BitDP: Ultra-Low Bit Communication for Efficient Data Parallelism in
LLM Training

Anonymous ACL submission

Abstract

Large language model (LLM) training demands
extensive data parallelism, resulting in mas-
sive gradient communication overhead. While
gradient quantization presents a promising so-
lution, it faces two critical challenges: main-
taining training stability for transformer archi-
tectures and adapting to modern AllReduce-
based distributed communication systems. In
this paper, we propose BitDP, an ultra-low bit
gradient quantization and data parallelism sys-
tem that reduces communication costs by up
to 32x while preserving model accuracy with
less than 1% performance degradation. Our
approach ensures numerical stability for large
transformer models and seamlessly integrates
with existing AllReduce infrastructures. We
validate BitDP’s effectiveness across various
LLM sizes and architectural variants, achieving
significant communication efficiency improve-
ments while maintaining convergence quality.
These results establish BitDP as a scalable and
reliable solution for real-world LLM training
at industrial scales.

1 Introduction

Large Language Models (LLM) such as GPT-3
(Brown et al., 2020), GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2023), and DeepSeek-R1
(Guo et al., 2025) have been making rapid advances.
These models, built on scalable transformer archi-
tectures, have achieved remarkable performance in
tasks such as natural language processing and mul-
timodal generation. However, their immense scale
introduces significant technical challenges, particu-
larly in distributed training, where communication
is the performance bottleneck (Rajbhandari et al.,
2020; Narayanan et al., 2021).

A major challenge in distributed LLM training
lies in the exchange of gradients during backprop-
agation (Wen et al., 2017; Alistarh et al., 2017;
Wang et al., 2024). As model sizes grow, the
volume of gradient data increases exponentially,

Data Parallel
Process 0

Data Parallel
Process 3

Data Parallel
Process 2

Data Parallel
Process 1

32-bit Gradients 32-bit Gradients 32-bit Gradients 32-bit Gradients

Ultra-Low Bit
Compression

Ultra-Low Bit
Compression
(1-2bit)

Ultra-Low Bit
Compression

Ultra-Low Bit
Compression
(12 bit)

(12 bit) (1- 2 bit)

Compressed
Gradients

Compressed
Gradients

Ultra-Low Bit Aggregation
(16-32x comm. reduction)

Aggregated Aggregated Aggregated Aggregated
Compl:ased Compressed Compressed Compressed
Gradients Gradients Gradients Gradients

Gradients
Decompression

Gradients
Decompression

Gradients
Decompression

Gradients
Decompression

32-bit
Reconstructed
Gradients

32-bit 32-bit
Reconstructed Reconstructed
Gradients Gradients

Reconstructed
Gradients

Model Update

Model Update

Model Update

Model Update

Figure 1: Workflow of BitDP (Ultra-Low Bit Data Par-
allel) training. The proposed system reduces communi-
cation bandwidth by up to 32x through gradient quan-
tization and low-bit AllReduce operations while pre-
serving large language model training accuracy across
distributed nodes.

leading to heavy network bandwidth demands and
sub-optimal utilization of computational resources.
This problem is particularly pronounced at scale,
where communication overhead often dominates
computation time.

To address this issue, gradient compression tech-
niques such as quantization and sparsification have
been proposed (Wen et al., 2017; Alistarh et al.,
2017; Wang et al., 2024; Lin et al., 2018; Shi et al.,
2021). While effective for simpler models like
CNNgs, these methods have not been widely applied
to LLMs due to limited compression rates (e.g., 8-
bit quantization) or concerns about training stabil-
ity. Achieving ultra-low bit compression, such as
1-bit or 2-bit gradients, remains a significant chal-
lenge, as it often introduces noise that destabilizes

training, particularly with optimizers like Adam
(Reddi et al., 2018). Moreover, current commu-
nication libraries such as the NVIDIA Collective
Communications Library (NCCL) (NVIDIA Cor-
poration, 2020) lack native support for such low-bit
operations, further complicating their practical de-
ployment.

In this paper, we introduce BitDP, a novel sys-
tem for ultra-low bit gradient communication in
LLM training. BitDP achieves up to a 32x re-
duction in communication overhead by employing
novel 1-bit and 2-bit gradient quantization, cou-
pled with a specialized 1-bit AllReduce algorithm
that ensures training stability and compatibility
with existing communication interfaces. As shown
in Figure 1, BitDP seamlessly integrates into dis-
tributed training pipelines, enabling efficient large-
scale LLM training while maintaining comparable
model performance to full-precision approaches.
The main contributions of this paper are as follows:

* We propose BitDP, a comprehensive system
for efficient LLM training that incorporates
ultra-low bit (1-bit and 2-bit) gradient quan-
tization techniques, reducing communication
overhead by up to 32x while maintaining com-
parable model performance.

* We develop a novel 1-bit AllReduce algorithm
as a core component of BitDP to support ultra-
low bit communication, leveraging existing
communication frameworks for practical de-
ployment while preserving computational and
memory efficiency.

* We validate the entire BitDP system with ex-
tensive experiments on various LLMs, demon-
strating its scalability, robustness, and effec-
tiveness across different model sizes, archi-
tectures, and training configurations without
compromising convergence behavior.

2 Related Work

In this section, we review the existing literature on
gradient quantization, gradient sparsification, and
low bit optimizer, which are closely related to our
work.

Gradient Quantization Gradient quantization
techniques reduce communication overhead by
encoding gradients using fewer bits. Early ap-
proaches like QSGD (Alistarh et al., 2017) and
TernGrad (Wen et al., 2017) showed promise for

vision tasks but were primarily designed for pa-
rameter server architectures, not the AllReduce-
based systems essential for modern LLM training.
Additionally, these methods lacked validation on
transformer architectures, where numerical stabil-
ity presents unique challenges (Chowdhery et al.,
2023).

Recent LLM-specific quantization methods such
as FP8-LM (Peng et al., 2023) and INT4 ap-
proaches (Xi et al.,, 2023; Wang et al., 2024)
achieve results comparable to full-precision train-
ing, but only reduce to 4-8 bits per gradient el-
ement. In contrast, BitDP pushes boundaries to
ultra-low 1-2 bit communication while maintaining
training stability and integrating with modern col-
lective communication interfaces, representing a
substantial advancement over existing approaches.

Gradient Sparsification Gradient sparsification
reduces communication overhead by transmitting
only the most significant gradient elements (Lin
et al., 2018; Shi et al., 2021). These methods prior-
itize critical gradient information to maintain con-
vergence while decreasing bandwidth requirements.
However, despite these benefits, the selection and
tracking of significant gradient elements often re-
quires complex thresholding mechanisms that add
computational overhead. Furthermore, these tech-
niques lack validation on large-scale LLM training
and integration with modern distributed training
infrastructures, limiting their practical applicability
for today’s most demanding model training scenar-
i0s.

Ultra-low Bit Optimizer Unlike our approach
that compresses gradients, several studies have in-
vestigated the use of 1-bit quantization for storing
and exchanging optimizer states in adaptive learn-
ing rate optimizers (Tang et al., 2021; Li et al.,
2022; Lu et al., 2023). However, these techniques
typically cannot train with 1-bit quantization di-
rectly from scratch. The extreme compression to
1-bit representation introduces significant quantiza-
tion errors that need careful management to avoid
compromising model convergence. To address this
issue, these methods require additional error com-
pensation computations to maintain training ac-
curacy, which typically introduces extra storage
requirements. Most critically, these methods of-
ten cooperate with parameter server architectures
rather than modern AllReduce-based distributed
training systems that have become standard for ef-
ficient LLM training at scale.

3 Method

An effective ultra-low bit gradient compression
technique should simultaneously address two key
challenges: minimizing accuracy degradation to
maintain model performance, and enabling effi-
cient ultra-low bit AllReduce operations to reduce
communication overhead. These challenges are
particularly pronounced in distributed LLM train-
ing, where gradient synchronization across workers
often dominates the overall training time.

In this section, we introduce the two key com-
ponents of our approach to address the aforemen-
tioned challenges. First, we present our Fine-
Grained gradient quantization algorithm, which
enables precise control of gradient data at ultra-low
bit levels, selectively compressing communication-
intensive gradients while preserving critical infor-
mation. Second, we describe our 1-bit AllReduce
method, which leverages advanced collective com-
munication primitives and hardware capabilities
to significantly reduce gradient synchronization
overhead. Together, these components achieve a re-
duction factor of 16 to 32 times in communication
volume without compromising training accuracy.

3.1 Fine-grained Ultra-low Bit Gradient
Quantization

3.1.1 Selective Compression for High-volume
Gradient Segments

The parameter gradient volumes for various com-
ponents of a standard GPT model are summarized
in Table 1. In large language model (LLM) train-
ing, most of the gradient communication volume
comes from QKV weights, linear weights, and
MLP weights, which scale quadratically with the
hidden dimension. In contrast, smaller components
such as biases and layer normalization contribute
minimally. For instance, in GPT-3, the four largest
dense weights account for 99.6% of the total gra-
dient volume. In LLaMA (Touvron et al., 2023),
this proportion is even higher due to optimizations
like rotary position embedding (Su et al., 2024) and
RMSNorm (Zhang and Sennrich, 2019).

In our proposed gradient quantization strategy,
we control the gradient precision of different pa-
rameters with fine granularity. More specifically,
we quantize the gradient of all linear weight to ultra-
low bit, such as 2-bit or 1-bit, while maintaining the
original gradient precision for other components.

Parameter Name Gradient Volume

Word Embeddings vd
Position Embeddings sd
Layernorm Weight (2n+1)d
Layernorm Bias (2n+1)d
ATT QKV weight 3nd?
ATT QKV Bias 3nd
ATT Linear weight nd?

ATT Linear Bias nd

MLP h_4h Weight And?
MLP h_4h Bias 4nd
MLP 4h_h Weight And?
MLP 4h_h Bias nd

Table 1: Gradient communication volume per data
parallel in standard GPT model training. n is the number
of layers, d is the hidden dimension, v is the vocabulary
size, and s is the sequence length.

3.1.2 Channel-adaptive Ultra-low Bit
Gradient Quantization

A generalized gradient quantization algorithm f
maps the full-precision gradient g to a scaling fac-
tor s and a low-precision quantized gradient q:

(s;a) :fquam(g) (D

This process preserves essential gradient informa-
tion while reducing precision for efficient commu-
nication.

Ultra-low bit quantization can be achieved using
binary quantization (q; € {—1, 1}) or ternary quan-
tization (q; € {—1,0, 1}). Traditional methods use
a single scaling factor for the entire gradient tensor
(Peng et al., 2023; Wen et al., 2017) or eliminate
scaling factors altogether (Bernstein et al., 2018),
but both approaches hinder the adaptive learning
rate mechanism of ADAM.

Unlike SGD, which uses a shared learning rate
for all parameters, ADAM employs parameter-wise
adaptive learning rates based on the first and second
moments of the gradients (Kingma and Ba, 2015):

m; = fimy_1 + (1 - B1)gy

vi = Bovi—1 + (1 — B2)g? (2
a

VvVt €

This adaptivity is sensitive to scaling factor design
in gradient quantization.

In binary quantization, using a single scaling
factor s; causes the adaptive learning rate —=

. VVvite
to become constant, as v; (the moving average of

9t+1 =0, —my

g?) is uniform across all parameters. Similarly, in
ternary quantization, g can only take two values
(s? or 0), further limiting adaptivity.

To address this issue, we propose channel-
adaptive ultra-low bit quantization, which applies
channel-wise scaling factors instead of a single
tensor-wide factor. This approach achieves high
compression rates while preserving the adaptivity
of ADAM’s learning rate.

For a full precision gradient tensor g € R™*",
the goal is to approximate it as g ~ s ® q,
where s € R™ is a channel-wise scaling vector
and q € I™*" is a quantized tensor, ® denotes
the Hadamard product. The elements of q are
constrained to {—1, 1} for 1-bit quantization and
{—1,0, 1} for 2-bit quantization.

To minimize the quantization error, we solve the
following optimization problem:

minL(s,q) = lg—s© all3 3)

This objective reduces the squared Euclidean dis-
tance between the original gradient g and its quan-
tized approximation.

This optimization can be solved independently
for each channel 7. The optimal scaling factor s is
derived by minimizing L with respect to s;:

“)

Here, (1, is the set of indices where |g; ;| > 0
for channel 7, and |2, | represents the number of
non-zero elements.

For 1-bit quantization, the quantized tensor q is

defined as:
1,
dij = 1,

The corresponding scaling factor simplifies to the
mean of absolute values:

1 n
=~ loil (©6)
j=1

lf gi,j Z 0

5
ifgw‘ <0 ©)

For the 2-bit variant, the quantization function
q introduces sparsity by mapping small gradient
values to zero. It is defined as:

1, ifgi; > oy
¢i;=140 if —a; <gi; <o @)

—1, ifg@j < —oy

Algorithm 1: BitDP: Ultra-low Bit Data
Parallel Training Algorithm.

Input: Gradient tensors of all N modules in
model g = {¢°, ..., g™V},
quantization tensor list List, bit
mode b € {1, 2}, threshold factor
8= %, data parallel group size P

for name, g* in g do

if name in List then

for channel i in g* do

if b == 1 then
aF = Quui(gF)
k2219l
S =~
else
a; = BE;gi,]
Qf = Q2bit(gzl'€a ai)
ok — > 194,51
D SPN]
end
end

gk = ULB-AllReduce(g*, s*, P)
// Ultra-low Bit AllReduce
else
gk = AllReduce(g*)/ P
// Standard AllReduce

end
end

where «; is a channel-specific threshold. This
threshold determines the sparsity level, and when
a; = 0, Equation (7) reduces to the 1-bit quantiza-
tion function in Equation (5).

The optimal scaling factor s is obtained by sub-
stituting Equation (4) into Equation (3). The thresh-
old «; can be optimized by maximizing the follow-
ing objective:

2

> g

7€,

max

1
RTON ®
where €2, denotes the set of indices where |g; ;| >
(678

Since Equation (8) has no analytical solution,
we approximate the optimal threshold «; as o =
Bi max;(|gs,;|), where B; is a coefficient based on
the gradient distribution. Through experimental
observations, we found that gradient magnitudes
approximately follow a symmetric triangular dis-
tribution centered at zero (see Appendix A for vi-
sualization). Under this observation, 3; is derived

Phase 1: Packing and Encode

Phase 2: Two-Stream Synchronization

Phase 3: Decoding and Reduction

I
10011100 ! |_H i) [ze !
Data Parallel Binary Encoding 8-bit i:'
Process 0 binary as uint8
3.72 ¥ AllReduce wEEEEEE 10,00 | Interleaved bit-wise

Scaling

10100001 {]

Data Parallel
Process 1

6.28 AllReduce

&

|
|
|
|
|
|
|
| decoding and reduction
|
|
|
|
|
|
|
|

10.00

Figure 2: Illustration of Ultra-Low Bit AllReduce. In Phase 1, quantized gradients (shown here with 1-bit
quantization for clarity) along with their corresponding scaling factors are processed, with every 8 binary bits packed
into a single UINT8 value to optimize communication efficiency. Phase 2 performs parallel communication where
scaling factors are synchronized using full-precision AllReduce operations while the compressed gradient matrices
use UINTS8-based AllGather operations. Phase 3 implements an interleaved bit-wise decoding and reduction strategy
that efficiently reconstructs and aggregates the gradients without requiring excessive intermediate memory for

complete decompression.

as.
i

o=, = ZEj[!gi,jH
where h; = max;(|g; j|) is the maximum gradient
magnitude in channel 4, and E;[|g; ;|| is the mean
absolute gradient value. We use E;[|g; ;|] in prac-
tice to reduce sensitivity to outliers. A detailed
mathematical proof is provided in Appendix B.
Based on the ultra-low bit gradient quantiza-
tion scheme described above, we further propose
a novel ultra-low bit AllReduce communication
algorithm that transforms our theoretical commu-
nication savings into practical reality. While the
detailed communication mechanism will be elab-
orated in the next subsection, we present the com-
plete BitDP algorithm flow in Algorithm 1, which
integrates both the fine-grained ultra-low bit gra-
dient quantization and the ultra-low bit AllReduce
procedure. Specifically, the quantization tensor list
List includes all linear layers in the model, ex-
cluding biases, embedding layers, and normaliza-
tion layers, ensuring that the most communication-
intensive components are effectively compressed.

€)

3.2 Ultra-low Bit AllReduce

In distributed LLM training, gradient synchroniza-
tion typically uses FP32 AllReduce operations to
prevent numerical overflow. However, existing
frameworks like NCCL lack native support for
ultra-low precision gradients (1-bit or 2-bit), creat-
ing inefficiencies in communication for such for-
mats.

Quantized gradients consist of a channel-wise
FP32 scaling vector and ultra-low precision (1-bit
or 2-bit) tensors. While FP32 vectors can be syn-

chronized using standard AllReduce, synchroniz-
ing quantized tensors is more challenging. Rep-
resenting low-precision values as INT8 formats is
inefficient, wasting 75% of storage space for 2-bit
gradients and risking overflow when the number of
workers exceeds 127.

To overcome these challenges, we propose
specialized ultra-low bit communication algo-
rithms for 1-bit and 2-bit gradients. Key tech-
niques include bit-level gradient packing, efficient
AllGather-based aggregation, two-stream synchro-
nization mechanism, and interleaved bit-wise de-
coding and reduction. These methods fully exploit
the bandwidth savings of ultra-low bit quantiza-
tion while enabling efficient gradient aggregation.
The overall workflow of the proposed methods is
illustrated in Figure 2.

* Bit-level Packing and Encoding For 1-bit
quantization, gradient values are first mapped
from {—1,1} to {0, 1} for efficient storage.
These binary values are grouped into buckets
of 8 and packed into a single UINT8 byte
using bit-wise encoding.

For 2-bit quantization, we separate the origi-
nal gradient into two matrices: one retaining
-1 values and another retaining 1 values, set-
ting all other elements to 0. The -1 matrix is
mapped from {—1,0} to {1,0}. Both matri-
ces are then packed into UINTS integers using
the same bit-wise strategy as in the 1-bit case.

AllGather Based Gradient Aggregation To
prevent overflow, we divide AllReduce into
two steps: AllGather followed by local reduc-
tion. During AllGather, each data-parallel unit

exchanges encoded gradients with all other
ranks using efficient UINT8 MPI primitives.
Since no arithmetic operations occur in this
phase, overflow is avoided and all units re-
ceive a complete copy of the encoded gradi-
ents for subsequent reduction.

Two-Stream Synchronization We synchro-
nize the quantized gradients and scaling vec-
tors in parallel. Quantized gradients are ag-
gregated using the AllGather process, while
scaling vectors are synchronized via AllRe-
duce. The final gradient is computed as:

1
Jar = 5 O Sar © Qar (10)

P

where P is the data-parallel group size, sar
is the reduced scaling vector, and ¢, is the
reduced quantized gradient.

Interleaved Bit-Wise Decoding and Reduc-
tion During reduction, we interleave the de-
coding and summation processes at the bit
level. For 1-bit quantization, each bit is im-
mediately decoded to {—1, 1} and summed
across the corresponding positions from all
gathered tensors. For 2-bit quantization, we
sequentially decode and reduce each bit posi-
tion from the two separate matrices containing
-1s and 1s. This interleaved approach pro-
cesses one bit at a time, eliminating the need
to store fully decoded gradients in memory
and significantly reducing peak memory.

With combination of fine-grained ultra-low bit
gradient quantization and efficient AllReduce im-
plementation, our method effectively reduces com-
munication overhead while maintaining training
accuracy. In the following section, we present com-
prehensive experimental results to demonstrate the
effectiveness of our approach across various large
language model training scenarios.

4 Experiments

In this section, we present a comprehensive experi-
mental evaluation of our fine-grained ultra-low-bit
gradient quantization algorithm. First, we demon-
strate that the proposed algorithm achieves superior
performance compared to fully quantized methods
and other gradient quantization techniques, such
as QSGD and TernGrad. Next, we validate the
scalability of our algorithm by evaluating it across
varying model sizes and types. Finally, we evaluate

Method Training Loss Validation PPL
Baseline 3.086 22.47
FG-2bit 3.118 23.19

FG w/LN 3.120 23.22
Full-2bit Diverge Diverge

FG w/Embd Diverge Diverge

FG w/bias Diverge Diverge

Table 2: Granularity Strategy Comparison for GPT-
350M Model

the communication efficiency of the system. All ex-
periments are conducted based on PyTorch (Paszke
et al., 2019) and Megatron-LM (Shoeybi et al.,
2019) framework.

4.1 Performance Evaluation of Fine-Grained
Ultra-Low Bit Quantization

We validated the effectiveness of our fine-grained
algorithm using a GPT-3 medium-sized model with
350 million parameters. The model, based on the
standard Transformer decoder architecture, was
trained on a mixed dataset of BooksCorpus (Zhu
et al., 2015), English Wikipedia (Foundation), and
OpenWebText (Gokaslan and Cohen, 2019), dis-
tributed across 8 GPUs. A detailed dataset infor-
mation is provided in Appendix C.

All experiments were conducted with a global
batch size of 65,536 tokens. The AdamW opti-
mizer was used with a learning rate of 3e — 4 and
a weight decay of 0.01. Hyperparameters and set-
tings were kept consistent across all evaluations.

Table 2 summarizes the results of various gran-
ularity strategies applied to the GPT-350M model.
The fine-grained 2-bit quantization method (FG-
2bit) shows minimal degradation in training loss
and validation perplexity (PPL) compared to the
baseline, which uses FP32 precision gradients.

In contrast, full 2-bit quantization across all mod-
ules, as well as FG-2bit with embedding gradients
(FG w/Embd) or bias gradients (FG w/Bias), re-
sults in divergence during training. Incorporating
layer normalization (FG w/LN) demonstrates that
layer normalization is compatible with fine-grained
2-bit quantization, achieving comparable results
to FG-2bit in terms of training loss and validation
perplexity. Overall, FG-2bit remains the preferred
approach due to its optimal balance between per-
formance and efficiency.

As shown in Figure 3, we compared the FG-2bit
algorithm with other popular quantization meth-
ods, including TernGrad and QSGD (in ternary

GPT-350M

400 : —— Baseline

i FG-2bit

— -+ FG-1bit

----- TernGrad

—— QSGD-Ternary

==+ FG-TernGrad
FG-QSGD-Ternary

Validation PPL
n
o
o

0 10000 20000 30000 40000 50000
Iteration

Figure 3: Comparison of training loss across different
gradient quantization algorithms.

GPT-2.7B

—— Baseline
FG-1bit

250 —-+ FG-2bit |

200

150

Validation PPL

1001

50

0 10000 20000 30000 40000 50000
Iteration

Figure 4: Comparison of training loss across different
gradient quantization algorithms.

version for consistency). Fine-grained versions
of these methods, namely FG-TernGrad and FG-
QSGD-Ternary, were evaluated to align with our
approach and are explicitly labeled in the figure for
clarity. The results show that FG-2bit significantly
outperforms all competing methods in validation
perplexity (PPL), demonstrating its robustness in
maintaining model performance under reduced pre-
cision. Additionally, we tested a fine-grained 1-
bit variant that uses the gradient sign. While it
showed numerical instability during pretraining
and underperformed FG-2bit, it still exceeded the
performance of all other 2-bit methods.

4.2 Scalability and Generalization Evaluation
4.2.1 Scalablity

To evaluate the scalability of our algorithms, we
tested the pre-training performance of a GPT model
with 2.7 billion parameters, as shown in Figure 4.
This model shares the same architecture as the

Method Training Loss Validation PPL
Baseline 2.895 18.60
FG-2bit 2913 18.92
FG-1bit 3.052 21.25

Table 3: Comparison for GPT-2.7B Model

350M model but features an expanded dimension
of 2560, 32 layers, and 32 attention heads, consis-
tent with the GPT-3 2.7B specification. The ex-
periments were conducted on 32 GPUs distributed
across 4 servers, using the same dataset and hyper-
parameter settings as the 350M model, except for a
peak learning rate adjusted to 2 x 10™*. All con-
figurations were kept consistent to ensure reliable
scalability comparisons.

As shown in Table 3, the FG-2bit model achieves
performance close to the baseline full-precision
model, with only a 0.018 difference in training loss
and 0.32 in validation perplexity (PPL). Notably,
this gap is smaller than that observed in the 350M
model, where the differences were 0.032 in training
loss and 0.72 in PPL. These results highlight the
scalability of the FG-2bit approach, as it maintains
high performance even for larger models.

Additionally, we assessed the performance of
a 1-bit quantization for the 2.7B model. Similar
to the 350M model, the 1-bit version initially ex-
hibited instability in training loss. However, as
shown in Figure 4 and detailed in Table 3, it even-
tually converged to a level close to that of the base-
line, demonstrating its potential viability despite
the early-stage fluctuations.

4.2.2 Generalization to LLaMA

To validate the generalization capability of our
ultra-low bit quantization method across differ-
ent architectures and larger models, we conducted
experiments on LLaMA, an 8B parameter model
with a distinctly different architecture from GPT.
The model features 32 layers, 4096 hidden dimen-
sions, and five key architectural differences from
GPT: (1) RMSNorm instead of LayerNorm for
normalization, (2) Rotary Positional Embedding
(RoPE) instead of learned positional embeddings,
(3) SwiGLU (Shazeer, 2020) activation functions
instead of GELU, (4) Grouped-Query Attention
(GQA) (Ainslie et al., 2023) instead of standard
multi-head attention, and (5) the absence of bias
terms in linear layers. We trained each model con-
figuration for 50,000 steps with 65,536 tokens per
batch. The dataset composition remained consis-

Method | ARC-E BoolQ H-Swag PIQA COPA REC | Avg
Baseline | 47.3 56.7 31.3 65.2 69.0 73.0 | 57.1
FG-2bit 47.6 57.0 30.6 63.8 720 71.6 | 57.1
FG-1bit 473 55.9 30.4 63.9 720 71.0 | 56.8

Table 4: Performance evaluation of LLaMA-8B on various benchmarks (accuracy in %). Baseline uses FP32
gradient, while FG-2bit and FG-1bit represent our proposed fine-grained 2-bit and 1-bit fine-grained quantization
methods respectively. Benchmarks include ARC-Easy (ARC-E) (Clark et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (H-Swag) (Zellers et al., 2019), Physical Interaction QA (PIQA) (Bisk et al., 2020), Choice of Plausible
Alternatives (COPA) (Roemmele et al., 2011), and ReCORD (REC) (Zhang et al., 2018).

tent with our previous experiments on 350M and
2.6B parameter GPT models.

Our evaluation across multiple benchmarks
yielded promising results. As shown in Table 4,
our fine-grained 2-bit quantization maintains the
baseline’s 57.1% average performance across all
tasks. Even more remarkably, our 1-bit quantiza-
tion achieved 56.8% average performance, with
only a 0.3% degradation from full precision.

This exceptional quantization efficiency on
LLaMA models can be attributed to their bias-
free architecture. Our experiments with smaller
models demonstrated that quantizing bias gradi-
ents often causes training instability and divergence.
LLaMA’s elimination of bias terms in linear layers
removes this quantization-sensitive component, sig-
nificantly narrowing the performance gap between
ultra-low-bit and full-precision training. This find-
ing reinforces the importance of considering archi-
tectural decisions that can facilitate more efficient
gradient quantization for large-scale training.

4.3 Communication Efficiency Analysis

Table 5 presents the communication time measure-
ments for gradient all-reduce operations across
various model sizes and data parallelism config-
urations. Our fine-grained ultra-low bit quantiza-
tion methods (FG2 and FG1) demonstrate substan-
tial communication time reductions compared to
the FP32 baseline. The benefits become increas-
ingly pronounced as model size and parallelism
degree increase. For the 13B parameter model
with 4-way data parallelism, our 2-bit quantization
reduces communication time from 9225.83ms to
just 555.43ms (16.6x speedup), while our 1-bit
quantization further reduces it to 241.68ms (38.2x
speedup). Significant improvements are also ob-
served with the 6.7B model at 4-way parallelism,
where 2-bit quantization achieves a 15.3x speedup
and 1-bit quantization achieves a 27.9x speedup.
These results confirm that our ultra-low bit quanti-

Model DP Baseline FG2 FG1
350M 8 27.96 26.17 18.24
350M 16 183.38 125.71 82.82
350M 32 246.79 258.86 162.55
1.3B 8 75.63 40.09 27.33
1.3B 16 595.64 540.61 231.82
1.3B 32 859.22 1059.80 493.04
2.7B 4 158.23 39.21 24.17
2.7B 8 1029.02 242.87 132.18
2.7B 16 133290 525.93 276.46
6.7B 2 178.66 27.54 18.68
6.7B 4 3813.32 248.88 136.48
6.7B 8 4974.62 692.81 361.99
13B 2 6494.37 15345 70.33
13B 3 8217.07 27749 133.16
13B 4 0225.83 55543 241.68

Table 5: All-reduce communication time (ms) for differ-
ent model sizes and data parallelism (DP) configurations.
FG2 and FGI represent our proposed fine-grained 2-bit
and 1-bit quantization methods respectively.

zation techniques effectively address the commu-
nication bottleneck in distributed training of large
language models, with particularly significant ben-
efits in clusters with limited network bandwidth
where communication overhead is most severe.

5 Conclusion

In this paper, we introduced BitDP, an ultra-low bit
gradient quantization and data parallelism system
designed to address the massive communication
overhead in LLM training. Our approach reduces
communication costs by up to 32x with less than
1% performance degradation. Experiments demon-
strate BitDP’s scalability and reliability as a prac-
tical solution for large-scale Al training. These
results highlight its potential to support increas-
ingly large models efficiently. Moving forward,
we will explore cost-effective training systems to
further enhance LLM efficiency and scalability.

6 Limitations

Our BitDP system and fine-grained ultra-low bit
quantization method has shown promising results
on relatively large-scale models and datasets. How-
ever, due to computational resource constraints,
the current experimental scale, while substantial,
is still not sufficient to fully explore the method’s
potential—particularly on larger models, such as
those with tens of billions of parameters, and more
extensive datasets. Moreover, the additional over-
head introduced by quantization and dequantization
operations requires further optimization of compu-
tation operators to improve speed and efficiency.

While our work aims to reduce resource con-
sumption for training large language models, we
acknowledge the potential risk that by making train-
ing more resource-efficient, it could inadvertently
encourage more widespread training of increas-
ingly larger models, which might lead to greater
cumulative environmental impact.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4895—
4901.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. 2017. Qsgd: Communication-
efficient sgd via gradient quantization and encoding.
Advances in neural information processing systems,
30.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Aziz-
zadenesheli, and Animashree Anandkumar. 2018.
signsgd: Compressed optimisation for non-convex
problems. In International Conference on Machine
Learning, pages 560-569. PMLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume I (Long and
Short Papers), pages 2924-2936.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Wikimedia Foundation. Wikimedia downloads.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus. http://github.com/jcpeterson/
openwebtext.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San
Diega, CA, USA.

Conglong Li, Ammar Ahmad Awan, Hanlin Tang,
Samyam Rajbhandari, and Yuxiong He. 2022. 1-
bit lamb: communication efficient large-scale large-
batch training with lamb’s convergence speed.
In 2022 IEEE 29th International Conference on
High Performance Computing, Data, and Analytics
(HiPC), pages 272-281. IEEE.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. 2018. Deep gradient compression: Reducing
the communication bandwidth for distributed train-
ing. In International Conference on Learning Repre-
sentations.

Yucheng Lu, Conglong Li, Minjia Zhang, Christo-
pher De Sa, and Yuxiong He. 2023. Maximizing

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://dumps.wikimedia.org
http://github.com/jcpeterson/openwebtext
http://github.com/jcpeterson/openwebtext
http://github.com/jcpeterson/openwebtext
https://openreview.net/forum?id=-CefY2EOupj
https://openreview.net/forum?id=-CefY2EOupj

communication efficiency for large-scale training via
0/1 adam. In The Eleventh International Conference
on Learning Representations.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Ef-
ficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
15.

NVIDIA Corporation. 2020. NVIDIA NCCL. https:
//developer.nvidia.com/nccl.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
Neural Information Processing Systems, 32.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao,
Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue Yang,
Bolin Ni, Jingcheng Hu, et al. 2023. Fp8-Im: Train-
ing fp8 large language models. arXiv preprint
arXiv:2310.18313.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2018.
On the convergence of adam and beyond. In Interna-
tional Conference on Learning Representations.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90-95.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao
Wang, Zilin Zhu, Xue Huang, Xinan Jiang, Feihu
Zhou, Zhenyu Guo, Ligiang Xie, et al. 2021. To-
wards scalable distributed training of deep learning
on public cloud clusters. Proceedings of Machine
Learning and Systems, 3:401-412.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-Im: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

10

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan,
Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 2021. 1-bit adam:
Communication efficient large-scale training with
adam’s convergence speed. In International Con-
ference on Machine Learning, pages 10118—-10129.
PMLR.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia
Wu, Connor Holmes, Zhewei Yao, Samyam Rajb-
handari, Olatunji Ruwase, Feng Yan, Lei Yang, et al.
2024. Zero++: Extremely efficient collective com-
munication for large model training. In The Twelfth
International Conference on Learning Representa-
tions.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yan-
dan Wang, Yiran Chen, and Hai Li. 2017. Terngrad:
Ternary gradients to reduce communication in dis-
tributed deep learning. Advances in neural informa-
tion processing systems, 30.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu.
2023. Training transformers with 4-bit integers. Ad-

vances in Neural Information Processing Systems,
36:49146-49168.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791-4800.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint arXiv:1810.12885.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19-27.

https://openreview.net/forum?id=-CefY2EOupj
https://openreview.net/forum?id=-CefY2EOupj
https://openreview.net/forum?id=-CefY2EOupj
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

A Gradient Distribution Analysis of LLM
Linear Layers

In this section, we analyze the gradient distribu-
tions of linear layers in large language models
(LLMs) across different model sizes and layers.
Specifically, we focus on two representative mod-
els: GPT-51M and GPT-13B, which differ signifi-
cantly in scale and architecture. GPT-51M, a small-
scale model, consists of 8 Transformer layers with
a hidden dimension of 512. In contrast, GPT-13B,
a large-scale model, contains 40 Transformer lay-
ers with a hidden dimension of 5120. The analy-
sis spans 20,000 training steps, with gradient his-
tograms sampled every 50 steps to capture the tem-
poral evolution of gradient propagation. Figure 5
visualizes the overlaid histograms of weight gradi-
ents for all linear sub-layers within a single Trans-
former layer. The results are shown for GPT-51M
at Layer 1 (first row) and GPT-13B at both Layer
1 (second row) and Layer 8 (third row). This fig-
ure provides insight into how gradient distributions
evolve across models of different scales and depths.

From the analysis, we observe that the gradients
exhibit a distinct triangular distribution, symmetri-
cally centered around zero, across both small-scale
and large-scale models. This distribution reflects
stable gradient propagation throughout training, as
gradients remain balanced without becoming ex-
cessively concentrated or dispersed. Notably, the
triangular distributions are consistent across differ-
ent model sizes and layers, as seen in GPT-51M
at Layer 1 and GPT-13B at Layers 1 and 8. These
findings suggest that larger models, such as GPT-
13B, align more closely with our assumed gradient
distribution. Such alignment makes them better
suited for applying our system, further reinforcing
the scalability of our approach.

B Proof of the Closed-form Threshold o*

B.1 Problem Statement

For the 2-bit quantizer defined in Eq.(7) of the main
text as

1, gij >,
;=40 —a;<gi;<a (11)
_17 9i,5 < —ay,

11

We determine the threshold «; by solving the fol-
lowing optimization problem: maximizing
2
Z ’gl}j |)
JEQa,
Qo ={J : 9igl > i }.
This is under the condition that the gradient G

follows a triangular distribution, where its proba-
bility density function (PDF) is

Floo) = g

|0 |

(12)

h,‘ — |z
fg(l') = h2’ ‘7 TE [_hiah‘i}? (13)
where h; = max; |g; j|. For Y =|G]|,
2(h; —
B.2 Continuous Form of the Objective
Replacing sums by expectations gives
2
[E(Y1Y>a')]
FO) > 55 > o (2
Lett = «/h; € [0, 1). From Eq. (14),
h;
P(Y > «;) = fy(y)dy
g
= (1-t), (16)
h;
Ehﬂy>%]=u/ yfy(y)dy
=h(3 —t*+2¢%). AD

Up to a factor of h?, the objective function to
maximize is

=2+ 36

F(t) = 18
Hence we maximize
1 2, 2.3
s —t"+ 4t
ﬂ@:é—ijLﬂ 0<t<l1. (19
B.3 Solution

Write n(t) = £ —t* + 2t>and d(t) = 1 — t so
f(t) =n(t)/d(t). Then

iy = WA =) +n(t)

n'(t) = 2t(t — 1).

Setting f/(t) = 0yields 41> —9t>4+-6t—1 =0 =
(t — 1)(4t> — 8t + 4). The only root in the interval

(20)

[0,1)ist* = i, giving the optimal threshold
. h
a,:i (21)

GPT_5TM GPT_STM

wwwwww

(a) 51M Layer 1 Att KQV (b) 51M Layer 1 Att Projection

GPT_138 GPT_138

(e) 13B Layer 1 Att KQV (f) 13B Layer 1 Att Projection

GPT_138 GPT_138

,,,,,,

(1) 13B Layer 7 Att KQV (j) 13B Layer 7 Att Projection

GPT_51M GPT_STM

(c) 51M Layer 1 MLP}, _, 45, (d) 51M Layer 1 MLP4j, _, 1,

GPT_138 GPT_138

(g) 13B Layer I MLP}, _, 45, (h) 13B Layer | MLP4j,_, 5,

GPT_138 GPT_138

(k) 13B Layer 7 MLP}, _, 4y, (1) 13B Layer 7 MLPyy,

Figure 5: Overlaid gradient histograms of GPT-51M (51 million parameters) and GPT-13B (13 billion parameters)
models across 20,000 training steps. Each plot overlays gradient distributions sampled every 50 steps during training,
aggregated for different Transformer components (Attention KQV, Attention Projection, and MLP layers). The first
row corresponds to GPT-51M at Layer 1, while the second and third rows represent GPT-13B at Layer 1 and Layer

8, respectively.

B.4 Relation to the Mean Absolute Gradient
For the triangular distribution, the mean of ¥ =
|G| is E[Y] = h;/3. Therefore,

h;

].

This relationship shows that o] is 3/4 of
the mean absolute gradient, which offers greater
robustness to outliers compared to an estima-
tor based on the sample maximum h; (o =

(max; |gi 41)/4). O

C Supplementary Information

3
=1 E;[19:.5 (22)

We use three large-scale corpora for all exper-
iments: BooksCorpus, English Wikipedia, and
OpenWebText. BooksCorpus contains approxi-
mately 800M words of unpublished books, while
for English Wikipedia, we only utilize the text pas-
sages, amounting to 2,500M words. These two
datasets align with the training data used in BERT.
Additionally, we incorporate OpenWebText, which
consists of 38GB of text data (40GB using SI units)
from 8,013,769 documents, matching the corpus
used to train GPT-2. We sample from these datasets

12

uniformly according to a ratio of 20% (BooksCor-
pus), 30% (Wikipedia), and 50% (OpenWebText).
The combined corpus is split into training (94.9%),
validation (5%), and test (0.1%) sets. This distribu-
tion provides a diverse and comprehensive founda-
tion for evaluating our quantization methods across
different linguistic contexts and domains.

All experiments with the above datasets are con-
ducted using the PyTorch and Megatron-LM frame-
work on NVIDIA V100 GPUs for research pur-
poses, which is consistent with the intended use.

We utilized Al assistants for writing polishing.

	Introduction
	Related Work
	Method
	Fine-grained Ultra-low Bit Gradient Quantization
	Selective Compression for High-volume Gradient Segments
	Channel-adaptive Ultra-low Bit Gradient Quantization

	Ultra-low Bit AllReduce

	Experiments
	Performance Evaluation of Fine-Grained Ultra-Low Bit Quantization
	Scalability and Generalization Evaluation
	Scalablity
	Generalization to LLaMA

	Communication Efficiency Analysis

	Conclusion
	Limitations
	Gradient Distribution Analysis of LLM Linear Layers
	Proof of the Closed-form Threshold bold0mu mumu false
	Supplementary Information

