
BitDP: Ultra-Low Bit Communication for Efficient Data Parallelism in
LLM Training

Anonymous ACL submission

Abstract

Large language model (LLM) training demands001
extensive data parallelism, resulting in mas-002
sive gradient communication overhead. While003
gradient quantization presents a promising so-004
lution, it faces two critical challenges: main-005
taining training stability for transformer archi-006
tectures and adapting to modern AllReduce-007
based distributed communication systems. In008
this paper, we propose BitDP, an ultra-low bit009
gradient quantization and data parallelism sys-010
tem that reduces communication costs by up011
to 32× while preserving model accuracy with012
less than 1% performance degradation. Our013
approach ensures numerical stability for large014
transformer models and seamlessly integrates015
with existing AllReduce infrastructures. We016
validate BitDP’s effectiveness across various017
LLM sizes and architectural variants, achieving018
significant communication efficiency improve-019
ments while maintaining convergence quality.020
These results establish BitDP as a scalable and021
reliable solution for real-world LLM training022
at industrial scales.023

1 Introduction024

Large Language Models (LLM) such as GPT-3025

(Brown et al., 2020), GPT-4 (Achiam et al., 2023),026

Gemini (Team et al., 2023), and DeepSeek-R1027

(Guo et al., 2025) have been making rapid advances.028

These models, built on scalable transformer archi-029

tectures, have achieved remarkable performance in030

tasks such as natural language processing and mul-031

timodal generation. However, their immense scale032

introduces significant technical challenges, particu-033

larly in distributed training, where communication034

is the performance bottleneck (Rajbhandari et al.,035

2020; Narayanan et al., 2021).036

A major challenge in distributed LLM training037

lies in the exchange of gradients during backprop-038

agation (Wen et al., 2017; Alistarh et al., 2017;039

Wang et al., 2024). As model sizes grow, the040

volume of gradient data increases exponentially,041

Data Parallel

Process 0

32-bit Gradients

Ultra-Low Bit

Compression

(1 – 2 bit)

Compressed

Gradients

Aggregated

Compressed

Gradients

Model Update

Ultra-Low Bit Aggregation

(16-32× comm. reduction)

Data Parallel

Process 1

32-bit Gradients

Compressed

Gradients

Aggregated

Compressed

Gradients

Model Update

Data Parallel

Process 2

32-bit Gradients

Compressed

Gradients

Aggregated

Compressed

Gradients

Model Update

Data Parallel

Process 3

32-bit Gradients

Compressed

Gradients

Aggregated

Compressed

Gradients

Model Update

Gradients

Decompression

Gradients

Decompression

Gradients

Decompression

Gradients

Decompression

Ultra-Low Bit

Compression

(1 – 2 bit)

Ultra-Low Bit

Compression

(1 – 2 bit)

Ultra-Low Bit

Compression

(1 – 2 bit)

32-bit

Reconstructed

Gradients

32-bit

Reconstructed

Gradients

32-bit

Reconstructed

Gradients

32-bit

Reconstructed

Gradients

Figure 1: Workflow of BitDP (Ultra-Low Bit Data Par-
allel) training. The proposed system reduces communi-
cation bandwidth by up to 32× through gradient quan-
tization and low-bit AllReduce operations while pre-
serving large language model training accuracy across
distributed nodes.

leading to heavy network bandwidth demands and 042

sub-optimal utilization of computational resources. 043

This problem is particularly pronounced at scale, 044

where communication overhead often dominates 045

computation time. 046

To address this issue, gradient compression tech- 047

niques such as quantization and sparsification have 048

been proposed (Wen et al., 2017; Alistarh et al., 049

2017; Wang et al., 2024; Lin et al., 2018; Shi et al., 050

2021). While effective for simpler models like 051

CNNs, these methods have not been widely applied 052

to LLMs due to limited compression rates (e.g., 8- 053

bit quantization) or concerns about training stabil- 054

ity. Achieving ultra-low bit compression, such as 055

1-bit or 2-bit gradients, remains a significant chal- 056

lenge, as it often introduces noise that destabilizes 057

1

training, particularly with optimizers like Adam058

(Reddi et al., 2018). Moreover, current commu-059

nication libraries such as the NVIDIA Collective060

Communications Library (NCCL) (NVIDIA Cor-061

poration, 2020) lack native support for such low-bit062

operations, further complicating their practical de-063

ployment.064

In this paper, we introduce BitDP, a novel sys-065

tem for ultra-low bit gradient communication in066

LLM training. BitDP achieves up to a 32× re-067

duction in communication overhead by employing068

novel 1-bit and 2-bit gradient quantization, cou-069

pled with a specialized 1-bit AllReduce algorithm070

that ensures training stability and compatibility071

with existing communication interfaces. As shown072

in Figure 1, BitDP seamlessly integrates into dis-073

tributed training pipelines, enabling efficient large-074

scale LLM training while maintaining comparable075

model performance to full-precision approaches.076

The main contributions of this paper are as follows:077

• We propose BitDP, a comprehensive system078

for efficient LLM training that incorporates079

ultra-low bit (1-bit and 2-bit) gradient quan-080

tization techniques, reducing communication081

overhead by up to 32× while maintaining com-082

parable model performance.083

• We develop a novel 1-bit AllReduce algorithm084

as a core component of BitDP to support ultra-085

low bit communication, leveraging existing086

communication frameworks for practical de-087

ployment while preserving computational and088

memory efficiency.089

• We validate the entire BitDP system with ex-090

tensive experiments on various LLMs, demon-091

strating its scalability, robustness, and effec-092

tiveness across different model sizes, archi-093

tectures, and training configurations without094

compromising convergence behavior.095

2 Related Work096

In this section, we review the existing literature on097

gradient quantization, gradient sparsification, and098

low bit optimizer, which are closely related to our099

work.100

Gradient Quantization Gradient quantization101

techniques reduce communication overhead by102

encoding gradients using fewer bits. Early ap-103

proaches like QSGD (Alistarh et al., 2017) and104

TernGrad (Wen et al., 2017) showed promise for105

vision tasks but were primarily designed for pa- 106

rameter server architectures, not the AllReduce- 107

based systems essential for modern LLM training. 108

Additionally, these methods lacked validation on 109

transformer architectures, where numerical stabil- 110

ity presents unique challenges (Chowdhery et al., 111

2023). 112

Recent LLM-specific quantization methods such 113

as FP8-LM (Peng et al., 2023) and INT4 ap- 114

proaches (Xi et al., 2023; Wang et al., 2024) 115

achieve results comparable to full-precision train- 116

ing, but only reduce to 4-8 bits per gradient el- 117

ement. In contrast, BitDP pushes boundaries to 118

ultra-low 1-2 bit communication while maintaining 119

training stability and integrating with modern col- 120

lective communication interfaces, representing a 121

substantial advancement over existing approaches. 122

Gradient Sparsification Gradient sparsification 123

reduces communication overhead by transmitting 124

only the most significant gradient elements (Lin 125

et al., 2018; Shi et al., 2021). These methods prior- 126

itize critical gradient information to maintain con- 127

vergence while decreasing bandwidth requirements. 128

However, despite these benefits, the selection and 129

tracking of significant gradient elements often re- 130

quires complex thresholding mechanisms that add 131

computational overhead. Furthermore, these tech- 132

niques lack validation on large-scale LLM training 133

and integration with modern distributed training 134

infrastructures, limiting their practical applicability 135

for today’s most demanding model training scenar- 136

ios. 137

Ultra-low Bit Optimizer Unlike our approach 138

that compresses gradients, several studies have in- 139

vestigated the use of 1-bit quantization for storing 140

and exchanging optimizer states in adaptive learn- 141

ing rate optimizers (Tang et al., 2021; Li et al., 142

2022; Lu et al., 2023). However, these techniques 143

typically cannot train with 1-bit quantization di- 144

rectly from scratch. The extreme compression to 145

1-bit representation introduces significant quantiza- 146

tion errors that need careful management to avoid 147

compromising model convergence. To address this 148

issue, these methods require additional error com- 149

pensation computations to maintain training ac- 150

curacy, which typically introduces extra storage 151

requirements. Most critically, these methods of- 152

ten cooperate with parameter server architectures 153

rather than modern AllReduce-based distributed 154

training systems that have become standard for ef- 155

ficient LLM training at scale. 156

2

3 Method157

An effective ultra-low bit gradient compression158

technique should simultaneously address two key159

challenges: minimizing accuracy degradation to160

maintain model performance, and enabling effi-161

cient ultra-low bit AllReduce operations to reduce162

communication overhead. These challenges are163

particularly pronounced in distributed LLM train-164

ing, where gradient synchronization across workers165

often dominates the overall training time.166

In this section, we introduce the two key com-167

ponents of our approach to address the aforemen-168

tioned challenges. First, we present our Fine-169

Grained gradient quantization algorithm, which170

enables precise control of gradient data at ultra-low171

bit levels, selectively compressing communication-172

intensive gradients while preserving critical infor-173

mation. Second, we describe our 1-bit AllReduce174

method, which leverages advanced collective com-175

munication primitives and hardware capabilities176

to significantly reduce gradient synchronization177

overhead. Together, these components achieve a re-178

duction factor of 16 to 32 times in communication179

volume without compromising training accuracy.180

3.1 Fine-grained Ultra-low Bit Gradient181

Quantization182

3.1.1 Selective Compression for High-volume183

Gradient Segments184

The parameter gradient volumes for various com-185

ponents of a standard GPT model are summarized186

in Table 1. In large language model (LLM) train-187

ing, most of the gradient communication volume188

comes from QKV weights, linear weights, and189

MLP weights, which scale quadratically with the190

hidden dimension. In contrast, smaller components191

such as biases and layer normalization contribute192

minimally. For instance, in GPT-3, the four largest193

dense weights account for 99.6% of the total gra-194

dient volume. In LLaMA (Touvron et al., 2023),195

this proportion is even higher due to optimizations196

like rotary position embedding (Su et al., 2024) and197

RMSNorm (Zhang and Sennrich, 2019).198

In our proposed gradient quantization strategy,199

we control the gradient precision of different pa-200

rameters with fine granularity. More specifically,201

we quantize the gradient of all linear weight to ultra-202

low bit, such as 2-bit or 1-bit, while maintaining the203

original gradient precision for other components.204

Parameter Name Gradient Volume
Word Embeddings vd
Position Embeddings sd
Layernorm Weight (2n+ 1)d
Layernorm Bias (2n+ 1)d
ATT QKV weight 3nd2

ATT QKV Bias 3nd
ATT Linear weight nd2

ATT Linear Bias nd
MLP h_4h Weight 4nd2

MLP h_4h Bias 4nd
MLP 4h_h Weight 4nd2

MLP 4h_h Bias nd

Table 1: Gradient communication volume per data
parallel in standard GPT model training. n is the number
of layers, d is the hidden dimension, v is the vocabulary
size, and s is the sequence length.

3.1.2 Channel-adaptive Ultra-low Bit 205

Gradient Quantization 206

A generalized gradient quantization algorithm fquant 207

maps the full-precision gradient g to a scaling fac- 208

tor s and a low-precision quantized gradient q: 209

(s,q) = fquant(g) (1) 210

This process preserves essential gradient informa- 211

tion while reducing precision for efficient commu- 212

nication. 213

Ultra-low bit quantization can be achieved using 214

binary quantization (qi ∈ {−1, 1}) or ternary quan- 215

tization (qi ∈ {−1, 0, 1}). Traditional methods use 216

a single scaling factor for the entire gradient tensor 217

(Peng et al., 2023; Wen et al., 2017) or eliminate 218

scaling factors altogether (Bernstein et al., 2018), 219

but both approaches hinder the adaptive learning 220

rate mechanism of ADAM. 221

Unlike SGD, which uses a shared learning rate 222

for all parameters, ADAM employs parameter-wise 223

adaptive learning rates based on the first and second 224

moments of the gradients (Kingma and Ba, 2015): 225

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

θt+1 = θt −mt
α√

vt + ϵ

(2) 226

This adaptivity is sensitive to scaling factor design 227

in gradient quantization. 228

In binary quantization, using a single scaling 229

factor st causes the adaptive learning rate α√
vt+ϵ

230

to become constant, as vt (the moving average of 231

3

g2
t) is uniform across all parameters. Similarly, in232

ternary quantization, g2
t can only take two values233

(s2t or 0), further limiting adaptivity.234

To address this issue, we propose channel-235

adaptive ultra-low bit quantization, which applies236

channel-wise scaling factors instead of a single237

tensor-wide factor. This approach achieves high238

compression rates while preserving the adaptivity239

of ADAM’s learning rate.240

For a full precision gradient tensor g ∈ Rm×n,241

the goal is to approximate it as g ≈ s ⊙ q,242

where s ∈ Rm is a channel-wise scaling vector243

and q ∈ Im×n is a quantized tensor, ⊙ denotes244

the Hadamard product. The elements of q are245

constrained to {−1, 1} for 1-bit quantization and246

{−1, 0, 1} for 2-bit quantization.247

To minimize the quantization error, we solve the248

following optimization problem:249

min
s,q

L(s,q) = ∥g − s⊙ q∥22 (3)250

This objective reduces the squared Euclidean dis-251

tance between the original gradient g and its quan-252

tized approximation.253

This optimization can be solved independently254

for each channel i. The optimal scaling factor s∗i is255

derived by minimizing L with respect to si:256

s∗i =
1

|Ωαi |
∑

j∈Ωαi

|gi,j | (4)257

Here, Ωαi is the set of indices where |gi,j | > 0258

for channel i, and |Ωαi | represents the number of259

non-zero elements.260

For 1-bit quantization, the quantized tensor q is261

defined as:262

qi,j =

{
1, if gi,j ≥ 0

−1, if gi,j < 0
(5)263

The corresponding scaling factor simplifies to the264

mean of absolute values:265

s∗i =
1

n

n∑
j=1

|gi,j | (6)266

For the 2-bit variant, the quantization function267

q introduces sparsity by mapping small gradient268

values to zero. It is defined as:269

qi,j =


1, if gi,j ≥ αi

0, if − αi ≤ gi,j < αi

−1, if gi,j < −αi

(7)270

Algorithm 1: BitDP: Ultra-low Bit Data
Parallel Training Algorithm.
Input: Gradient tensors of all N modules in

model g = {g0, ..., gN},
quantization tensor list List, bit
mode b ∈ {1, 2}, threshold factor
β = 3

4 , data parallel group size P
for name, gk in g do

if name in List then
for channel i in gk do

if b == 1 then
qki = Q1bit(g

k
i)

ski =
∑

j |gi,j |
n

else
αi = βEj [|gi,j |]
qki = Q2bit(g

k
i , αi)

ski =
∑

j |gi,j |∑
j |qi,j |

end
end
gkar = ULB-AllReduce(gk, sk, P)
// Ultra-low Bit AllReduce

else
gkar = AllReduce(gk)/P
// Standard AllReduce

end
end

where αi is a channel-specific threshold. This 271

threshold determines the sparsity level, and when 272

αi = 0, Equation (7) reduces to the 1-bit quantiza- 273

tion function in Equation (5). 274

The optimal scaling factor s is obtained by sub- 275

stituting Equation (4) into Equation (3). The thresh- 276

old αi can be optimized by maximizing the follow- 277

ing objective: 278

max
αi

1

|Ωαi |

 ∑
j∈Ωαi

|gi,j |

2

(8) 279

where Ωαi denotes the set of indices where |gi,j | > 280

αi. 281

Since Equation (8) has no analytical solution, 282

we approximate the optimal threshold αi as α∗
i = 283

βimaxj(|gi,j |), where βi is a coefficient based on 284

the gradient distribution. Through experimental 285

observations, we found that gradient magnitudes 286

approximately follow a symmetric triangular dis- 287

tribution centered at zero (see Appendix A for vi- 288

sualization). Under this observation, βi is derived 289

4

1 0 0 1 1 1 0 0 156

3.72

156

161

10.00

Phase 1: Packing and Encode Phase 2: Two-Stream Synchronization Phase 3: Decoding and Reduction

Data Parallel

Process 0

AllReduce

AllGather

161

6.28

156

161

10.00

Data Parallel

Process 1

AllReduce

AllGather

Binary

Scaling

Encoding 8-bit

binary as uint8

Interleaved bit-wise

decoding and reduction

1 0 1 0 0 0 0 1

1 0 1 0 0 0 0 1

1 0 0 1 1 1 0 0

1 0 1 0 0 0 0 1

1 0 0 1 1 1 0 0

2 0 1 1 1 1 0 1

2 0 1 1 1 1 0 1

Figure 2: Illustration of Ultra-Low Bit AllReduce. In Phase 1, quantized gradients (shown here with 1-bit
quantization for clarity) along with their corresponding scaling factors are processed, with every 8 binary bits packed
into a single UINT8 value to optimize communication efficiency. Phase 2 performs parallel communication where
scaling factors are synchronized using full-precision AllReduce operations while the compressed gradient matrices
use UINT8-based AllGather operations. Phase 3 implements an interleaved bit-wise decoding and reduction strategy
that efficiently reconstructs and aggregates the gradients without requiring excessive intermediate memory for
complete decompression.

as:290

α∗
i =

hi
4

=
3

4
Ej [|gi,j |] (9)291

where hi = maxj(|gi,j |) is the maximum gradient292

magnitude in channel i, and Ej [|gi,j |] is the mean293

absolute gradient value. We use Ej [|gi,j |] in prac-294

tice to reduce sensitivity to outliers. A detailed295

mathematical proof is provided in Appendix B.296

Based on the ultra-low bit gradient quantiza-297

tion scheme described above, we further propose298

a novel ultra-low bit AllReduce communication299

algorithm that transforms our theoretical commu-300

nication savings into practical reality. While the301

detailed communication mechanism will be elab-302

orated in the next subsection, we present the com-303

plete BitDP algorithm flow in Algorithm 1, which304

integrates both the fine-grained ultra-low bit gra-305

dient quantization and the ultra-low bit AllReduce306

procedure. Specifically, the quantization tensor list307

List includes all linear layers in the model, ex-308

cluding biases, embedding layers, and normaliza-309

tion layers, ensuring that the most communication-310

intensive components are effectively compressed.311

3.2 Ultra-low Bit AllReduce312

In distributed LLM training, gradient synchroniza-313

tion typically uses FP32 AllReduce operations to314

prevent numerical overflow. However, existing315

frameworks like NCCL lack native support for316

ultra-low precision gradients (1-bit or 2-bit), creat-317

ing inefficiencies in communication for such for-318

mats.319

Quantized gradients consist of a channel-wise320

FP32 scaling vector and ultra-low precision (1-bit321

or 2-bit) tensors. While FP32 vectors can be syn-322

chronized using standard AllReduce, synchroniz- 323

ing quantized tensors is more challenging. Rep- 324

resenting low-precision values as INT8 formats is 325

inefficient, wasting 75% of storage space for 2-bit 326

gradients and risking overflow when the number of 327

workers exceeds 127. 328

To overcome these challenges, we propose 329

specialized ultra-low bit communication algo- 330

rithms for 1-bit and 2-bit gradients. Key tech- 331

niques include bit-level gradient packing, efficient 332

AllGather-based aggregation, two-stream synchro- 333

nization mechanism, and interleaved bit-wise de- 334

coding and reduction. These methods fully exploit 335

the bandwidth savings of ultra-low bit quantiza- 336

tion while enabling efficient gradient aggregation. 337

The overall workflow of the proposed methods is 338

illustrated in Figure 2. 339

• Bit-level Packing and Encoding For 1-bit 340

quantization, gradient values are first mapped 341

from {−1, 1} to {0, 1} for efficient storage. 342

These binary values are grouped into buckets 343

of 8 and packed into a single UINT8 byte 344

using bit-wise encoding. 345

For 2-bit quantization, we separate the origi- 346

nal gradient into two matrices: one retaining 347

-1 values and another retaining 1 values, set- 348

ting all other elements to 0. The -1 matrix is 349

mapped from {−1, 0} to {1, 0}. Both matri- 350

ces are then packed into UINT8 integers using 351

the same bit-wise strategy as in the 1-bit case. 352

• AllGather Based Gradient Aggregation To 353

prevent overflow, we divide AllReduce into 354

two steps: AllGather followed by local reduc- 355

tion. During AllGather, each data-parallel unit 356

5

exchanges encoded gradients with all other357

ranks using efficient UINT8 MPI primitives.358

Since no arithmetic operations occur in this359

phase, overflow is avoided and all units re-360

ceive a complete copy of the encoded gradi-361

ents for subsequent reduction.362

• Two-Stream Synchronization We synchro-363

nize the quantized gradients and scaling vec-364

tors in parallel. Quantized gradients are ag-365

gregated using the AllGather process, while366

scaling vectors are synchronized via AllRe-367

duce. The final gradient is computed as:368

gar =
1

P
⊙ sar ⊙ qar (10)369

where P is the data-parallel group size, sar370

is the reduced scaling vector, and qar is the371

reduced quantized gradient.372

• Interleaved Bit-Wise Decoding and Reduc-373

tion During reduction, we interleave the de-374

coding and summation processes at the bit375

level. For 1-bit quantization, each bit is im-376

mediately decoded to {−1, 1} and summed377

across the corresponding positions from all378

gathered tensors. For 2-bit quantization, we379

sequentially decode and reduce each bit posi-380

tion from the two separate matrices containing381

-1s and 1s. This interleaved approach pro-382

cesses one bit at a time, eliminating the need383

to store fully decoded gradients in memory384

and significantly reducing peak memory.385

With combination of fine-grained ultra-low bit386

gradient quantization and efficient AllReduce im-387

plementation, our method effectively reduces com-388

munication overhead while maintaining training389

accuracy. In the following section, we present com-390

prehensive experimental results to demonstrate the391

effectiveness of our approach across various large392

language model training scenarios.393

4 Experiments394

In this section, we present a comprehensive experi-395

mental evaluation of our fine-grained ultra-low-bit396

gradient quantization algorithm. First, we demon-397

strate that the proposed algorithm achieves superior398

performance compared to fully quantized methods399

and other gradient quantization techniques, such400

as QSGD and TernGrad. Next, we validate the401

scalability of our algorithm by evaluating it across402

varying model sizes and types. Finally, we evaluate403

Method Training Loss Validation PPL
Baseline 3.086 22.47
FG-2bit 3.118 23.19
FG w/LN 3.120 23.22
Full-2bit Diverge Diverge
FG w/Embd Diverge Diverge
FG w/bias Diverge Diverge

Table 2: Granularity Strategy Comparison for GPT-
350M Model

the communication efficiency of the system. All ex- 404

periments are conducted based on PyTorch (Paszke 405

et al., 2019) and Megatron-LM (Shoeybi et al., 406

2019) framework. 407

4.1 Performance Evaluation of Fine-Grained 408

Ultra-Low Bit Quantization 409

We validated the effectiveness of our fine-grained 410

algorithm using a GPT-3 medium-sized model with 411

350 million parameters. The model, based on the 412

standard Transformer decoder architecture, was 413

trained on a mixed dataset of BooksCorpus (Zhu 414

et al., 2015), English Wikipedia (Foundation), and 415

OpenWebText (Gokaslan and Cohen, 2019), dis- 416

tributed across 8 GPUs. A detailed dataset infor- 417

mation is provided in Appendix C. 418

All experiments were conducted with a global 419

batch size of 65, 536 tokens. The AdamW opti- 420

mizer was used with a learning rate of 3e− 4 and 421

a weight decay of 0.01. Hyperparameters and set- 422

tings were kept consistent across all evaluations. 423

Table 2 summarizes the results of various gran- 424

ularity strategies applied to the GPT-350M model. 425

The fine-grained 2-bit quantization method (FG- 426

2bit) shows minimal degradation in training loss 427

and validation perplexity (PPL) compared to the 428

baseline, which uses FP32 precision gradients. 429

In contrast, full 2-bit quantization across all mod- 430

ules, as well as FG-2bit with embedding gradients 431

(FG w/Embd) or bias gradients (FG w/Bias), re- 432

sults in divergence during training. Incorporating 433

layer normalization (FG w/LN) demonstrates that 434

layer normalization is compatible with fine-grained 435

2-bit quantization, achieving comparable results 436

to FG-2bit in terms of training loss and validation 437

perplexity. Overall, FG-2bit remains the preferred 438

approach due to its optimal balance between per- 439

formance and efficiency. 440

As shown in Figure 3, we compared the FG-2bit 441

algorithm with other popular quantization meth- 442

ods, including TernGrad and QSGD (in ternary 443

6

Figure 3: Comparison of training loss across different
gradient quantization algorithms.

Figure 4: Comparison of training loss across different
gradient quantization algorithms.

version for consistency). Fine-grained versions444

of these methods, namely FG-TernGrad and FG-445

QSGD-Ternary, were evaluated to align with our446

approach and are explicitly labeled in the figure for447

clarity. The results show that FG-2bit significantly448

outperforms all competing methods in validation449

perplexity (PPL), demonstrating its robustness in450

maintaining model performance under reduced pre-451

cision. Additionally, we tested a fine-grained 1-452

bit variant that uses the gradient sign. While it453

showed numerical instability during pretraining454

and underperformed FG-2bit, it still exceeded the455

performance of all other 2-bit methods.456

4.2 Scalability and Generalization Evaluation457

4.2.1 Scalablity458

To evaluate the scalability of our algorithms, we459

tested the pre-training performance of a GPT model460

with 2.7 billion parameters, as shown in Figure 4.461

This model shares the same architecture as the462

Method Training Loss Validation PPL
Baseline 2.895 18.60
FG-2bit 2.913 18.92
FG-1bit 3.052 21.25

Table 3: Comparison for GPT-2.7B Model

350M model but features an expanded dimension 463

of 2560, 32 layers, and 32 attention heads, consis- 464

tent with the GPT-3 2.7B specification. The ex- 465

periments were conducted on 32 GPUs distributed 466

across 4 servers, using the same dataset and hyper- 467

parameter settings as the 350M model, except for a 468

peak learning rate adjusted to 2 × 10−4. All con- 469

figurations were kept consistent to ensure reliable 470

scalability comparisons. 471

As shown in Table 3, the FG-2bit model achieves 472

performance close to the baseline full-precision 473

model, with only a 0.018 difference in training loss 474

and 0.32 in validation perplexity (PPL). Notably, 475

this gap is smaller than that observed in the 350M 476

model, where the differences were 0.032 in training 477

loss and 0.72 in PPL. These results highlight the 478

scalability of the FG-2bit approach, as it maintains 479

high performance even for larger models. 480

Additionally, we assessed the performance of 481

a 1-bit quantization for the 2.7B model. Similar 482

to the 350M model, the 1-bit version initially ex- 483

hibited instability in training loss. However, as 484

shown in Figure 4 and detailed in Table 3, it even- 485

tually converged to a level close to that of the base- 486

line, demonstrating its potential viability despite 487

the early-stage fluctuations. 488

4.2.2 Generalization to LLaMA 489

To validate the generalization capability of our 490

ultra-low bit quantization method across differ- 491

ent architectures and larger models, we conducted 492

experiments on LLaMA, an 8B parameter model 493

with a distinctly different architecture from GPT. 494

The model features 32 layers, 4096 hidden dimen- 495

sions, and five key architectural differences from 496

GPT: (1) RMSNorm instead of LayerNorm for 497

normalization, (2) Rotary Positional Embedding 498

(RoPE) instead of learned positional embeddings, 499

(3) SwiGLU (Shazeer, 2020) activation functions 500

instead of GELU, (4) Grouped-Query Attention 501

(GQA) (Ainslie et al., 2023) instead of standard 502

multi-head attention, and (5) the absence of bias 503

terms in linear layers. We trained each model con- 504

figuration for 50,000 steps with 65,536 tokens per 505

batch. The dataset composition remained consis- 506

7

Method ARC-E BoolQ H-Swag PIQA COPA REC Avg
Baseline 47.3 56.7 31.3 65.2 69.0 73.0 57.1
FG-2bit 47.6 57.0 30.6 63.8 72.0 71.6 57.1
FG-1bit 47.3 55.9 30.4 63.9 72.0 71.0 56.8

Table 4: Performance evaluation of LLaMA-8B on various benchmarks (accuracy in %). Baseline uses FP32
gradient, while FG-2bit and FG-1bit represent our proposed fine-grained 2-bit and 1-bit fine-grained quantization
methods respectively. Benchmarks include ARC-Easy (ARC-E) (Clark et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (H-Swag) (Zellers et al., 2019), Physical Interaction QA (PIQA) (Bisk et al., 2020), Choice of Plausible
Alternatives (COPA) (Roemmele et al., 2011), and ReCORD (REC) (Zhang et al., 2018).

tent with our previous experiments on 350M and507

2.6B parameter GPT models.508

Our evaluation across multiple benchmarks509

yielded promising results. As shown in Table 4,510

our fine-grained 2-bit quantization maintains the511

baseline’s 57.1% average performance across all512

tasks. Even more remarkably, our 1-bit quantiza-513

tion achieved 56.8% average performance, with514

only a 0.3% degradation from full precision.515

This exceptional quantization efficiency on516

LLaMA models can be attributed to their bias-517

free architecture. Our experiments with smaller518

models demonstrated that quantizing bias gradi-519

ents often causes training instability and divergence.520

LLaMA’s elimination of bias terms in linear layers521

removes this quantization-sensitive component, sig-522

nificantly narrowing the performance gap between523

ultra-low-bit and full-precision training. This find-524

ing reinforces the importance of considering archi-525

tectural decisions that can facilitate more efficient526

gradient quantization for large-scale training.527

4.3 Communication Efficiency Analysis528

Table 5 presents the communication time measure-529

ments for gradient all-reduce operations across530

various model sizes and data parallelism config-531

urations. Our fine-grained ultra-low bit quantiza-532

tion methods (FG2 and FG1) demonstrate substan-533

tial communication time reductions compared to534

the FP32 baseline. The benefits become increas-535

ingly pronounced as model size and parallelism536

degree increase. For the 13B parameter model537

with 4-way data parallelism, our 2-bit quantization538

reduces communication time from 9225.83ms to539

just 555.43ms (16.6× speedup), while our 1-bit540

quantization further reduces it to 241.68ms (38.2×541

speedup). Significant improvements are also ob-542

served with the 6.7B model at 4-way parallelism,543

where 2-bit quantization achieves a 15.3× speedup544

and 1-bit quantization achieves a 27.9× speedup.545

These results confirm that our ultra-low bit quanti-546

Model DP Baseline FG2 FG1
350M 8 27.96 26.17 18.24
350M 16 183.38 125.71 82.82
350M 32 246.79 258.86 162.55
1.3B 8 75.63 40.09 27.33
1.3B 16 595.64 540.61 231.82
1.3B 32 859.22 1059.80 493.04
2.7B 4 158.23 39.21 24.17
2.7B 8 1029.02 242.87 132.18
2.7B 16 1332.90 525.93 276.46
6.7B 2 178.66 27.54 18.68
6.7B 4 3813.32 248.88 136.48
6.7B 8 4974.62 692.81 361.99
13B 2 6494.37 153.45 70.33
13B 3 8217.07 277.49 133.16
13B 4 9225.83 555.43 241.68

Table 5: All-reduce communication time (ms) for differ-
ent model sizes and data parallelism (DP) configurations.
FG2 and FG1 represent our proposed fine-grained 2-bit
and 1-bit quantization methods respectively.

zation techniques effectively address the commu- 547

nication bottleneck in distributed training of large 548

language models, with particularly significant ben- 549

efits in clusters with limited network bandwidth 550

where communication overhead is most severe. 551

5 Conclusion 552

In this paper, we introduced BitDP, an ultra-low bit 553

gradient quantization and data parallelism system 554

designed to address the massive communication 555

overhead in LLM training. Our approach reduces 556

communication costs by up to 32× with less than 557

1% performance degradation. Experiments demon- 558

strate BitDP’s scalability and reliability as a prac- 559

tical solution for large-scale AI training. These 560

results highlight its potential to support increas- 561

ingly large models efficiently. Moving forward, 562

we will explore cost-effective training systems to 563

further enhance LLM efficiency and scalability. 564

8

6 Limitations565

Our BitDP system and fine-grained ultra-low bit566

quantization method has shown promising results567

on relatively large-scale models and datasets. How-568

ever, due to computational resource constraints,569

the current experimental scale, while substantial,570

is still not sufficient to fully explore the method’s571

potential—particularly on larger models, such as572

those with tens of billions of parameters, and more573

extensive datasets. Moreover, the additional over-574

head introduced by quantization and dequantization575

operations requires further optimization of compu-576

tation operators to improve speed and efficiency.577

While our work aims to reduce resource con-578

sumption for training large language models, we579

acknowledge the potential risk that by making train-580

ing more resource-efficient, it could inadvertently581

encourage more widespread training of increas-582

ingly larger models, which might lead to greater583

cumulative environmental impact.584

References585

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama586
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,587
Diogo Almeida, Janko Altenschmidt, Sam Altman,588
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.589
arXiv preprint arXiv:2303.08774.590

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury591
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.592
2023. Gqa: Training generalized multi-query trans-593
former models from multi-head checkpoints. In Pro-594
ceedings of the 2023 Conference on Empirical Meth-595
ods in Natural Language Processing, pages 4895–596
4901.597

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,598
and Milan Vojnovic. 2017. Qsgd: Communication-599
efficient sgd via gradient quantization and encoding.600
Advances in neural information processing systems,601
30.602

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Aziz-603
zadenesheli, and Animashree Anandkumar. 2018.604
signsgd: Compressed optimisation for non-convex605
problems. In International Conference on Machine606
Learning, pages 560–569. PMLR.607

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,608
et al. 2020. Piqa: Reasoning about physical com-609
monsense in natural language. In Proceedings of the610
AAAI conference on artificial intelligence, volume 34,611
pages 7432–7439.612

Tom Brown, Benjamin Mann, Nick Ryder, Melanie613
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind614
Neelakantan, Pranav Shyam, Girish Sastry, Amanda615
Askell, Sandhini Agarwal, Ariel Herbert-Voss,616

Gretchen Krueger, Tom Henighan, Rewon Child, 617
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 618
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 619
teusz Litwin, Scott Gray, Benjamin Chess, Jack 620
Clark, Christopher Berner, Sam McCandlish, Alec 621
Radford, Ilya Sutskever, and Dario Amodei. 2020. 622
Language models are few-shot learners. In Ad- 623
vances in Neural Information Processing Systems, 624
volume 33, pages 1877–1901. Curran Associates, 625
Inc. 626

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 627
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 628
Barham, Hyung Won Chung, Charles Sutton, Sebas- 629
tian Gehrmann, et al. 2023. Palm: Scaling language 630
modeling with pathways. Journal of Machine Learn- 631
ing Research, 24(240):1–113. 632

Christopher Clark, Kenton Lee, Ming-Wei Chang, 633
Tom Kwiatkowski, Michael Collins, and Kristina 634
Toutanova. 2019. Boolq: Exploring the surprising 635
difficulty of natural yes/no questions. In Proceedings 636
of the 2019 Conference of the North American Chap- 637
ter of the Association for Computational Linguistics: 638
Human Language Technologies, Volume 1 (Long and 639
Short Papers), pages 2924–2936. 640

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 641
Ashish Sabharwal, Carissa Schoenick, and Oyvind 642
Tafjord. 2018. Think you have solved question an- 643
swering? try arc, the ai2 reasoning challenge. arXiv 644
preprint arXiv:1803.05457. 645

Wikimedia Foundation. Wikimedia downloads. 646

Aaron Gokaslan and Vanya Cohen. 2019. Openweb- 647
text corpus. http://github.com/jcpeterson/ 648
openwebtext. 649

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 650
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 651
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 652
centivizing reasoning capability in llms via reinforce- 653
ment learning. arXiv preprint arXiv:2501.12948. 654

Diederik Kingma and Jimmy Ba. 2015. Adam: A 655
method for stochastic optimization. In International 656
Conference on Learning Representations (ICLR), San 657
Diega, CA, USA. 658

Conglong Li, Ammar Ahmad Awan, Hanlin Tang, 659
Samyam Rajbhandari, and Yuxiong He. 2022. 1- 660
bit lamb: communication efficient large-scale large- 661
batch training with lamb’s convergence speed. 662
In 2022 IEEE 29th International Conference on 663
High Performance Computing, Data, and Analytics 664
(HiPC), pages 272–281. IEEE. 665

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill 666
Dally. 2018. Deep gradient compression: Reducing 667
the communication bandwidth for distributed train- 668
ing. In International Conference on Learning Repre- 669
sentations. 670

Yucheng Lu, Conglong Li, Minjia Zhang, Christo- 671
pher De Sa, and Yuxiong He. 2023. Maximizing 672

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://dumps.wikimedia.org
http://github.com/jcpeterson/openwebtext
http://github.com/jcpeterson/openwebtext
http://github.com/jcpeterson/openwebtext
https://openreview.net/forum?id=-CefY2EOupj
https://openreview.net/forum?id=-CefY2EOupj

communication efficiency for large-scale training via673
0/1 adam. In The Eleventh International Conference674
on Learning Representations.675

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,676
Patrick LeGresley, Mostofa Patwary, Vijay Kor-677
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,678
Julie Bernauer, Bryan Catanzaro, et al. 2021. Ef-679
ficient large-scale language model training on gpu680
clusters using megatron-lm. In Proceedings of the681
International Conference for High Performance Com-682
puting, Networking, Storage and Analysis, pages 1–683
15.684

NVIDIA Corporation. 2020. NVIDIA NCCL. https:685
//developer.nvidia.com/nccl.686

Adam Paszke, Sam Gross, Francisco Massa, Adam687
Lerer, James Bradbury, Gregory Chanan, Trevor688
Killeen, Zeming Lin, Natalia Gimelshein, Luca689
Antiga, et al. 2019. Pytorch: An imperative style,690
high-performance deep learning library. Advances in691
Neural Information Processing Systems, 32.692

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao,693
Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue Yang,694
Bolin Ni, Jingcheng Hu, et al. 2023. Fp8-lm: Train-695
ing fp8 large language models. arXiv preprint696
arXiv:2310.18313.697

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,698
and Yuxiong He. 2020. Zero: Memory optimizations699
toward training trillion parameter models. In SC20:700
International Conference for High Performance Com-701
puting, Networking, Storage and Analysis, pages 1–702
16. IEEE.703

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2018.704
On the convergence of adam and beyond. In Interna-705
tional Conference on Learning Representations.706

Melissa Roemmele, Cosmin Adrian Bejan, and An-707
drew S Gordon. 2011. Choice of plausible alter-708
natives: An evaluation of commonsense causal rea-709
soning. In AAAI spring symposium: logical formal-710
izations of commonsense reasoning, pages 90–95.711

Noam Shazeer. 2020. Glu variants improve transformer.712
arXiv preprint arXiv:2002.05202.713

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao714
Wang, Zilin Zhu, Xue Huang, Xinan Jiang, Feihu715
Zhou, Zhenyu Guo, Liqiang Xie, et al. 2021. To-716
wards scalable distributed training of deep learning717
on public cloud clusters. Proceedings of Machine718
Learning and Systems, 3:401–412.719

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,720
Patrick LeGresley, Jared Casper, and Bryan Catan-721
zaro. 2019. Megatron-lm: Training multi-billion722
parameter language models using model parallelism.723
arXiv preprint arXiv:1909.08053.724

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,725
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-726
hanced transformer with rotary position embedding.727
Neurocomputing, 568:127063.728

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, 729
Samyam Rajbhandari, Conglong Li, Xiangru Lian, 730
Ji Liu, Ce Zhang, and Yuxiong He. 2021. 1-bit adam: 731
Communication efficient large-scale training with 732
adam’s convergence speed. In International Con- 733
ference on Machine Learning, pages 10118–10129. 734
PMLR. 735

Gemini Team, Rohan Anil, Sebastian Borgeaud, 736
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 737
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 738
Anja Hauth, et al. 2023. Gemini: a family of 739
highly capable multimodal models. arXiv preprint 740
arXiv:2312.11805. 741

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 742
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 743
Baptiste Rozière, Naman Goyal, Eric Hambro, 744
Faisal Azhar, et al. 2023. Llama: Open and effi- 745
cient foundation language models. arXiv preprint 746
arXiv:2302.13971. 747

Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia 748
Wu, Connor Holmes, Zhewei Yao, Samyam Rajb- 749
handari, Olatunji Ruwase, Feng Yan, Lei Yang, et al. 750
2024. Zero++: Extremely efficient collective com- 751
munication for large model training. In The Twelfth 752
International Conference on Learning Representa- 753
tions. 754

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yan- 755
dan Wang, Yiran Chen, and Hai Li. 2017. Terngrad: 756
Ternary gradients to reduce communication in dis- 757
tributed deep learning. Advances in neural informa- 758
tion processing systems, 30. 759

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. 760
2023. Training transformers with 4-bit integers. Ad- 761
vances in Neural Information Processing Systems, 762
36:49146–49168. 763

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 764
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 765
machine really finish your sentence? In Proceedings 766
of the 57th Annual Meeting of the Association for 767
Computational Linguistics, pages 4791–4800. 768

Biao Zhang and Rico Sennrich. 2019. Root mean square 769
layer normalization. Advances in Neural Information 770
Processing Systems, 32. 771

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng 772
Gao, Kevin Duh, and Benjamin Van Durme. 2018. 773
Record: Bridging the gap between human and ma- 774
chine commonsense reading comprehension. arXiv 775
preprint arXiv:1810.12885. 776

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut- 777
dinov, Raquel Urtasun, Antonio Torralba, and Sanja 778
Fidler. 2015. Aligning books and movies: Towards 779
story-like visual explanations by watching movies 780
and reading books. In Proceedings of the IEEE in- 781
ternational conference on computer vision, pages 782
19–27. 783

10

https://openreview.net/forum?id=-CefY2EOupj
https://openreview.net/forum?id=-CefY2EOupj
https://openreview.net/forum?id=-CefY2EOupj
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

A Gradient Distribution Analysis of LLM784

Linear Layers785

In this section, we analyze the gradient distribu-786

tions of linear layers in large language models787

(LLMs) across different model sizes and layers.788

Specifically, we focus on two representative mod-789

els: GPT-51M and GPT-13B, which differ signifi-790

cantly in scale and architecture. GPT-51M, a small-791

scale model, consists of 8 Transformer layers with792

a hidden dimension of 512. In contrast, GPT-13B,793

a large-scale model, contains 40 Transformer lay-794

ers with a hidden dimension of 5120. The analy-795

sis spans 20,000 training steps, with gradient his-796

tograms sampled every 50 steps to capture the tem-797

poral evolution of gradient propagation. Figure 5798

visualizes the overlaid histograms of weight gradi-799

ents for all linear sub-layers within a single Trans-800

former layer. The results are shown for GPT-51M801

at Layer 1 (first row) and GPT-13B at both Layer802

1 (second row) and Layer 8 (third row). This fig-803

ure provides insight into how gradient distributions804

evolve across models of different scales and depths.805

From the analysis, we observe that the gradients806

exhibit a distinct triangular distribution, symmetri-807

cally centered around zero, across both small-scale808

and large-scale models. This distribution reflects809

stable gradient propagation throughout training, as810

gradients remain balanced without becoming ex-811

cessively concentrated or dispersed. Notably, the812

triangular distributions are consistent across differ-813

ent model sizes and layers, as seen in GPT-51M814

at Layer 1 and GPT-13B at Layers 1 and 8. These815

findings suggest that larger models, such as GPT-816

13B, align more closely with our assumed gradient817

distribution. Such alignment makes them better818

suited for applying our system, further reinforcing819

the scalability of our approach.820

B Proof of the Closed-form Threshold α∗821

B.1 Problem Statement822

For the 2-bit quantizer defined in Eq.(7) of the main823

text as824

qi,j =


1, gi,j ≥ αi,

0, −αi ≤ gi,j < αi,

−1, gi,j < −αi,

(11)825

We determine the threshold αi by solving the fol- 826

lowing optimization problem: maximizing 827

F(αi) =
1

|Ωαi |

 ∑
j∈Ωαi

|gi,j |

2

, (12) 828

Ωαi = { j : |gi,j | > αi }. 829

This is under the condition that the gradient G 830

follows a triangular distribution, where its proba- 831

bility density function (PDF) is 832

fG(x) =
hi − |x|

h2i
, x ∈ [−hi, hi], (13) 833

where hi = maxj |gi,j |. For Y = |G|, 834

fY (y) =
2 (hi − y)

h2i
, y ∈ [0, hi]. (14) 835

B.2 Continuous Form of the Objective 836

Replacing sums by expectations gives 837

F(αi) ≈
[
E(Y 1Y >αi)

]2
P(Y > αi)

. (15) 838

Let t = αi/hi ∈ [0, 1). From Eq. (14), 839

P(Y > αi) =

∫ hi

αi

fY (y) dy 840

= (1− t)2, (16) 841

E
[
Y 1Y >αi

]
=

∫ hi

αi

y fY (y) dy 842

= hi
(
1
3 − t2 + 2

3 t
3
)
. (17) 843

Up to a factor of h2i , the objective function to 844

maximize is 845

F (t) =

[
1
3 − t2 + 2

3 t
3
]2

(1− t)2
(18) 846

Hence we maximize 847

f(t) =
1
3 − t2 + 2

3 t
3

1− t
, 0 ≤ t < 1. (19) 848

B.3 Solution 849

Write n(t) = 1
3 − t2 + 2

3 t
3 and d(t) = 1 − t so 850

f(t) = n(t)/d(t). Then 851

f ′(t) =
n′(t)(1− t) + n(t)

(1− t)2
, (20) 852

n′(t) = 2t(t− 1). 853

Setting f ′(t) = 0 yields 4t3−9t2+6t−1 = 0 = 854

(t− 1
4)(4t

2 − 8t+4). The only root in the interval 855

[0, 1) is t∗ = 1
4 , giving the optimal threshold 856

α∗
i =

hi
4
. (21) 857

11

(a) 51M Layer 1 Att KQV (b) 51M Layer 1 Att Projection (c) 51M Layer 1 MLPh→4h (d) 51M Layer 1 MLP4h→h

(e) 13B Layer 1 Att KQV (f) 13B Layer 1 Att Projection (g) 13B Layer 1 MLPh→4h (h) 13B Layer 1 MLP4h→h

(i) 13B Layer 7 Att KQV (j) 13B Layer 7 Att Projection (k) 13B Layer 7 MLPh→4h (l) 13B Layer 7 MLP4h→h

Figure 5: Overlaid gradient histograms of GPT-51M (51 million parameters) and GPT-13B (13 billion parameters)
models across 20,000 training steps. Each plot overlays gradient distributions sampled every 50 steps during training,
aggregated for different Transformer components (Attention KQV, Attention Projection, and MLP layers). The first
row corresponds to GPT-51M at Layer 1, while the second and third rows represent GPT-13B at Layer 1 and Layer
8, respectively.

B.4 Relation to the Mean Absolute Gradient858

For the triangular distribution, the mean of Y =859

|G| is E[Y] = hi/3. Therefore,860

α∗
i =

hi
4

=
3

4
Ej [|gi,j |]. (22)861

This relationship shows that α∗
i is 3/4 of862

the mean absolute gradient, which offers greater863

robustness to outliers compared to an estima-864

tor based on the sample maximum hi (αi =865

(maxj |gi,j |)/4).866

C Supplementary Information867

We use three large-scale corpora for all exper-868

iments: BooksCorpus, English Wikipedia, and869

OpenWebText. BooksCorpus contains approxi-870

mately 800M words of unpublished books, while871

for English Wikipedia, we only utilize the text pas-872

sages, amounting to 2,500M words. These two873

datasets align with the training data used in BERT.874

Additionally, we incorporate OpenWebText, which875

consists of 38GB of text data (40GB using SI units)876

from 8,013,769 documents, matching the corpus877

used to train GPT-2. We sample from these datasets878

uniformly according to a ratio of 20% (BooksCor- 879

pus), 30% (Wikipedia), and 50% (OpenWebText). 880

The combined corpus is split into training (94.9%), 881

validation (5%), and test (0.1%) sets. This distribu- 882

tion provides a diverse and comprehensive founda- 883

tion for evaluating our quantization methods across 884

different linguistic contexts and domains. 885

All experiments with the above datasets are con- 886

ducted using the PyTorch and Megatron-LM frame- 887

work on NVIDIA V100 GPUs for research pur- 888

poses, which is consistent with the intended use. 889

We utilized AI assistants for writing polishing. 890

12

	Introduction
	Related Work
	Method
	Fine-grained Ultra-low Bit Gradient Quantization
	Selective Compression for High-volume Gradient Segments
	Channel-adaptive Ultra-low Bit Gradient Quantization

	Ultra-low Bit AllReduce

	Experiments
	Performance Evaluation of Fine-Grained Ultra-Low Bit Quantization
	Scalability and Generalization Evaluation
	Scalablity
	Generalization to LLaMA

	Communication Efficiency Analysis

	Conclusion
	Limitations
	Gradient Distribution Analysis of LLM Linear Layers
	Proof of the Closed-form Threshold bold0mu mumu false
	Supplementary Information

