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Abstract: Recent work suggests that very large datasets of teleoperated robot
demonstrations can train transformer-based models that have the potential to gen-
eralize to new scenes, robots, and tasks. However, curating, distributing, and
loading large datasets of robot trajectories, which typically consist of video, textual,
and numerical modalities - including streams from multiple cameras - remains
challenging. We propose Robo-DM, an efficient cloud-based data management
toolkit for collecting, sharing, and learning with robot data. With Robo-DM, robot
datasets are stored in a self-contained format with Extensible Binary Meta Lan-
guage (EBML). Robo-DM reduces the size of robot trajectory data, transfer costs,
and data load time during training. In particular, compared to the RLDS format
used in OXE datasets, Robo-DM’s compression saves space by up to 70x (lossy)
and 3.5x (lossless). Robo-DM also accelerates data retrieval by load-balancing
video decoding with memory-mapped decoding caches. Compared to LeRobot, a
framework that also uses lossy video compression, Robo-DM is up to 50x faster.
In fine-tuning Octo, a transformer-based robot policy with 73k episodes with RT-1
data, Robo-DM does not incur any loss at training performance. We physically
evaluate a model trained by Robo-DM with lossy compression, a pick-and-place
task, and In-Context Robot Transformer. Robo-DM uses 75x compression of the
original dataset and does not suffer any reduction in downstream task accuracy.
Code and evaluation scripts can be found on website.6.

1 Introduction

Recent work [1, 2, 3, 4, 5, 6, 7] suggests Vision-Language-Action models [4, 1, 5] can enhance robot
capabilities and generalization in handling multiple settings in diverse environments. A key ingredient
for large model training is large and well-curated datasets of teleoperated robot demonstration
trajectories such as the Open-X Embodiment (OXE) dataset [2]. However, the curation of robot data
is still inefficient [2]; each robot demonstration consists of sequences of actions and observations,
making the learning samples much larger and richer in information compared to the images or text
tokens in VLMs [8, 9, 10, 11, 12] and LLMs [13, 14]. The complexity and informational content per
sample of robotics data are significantly higher, which presents unique challenges for model training.
At large scale, which is sometimes characterized as Big Data [15], existing data storage methods can
be inefficient. We propose Robo-DM, an efficient data format with a toolkit for robot data collection,
management, and training.

Each robot dataset includes a number of episodes. An episode is a sequence of actions performed by
an agent from a starting state to a terminal state. An episode contains multiple sensor data streams in
addition to language instructions and other metadata such as robot, task, environment, and control
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Figure 1: Robo-DM can streamline robot data collection, management, and learning. (a) Robo-DM uses a
unified format for vision, language, and action that does not rely on assumptions about timestamps and data. (b)
Robo-DM supports plug-and-play data collection to integrate with existing setups. (c) Robo-DM can facilitate
replay and visualization. (d) Existing training frameworks can load from Robo-DM efficiently with minimal
modification.

scheme specifications. The size of a typical episode ranges from 1 MB to 400 MB, depending on
the episode length, compression level, number of cameras, and the camera resolution. Data streams
may be recorded at different sampling rates. Episodes are typically stored as a sequence of matrices;
for example, data collection with DROID [6] automates data storage with Hierarchical Data Format
5 (HDF5) [16], a format that supports hierarchical storage of matrices. OXE uses Reinforcement
Learning Datasets (RLDS) [17], an extension of Tensorflow Datasets (TFDS) to store reinforcement
learning demonstrations. Storing image and sensor data directly in matrices limits the capability of
compression, and is thus not space efficient. One emergent framework, LeRobot [18], provides a
platform to share robot models and datasets based on lossy video compression and HuggingFace
datasets. However, its file structure is complex and loading is generally slower than storing matrices
directly.

We observe the following challenges in robot data collection and usage:

(A) Transmission Efficiency: Distributing robotics datasets is costly. Cloud service providers, such as
Google Cloud Platform (GCP) and Amazon Web Services (AWS), charge the data host for both data
storage and outbound data transfers. Counterintuitively, the implicit cost of transferring data is more
than the cost of storing it. For example, storing 8.9 TB of Open-X data on Google Cloud costs 172
US dollars per month, but every full download costs between 172 US Dollars and 1,540 US dollars. 7

Directly training with cloud storage requires repeated downloads if the local storage cannot store
the full dataset, further increasing network traffic and cost to the data host. Thus, improving data
compression and transmission efficiency can reduce costs and potentially encourage public sharing of
datasets.

(B) Usability and Simplicity: Existing frameworks impose restrictions on file structure, data layout,
semantics, and alignment. In particular, hybrid approaches rely on framework-specific assumptions
to handle multiple formats simultaneously. Extending the current framework or migrating between

7The rate is calculated with the egress network traffic pricing in Google Cloud Platform (GCP), where the
Open-X-Embodiment dataset is hosted. We use the size of Open-X v1.1 dataset with 8,964 GB in total. The
rate differs by the downloading source and destination region. The rate does not consider retransmission of lost
packets, so the actual cost is higher than the estimation.



frameworks can be challenging, resulting in complex structure and file organization. Figure 2 shows
a comparison of LeRobot with other storage formats.

(C) Data Loading Performance: Large robot datasets are typically loaded into computationally
training applications. In training, decoded frames are frequently reused and randomly accessed, and
the decoded data is loaded on demand. Existing frameworks that use heavy compression sometimes
lead to high computational resource utilization and interfere with the training performance. Thus,
an efficient and perform ant data-loading framework should utilize available resources without
contention.

We introduce Robo-DM, an efficient cloud-based toolkit for collecting, sharing, and learning with
robot data. Robo-DM streamlines storage for vision, language, and action data via a unified con-
tainer format with Extensible Binary Meta Language (EBML). Robo-DM efficiently orchestrates
heterogeneous data streams, supporting flexible lossless compression and lossy compression for
enhanced transmission efficiency. In prior work, LeRobot [18] empirically evaluates how lossy
video compression parameters in FFmpeg affect robot policy accuracy. Octo is also pre-trained
by compressing image frames in OXE to lossy images [1]. Robo-DM improves the data loading
performance for training workloads, which requires repetitive data access by using memory-mapped
caching for faster data retrieval and loading. Loading from cache and decoding are load-balanced to
maximize the utilization of compute, memory and storage resources. Robo-DM requires minimal
integration effort with existing frameworks. It supports plug-and-play data collection, training, replay,
and visualization with mainstream frameworks, and can also be easily exported to other formats such
as HDF5 and RLDS.

Experiments suggest that Robo-DM can reduce the size of data by up to 70 times with lossy
compression compared to how Open-X-Embodiment currently shares the dataset, and up to 50x faster
than LeRobot, a comparable framework that also uses lossy video compression to encode vision
data. We fine-tune Octo, a transformer-based robot policy trained with an 800k Open-X-Embodiment
dataset with 74k training episodes from RT-1. Robo-DM reduces the dataset size by 4.39 times,
while being 3.0 times faster in small batch size (data loading intensive) and does not introduce any
slowdown in the training pipeline with large batch size (compute intensive).

This paper makes the following contributions: (1) an extension of EBML to define a container format
that unifies time-based robot data storage; (2) Robo-DM, a framework with 6 new features using this
container format; (3) Experimental data that suggests Robo-DM can significantly reduce dataset size,
improve loading speed, and incur marginal training performance degradation.

2 Related Work

Big Robot Data The robot learning community is actively building a number of open-source robot
learning datasets [3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 48, 49, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 41, 74, 75, 76, 77, 6, 78, 79, 80, 81, 82, 83, 84, 85, 86]. Recent work,
such as Octo [1], Open-VLA [5], are trained on large datasets such as RT-1 [3], RT-2 [4], Open-X-
Embodiment [2], Distributed Robot Interaction Dataset (DROID) [6]. Their initial results suggest
training with large and diverse robotics datasets can enhance robot capabilities and generalization in
handling multiple settings in diverse environments. In this work, we propose an efficient data pipeline
for managing large and diverse robot datasets.

Robot Data Frameworks Existing frameworks for collecting, managing and storing robot data fall
into the following three categories: (1) Serialized Log format that preserves timing information. This
allows users to directly replay the data, e.g. with the official ROS2 tool, rosbag [87]. (2) Matrix
format that can be directly integrated with training frameworks. For example, DROID [6] automates
data storage with HDF5 Hierarchical Data Format (HDF5) [16] and existing OXE datasets use RLDS,
an extension of Tensorflow Datasets (TFDS) [88] that store and retrieve the interaction between an
agent and an environment with observation, action and reward. Storing image and sensor data directly



Figure 2: A File Structure Comparison of Robo-DM with Alternative Storage Formats All formats include
metadata, storing descriptive information such as authors and dataset summary. (A) Reinforcement Learning
Dataset (RLDS) stores episodes in partitions, where each partition is a Tensorflow Dataset Record file. All
streams in episode data are compressed matrices that can be directly loaded and trained in Tensorflow. (B)
LeRobot combines three formats for robot data. For vision data, it uses one MP4 per video stream in an episode,
and uses HuggingFace Dataset (with Apache Arrow as backend[19]) to store language and action streams and
the path to the MP4 files. It also uses safetensors [20] to store episode information. All the streams are scattered:
to extract an episode, the framework needs to query safetensors for episode information - which is used to find
the rest of the non-video streams in the HuggingFace Dataset - and finally use the frame information from the
HuggingFace Dataset to find the corresponding MP4 files for vision streams. (C) In Robo-DM, robot data in all
the episodes are stored and aligned in a self-contained format. To load an episode, one can simply read from
Robo-DM files and load as trainable matrices.

in matrices limits the capability of compression, and is thus not space efficient. (3) Hybrid formats
that store different features in separate files and require assumptions on how different features are
aligned and synchronized, such as LeRobot [18], a platform to share robot models and datasets based
on HuggingFace datasets.

Cloud and Fog Robotics Fog Robotics [89] utilizes cloud and edge resources for robotics appli-
cations. Existing Fog and Cloud robotics focus on deployment of robotics applications, such as
grasp planning [90], motion planning [91], visual servoing [92], and human-robot interaction [93].
FogROS2 [94] automates cloud compute resources for robotics, addressing issues such as connec-
tivity [95], latency [96], and cost [97]. We recognize the cost of the cloud required to distribute
large robot datasets, and study how formats affect robotics learning in data collection, loading and
management.

3 Robo-DM Features

We enumerate 6 new features to differentiate Robo-DM from existing data frameworks and alternative
approaches.

(1) Self-Contained Robot Data Storage: Robo-DM uses a self-contained file format that integrates
and stores heterogeneous robot data streams, ensuring all necessary data is consolidated within a
single file.

(2) Vision, Language, Action Data Orchestration: The format of Robo-DM seamlessly unifies diverse
binary robot data streams, including sensor data, environment specifications, language instructions,
and kinematic controls.

(3) Data Flexibility: Robo-DM is extensible to different data streams, compression algorithms and
video encoding formats. For example, Robo-DM enables users to flexibly choose from storing vision
data as a sequence of serialized matrices, images, or encoding with lossy or lossless video codecs.
With Robo-DM, one can record all the data with original timestamps without resorting to heuristics
on data alignment.

(4) Efficient Dataset Size: Robo-DM efficiently encodes heterogeneous time-aligned streams. It uses
video compression to significantly reduce the size of file transfer.



Figure 3: How Robo-DM stores an episode with vision, language and action data Robo-DM encodes vision,
language and action data. For vision data, Robo-DM uses video or image compression; language and action data
are serialized into bytes. All the bytes are encapsulated with an intake timestamp. Then Robo-DM multiplexes
different streams of data into EBML file format similar to MKV video containers.

(5) Data Loading Efficiency: Robo-DM efficiently loads data by caching decoded frames and
balancing resource utilization across available hardware.

(6) Simple Data Collection, Training and Visualization: Robo-DM adopts a concise interface for
data collection that can fit into existing systems with minimal modification. It integrates seamlessly
with TensorFlow and PyTorch interfaces, enabling easy adoption. It also allows for exporting of
the collected data to existing state-of-the-art data storage frameworks, such as RLDS and HDF5.
Robo-DM supports replaying messages through Robot Operating System (ROS) 2, the de-facto
standard for developing robotics applications. One can use off-the-shelf ROS2 tools such as rviz [98]
or Foxglove [99] to visualize the replayed streams.

4 Robo-DM Design

4.1 Unified and Self-Contained Robot Data Format

Robo-DM uses Extensible Binary Meta Language (EBML) [100] for data structuring. EBML is a
versatile and extensible markup language that combines the flexibility of Extensible Meta Language
(XML) with the efficiency of binary encoding. It organizes binary data elements in a hierarchical
structure similar to XML, allowing for nested elements and coherent data management. This enables
EBML to handle data streams from different sources within a single container, using self-describing
elements that ensure compatibility and future extensibility. A notable application of EBML is in the
MKV [101] video container format, which uses it to store multiple video and audio tracks, along with
subtitles, in a time-aligned manner within a single container.

Figure 3 illustrates how Robo-DM encapsulates heterogeneous robot data streams. Robo-DM
compresses vision streams and serializes robot data into byte packets. A byte packet encapsulates the
raw bytes and descriptive information, such as timestamp and stream information. To efficiently replay
the data and keep the relative timing information between data streams with different frequencies,
all the data packets are stored with a relative timestamp to the beginning of the episode. Robo-
DM extends MKV to store robot data to ensure the synchronization of multiple streams on vision,
language, and action within the same container.

Data Collection and Post-Processing Compression can be computationally intensive. To prevent
interference with the data collection process, Robo-DM uses its file format flexibility to first store
all data in its serialized form. After the data collection is finished, Robo-DM iterates through the
collected data, transcodes data that requires compression and re-arranges the collected data (remux)
to arrange the data packets in favor of the access pattern. Because training applications sometimes
access the episode at a given time frame, Robo-DM groups time-aligned data streams slices together.
On querying a specific frame, metadata is used to identify the related segments and decode the video



starting from the latest keyframe before the start of the slice. All the decoded trajectories are cached
to speed up future accesses.

4.2 Transmission-Efficient Storage, Retrieval and Loading

Transmission-Efficient Compression Robo-DM unifies heterogeneous data streams that require
different mechanisms for compression and serialization. Because Robo-DM naturally supports byte
streams, it is agnostic to mainstream byte compression algorithms and video encoders. For vision data,
three channels (red, green, blue) can be compressed with off-the-shelf video compression algorithms,
such as H.264 [102], H.265 [103], AV1 [104]. For large matrices that require full precision, such
as stereo depth images, users can alternatively choose to compress them with lossless compression
algorithms such as FFV1 [105, 106].

Efficient Decoding Cache For sequential access patterns, compression-based algorithms can reduce
space usage by decoding all frames in order. In training, decoded frames are frequently reused and
randomly accessed, and the decoded data is loaded on-demand. Robo-DM amortizes the random
access patterns by memory-mapped files (mmap) [107, 16]. Mmap creates a new mapping in the
virtual address space of a process to a cache file. If a slice of data is used, only the portions of the file
that are actually used are brought into memory, conserving both I/O bandwidth and physical memory.

Load Balancing For Decoding and Decoding Cache Robo-DM automates the choice of compu-
tationally heavy decoding, loading directly cache in memory, and loading the decoded matrices
from disk. To prevent overusing a single resource, Robo-DM estimates the potential latency of
accessing the data and dynamically balancing the access. Specifically, if the memory resources are
underutilized and a prior decoded matrix is available, this means the decoded data is likely in physical
memory without being cached to the disk by mmap, and Robo-DM can directly use the decoded
cache. In contrast, if the memory is full, cache miss is frequent and the data is not frequently accessed,
Robo-DM does not load from cache, and directly decodes the video data instead.

Dataset Description Total Dataset Size (GB)
Dataset Avg. Frames Original Robo-DM-

# Image Streams Resolution per Episode RLDS HDF5 Lossless LeRobot Robo-DM
Cable Routing 3 RGB (128, 128) 25 4.67 (18x) 7.38 (28x) 1.67 (6x) 0.36 (1.4x) 0.26 (1x)
Door Opening 1 RGB (720, 960) 42 7.12 (71x) 35.35 (354x) 2.89 (29x) 0.38 (4x) 0.10 (1x)
AutoLab UR5 2 RGB, 1 Depth (480, 640) 97 76.39 (23x) 258.33 (88x) 23.45 (7x) (-) 3.26 (1x)
Bridge 1 RGB (480, 640) 34 387.49 (73x) 779.24 (147x) 114.63 (22x) 16.34 (3x) 5.31 (1x)

Table 1: Dataset information and Size Comparison with Different Formats in Gigabytes (GB). Compression
ratios differ by the number of image streams and resolution. Robo-DM and LeRobot use lossy compression,
while the rest are lossless. Both LeRobot and Robo-DM use AV1 codec with 30 Constant Rate Factor (CRF), a
factor that balances compression and decoded video quality. These parameters are suggested by LeRobot video
benchmark [108]. (-) LeRobot omits depth stream and some action streams at its conversion from RLDS [17].

5 Evaluation

Our experiments consider three questions: (1) How does Robo-DM’s training data loader compare
with state-of-the-art data loaders? (2) How does Robo-DM work with training workloads in terms of
data loading speed, space saving, and training performance? (3) Does Robo-DM preserve the policy
performance?

Setup We evaluate Robo-DM with a standard workstation setup: Intel i9-13900K Processor with
96GB RAM and NVidia 4070 Ti Super GPU. The workstation is equipped with 6TB NVMe M.2 SSD
with the reading throughput up to 5000 MB/s and writing throughput up to 2500 MB/s. It connects
Internet with a 1 Gbps Ethernet connection that can download from Open-X-Embodiment Google
Cloud Bucket with 10 Mbps. We make sure the batch can fit in RAM without swap space. The
video streams in Robo-DM are decoded with CPU without specialized GPU or additional hardware
decoder.
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Figure 4: Comparison of Robo-DM with baseline data loading methods in throughput and loading latency.
We compare Robo-DM with baseline data loading Methods RLDS, HDF5, and LeRobot. Complete episodes are
loaded concurrently as a batch, and we record the average latency of 200 batches with a batch size of 8 episodes.
We use the lowest GCP cost of 0.02 US Dollars (USD) per GB.

5.1 Data Loading Benchmarks with Open-X-Embodiment

We evaluate the data loading performance of Robo-DM with a number of exemplar datasets from
Open-X-Embodiment (OXE). In the experiments, we concurrently load multiple entire episodes into
memory, and we explicitly cast the data into in-memory numpy arrays. We measure the latency of
issuing a number of concurrent reads (i.e. a batch) to the time that all the episodes are loaded. For
each run, we measure the average latency over 200 data loads.

Datasets We use 1. Bridge [22]: two WidowX arms interact with household environments including
kitchens, sinks, and tabletops. Skills include object rearrangement, sweeping, stacking, folding, and
opening/closing doors and drawers. In the dataset,there are 4 RGB streams and 1 depth stream with
25,460 training episodes. 2. UC Berkeley Cable Routing: [109] one Franka robot arm routes a cable
through a number of tight-fitting clips mounted on the table with 1,482 training episodes. 3. NYU
Door Opening: [28] A Hello Stretch robot opens cabinet doors for a variety of cabinets with 435
training episodes. 4. Berkeley AUTOLab UR5 [30]: A UR5 robot arm pick-and-place of a stuffed
animal between containers, sweeping a cloth, stacking cups with 896 training episodes.

Baselines We compare Robo-DM with the following baselines 1. RLDS [17] Open-X-Embodiment is
stored and shared in RLDS format. In the evaluation, we directly download and load the datasets
with official instructions. 2. LeRobot [18] We convert Open-X-Embodiment datasets in LeRobot
datasets with the provided official script. Some features in Open-X-Embodiment are omitted in the
conversion. We sequentially extract episodes suggested by the example instructions. 3. HDF5 [16]
We use Robo-DM to convert Open-X-Embodiment datasets to HDF5 formats. Since one HDF5 file
per trajectory, we implement pre-fetch buffer and pytorch loader with the same setup as Robo-DM.
We use a pre-fetch buffer of 50 episodes.

Episode Size Table 1 shows that Robo-DM significantly reduces file size (18x, 73x, 23x and 73x) per
episode compared to the RLDS, a format in which these datasets are originally stored and shared.
The episode size reduction leads to high accessibility to large robot datasets, transmission efficiency,
and cost efficiency, shown in Figure 4b.

Loading Latency Figure 4 compares the throughput difference of Robo-DM compared against
LeRobot, RLDS, and HDF5. The lossless version of Robo-DM has similar throughput as Robo-DM.
It is faster than LeRobot by 33x, 20x and 5x. Robo-DM is slower than HDF5 because the HDF5 data
is uncompressed and loaded in high disk throughput.

Limitation Because Robo-DM extensively uses RAM as a decoding cache to prevent repetitive
decoding of the data, it leads to higher RAM usage and potentially degrades the performance when
the per-episode data is large. For example, at bridge data, we see Robo-DM reduces the overall
throughput when the batch size increases.



5.2 Case Study: Fine-tuning Octo with Robo-DM

Octo [1] is a transformer-based robot policy trained on 800k robot episodes from Open-X-
Embodiment. We fine-tune the pre-trained Octo-small model with 25.6M trainable parameters.
We fine-tune the entire model conditioned with both images and language instructions. For each
configuration, we train with 50,000 iterations and measure the per-iteration average latency.

Dataset Compression We use RT-1 [3] dataset, a dataset containing 73,499 episodes. The dataset
involves picking, placing, and moving 17 objects with Google Robot. The dataset contains 1 RGB
video stream with resolution (320, 480). The original dataset is 111.06 GB. The final dataset size of
Robo-DM is 36.50 GB with 4.39 times size reduction. The reason why the size reduction is smaller
than other datasets from Open-X-Embodiment is that the per-trajectory size is small, with 1.51 MB
on average per trajectory in RLDS. Robo-DM needs more space to store metadata for seeking and
decoding.

Training Performance We run the training workload with batch size 64. Dataloader in Octo loads
from Tensorflow dataloader and Robo-DM and lead to similar data loading latency (0.02 seconds)
per iteration and overall training latency (0.10 seconds) per iteration. In validating the effect of
lossy compression to the training outcome, we use lossless dataset for validation. The final image-
conditioned Mean Squared Error of validation dataset is 1.86 with original lossless data and 1.91
with lossy data, leading to 2.6% increase in validation loss.

5.3 Case Study: Robo-DM with In-Context Robot Transformer Training

Task We evaluate the training performance of Robo-DM, hypothesizing the lossy compression of
Robo-DM, despite a high compression rate, could reduce the accuracy of the trained model. Thus,
we evaluate a model trained with 335 human-demonstrated trajectories with the lossy compression of
Robo-DM. The trained model is tasked to pick up a stuffed toy tiger. Figure 5 shows the task setup
with the Franka Emika robot.

Data We collect 335 human-demonstrated trajectories with one hand camera and one left-side-view
camera. All video streams are recorded at resolution (320, 180). The trajectories were originally
collected in HDF5 with gzip compression, with a total size of 5.8G. Stored in Robo-DM’s format, the
dataset with lossless codec leads to 1.7G (3.41x space reduction), and the size of lossy compression
is 77MB (75.3x space reduction).

Model We use the ICRT [7], a transformer model that performs autoregressive prediction on sensori-
motor trajectories. We train for 200 epochs with image brightness and contrast augmentation and a
small proprioception noise (N(0,0.01)).

Results We randomize the position of the stuffed toy tiger at different places on the tabletop. We
evaluate with consecutive 15 trials on the model trained with lossy data. The model is able to reliably
identify the object, pick it up, and place it in a bowl with a 15 out of 15 success rate (100%).

6 Conclusion

In this paper we propose Robo-DM, which includes a new format for robot data, and a toolkit for data
collection, management, and loading. Robo-DM significantly outperforms Open-X-Embodiment in
terms of space saving. It also shows performant loading speed compared to LeRobot, a framework
that also uses video compression. In the task of fine-tuning Octo and policy training, Robo-DM
reduces dataset size and introduces marginal slowdown and accuracy degradation.

The file size reduction is mainly due to video compression. In future work, we will accelerate
video compression and analyze the tradeoffs between parameters. In the evaluation, we used the
off-the-shelf video processing library, pyav [110], without GPU acceleration. Recent works such
as Decord [111] and GPU acceleration by Nvidia NVDEC [112] are demonstrated to be faster than



pyav. Also in future work, we will integrate and evaluate Robo-DM with larger-scale of existing and
prospective Open-X-Embodiment datasets.
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1 import robo_dm
2
3 # Data Collection
4 trajectory = robo_dm.Episode("Franka-01-02-2024.vla")
5 trajectory.add(feature = "language_instruction",
6 value = "pick up the tiger and place in the bowl")
7 trajectory.add(feature = "image", value = image)
8 trajectory.add(feature = "joint_state", value = state)
9

10 # Data Loading
11 trajectory = robo_dm.load(path = "Franka-01-02-2024.vla")
12 # [image_1, image_2...]
13 images = trajectory["image"]
14 # [joint_state_1, joint_state_2, ...]
15 joint_states = trajectory["joint_state"]
16
17 # Data Exporting
18 # Support HDF5, RLDS
19 dataset.export(format = "hdf5")

Listing 1: Code Example of Robo-DM Robo-DM adopts a minimalist data collection, loading and exporting
interface that can be easily integrated with existing frameworks.
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Figure 5: ICRT Physical Experiment Setup with Robo-DM We setup ICRT to pick up a stuffed toy tiger and
place it into a black bowl with a Franka Emika robot arm. The Figure shows the view from the left camera and
wrist camera used for training, for both the original dataset and reconstructed images from Robo-DM.

A Integration with existing Frameworks

Data Collection Interface In order to integrate with custom data collection software stacks, Robo-
DM uses a concise programming interface for data collection. Listing 1 shows Robo-DM data
collection library infers time and the data type from the input vision, action and language data. Due
to the simplicity in Robo-DM’s data storage format, the data collection library introduces minimal
code complexity to the overall custom data collection software stack.

Plug-and-Play Data Collection and Visualization Robo-DM supports integration with ROS2-
enabled setups to collect data in a plug and play manner. In ROS2, computational modules, nodes,
can be deployed on different machines. ROS2 provides an off-the-shelf tool, rosbag, to capture data
streams from sensors, logs, and various topics during robot operation. Robo-DM supports transcoding
from and exporting robot data to rosbag, with all the timing information recorded. Rosbags also can
be directly replayed in ROS2. The ROS2 community provides a number of frameworks, such as
rviz [98], and Foxglove [99] from the open source community, a browser-based tool that enables
visualization of ROS 2 topics. Besides replaying videos, these visualizers also support visualization
in 3D, which is helpful for action data such as robot state and motions.

Data Loading Interface To support existing training frameworks with minimal modification, Robo-
DM supports accessing robot data in the same way as accessing typical HDF5 files (shown in Listing



1). Robo-DM supports converting robot data to other state-of-the-art formats, such as HDF5 and
Tensorflow dataset.
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