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Abstract

We proposed an experience replay mechanism in Deep Reinforcement
Learning based on Add Noise to Noise (AN2N), which requires agent to
replay more experience containing key state, abbreviated as Experience Re-
play More (ERM). In the AN2N algorithm, we refer to the states explored
more as the key states. We found that how the transitions containing the
key state participates in updating the policy and Q networks has a signif-
icant impact on the performance improvement of the deep reinforcement
learning agent, and the problem of catastrophic forgetting in neural net-
works is further magnified in the AN2N algorithm. Therefore, We sample
the transition used for experience replay according to whether the transition
contains key states and whether it is the most recently generated, rather
than sampling uniformly, which is the core idea of the ERM algorithm. The
experimental results show that this algorithm improves the performance of
the agent by a wide margin. We combine the ERM algorithm with Deep
Deterministic Policy Gradient (DDPG), Twin Delayed Deep Deterministic
policy gradient (TD3) and Soft Actor-Critic (SAC), and evaluate algorithm
on the suite of OpenAI gym tasks, SAC with ERM achieves a new state of
the art, and DDPG with ERM can even exceed the average performance of
SAC under certain random seeds, which is incredible.

1 Introduction

Deep reinforcement learning (RL) has shown its promising future for decision-making in
various computer games, such as atari (Mnih et al., 2013; 2015), go (Schrittwieser et al.,
2020) and starcraft (Vinyals et al., 2019). However, most successes have been exclusively in
simulation due to poor sample efficiency of typical Deep RL algorithm and other challenges.
Reinforcement learning can be divided into model-based RL and model-free RL in the light
of its data efficiency. Model-free RL is usually subdivided into off-policy RL and on-policy
RL. Although model-based RL requires less sampled data, it needs to build a world model
and predict the next state based on a lot of prior work, demonstrated in Hafner et al. (2019).
Although the on-policy RL algorithm do without establishing a world model and has good
stability, the performance improves slowly due to limiting the step of updating the policy,
a large number of sampled trajectory data are required in the training process (Schulman
et al., 2015; 2017). Off-policy RL is between model-based RL and on-policy RL in terms
of sampling efficiency, and the research in this field is enduring (Watkins & Dayan, 1992;
Hessel et al., 2018; Barth-Maron et al., 2018) on account of its relatively high data efficiency
and world model free.
Experience Replay (Lin, 1992) is an important part of improving the data efficiency of Off-
policy RL, which stores experience in a replay buffer and break the temporal correlations by
mixing data, therefore, the experience can be used multiple times to update the networks.
However, most of the current work is to uniformly sample transitions from the buffer, such
as Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), Soft Actor-Critic
(SAC) (Haarnoja et al., 2018), Twin Delayed Deep Deterministic policy gradient (TD3) (Fu-
jimoto et al., 2018) and many other algorithms (Van Hasselt et al., 2016; Mnih et al., 2016;
Andrychowicz et al., 2017; Dabney et al., 2018; Liu et al., 2020). However, these approaches
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replay experience transitions at the same frequency, regardless of their meaning. Schaul
et al. (2016) develops a framework for prioritizing experience to replay important transi-
tions more frequently, therefore agent learns more efficiently. Prioritized experience replay
(PER) method samples transitions with the magnitude of their temporal-difference (TD)
error. However, prioritization introduces bias, which needs to be corrected with importance
sampling. Meta-reinforcement learning (meta-RL) algorithms enable agents to learn new
skills from small amounts of experience (Rothfuss et al., 2018; Mishra et al., 2018), Rakelly
et al. (2019) develops an off-policy meta-RL algorithm that disentangles the inference and
control of the task, but its performance is still far behind the mainstream off-policy RL
algorithms.
In this paper, We first analyzed how the state changes from beginning of agent interacting
with the environment to the policy converged, and found that the state of the agent is
different at different stages, agent will rarely transfer to those states where the policy is far
from converging when the agent’s policy already converged. If a large number of initial-
states1 are used to train Q-value and policy networks, the network weights that have been
learned well will be gradually updated. Therefore, the sampling proportion of the most
recently generated transitions should be appropriately increased, so that the agent pays
more attention to learning the recent transitions, In this way, the state of the agent is
gradually transferred from a poor state to a better state, similar to updating from a poor
policy to a better policy stabily in Trust region policy optimization (TRPO) (Schulman
et al., 2015) or Proximal policy optimization (PPO) (Schulman et al., 2017).
Inspired by the Add Noise to Noise (AN2N) Algorithm (Guo & Gao, 2021), We divide the
states into two categories. These states explored with added noise are called key states2, and
the rest are called non-key states. For the sake of improving the performance in key states
in time, we have increased the probability of sampling new key states, making them more
likely to participate in updating policy, we call this process as ERM (Experience Replay
More), and combine it with commonly used off-policy RL algorithms in continuous control
tasks, such as SAC, which obtained faster convergence and state-of-the-art performance.

2 Preliminaries

We consider a reinforcement learning setup consisting of agent learning policies to maximize
the expected reward when interacting with the environment (Sutton & Barto, 2018). At
each timestep t, the agent receives an observation ot ∈ O, selects action at ∈ A with respect
to its policy π: O → A. After taking the action at in environment E, agent receives a
reward rt and the next observation ot+1. The practical problem is usually a partial Markov
decision process (POMDP), only part of the observation information could be obtained. To
simplify the problem, we assumed the environment is fully-observed, so st = ot,S = O.
In reinforcement learning, the action-value function Qπ (s, a) is uesed to approximate the
expected sum reward of the ation a in state s, defined as following:

Qπ (s, a) = Est∼pπ,at∼π

[
+∞∑
t=0

γtR (st, at)

]
(1)

Where γ ∈ [0, 1] is the discount factor, Est∼pπ,at∼π is the expectation over the distribution
of the trajectories (s0, a0, s1, a1, . . . ).
The mean value of Qπ in the same state s called the value function V π, defined as
V π(s) = Ea∼π(·|s) [Q

π(s, a)]. We express the action-value function Qπ in the form of Bellman
equation (Bellman & Kalaba, 1965):

Qπ (st, at) = Est+1∼pπ
[r(st, at) + γEat+1∼π [Q

π(st+1, at+1)]] (2)
1The initial-state is the state in which agent do not perform well when policy has not converged,

agent almost no longer transferred to this kind of state after policy converged.
2The key state is a state where the agent has not performed well in the past
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In this paper, we need to be familiar with DDPG, TD3 and SAC algorithms, here, we
mainly introduce DDPG as the basis. DDPG applied two different fully connected neural
networks to approximate the action-value function Q(s, a|θQ) and policy function µ(s|θµ),
DDPG introduces action-value target network θQ

′

and policy target network θµ
′

, so as to
Stable the policy update. Consequently, gradient descent is used to optimize the network
weights by minimizing the loss:

L(θQ) = Est∼pµ(st|θµ),at∼µ(st|θµ)[(Q(st, at|θQ)− yt)
2] (3)

Where
yt = r(st, at) + γQ

′
(st+1, µ

′
(st+1|θµ

′

)|θQ
′

) (4)

∇θµJ ≈ Es∼p(st|θµ)

[
∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)

]
= Es∼p(st|θµ)

[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(st|θµ)|s = st]
(5)

Where equation 4 derived from equation 2, the weights of target networks are updated
periodically to slowly track the learned networks: θ

′ ← τθ+(1− τ)θ
′ with τ ≪ 1, which al-

leviates the fluctuation in the agent’s learning process. The policy is updated by equation 5,
following the chain rule to the expected sum return Q(s, a|θQ) with respect to parameters
θµ. TD3 addresses the problem that DDPG is prone to overestimating the Q function. An
additional Q-function is added, and the predicted smaller Q value is used as the calculation
of TD-error. At the same time, which also reduces the update frequency of the policy func-
tion. The most significant difference between SAC and DDPG is the introduction of policy
entropy H(π(·|st)), so the objective function equation 1 is rewritten as:

Qπ (s, a) = Est∼pπ,at∼π

[
+∞∑
t=0

γtR (st, at)− α log(π(at|st))

]
(6)

Where α is temperature parameter, which adjusts the optimization target, agent pays more
attention to exploration if increase the coefficient α.

(a) States between 2e4 and 2.4e4 steps (b) States between 5.6e5 and 5.64e5 steps

Figure 1: In the HalfCheetah-v2 environment, the state of the agent in different training
stages is compared. The abscissa means the different positions on the agent, and the ordinate
means the collected attitude information at the specific position, the difference is obvious at
position s1, s8, s12 and s14. Different colors of legend indicate different Q values.(a) Start
collecting at 2e4.(b) Start collecting at 5.6e5.

3 Experience Replay More When It’s a Key Transition

The addition of experience replay improves the sample efficiency of off-policy RL. Many
off-policy algorithms usually sample transitions uniformly from the experience buffer, which
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potentially considers the transitions generated at different times to be of the same im-
portance, we will discuss this in section 3.1. Prioritized Experience Replay (PER) is an
optimization of the uniform sampling method based on the TD-error value of transitions
so as to learn the samples more efficiently, however, PER essentially still does not consider
whether the transitions generated at different times are equally important to the current
agent’s policy.

3.1 States are Different at Different Stages

Taking the HalfCheetah-v2 simulation environment as an example, we recorded the state
information of an agent at different stages based on DDPG algorithm, collecting attitude
information at the specific position and the corresponding Q-value starting from 2e4 to
5.6e5, and then we uniformly sample 100 sets of data from the collected data for drawing,
as shown in the Fig. 1. The legend in the upper left corner represents the Q value, which
is discretized to reasonably reduce the number of Legends. Subgraph (a) is discreted in
units of 20, and subgraph b is discreted in units of 100. It can be found when the agent
interacts with the environment, not only the policy is gradually improving3, but the state
is also changing accordingly.
After policy converges and the agent is in a state set different from the previous one, more
experience similar to the agent’s recent states should be collected to train the neural network
to strengthen the current policy. If the sampling experience for training policy network and
the action state network are quite different from the recently generated states, it will not
only help improve the policy to a small extent, but will also even forget the newly learned
network weights due to the catastrophic forgetting of the neural networks. Therefore, to
further improving the sample efficiency, experience replay should be switched from uniform
sampling to targeted sampling.

Figure 2: Compare the sampling results by using the linear distribution sampling function
and the uniform distribution sampling function. The left picture shows the sampling result
by linear distribution, and the right picture shows another. We sampled 100 samples in
[0, 20].

3.2 Replaying More Key Transitions

The AN2N algorithm will record the dilemma state sd during the evaluation process, so
when agent interacts with the environment, if the current state sc and sd are considered
to be highly similar, an additional exploration noise Na will be added. In this paper, the
state sc with additional noise is called the key state sk, and the transition containing sk is
called the key transition trank. The agent’s policy is relatively fragile in sk, if agent has not
learned how to get out of this dilemma before, agent is more likely to fall into a series of bad

3Better decision-making ability usually gets a higher Q value
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states after sk, which greatly reduces the agent’s overall performance. Therefore, whether
the agent can learn a good policy in sk is very important for improving the performance.
It can be seen from equation 2 that reward of the key state sk will affect the Q value of the
state at the previous moment through the iteration of the dynamic equation, nevertheless, if
we uniformly sample experience for training the networks, there will be the following three
problems:

• Since most of the experience generated by AN2N are non-key states, the probability
of sampling key states sk in the experience buffer is small.

• The key state sk is time-sensitive. The new key state needs to participate in training
the network as quickly as possible. Otherwise, if agent’s state undergoes a relatively
change, its role in improving the policy will be declined.

• Since the agent’s state is gradually changing, more recent the sampled experience,
more similar its distribution is to the distribution of the latest experience generated
currently, and the more it satisfies the assumption of independent and identical
distribution (iid).

In response to the first question, we designed two experience buffers to store key transition
and non-key transition respectively, and used min(PrtAN2N ,Kt) to adjust the proportion of
sampling key transition, where PrtAN2N is the proportion of the number of key transitions
generated by AN2N, Kt is linearly related to the simulation times of the agent. The above
ensures that key transitions can be sampled strictly according to the proportion from the
experience buffer. For the second and third questions, we will linearly increase the proba-
bility of new transition being sampled. Two sampling functions will sample 100 samples in
[0, 20] to compare the difference of the linear distribution sampling function and the uniform
distribution more vividly, the result shown in Fig. 2. The pseudo code of ERM algorithm
is shown in algorithm 1.

Algorithm 1: ERM
Input: Sampling ratio PrtAN2N , Kt, Replay buffer Rnon−key, Rkey, batch size bs1, bs2,

bssum and AN2N parameters
Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

Initialize target network Q
′ and µ

′ with weights θQ
′

← θQ, θµ
′

← θµ

for episode e ∈ {1,...,M} do
Initialize a random process N for action exploration
Receive initial observation state s1
for t ∈ {1,...,T} do

Execute AN2N action at and observe reward rt and observe new state st+1

if (AN2N exploring more) then
Store key transitio (st, at, rt, st+1) in Rkey

else
Store transition (st, at, rt, st+1) in Rnon−key

end
bs1 = min(PrtAN2N ,Kt)
bs2 = bssum − bs1
Sample bs1 and bs2 transitions with linear distribution in Rkey and Rnon−key for
training

Run DDPG, SAC or TD3 etc. Algorithm
end

end

4 Experiments

In this section, we test the performance of the combinations of Experience Replay More
algorithm (ERM) with different off-policy RL algorithms acrossing a variety of continuous
control tasks. As is shown in Fig. 3, consistent with the benchmark, we use the main-
stream Mujoco physics engine (Todorov et al., 2012) as the simulation environment to test
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the performance of the algorithm in the HalfCheetah-v2, Swimmer-v2, Walker2d-v2, and
Hopper-v2 tasks, as Mujoco offers a unique combination of speed, accuracy and modeling
power, and it is also the first full-featured simulator designed from the ground up for the
purpose of motion control. For the specific introduction of the task environment is shown
in Table 2 in Appendix A.

Figure 3: Samples of Mujoco tasks. In order from the left: HalfCheetah-v2, Swimmer-v2,
Walker2d-v2, Hopper-v2.

We present the ERM by classifying key transitions and sampling them with linear distri-
bution functions for the purpose of increasing the stability and performance with sampling
efficiency, described in section 3. In each task, we run our algorithm and test it without
exploration noise. The goal of our experimental evaluation is to understand how good the
sample efficiency and stability of our method are, compared with prior off-policy RL algo-
rithms. In all tasks, we run experiments for five times, which fix random seeds in 0, 5, 10,
15, 20 respectively. The results of ERM combined with different off policy RL algorithms
are analyzed below.

4.1 DDPG with ERM

For the implementation of DDPG with ERM, we use a two layer fully connected network
consists of 256× 256 hidden nodes respectively, with rectified linear units (ReLU) between
each layer for both the policy and action state networks, and a final tanh unit following the
output of the policy network for limiting amplitude. After a certain number of steps, the
networks are trained with a mini-batch of 100 transitions repeatedly, sampled from a replay
buffer containing the entire history of the agent. See Appendix A for more experimental
details.

(a) HalfCheetah-v2 (b) Swimmer-v2 (c) Walker2d-v2 (d) Hopper-v2

Figure 4: Performance curves of the Agents using DDPG and DDPG with ERM: DDPG
(red), DDPG with ERM (green).

DDPG with ERM uses two actor-networks and critic-networks respectively to approximate
the policy and action-state value. In the test stage, we record the reward of each state of
the agent and then calculate all the action state values of the trajectory when the episode
finished, save those transitions whose total rewards are minimal. When the agent interacts
with the environment, it uses the policy superimposed a small disturbance noise, if the
current state is similar to key states, add a disturbance noise on small noise, otherwise, only
use the small noise. Besides, we store the key tansitions and non-key transitions separatly,
which is convenient for sampling two kinds of transitions in a appropriate proportion with
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linear distribution sampling function. The pseudo code of DDPG with ERM is shown in
algorithm 2 in Appendix B.
We compare the DDPG with ERM algorithm with DDPG baseline, illustrated in Fig. 4,
among the four tasks, the performance of DDPG with ERM is higher. In the HalfCheetah
task, the method combined with ERM has significantly lower variance while maintaining
higher performance, indicating that the algorithm we proposed with DDPG has better
stability and sample efficiency.

4.2 TD3 with ERM

TD3 is an optimized version on the basis of DDPG, and the structure is very similar to
the DDPG algorithm. The main three improvements are for the problems of DDPG in
engineering practice: 1.Clipped Double-Q Learning. TD3 uses two Q networks with the
same structure to predict the state action value at the same time, but when calculating
TD-error, only the Q value with the smallest prediction participates in the calculation, so
as to alleviate the overestimation of DDPG. 2.Delayed Policy Updates. Since updating the
policy frequently is prone to make the policy unstable, therefore, TD3 updates the policy
with a lower frequency. 3.Target Policy Smoothing. When calculating target Q, a small
range of noise is added to the policy to make the calculated target Q value more robust.
Therefore, TD3 with ERM can maintain the same network structure and hyper-parameters
with DDPG with ERM. See Appendix A for more details.

(a) HalfCheetah-v2 (b) Swimmer-v2 (c) Walker2d-v2 (d) Hopper-v2

Figure 5: Performance curves for a selection of domains using TD3 and TD3 with ERM:
TD3 (cyan), TD3 with ERM (yellow).

In the same tasks with above, we tested the performance of TD3 and TD3 with ERM. As
illustrated in Fig. 5. In all the test tasks, the performance improvement of TD3 with ERM
is very obvious compared to TD3, especially in HalfCheetah and Walker2d tasks. At the
same time, the method of combining TD3 and ERM has significantly lower variance while
maintaining higher performance in the HalfCheetah and Hopper tasks, indicating that the
algorithm we proposed is very stable and sample efficient on TD3.

4.3 SAC with ERM

Compared with TD3, SAC is more different from DDPG, but it is still an Actor-Critic
structure. The main differences are as follows: 1.The policy entropy is added to the objective
function, which can more fully explore the action space, but there is also an additional
temperature coefficient that adjusts the entropy proportion of the policy. 2.SAC does not
directly outputting the deterministic policy, but a mean value and variance of a policy’s
distribution, so it is necessary to adjust the range of the variance to achieve a noise-like
addition. See Appendix A for the specific hyper-parameter settings of SAC.
The SAC algorithm is currently one of the most commonly used off-policy RL methods in
academic and industry owing to its good performance, stability and sample efficiency. We
tested the performance of SAC and SAC with ERM in four tasks, as shown in Fig. 6, we
found that in half of the tasks, the performance of SAC with ERM still has a performance
improvement compared to sac, while the performance of the remaining tasks was flat, indi-
cating that the algorithm we proposed also owns a better stability and sample efficiency on
SAC.
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(a) HalfCheetah-v2 (b) Swimmer-v2 (c) Walker2d-v2 (d) Hopper-v2

Figure 6: Performance curves for a selection of domains using SAC and SAC with ERM:
SAC (purple), SAC with ERM (blue).

In addition, we summarize the results of the above several algorithms in the HalfCheetah
simulation environment. As shown in the sub-graph (a) in Fig. 7. We run agent with
each algorithm for 1 million time steps with evaluations every 4000 time steps, where each
evaluation reports the average reward over 10 episodes with no exploration noise. Our results
are reported over 5 random seeds of the Gym simulator. It can be seen that the performance
of SAC with ERM is the best, surpassing state of the art (sac), and its convergence speed is
also the fastest, indicating that it has higher sample efficiency compared with other off-policy
RL algorithms.

(a) HalfCheetah-v2 (b) HalfCheetah-v2

Figure 7: Performance curves for HalfCheetah-v2 task using different algorithms: (a)DDPG
(red), DDPG with ERM (blue), TD3 (cyan), TD3 with ERM (yellow), SAC (purple), SAC
with ERM (green) (b) SAC (green), DDPG with ERM (red).

We select the result in DDPG with ERM with the random seed 5 in HalfCheetah-v2 task,
we compare it with the average performance of SAC, as shown in the subgraph (b) in Fig.
7. It can be found that although the convergence speed of ddpg with ERM is slower in the
early stage, its performance has approached or even exceeded the average performance of
SAC in the later stage. This improvement is very incredible for DDPG.
We display the statistical data of all the experimental results in Table 1. The first column
indicates the algorithm or policy, among which random indicates that the agent uses a
random policy to interact with the environment. The numbers in the table represent the
average cumulative rewards obtained by the corresponding algorithm or policy in the envi-
ronment in a episode with 4000 steps. The numbers in bold are the highest performance
scores. It can be seen that the SAC with ERM algorithm has the highest score, followed
by the DDPG with ERM algorithm, and ERM has the greatest effect on improving the
performance of TD3. The statistical average cumulative reward results show that ERM is
very helpful to improve the performance of DDPG, TD3 and SAC.
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Table 1: Mean value of the total reward of agent in different tasks

Environment HalfCheetah-v2 Swimmer-v2 Walker2d-v2 Hopper-v2
Random -283±29 1 ± 4 2 ± 2 19 ± 6
DDPG 7790±2058 84 ± 26 920 ± 550 1313 ± 867

DDPGERM 8415±1161 94± 24 933 ± 578 1548 ± 861
SAC 9452±984 41 ± 2 3163 ± 951 2856 ± 502

SACERM 10219± 645 40 ± 3 3564± 1216 2883± 543
TD3 7240±1455 58 ± 31 2568 ± 733 1939 ± 1442

TD3ERM 8795±1023 48 ± 13 3305 ± 966 2553 ± 852

In all the experiments, the most time-consuming part of the algorithm is calculating the
similarity between states. To solve this problem, we accelerate the process by using matrix
operation, which expands the dimension of current state Sc to be consistent with the di-
mension of key states buffer, so we calculate the similarity with the matrix Sk composed of
all key states quickly. Therefore, in the case of a small increase in time consumption, the
performance of the algorithm is significantly improved, especially on the HalfCheetah task.

5 Conclusion

This work divides the states of the agent into key states and non-key states, and analyzes
the reasons why the recent generated key states need to be sampled and trained as soos
as possible. For the purpose of sampling key transitions more accurately, we introduce
two experiences buffers to store the key transitions and non-key transitions respectively,
and set a adjustable coefficient to determine the proportion of transitions sampled from
two experience buffers. Besides, we analyze the advatages of sampling the key transitions
if we make use of linear distribution function from two perspectives: 1.The distribution
of transitions sampled recently are more similar to the distribution of latest experience
generated, making transitions more satisfie the assumption of independent and identical
distribution (iid); 2.The recent generated experience can be used for the training of the Q
value network and policy network of the agent more quickly, so as to make up for the lack
of the policy in time. Finally, on the basis of AN2N, the combination of ERM method and
DDPG, TD3 or SAC algorithm has a very obvious performance improvement on tasks such
as HalfCheetah. The performance of the DDPGERM algorithm with some random seeds
can even exceed the average performance of SAC, and SACERM has also outperforms the
current state of the art.
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A Experiment Details

The experiment uses a unified parameter configuration for all algorithms, the two hidden lay-
ers are composed of 256 nodes and the neural networks use the rectified non-linearity (Glorot
et al., 2011) for all hidden layers. The activation function of the actor output layer uses
a tanh for bounding the actions. Adam (Kingma & Ba, 2014) optimizes the weights of
the neural networks with a learning rate of 103 for the both of actor and critic networks,
discount factor set to 0.99. For the soft target updates, we set τ = 0.005. At the beginning,
the agent uses a random policy to generate 104 transitions for the initial training of the
network, the proportion of sampling key transitions is fixed by min(PrtAN2N ,Kt), where
PrtAN2N = 0.4− 0.2 ∗ t

totaltime , Kt = 50 ∗ t
totaltime . We train the networks with minibatch

sizes of 100 for all of the tasks, and use a replay buffer size of 106. For DDPG or TD3 with
ERM, we set two kind noise Nbig = 0.4 and Nsmall = 0.05, For SAC with ERM, different
from the policy generation method of DDPG and TD3, SAC generates the mean and vari-
ance of the policy, and then sample a specific action. Therefore, we set the expansion and
reduction coefficients of the variance to 1.5 and 0.5.
We test our algorithm in the Mujoco task environment. The state dimension, observa-
tion dimension, and action dimension of the tasks are shown in Table 2, and the detailed
description of the tasks are shown in Table 3.

Table 2: Dimensionality of the MuJoCo tasks environment: the dimensionality of the under-
lying physics model dim(s), number of action dimensions dim(a) and observation dimensions
dim(o).

Task name HalfCheetah-v2 Swimmer-v2 Walker2d-v2 Hopper-v2
dim(s) 18 27 18 14
dim(a) 6 8 6 4
dim(o) 17 111 41 14

Table 3: The description of the Mujoco tasks environment

Task name Brief description
HalfCheetah-v2 The agent should move forward as quickly as possible with a cheetah

like body that is constrained to the plane (Wawrzyński & Tanwani,
2013).

Swimmer-v2 This task involves a 3-link swimming robot in a viscous fluid, where
the goal is to make it swim forward as fast as possible (Coulom, 2002).

Walker2d-v2 The agent’s goal is making a two-dimensional bipedal robot walk
forward as fast as possible (Erez et al., 2011).

Hopper-v2 The agent’s goal is making a two-dimensional one-legged robot hop
forward as fast as possible (Erez et al., 2011).

B Algorithm

Appendix B includes two parts: the first part is the overall structure diagram 8 of the
Experience Replay More (ERM) algorithm. The core of the entire algorithm is to classify
and store the data stream, and sample the experience with a linear distribution function.
The second part is the pseudo code of the algorithm: algorithm pseudo code of DDPG
with ERM in Algorithm 2, algorithm pseudo code of TD3 with ERM in Algorithm 3 and
algorithm pseudo code of SAC with ERM in Algorithm 4.

12
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Figure 8: The overall structure diagram of the Experience Replay More (ERM) algorithm.

Algorithm 2: DDPG with ERM
Input: Sampling ratio PrtAN2N , Kt, Replay buffer Rnon−key, Rkey, batch size bs1, bs2,

bssum and AN2N parameters
Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

Initialize target network Q
′ and µ

′ with weights θQ
′

← θQ, θµ
′

← θµ

for episode e ∈ {1,...,M} do
Initialize a random process N for action exploration
Receive initial observation state s1
for t ∈ {1,...,T} do

Execute AN2N action at and observe reward rt and observe new state st+1

if (AN2N exploring more) then
Store key transitio (st, at, rt, st+1) in Rkey

else
Store transition (st, at, rt, st+1) in Rnon−key

end
bs1 = min(PrtAN2N ,Kt)
bs2 = bssum − bs1
Sample bs1 and bs2 transitions with linear distribution in Rkey and Rnon−key for
training

if t mod u then
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Set yi = ri + γQ
′
(si+1, µ

′
(si+1|θµ

′

)|θQ
′

)
Update critic by minimizing the loss:L = 1

N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:
∇θµJ ≈ 1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

Update the target networks:

θQ
′

← τθQ + (1− τ)θQ
′

θµ
′

← τθµ + (1− τ)θQ
µ
′

end
end

end
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Algorithm 3: TD3 with ERM
Input: Sampling ratio PrtAN2N , Kt, Replay buffer Rnon−key, Rkey, batch size bs1, bs2,

bssum and AN2N parameters
Randomly initialize critic networks Q(s, a|θQ1 ), Q(s, a|θQ2 ), and actor µ(s|θµ) with
weights θQ1 , θQ2 and θµ

Initialize target network Q
′ and µ

′ with weights θQ
′

1 ← θQ1 , θQ
′

2 ← θQ2 , θµ
′

← θµ

for episode e ∈ {1,...,M} do
Initialize a random process N for action exploration
Receive initial observation state s1
for t ∈ {1,...,T} do

Execute AN2N action at and observe reward rt and observe new state st+1

if (AN2N exploring more) then
Store key transitio (st, at, rt, st+1) in Rkey

else
Store transition (st, at, rt, st+1) in Rnon−key

end
bs1 = min(PrtAN2N ,Kt)
bs2 = bssum − bs1
Sample bs1 and bs2 transitions with linear distribution in Rkey and Rnon−key for
training

if t mod u then
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Get ã← µ(s|θµ
′

) + ϵ, ϵ ∼ clip (N (0, σ̃),−c, c)
Set yi = ri + γminj=1,2 Q

′
(si+1, µ

′
(si+1|ã)|θQ

′

j )

Update critic by minimizing the loss:L = minθj
1
N

∑
i(yi −Q(si, ai|θQj ))2

if t mod (d× u) then
Update the actor policy µ(s|θµ) using the sampled policy gradient:

∇θµJ ≈ 1
N

∑
i

∇aQ(s, a|θQ1 )|s=si,a=µ(si)∇θµµ(s|θµ)|si

Update the target networks:

θQ
′

j ← τθQj + (1− τ)θQ
′

j

θµ
′

← τθµ + (1− τ)θQ
µ
′

end
end

end
end
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Algorithm 4: SAC with ERM
Input: Sampling ratio PrtAN2N , Kt, Replay buffer Rnon−key, Rkey, batch size bs1, bs2,

bssum and AN2N parameters, Temperature parameter α

Randomly initialize critic networks Q(s, a|θQ1 ), Q(s, a|θQ2 ), and actor µ(s|θµ) with
weights θQ1 , θQ2 and θµ

Initialize target network Q
′ and µ

′ with weights θQ
′

1 ← θQ1 , θQ
′

2 ← θQ2
for episode e ∈ {1,...,M} do

Initialize a random process N for action exploration
Receive initial observation state s1
for t ∈ {1,...,T} do

Execute AN2N action at and observe reward rt and observe new state st+1

if (AN2N exploring more) then
Store key transitio (st, at, rt, st+1) in Rkey

else
Store transition (st, at, rt, st+1) in Rnon−key

end
bs1 = min(PrtAN2N ,Kt)
bs2 = bssum − bs1
Sample bs1 and bs2 transitions with linear distribution in Rkey and Rnon−key for
training

if t mod u then
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Set yi = ri + γ(minj=1,2 Q
′
(si+1, µ(si+1|θµ)|θQ

′

j )− α log µ(st+1|θµ))
Update critic (soft Q-function) by minimizing the loss:

L = 1
N

∑
i

∑
j(yi −Q(si, ai|θQj ))2

Update the actor policy using the sampled policy gradient:
∇θµJ ≈ 1

N

∑
i

((∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si
−∇a log µ(st|θµ))−∇θµ log µ(st|θµ)|si)

Update the target networks:

θQ
′

j ← τθQj + (1− τ)θQ
′

j

end
end

end
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