjustments. Keeping these
factors constant allows us to examine the impact of model size on the FT/MFT effectiveness. Ex-
tended results for the GPT-Neo family (125M, 1.3B, 2.7B) (Black et al., 2021), Phi-1.5 and Phi-2
(1.3B, 2.7B) (Gunasekar et al., 2023; Abdin et al., 2024), Gemma 2B (Gemma Team et al., 2024),
Minitron 4B (Muralidharan et al., 2024), and LLaMA 2 7B (Touvron et al., 2023) are listed in
Appendices D and H.

Data. To test on three different specialized domains, we employ: (i) PMC Open Access Subset
representing the medical domain (Bethesda, 2024); (ii) Pile of Law (Henderson et al., 2022); and
(iii) OpenWebMath (Paster et al., 2023). To keep track of the model understanding of the general
domain, we use OpenWebText (Gokaslan & Cohen, 2019), which we found not to result in any
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significant distribution shift when preparing reference checkpoints (cf. Process). From each dataset
we split off 0.5M-token worth of documents for validation and always use the same 4M-token worth
of documents for training. The data frugality is intentional (cf. Section 1); note that the entire dataset
is as big as a single batch of data used in LLaMa 2 pre-training (Touvron et al., 2023). We train on
2048-token sequences.

Baselines. Baseline FT is performed with no additional adjustments. When considering replay
without further context, we design the experiments so that each batch contains 50% samples from
the general domain and 50% samples from the specialized domain. From among the popular LM
PEFT methods, we consider LoRA, DoRA, and IA3 (Hu et al., 2021; Liu et al., 2022; 2024), and
where no further detail is given, the LoRA/DoRA rank is taken to be 8 and applied to all attention
and MLP projections in the model.

Process. For each model, we first prepare a reference checkpoint lightly tuned on OpenWebText
on at most 4M unique tokens and choose the checkpoint with the least validation perplexity. We
note that this process often converges very quickly and before the data budget is reached, as the
language models considered also tend to come from pre-training on general text (i.e. text not spe-
cific to any single domain). Then, for each model, each specialized-domain dataset, and each na-
tive/replay/PEFT method, we train two models, one utilizing classical FT and one with MFT. To
report the results, we choose the checkpoint with least validation perplexity on the specialized do-
main. Each model is trained for 1000 steps with batch size 16, resulting in 32M tokens being seen
during the course of training. With the training dataset fixed at 4M tokens, each context is seen 8
times on average by the end of the training, giving models ample opportunity to absorb the informa-
tion and begin to overfit if prone to do so. For MFT training, we fix τ = 0.25.

Metrics. We measure the relative decrease in validation perplexity on the specialized domain
(“specialization”, S), the relative increase in validation perplexity on the general domain (“degen-
eralization”, DG), the ratio of the two relative changes in perplexity (= DG/S). Ideally, a good
finetuning method would lead to high values of specialization S, low values of degeneralization
DG, and by extension a low DG/S ratio.

3.2 GENERAL EVALUATION

The results of the general evaluation carried according to the methodology set in Section 3.1 are
given in Table 5 and elaborated on in Table 4. Extended results for more models are given in
Table 6. As a general rule, all comparisons are performed with only the method changing and with
all other things being kept equal. We observe a clear, regular pattern across all datasets and models
that puts traditional FT as the winner in terms of the specialization ability but simultaneously shows
MFT as the method leading to less degeneralization and much more favourable degeneralization-to-
specialization ratios. We summarize our observations as follows:

FT leads to more specialization than MFT. Models trained using the traditional FT procedure
show 25-35% higher levels of specialization over MFT in terms of relative perplexity improvement
on specialized domains.

MFT causes significantly less degeneralization than FT. FT exhibits between three- and fifteen-
fold increases in relative perplexity detriment on the general domain as a consequence. This is best
captured by the DG/S ratio, which is 2-4x more favourable for MFT across the setup.

Replay excels at degeneralization mitigation. Across the board, we observe a 5-12x reduction in
degeneralization when using replay and when compared to FT. Recall, however, that replay has an
unfair advantage over other contenders, as it has access to (pre-training) samples that other methods
do not see.

MFT outperforms LoRA and DoRA. We see that across datasets and various model sizes, MFT
outperforms LoRA and DoRA in terms of both higher specialization ability and lower degeneraliza-
tion. Even where it performs roughly on-par in terms of specialization, it still exhibits lower levels
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Model Method Dataset

PubMed Pile of Law OpenWebMath

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓

O
pe

nE
L

M
27

0M
FT (baseline) 10.9 1.0 0.09 14.5 1.2 0.08 2.7 0.5 0.19
LoRA 8.5 1.7 0.20 10.5 1.5 0.14 2.1 0.9 0.45
DoRA 8.5 1.7 0.19 10.5 1.4 0.14 2.1 0.9 0.44
IA3 0.9 0.0 0.03 1.3 0.1 0.07 0.3 0.0 0.06
MFT (ours) 8.5 0.3 0.03 11.5 0.3 0.03 2.1 0.1 0.05
Replay 8.6 0.1 0.01 11.7 0.1 0.01 2.2 0.1 0.04

O
pe

nE
L

M
45

0M

FT (baseline) 10.1 0.7 0.07 16.2 0.9 0.05 3.0 0.5 0.16
LoRA 8.4 1.3 0.16 11.0 1.1 0.10 2.2 0.9 0.40
DoRA 8.2 1.2 0.15 11.1 1.1 0.10 2.4 1.0 0.41
IA3 0.8 0.0 0.04 2.1 0.0 0.06 0.3 0.0 0.12
MFT (ours) 8.4 0.3 0.04 12.9 0.3 0.02 2.3 0.2 0.07
Replay 8.6 0.1 0.01 13.6 0.1 0.01 2.6 0.0 0.02

O
pe

nE
L

M
1.

1B FT (baseline) 9.3 0.7 0.07 16.9 0.9 0.05 3.5 0.5 0.14
LoRA 8.2 1.6 0.20 9.8 1.3 0.14 2.3 0.8 0.35
DoRA 8.2 1.6 0.20 9.8 1.3 0.13 2.3 0.8 0.36
IA3 0.6 0.0 0.05 1.3 0.0 0.08 0.3 0.0 0.16
MFT (ours) 8.2 0.2 0.03 13.6 0.3 0.02 2.6 0.1 0.03
Replay 8.4 0.1 0.01 14.5 0.1 0.01 3.0 0.0 0.00

Table 2: General evaluation of MFT (τ = 0.25) across models of increasing size, various degener-
alization mitigation techniques, and different specialized-domain datasets. S, DG, and DG/S ratio
are as in Section 3.1. S,DG are reported in percentages, DG/S is reported as a fraction. Emphasis
marks the best value (highest for S; least for DG, ratio) for experiments that do not use general
domain (pre-training) data, while emphasis marks the best value that was achieved only with the
help of such data. Replay is further fenced out to highlight its access to pre-training data, in contrast
to other methods. An extension of this table including results for method compositions is given in
Appendix C. See the emphasized paragraphs of ??

of degeneralization. An outlier to this trend on PEFT methods is IA3, which is conceptually dif-
ferent from LoRA/DoRA, injects much fewer learnable parameters into the model for training, and
leads to both lower levels of specialization and degeneralization. We give a deeper analysis of the
relationship between MFT and PEFT methods in Section 3.4.

MFT can be composed with replay and PEFT methods. The method composition results are
given in Table 4. We observe that MFT can be composed with both replay and PEFT methods for
a compound effect. This usually results in lower levels of specialization but also even lower levels
of degeneralization. We note by composing two or more of these methods, one can leverage both
the lower memory cost of PEFT methods and the lower degeneralization impact of finetuning due to
replay and MFT.

The existence of the prevailing pattern and the overall favourability of the MFT ratios is well-aligned
with the motivation and design goals of MFT, but it highlights the existence of a specialization-
degeneralization trade-off: FT will lead to a model better adapted to the target low-resource special-
ized domain, but it will be at a cost of more degeneralization when compared to MFT. Fortunately,
by the design of MFT, one can control the extent to which this trade-off applies by adjusting the
target correction parameter τ . We elaborate on this in Sections 3.3 and 3.4.

3.3 RELATIONSHIP TO REPLAY

In Section 2 we motivate the use of the unfinetuned model’s logits as an “anchor” for the model
to help it remain close to the general domain while specializing. The soft labels produced by the
unfinetuned model act as highly compressed replay samples, where by providing the conditional
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Figure 2: MFT of increasing target τ set against replay of increasing new data fraction ν and DoRA
of increasing rank ρ. ν = τ = 1 corresponds to standard finetuning as is marked with ⧫, ρ = 1
corresponds to DoRA rank 200. Left. Degeneralization plotted against specialization for different
methods. DoRA displays clearly less favourable trade-off between DG and S across all ranks and
when compared to all targets and new data fractions. Replay exhibits slightly better trade-off than
MFT, but requires the presence of general domain data, which is not always available. Right. The
DG/S ratio plotted for increasing new data fraction, MFT target, and DoRA rank. Replay, MFT, and
DoRA display the best ratios, in this order, where MFT and DoRA again compete at the disadvantage
of not using general domain data.

probabilities for the next token one communicates a distilled next-token distribution of the general
domain. This mitigates degeneralization without requiring access to the pre-training data.

Another similarity to replay offers itself in the form of the target correction parameter τ . Just like
the new data fraction ν ∈ [0,1] controls the amount of new data from the specialized domain to
be introduced in proportion to replay data from the general domain τ ∈ [0,1] controls how much
of the probability mass is to be reserved for the correction based on new data at the expense of the
probability mass of the unfinetuned (teacher) model’s token distribution soft labels. Observe that τ
moves in the same direction as the new data fraction and that the replay fraction moves as 1 − τ .

We therefore run experiments for different values of ν and τ and measure their effect on specializa-
tion and degeneralization performance of the most specialized checkpoint. We follow the method-
ology of Section 3.1 but focus on OpenELM 1.1B and the Pile of Law dataset. The results of our
experimentation are plotted in Figure 2. Additional experiments analyzing the effects of the new
data fraction, MFT target τ , and rank in detail were run in Appendices E to G, respectively.

We find that MFT of increasing target behaves in a vague similarity to FT aided by replay with
increasing proportion of new data being shown to the model. While we observe that MFT leads to
slightly higher levels of degeneralization, the difference is marginal (comp. Table 5), and this close
adherence to replay behaviour is achieved in total absence of replay data. We conclude that the
MFT mechanism of reusing soft labels of the unfinetuned teacher successfully helps to mimic the
degeneralization mitigation of replay without relying on availability of the original training data.

3.4 RELATIONSHIP TO PEFT

In Section 1 we note that it is popular practice to use PEFT methods both for decreasing the mem-
ory/computational requirements of finetuning and for the mitigation of degeneralization, the latter
appearing as a convenient side-effect of the reduction of the number of trainable parameters.

But how do PEFT methods fare against MFT in terms of specialization and degeneralization of the
tuned models? We compare MFT to DoRA (Liu et al., 2024). DoRA has been recently shown to
affect the weights of the resulting model less than the standard LoRA approach, meaning that it is
positioned more favourably with respect to the design goals of MFT. The comparison is performed
by running experiments for different values of rank (reported as relative rank ρ = r/200) and target
τ , and we measure the effect of the two methods in different configurations on specialization and
degeneralization performance of the most-specialized checkpoint.
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We follow the methodology of Section 3.1 but focus on OpenELM 1.1B and the Pile of Law dataset.
The results of our experimentation are plotted in Figure 2. Detailed result listings and extended
experimentation are reported in Appendix H.

We find that MFT outperforms DoRA for all ranks and sufficiently large target value τ in terms of
specialization. Furthermore, for all ranks and targets, DoRA exhibits higher values of degeneraliza-
tion than MFT, resulting in larger final DG/S ratios. We conclude that MFT is consistently more
robust to degeneralization than DoRA and outperforms DoRA in terms of specialization for suffi-
ciently high values of τ while still causing lower levels of degeneralization. We therefore submit
MFT as a replacement for DoRA in low-data scenarios.

4 ABLATION STUDY

MFT introduces a distinction between outputs whose argmax agrees with the token ground truth
label (i.e. the correct predictions or correct prediction distributions) and those outputs for which this
is not the case (incorrect predictions) and that thus require a correction (cf. Section 2). With this
dichotomy in mind, we can consider an incremental sequence of four relevant methods.

Finetuning. This is the standard finetuning approach. The distribution of the finetuned model is
trained against the one-hot target distribution of the ground truth regardless of whether the unfine-
tuned model prediction distribution for a given token is correct with respect to the ground truth.

Distillation & corrective finetuning on incorrect tokens. One can require that the model keeps its
original (unfinetuned) distribution on inputs where it produces the correct prediction distributions,
and learns the ground truth label only on those tokens where it produces incorrect prediction distri-
butions. This can be realized by training the model to distill the unfinetuned model on the correct
tokens and learn the one-hot distributions on inputs leading to incorrect predictions as in FT. In this
manner, the prediction distributions of the unfinetuned model are to serve as a form of anchoring
preventing a destructive distribution shift from the original to the new domain.

Distillation & corrective distillation on incorrect tokens. Moving one step further on the above
method, one can insist that the incorrect distributions are first corrected and then passed to the
model in place of the ground truth one-hot distributions. This behaviour can be achieved by fixing
β = 0 in the distribution correction formula DC (pT ) (cf. Section 2). With the corrections to the
training target affecting only the targets where the unfinetuned model predictions are incorrect, one
can speak of singly-corrective distillation.

Corrective distillation on both correct and incorrect tokens – Minifinetuning. This is our method,
outlined in detail in Section 2. Given that the target distributions for both the correct and incorrect
predictions is threshold-adjusted (leading to the scaling factors α,β in DC (pT )), we may think of
MFT as of doubly-corrective distillation.

We perform incremental ablation, which includes the measurement of performance of the two meth-
ods more complex than the baseline FT but less complex than MFT. We mirror the setup of Section 3
but restrict our ablation to the Pile of Law and smaller models of the OpenELM family. The results
are listed in Table 3, and we make a number of observations.

Method Model

OpenELM 270M OpenELM 450M OpenELM 1.1B

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓

finetuning (FT) 14.5 1.2 0.08 16.2 0.9 0.05 16.9 0.9 0.05

+ distillation 10.1 1.4 0.14 10.0 1.1 0.11 10.8 1.1 0.10
+ partial correction 9.7 0.5 0.05 11.1 0.4 0.04 11.9 0.5 0.04
+ full correction (MFT) 11.5 0.3 0.03 12.9 0.3 0.02 13.6 0.3 0.02

Table 3: Incremental ablation of MFT; metrics computed as in Table 5. Emphasis marks the best
overall performance. See the emphasized paragraphs of Section 4 for interpretation.
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MFT outperforms its peers. Consistently with Table 5, we find that FT performs the best in terms
of the relative specialized-domain perplexity improvement, and MFT performs the best in terms of
the relative general-domain perplexity detriment and the DG/S ratio.

Corrective finetuning hurts models the most. We observe that the naive combination of distilla-
tion on correct predictions and standard finetuning on incorrect predictions leads to even worse ratio
performance than the standard FT alone, exhibiting smaller specialization than both FT and MFT
and worse degeneralization than FT. The DG/S ratios for this method are the smallest among all
the methods.

Single correction is not enough. We find that the combination of untouched distillation and cor-
rective distillation on incorrect predictions performs better than corrective finetuning but still worse
than MFT.

In sum, the poor performance of corrective finetuning justifies the inclusion of some form of dis-
tribution correction to MFT, and the worse-than-MFT performance of singly-corrective distillation
justifies the double correction, i.e. the correction of both the correct and incorrect model predictions
as seen in MFT.

5 RESPONSE TO DATA SCARCITY

We examine and compare the responses of FT and MFT to falling data budgets by tracking the lev-
els of specialization, degeneralization, and degeneralization-specialization ratio throughout training
instances of each methods. For setup, we follow the recipe in Section 3.1 and narrow the scope
to the response of OpenELM 270M on PMC Open Access dataset. All metrics are measured on
appropriate validation splits. The experimentation is visualized in Figure 3.

Figure 3: Top/Bottom. Response of FT/MFT to different level of data scarcity. 1M-8M token
budgets correspond to 500-4000 sample budgets as per the setup of Section 3.1.

On the outset, we observe that MFT and FT both exhibit decreases of perplexity on the specialized
domain in the same order of magnitude but differ by a full order of magnitude in the increases in
perplexity on the general domain. Inspecting the individual series for different budgets, we observe
that FT results in overfitting on the specialized domain much more readily than MFT. In the case of
1M-token data budget, FT even results in worse-than-initial performance on the specialized domain
after just a few hundred steps. Meanwhile, MFT appears to be naturally restrained from such exces-
sive overfitting and manages to keep some level of improvement on the specialized domain by the
end of the training for all data budgets.

9
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In sum, MFT demonstrates much higher robustness to destructive levels of overfitting throughout
the training in comparison to FT while delivering slightly weaker specialization.

6 RELATED WORK

Domain adaptation. Previous work on language model domain adaptation recognizes the inherent
parameter-sharing behaviour (Chronopoulou et al., 2021) and domain-mixing representation entan-
glement (Li et al., 2020) arising from continued model training on a specialized domain. These
are then made use of by separating domain-specific parameters and decomposing representations,
respectively, or countered by adversarial training objective adjustments (Vu et al., 2020) in order to
achieve greater inference efficiency or predictive performance. All of this work, however, implicitly
assumes that a sufficient data mass is available for the new domain and does not concern itself with
the severe consequences of tuning when data is scarce.

Low-resource domain adaptation. Recent studies addressing the problem of low-resource domain
adaptation in language modeling (Diao et al., 2021; Huang et al., 2023) make use of full-scale meta-
models wrapping around the original language models in order to aid their language understanding
or generation abilities. This is in contrast with our method, which still focuses on adapting the
original model as a monolith. Moreover, the definition of a “low-resource” setting varies, with Diao
et al. (2021); Chen et al. (2023) considering order(s) of magnitude larger data budgets than ours to
already fall into this category, even though the methods might themselves resort to data filtering to
bolster efficiency gains. To the best of our knowledge, no previous work examines the problem of
model adaptation through directly tuning on scarce data.

Parameter-efficient FT. As detailed in Section 1, PEFT methods have been observed to act as
a natural backstop to model overfitting due to the limited representational power they lend to the
process of finetuning. This property has seen use in low-resource settings (Su et al., 2024; Zhang
et al., 2024), though the studies generally observe varying degrees of success across different and
differently-configured PEFT methods. In contrast, MFT behaves consistently across entire families
of models (cf. Section 3.2) and applications of PEFT methods (cf. Section 3.4), and acts as a flexible
complementary technique.

Self-distillative FT. A recent work proposes to leverage hard-label self-distillation for instruction
data augmentation in order to reduce distribution shift introduced by post-training instruction tuning
(Yang et al., 2024). While closely related to MFT in its goals, the work takes an ahead-of-time
generative data-augmentation approach rather than the on-the-fly soft-label distillation approach
taken by us, and is tailored to work on chat-style instruction datasets that are an order of magnitude
larger.

7 LIMITATIONS

Model tuning for instruction following. We do not adjust for nor test our method in its present form
on instruction tuning datasets. This is because the most effective instruction tuning post-training
routines already come carefully configured and tend to operate on larger blends of post-training data
that make them fall outside the category of low-resource FT (Gemma Team et al., 2024; Dubey et al.,
2024). Nevertheless, we recognize this direction as a natural avenue for a broader application of our
method.

Transferring task performance to specialized domains. Conversely to the above point, one lim-
itation of this study is that it does not examine the effect MFT domain adaptation for language
generation has on model’s performance on general tasks. Our primary adaptation of all models
to general domain represented by one dataset in order to provide a universal starting point for the
assessment of specialization and degeneralization is an obstacle to such evaluation as it makes the
models forget parts of the knowledge gained in their post-training even before they begin to adapt to
the specialized domain.

Document-level tuning. A natural extension of Section 5 would be to examine the effect of MFT
vs that of FT on single-document finetuning. We acknowledge this as another limitation of our
study but note that such experimentation is not necessary for a convincing demonstration of MFT’s
prowess in low-data scenarios.
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A MFT SETUP DIAGRAM

Figure 4: The MFT setup as explained in Section 2. The student model (bottom) trains to match
corrected soft labels (top-right) of its own unfinetuned predictions produced by the teacher (top-
left). Observe that only finetuning data is used (meaning that pre-training general domain data is not
necessary), and that the teacher’s predictions are customized on a per-token basis to by appropriately
τ -corrected for the student’s learning.

B AN ILLUSTRATION OF THE DISTRIBUTION CORRECTION

Figure 5: The MFT distribution correction as formulated in Section 2. The original distribution
is uniformly scaled down to release probability mass for an offsetting correction by threshold τ .
Observe that the original distribution provided by the teacher (gray) is uniformly (α-)scaled down
to produce the corrected distribution (green) on all tokens but l (the ground truth token), where the
released probability mass is added to enforce target τ separation of pCl from pCargmaxpT .
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C GENERAL EVALUATION INCLUDING COMPOSITIONS

Model Method Dataset

PubMed Pile of Law OpenWebMath

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓
O

pe
nE

L
M

27
0M

FT (baseline) 10.9 1.0 0.09 14.5 1.2 0.08 2.7 0.5 0.19
MFT (ours) 8.5 0.3 0.03 11.5 0.3 0.03 2.1 0.1 0.05
Replay 8.6 0.1 0.01 11.7 0.1 0.01 2.2 0.1 0.04
Replay+MFT 6.7 0.0 0.00 9.4 0.0 0.00 1.7 0.0 0.01
LoRA 8.5 1.7 0.20 10.5 1.5 0.14 2.1 0.9 0.45
LoRA+MFT 6.7 0.4 0.06 10.2 0.5 0.05 1.8 0.2 0.13
DoRA 8.5 1.7 0.19 10.5 1.4 0.14 2.1 0.9 0.44
DoRA+MFT 6.7 0.4 0.06 10.2 0.5 0.05 1.8 0.2 0.14
IA3 0.9 0.0 0.03 1.3 0.1 0.07 0.3 0.0 0.06
IA3+MFT 0.6 0.0 0.00 1.3 0.0 0.03 0.3 0.0 0.04

O
pe

nE
L

M
45

0M

FT (baseline) 10.1 0.7 0.07 16.2 0.9 0.05 3.0 0.5 0.16
MFT (ours) 8.4 0.3 0.04 12.9 0.3 0.02 2.3 0.2 0.07
Replay 8.6 0.1 0.01 13.6 0.1 0.01 2.6 0.0 0.02
Replay+MFT 6.5 0.0 0.00 11.0 0.0 0.00 1.8 0.0 0.01
LoRA 8.4 1.3 0.16 11.0 1.1 0.10 2.2 0.9 0.40
LoRA+MFT 6.6 0.4 0.06 10.4 0.5 0.05 1.9 0.2 0.09
DoRA 8.2 1.2 0.15 11.1 1.1 0.10 2.4 1.0 0.41
DoRA+MFT 6.5 0.4 0.06 10.4 0.4 0.04 1.8 0.2 0.09
IA3 0.8 0.0 0.04 2.1 0.0 0.06 0.3 0.0 0.12
IA3+MFT 0.7 0.0 0.03 1.7 0.0 0.03 0.3 0.0 0.08

O
pe

nE
L

M
1.

1B

FT (baseline) 9.3 0.7 0.07 16.9 0.9 0.05 3.5 0.5 0.14
MFT (ours) 8.2 0.2 0.03 13.6 0.3 0.02 2.6 0.1 0.03
Replay 8.4 0.1 0.01 14.5 0.1 0.01 3.0 0.0 0.00
Replay+MFT 6.6 0.0 0.00 11.7 0.0 0.00 2.0 0.0 0.00
LoRA 8.2 1.6 0.20 9.8 1.3 0.14 2.3 0.8 0.35
LoRA+MFT 6.4 0.3 0.05 9.1 0.4 0.04 1.8 0.2 0.11
DoRA 8.2 1.6 0.20 9.8 1.3 0.13 2.3 0.8 0.36
DoRA+MFT 6.4 0.3 0.05 9.2 0.4 0.04 1.8 0.2 0.12
IA3 0.6 0.0 0.05 1.3 0.0 0.08 0.3 0.0 0.16
IA3+MFT 0.6 0.0 0.01 1.4 0.0 0.00 0.3 0.0 0.07

Table 4: General evaluation of MFT (τ = 0.25) across models of increasing size, various degener-
alization mitigation techniques, and different specialized-domain datasets. S, DG, and DG/S ratio
are as in Section 3.1. S,DG are reported in percentages, DG/S is reported as a fraction. Emphasis
marks the better value (greater for S; smaller for DG, ratio) for each pair of experiments.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D EXTENDED GENERAL EVALUATION

Model Method Dataset

PubMed Pile of Law OpenWebMath

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓
L

la
m

a
3.

1
8B

FT 7.0 1.4 0.20 6.4 1.5 0.23 2.6 0.9 0.35
LoRA 6.8 1.8 0.26 5.2 1.2 0.23 2.8 0.7 0.25
DoRA 6.9 1.6 0.23 5.0 1.1 0.22 2.8 0.9 0.26
IA3 1.2 0.1 0.08 1.5 0.0 0.01 0.6 0.0 0.08
MFT 6.6 0.9 0.14 5.1 0.4 0.08 2.3 0.4 0.17

Replay 6.4 0.1 0.02 5.4 0.2 0.04 2.3 0.2 0.09
EWC 6.2 1.2 0.19 5.3 1.1 0.21 2.6 1.0 0.38

L
la

m
a

3.
2

1B

FT 11.2 3.5 0.31 12.0 5.2 0.43 2.1 1.0 0.48
LoRA 10.8 3.8 0.35 9.9 5.0 0.51 2.0 0.9 0.45
DoRA 10.8 3.2 0.30 9.9 5.0 0.51 1.9 0.8 0.42
IA3 2.3 0.4 0.17 1.7 0.1 0.06 0.1 0.0 0.04
MFT 10.5 1.7 0.16 9.7 1.5 0.15 1.6 0.3 0.19

Replay 7.5 1.5 0.20 11.3 1.0 0.09 2.1 0.0 0.02
EWC 7.9 2.6 0.33 11.0 4.9 0.45 2.3 1.0 0.43

L
la

m
a

3.
2

3B

FT 9.1 1.6 0.18 8.3 2.8 0.34 4.0 1.9 0.48
LoRA 8.2 1.6 0.20 7.8 2.6 0.33 3.3 1.7 0.52
DoRA 8.2 1.5 0.18 7.8 2.6 0.33 3.3 1.7 0.52
IA3 2.1 0.2 0.10 1.7 0.1 0.06 0.3 0.1 0.33
MFT 7.6 0.9 0.12 7.5 0.8 0.11 3.1 0.4 0.13

Replay 6.8 0.4 0.06 7.9 0.6 0.08 3.3 0.1 0.03
EWC 7.2 1.2 0.17 7.9 2.2 0.28 3.9 1.7 0.44

Table 5: Evaluation of MFT (τ = 0.25) across most recent models, various degeneralization mit-
igation techniques, and different specialized-domain datasets. S, DG, and DG/S ratio are as in
Section 3.1. S,DG are reported in percentages, DG/S is reported as a fraction. Replay and the
Elastic Weight Consolidation (EWC, Kirkpatrick et al. (2017)) are further fenced out to highlight
their access to pre-training data (or a proxy thereof, namely the Fisher scores), in contrast to other
methods.
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Model Method Dataset

PubMed Pile of Law OpenWebMath

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓

G
PT

N
eo

2.
7B

FT 9.8 0.9 0.09 8.8 1.5 0.17 2.0 0.7 0.34
MFT 7.0 0.2 0.03 6.6 0.4 0.06 1.4 0.2 0.15
Replay 5.5 0.2 0.04 6.3 0.2 0.03 1.5 0.2 0.12
Replay+MFT 3.8 0.1 0.04 4.7 0.1 0.02 1.0 0.1 0.13
LoRA 9.7 1.1 0.11 6.8 2.3 0.34 1.9 1.1 0.60
LoRA+MFT 6.5 0.3 0.04 4.6 0.3 0.07 1.2 0.2 0.19
DoRA 9.6 1.2 0.12 6.7 2.4 0.35 2.0 1.2 0.60
DoRA+MFT 6.6 0.2 0.04 4.9 0.4 0.08 1.3 0.2 0.18

Ph
i1

.5

FT 16.8 1.8 0.11 28.4 5.1 0.18 3.9 1.4 0.36
MFT 11.0 0.4 0.03 20.4 0.8 0.04 2.9 0.4 0.12
Replay 10.9 0.2 0.02 22.8 0.5 0.02 3.2 0.2 0.06
Replay+MFT 6.7 0.0 0.01 16.5 0.1 0.00 2.2 0.0 0.01
LoRA 14.0 2.0 0.15 20.6 6.7 0.32 3.1 1.4 0.46
LoRA+MFT 8.8 0.4 0.04 14.5 1.1 0.07 2.1 0.3 0.15
DoRA 14.0 2.0 0.14 20.6 6.6 0.32 3.1 1.4 0.46
DoRA+MFT 8.9 0.4 0.04 14.3 1.0 0.07 2.1 0.3 0.14

Ph
i2

FT 7.5 1.4 0.19 12.5 2.4 0.19 1.6 1.0 0.60
MFT 5.5 0.6 0.10 9.7 1.0 0.10 1.3 0.5 0.40
Replay 4.0 0.5 0.11 9.3 0.5 0.05 1.1 0.6 0.54
Replay+MFT 3.0 0.2 0.06 7.3 0.3 0.03 1.1 0.2 0.15
LoRA 3.8 0.9 0.23 5.4 2.8 0.52 1.3 0.7 0.54
LoRA+MFT 2.2 0.3 0.16 4.0 0.8 0.20 0.9 0.2 0.25
DoRA 3.7 0.9 0.25 5.5 2.6 0.47 1.3 0.8 0.60
DoRA+MFT 2.4 0.4 0.15 4.0 0.7 0.19 0.8 0.3 0.33

Table 6: Evaluation of MFT against FT when used in conjunction with LoRA/DoRA across addi-
tional smaller models (Phi 1.5, Phi 2, and GPT Neo 2.7B) and several specialized-domain datasets;
metrics computed as in Section 3.1. S,DG are reported in percentages, DG/S is reported as a frac-
tion. Emphasis marks the better value.
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E DETAILED REPLAY PERFORMANCE

Figure 6: Replay of increasing new data fraction set against MFT of increasing target on the Pile
of Law dataset. ν = τ = 1 corresponds to standard finetuning. Left. MFT demonstrates slightly
better (1-2 ppts) specialization than FT+Replay. Middle. MFT exhibits slightly higher (0.2-0.4 ppts)
degeneralization than FT+Replay. Right. As a result, MFT exhibits 20-60% higher DG/S ratios
than FT+Replay.

ν Model

OpenELM 270M OpenELM 450M OpenELM 1.1B

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓

100% 14.5 1.2 0.08 16.2 0.9 0.06 16.9 0.9 0.05

90% 14.0 0.6 0.05 15.5 0.4 0.03 16.3 0.3 0.02
80% 13.5 0.4 0.03 15.3 0.3 0.02 15.9 0.2 0.01
70% 13.0 0.3 0.02 14.8 0.2 0.01 15.2 0.1 0.01
60% 12.5 0.2 0.01 14.2 0.2 0.01 14.8 0.1 0.00
50% 11.7 0.1 0.01 13.6 0.1 0.01 14.5 0.1 0.01
40% 11.1 0.1 0.01 13.1 0.1 0.00 13.7 0.0 0.00
30% 10.3 0.0 0.00 12.2 0.0 0.00 12.9 0.0 0.00
20% 9.3 0.0 0.00 11.3 0.0 0.00 12.3 0.0 0.00
10% 7.7 0.0 0.00 9.6 0.0 0.00 10.5 0.0 0.00

Table 7: Detailed replay results for FT on the Pile of Law dataset; metrics computed as in Table 5.
Emphasis marks the best overall performance. ν = 100% corresponds to plain FT, ν = 0% means
no new data is being introduced and so the model is not being tuned.
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F DETAILED MFT TARGET DEPENDENCE

τ Model

OpenELM 270M OpenELM 450M OpenELM 1.1B

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓

1.0 (FT) 14.5 1.2 0.08 16.2 0.9 0.06 16.9 0.9 0.05

0.9 14.4 1.1 0.08 15.8 0.8 0.05 16.7 0.8 0.04
0.8 14.2 0.9 0.07 15.8 0.7 0.05 16.5 0.7 0.04
0.7 13.9 0.9 0.06 15.3 0.6 0.04 16.2 0.6 0.04
0.6 13.5 0.8 0.06 15.1 0.6 0.04 15.7 0.5 0.03
0.5 13.1 0.7 0.05 14.6 0.6 0.04 15.3 0.4 0.03
0.4 12.6 0.5 0.04 14.0 0.4 0.03 14.6 0.3 0.02
0.3 11.9 0.4 0.04 13.3 0.3 0.03 13.9 0.3 0.02
0.2 11.1 0.2 0.02 12.3 0.2 0.02 13.1 0.2 0.01
0.1 9.9 0.2 0.02 11.2 0.2 0.02 12.0 0.2 0.01
0.0 8.0 0.2 0.02 9.1 0.2 0.02 9.8 0.1 0.01

Table 8: Detailed target dependence results for MFT on the Pile of Law dataset; metrics computed
as in Table 5. Emphasis marks the best overall performance. τ = 1 corresponds to plain FT.
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G DETAILED DORA RANK DEPENDENCE

r Model

OpenELM 270M OpenELM 450M OpenELM 1.1B

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓

1 5.5 0.4 0.06 6.6 0.1 0.02 5.9 0.2 0.03
4 8.8 0.9 0.10 9.6 0.7 0.07 8.6 0.8 0.09
8 10.5 1.5 0.14 11.0 1.1 0.10 9.8 1.3 0.14
16 12.2 2.1 0.17 12.6 1.8 0.15 11.0 1.7 0.16
24 13.4 2.5 0.18 13.5 2.4 0.18 11.7 1.9 0.17
32 13.9 2.8 0.20 14.3 2.5 0.18 12.2 2.2 0.18
64 16.1 3.3 0.21 15.9 3.3 0.21 13.3 2.7 0.21
128 18.3 4.1 0.22 17.9 3.9 0.22 14.7 3.2 0.22
160 19.2 4.3 0.23 18.6 4.2 0.23 15.1 3.4 0.23
192 19.9 4.6 0.23 19.3 4.5 0.23 15.5 3.7 0.24
256 21.1 5.1 0.24 20.2 4.9 0.25 16.1 4.2 0.26

Table 9: Detailed rank dependence results for DoRA on the Pile of Law dataset; metrics computed
as in Table 5. Emphasis marks the best overall performance.
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H EXTENDED PEFT PERFORMANCE

Figure 7: DoRA with increasing rank set against MFT with increasing target on the OpenWebMath
dataset. Left. MFT outperforms DoRA in specialization for sufficiently large targets. Middle. MFT
consistently exhibits lower degeneralization than DoRA across all targets and ranks. Right. As a
result, MFT exhibits 50-90% lower DG/S ratios than DoRA.

Model Method Dataset

PubMed Pile of Law OpenWebMath

S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓ S ↑ DG ↓ ratio ↓

G
em

m
a

2B

LoRA 4.2 1.2 0.28 4.9 1.4 0.29 1.3 0.6 0.44
LoRA+MFT 2.6 0.2 0.09 3.2 0.3 0.10 0.7 0.1 0.15
DoRA 4.2 1.2 0.28 4.9 1.4 0.29 1.3 0.6 0.46
DoRA+MFT 2.6 0.2 0.09 3.2 0.3 0.11 0.7 0.1 0.15
IA3 1.0 0.1 0.06 1.4 0.1 0.04 0.3 0.0 0.04
IA3+MFT 0.9 0.0 0.04 1.0 0.0 0.04 0.3 0.0 0.03

M
in

itr
on

4B

LoRA 7.6 2.3 0.30 5.8 2.1 0.36 0.6 0.3 0.46
LoRA+MFT 5.5 0.6 0.11 4.4 0.7 0.15 0.3 0.1 0.40
DoRA 7.7 2.3 0.30 5.8 2.1 0.35 0.6 0.2 0.43
DoRA+MFT 5.5 0.6 0.11 4.4 0.6 0.15 0.3 0.1 0.24
IA3 1.0 0.0 0.04 1.2 0.1 0.06 0.0 0.0 -
IA3+MFT 0.7 0.0 0.06 0.9 0.1 0.07 0.0 0.0 -

L
L

aM
A

2
7B

LoRA 7.7 0.8 0.10 6.1 0.7 0.12 2.5 0.6 0.22
LoRA+MFT 5.5 0.2 0.03 4.3 0.1 0.03 1.7 0.1 0.08
DoRA 7.8 0.8 0.10 6.1 0.7 0.12 2.6 0.6 0.24
DoRA+MFT 5.5 0.2 0.03 4.3 0.1 0.02 1.7 0.1 0.08
IA3 1.2 0.0 0.02 1.8 0.0 0.02 0.6 0.0 0.05
IA3+MFT 1.2 0.0 0.02 1.5 0.0 0.02 0.3 0.0 0.04

Table 10: Evaluation of MFT against FT when used in conjunction with LoRA/DoRA/IA3 across
larger language models and several specialized-domain datasets; metrics computed as in Section 3.1.
S,DG are reported in percentages, DG/S is reported as a fraction. Emphasis marks the better value
for each pair of experiments.
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