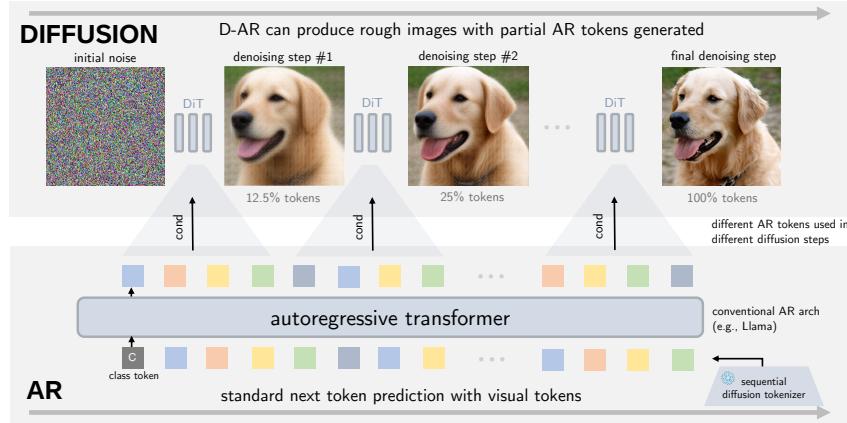


000 001 002 003 D-AR: DIFFUSION VIA AUTOREGRESSIVE MODELS 004 005 006 007

008 **Anonymous authors**
009 Paper under double-blind review
010
011
012
013
014
015
016
017
018
019
020



021 Figure 1: **Diffusion via autoregressive modeling (D-AR) framework** for visual generation. As the
022 autoregressive transformer generates tokens, D-AR can simultaneously perform corresponding
023 diffusion steps via token conditioning and jump-estimate target samples as rough previews effortlessly.
024

025 ABSTRACT 026

027 This paper introduces Diffusion via Autoregressive (D-AR) models, a new
028 paradigm recasting the pixel diffusion process as a vanilla autoregressive pro-
029 cedure in the standard next-token-prediction fashion. We start by designing the
030 tokenizer that converts an image into the sequence of discrete tokens, where to-
031 kens in different positions can be decoded into different diffusion denoising steps
032 in the pixel space. Thanks to the diffusion property, these tokens naturally fol-
033 low a coarse-to-fine order, which directly lends itself to autoregressive modeling.
034 Then, we apply standard next-token prediction to these tokens, without modify-
035 ing any underlying designs (either causal masks or training/inference strategies),
036 and such sequential autoregressive token generation directly mirrors the diffusion
037 procedure in image space. That is, once the autoregressive model generates an
038 increment of tokens, we can directly decode these tokens into the corresponding
039 diffusion denoising step on pixels in a streaming manner. Our pipeline naturally
040 reveals several intriguing properties, for example, it supports consistent previews
041 when generating only a subset of tokens and enables zero-shot layout-controlled
042 synthesis. On the standard ImageNet benchmark, our method achieves 2.09 and
043 2.00 FID using a 775M and 1.4B Llama backbone with 256 discrete tokens. We
044 hope our work can inspire future research on unified autoregressive architectures
045 of visual synthesis, especially with large language models.
046

047 1 INTRODUCTION 048

049 Autoregressive models, exemplified by large language models (LLMs) (Touvron et al., 2023; GPT-
050 4-Team, 2024; Llama-3-Team, 2024), now underpin modern NLP, delivering state-of-the-art results
051 with a simple next-token prediction objective. With widespread adoption of AR models, this simple
052 next token prediction paradigm has established as the de facto standard in modern LLM systems and
053 fostered software ecosystem for optimizing such training and inference pipelines (Shoeybi et al.,
2020; Kwon et al., 2023; Zheng et al., 2024). The remarkable success of autoregressive models in

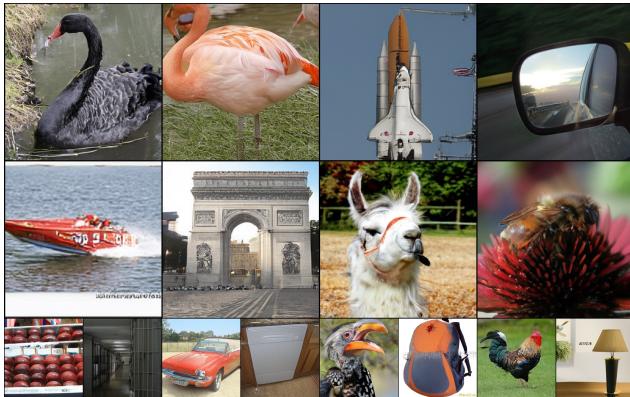


Figure 2: **Uncurated generated samples** from D-AR-XL with 256×256 resolutions (CFG=4.0).

language has also inspired exploration into visual generation tasks (Esser et al., 2021; Sun et al., 2024; Lee et al., 2022), with the broader goal of building unified frameworks of both vision and language (Team, 2024; Zhou et al., 2025; Xie et al., 2025; Ma et al., 2024b). However, unlike text, where sequential structure is naturally defined, images lack an inherently linear ordering, posing challenges for adapting such paradigm to vision modeling. Recent studies explore different visual orderings in autoregressive modeling (Tian et al., 2024; Pang et al., 2024; Yu et al., 2024a; Ren et al., 2025; Li et al., 2025). However, these approaches typically require significant modifications to the core mechanisms, often deviating from the standard next token prediction objective.

At the same time, modern vision generation pipelines are most dominated by diffusion paradigms (Song et al., 2021; Ho et al., 2020; Lipman et al., 2023), exemplified by several commercial systems (Ramesh et al., 2021; Labs, 2023; Podell et al., 2024). The diffusion pipelines excel at modeling continuous image signals: starting from random noise, they iteratively refine input through denoising to produce high-quality images. However, diffusion sampling requires many dense sequential dense denoising steps and such architectures pose challenges for seamless integration with LLMs and limit their potential in unified multi-modal systems.

In this paper, we aim to bridge the diffusion process and autoregressive modeling for visual generation, leveraging strengths from both paradigms. Importantly, we maintain a strict adherence to the standard next-token prediction paradigm and make no changes to the underlying autoregressive mechanism to “simulate” the diffusion process on images. To achieve this, we present the *sequential diffusion tokenizer* to reinterpret the diffusion process on raw image pixels as a sequence of coarse-to-fine discrete tokens. In this formulation, early tokens represent conditions in early diffusion steps from pure noise, whilst later tokens capture progressive steps over less noised inputs, leading to a naturally linearized decomposition of visual sequence. We design the diffusion model in the proposed tokenizer to be light and fast, i.e., with around 185M parameters and 8 diffusion steps without extra VAEs, and achieve 1.52 rFID on ImageNet (Deng et al., 2009) with a total budget of 256 discrete tokens. With this design, we can perform the diffusion process on image pixels via predicting next token in token sequence with the autoregressive mechanism unchanged. Therefore, we name this framework as **D-AR** (Diffusion via Autoregressive) models. D-AR excels on the ImageNet class-conditioned generation benchmark. With the plain LLaMA backbone (Touvron et al., 2023) backbones, 775M and 1.4B D-AR models achieve the leading 2.09 and 2.00 gFID with a total of 256 tokens in the standard next-token-prediction AR regime. We hope our work can inspire future research on integrated multi-modal LLM architectures with native visual generation capabilities.

2 RELATED WORK

2.1 DIFFUSION AND AUTOREGRESSIVE MODELS

Diffusion models and autoregressive models are currently two main streams of modern generative modeling. Diffusion models (Ho et al., 2020; Song et al., 2021; Lipman et al., 2023; Liu et al., 2023), exemplified by several commercial text-to-image models (Labs, 2023; Ramesh et al., 2021),

108 excel in generating high-quality visual content by iteratively denoising a sample from an initial
 109 noise. Though powerful in generating visually pleasing images, the diffusion process typically
 110 operates in a dense manner and requires significant sampling steps, which can be computationally
 111 expensive. Recent success in language modeling using autoregressive paradigm, especially large
 112 language models (Llama-3-Team, 2024; GPT-4-Team, 2024; Team, 2025; Bai et al., 2023), has
 113 inspired researchers to explore the potential of this paradigm in visual generation tasks due to its
 114 scalability and mature training and inference infrastructures. However, this adaptation raises several
 115 challenges, since images are not inherently discrete and linear structures like text. To this end,
 116 researchers use vector quantized autoencoders to quantize images into discrete latent codes (van den
 117 Oord et al., 2017; Esser et al., 2021) and use raster-scan order to model the image sequence (Sun
 118 et al., 2024; Team, 2024; Wang et al., 2024). Researchers have also found that image sequence
 119 ordering can be defined in various ways (Tian et al., 2024; Pang et al., 2024; Ren et al., 2025; Yu
 120 et al., 2024a), and the next-token prediction paradigm should be adapted to suit vision modeling
 121 accordingly.

122 Though sorts of visual autoregressive models have been proposed, the dominant role of diffusion
 123 models in visual generation tasks remains almost unchanged due to their outperforming capabilities
 124 at visual continuous signals. In this paper, we seek to bridge diffusion models and autoregressive
 125 models for visual generation and leverage the advantage of both sides, following previous efforts in
 126 this research line (Li et al., 2024; Gu et al., 2025a; Chen et al., 2024; Deng et al., 2024; Wu et al.,
 127 2024; Pan et al., 2025b; Ge et al., 2024; Zhou et al., 2025; Gu et al., 2025b). But different from
 128 these work, we strictly adhere to the standard next-token-prediction autoregressive paradigm with
 129 discrete inputs and outputs, and design diffusion in the tokenizer decoder in a sequential manner to
 130 tackle with visual continuous data.

131 2.2 VISUAL TOKENIZATION WITH DIFFUSION MODELS

132 How to encode images into sequences of discrete tokens and then effectively reconstruct pixels from
 133 them is a key design for visual generation in autoregressive models. Due to the vector quantization
 134 and downsampling operations, visual tokenization methods inevitably suffer from the loss of infor-
 135 mation and lead to suboptimal reconstruction quality, which researchers have put intensive efforts
 136 into improving (van den Oord et al., 2017; Esser et al., 2021; Yu et al., 2022; Lee et al., 2022).
 137 Concurrently, a research direction recently emerges on leveraging diffusion models to decode visual
 138 tokens back into image pixels (OpenAI, 2023; Zhao et al., 2024; Tang et al., 2024; Sargent et al.,
 139 2025; Tang et al., 2024). Specifically, these methods typically see discrete tokens as conditions in
 140 the diffusion process. By doing so, they offload visual ambiguity and fine details to the diffusion
 141 model and significantly improves the visual fidelity (Zhao et al., 2024; Chen et al., 2025; Sargent
 142 et al., 2025). Further work on this line argues that discrete tokens should focus on structural seman-
 143 tics of images and extract such semantics with flexible sequence length (Wen et al., 2025; Bachmann
 144 et al., 2025) by large latent diffusion models together with VAE (Kingma & Welling, 2014; Rombach
 145 et al., 2022).

146 To our best knowledge, our method is the first to propose the tokenizer to interpret the full diffusion
 147 process into the autoregressive sequential generation using the diffusion tokenizer. Our method
 148 is individually developed from related work, DDT-LLama (Pan et al., 2025a) and Selftok (Wang
 149 et al., 2025), which also uses a diffusion decoder to sequentialize tokens but in a reversed order or
 150 a recursive way. Also, Pan et al. (2025a) and Wang et al. (2025) cannot represent diffusion steps
 151 as sequential AR generation process and therefore cannot decode with partial tokens generated by
 152 autoregressive models, marking a key distinction from our method and underlying motivation.

153 3 METHODS

154 A critical challenge in visual autoregressive modeling (Sun et al., 2024; Tian et al., 2024) is, for
 155 a long time, how to tokenize a 2D image into a sequence of discrete tokens since images are not
 156 inherently 1D linear structures like text. Though several works defined the ordering of image pix-
 157 els (Pang et al., 2024; Tian et al., 2024; Yu et al., 2024a; Ren et al., 2025), they either introduce
 158 spatial inductive bias or require tailored autoregressive designs for vision, posing challenges on a
 159 unified autoregressive framework.

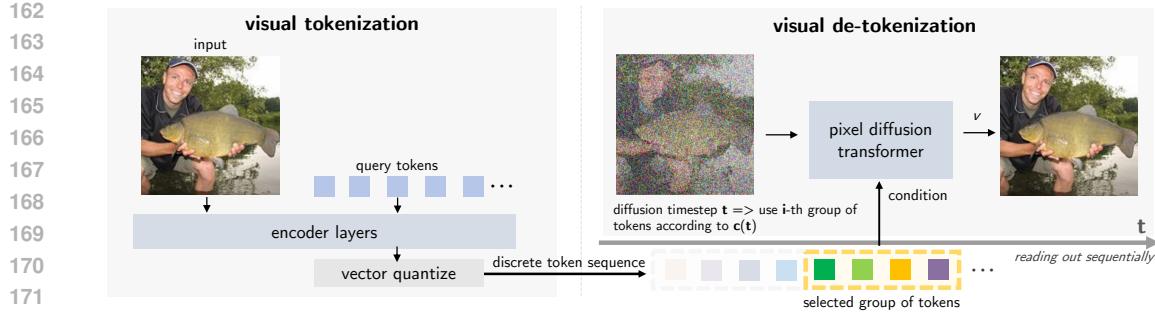


Figure 3: **Sequential diffusion tokenizer structure.** When training the tokenizer, the pixel diffusion transformer in the tokenizer decoder calculates the velocity loss with the selected group of tokens, $\mathbf{c}(t)$, as conditioning tokens.

We propose a systematic solution to address this with Diffusion via Autoregressive models (D-AR), which recasts the image diffusion process as a fully autoregressive model in the standard next-token-prediction manner. The high-level idea is to *perform the diffusion process on pixels via autoregressive modeling*. To start, we design a *sequential diffusion tokenizer* that tokenizes images into sequences of 1D discrete tokens, which can be sequentially decoded as diffusion steps from the first to the end token. We apply standard next-token prediction on these tokens using a Llama decoder-only autoregressive backbones (Touvron et al., 2023), without modifying any AR architecture (either causal masks or training/inference designs) to generate images.

3.1 SEQUENTIAL DIFFUSION TOKENIZER

The sequential diffusion tokenizer is designed to tokenize images into 1D linearized discrete tokens in the ordering of progressive diffusion steps. The overall tokenizer structure is shown in Figure 3, akin to conventional visual tokenizers, which encodes images into latents, quantize them into discrete ones, and then decode them back into diffusion over pixels in an auto-encoding manner.

1D encoding. Similar to 1D tokenization approach (Yu et al., 2024b), the sequential diffusion tokenizer first encodes the image into a 1D sequence of discrete tokens using a transformer:

$$\mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N] = \text{QUANT}(\mathcal{E}(\mathbf{I}, [\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N])), \quad (1)$$

where \mathbf{I} is the input image, typically patchified as a set of patch tokens, \mathcal{E} is the transformer encoder (Vaswani et al., 2017), $\text{QUANT}(\cdot)$ is the vector quantizer (van den Oord et al., 2017), and $[\mathbf{q}_i]$ are learnable query tokens, where N is the total number of queries. In this step, we do not impose a specific ordering on the resulting 1D token sequence, which we will further focus on below.

Sequential diffusion decoding. We propose the sequential diffusion decoder to decode 1D quantized token sequence into consecutive diffusion steps on image pixels. The diffusion decoder is a diffusion transformer (Peebles & Xie, 2023), which takes tokens in different positions in the sequence as conditions in different diffusion steps. Here, flow matching loss with velocity prediction, a simplified variant of diffusion families (Liu et al., 2023; Lipman et al., 2023; Ma et al., 2024a), is used to train the diffusion decoder. The loss is defined as:

$$\ell_{\text{fm}} = \mathbb{E}_{t, \mathbf{x}_0, \mathbf{x}_1} \left[\|\mathbf{v}_t - \mathcal{D}_{\text{FM}}(\mathbf{x}_t, t, \mathbf{c}(t))\|_2^2 \right], \quad (2)$$

where the flow interpolant is defined as:

$$\mathbf{x}_t = t\mathbf{x}_1 + (1-t)\mathbf{x}_0, \quad \mathbf{v}_t = d\mathbf{x}_t/dt = \mathbf{x}_1 - \mathbf{x}_0, \quad (3)$$

$$\mathbf{x}_0 \sim \mathcal{N}(0, 1), \quad \mathbf{x}_1 = \mathbf{I}, \quad t \in [0, 1]. \quad (4)$$

With this notation, \mathbf{x}_0 at timestep $t = 0$ represents pure noise and $\mathbf{x}_1 = \mathbf{I}$ at $t = 1$ represents the real data sample. During inference, samples can be generated by solving ordinary differential equation (ODE) from $t = 0$ to $t = 1$ when the condition schedule $\mathbf{c}(t)$ is given.

The condition schedule $\mathbf{c}(t)$ is a set of quantized tokens \mathbf{z}_i used as conditions in the diffusion decoder at timestep t . To enable the sequential decoding property, we design the condition schedule $\mathbf{c}(t)$ to start from the first token \mathbf{z}_1 and reach the last token \mathbf{z}_N as the flow matching timestep t progresses from 0 to 1. In preliminary experiments, we find that multiple \mathbf{z}_i for a specified timestep is crucial for good performance. We thus first group consecutive tokens \mathbf{z}_i into K groups, $\{\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_K\}$, each group \mathbf{g}_i with N/K tokens. The condition schedule is then defined as:

$$\mathbf{c}(t) = \mathbf{g}_{\lceil t' \cdot K \rceil}, \quad t' = t / (t + (1/\beta) * (1 - t)), \quad (5)$$

where t' is the shifted timestep and β is a control parameter. When $\beta = 1$, time ranges are evenly split regarding the condition group \mathbf{g}_i . The higher β values lead to denser tokens as conditions over early diffusion steps, which we find empirically beneficial for reconstruction quality.

Discussion. One can view the 1D sequence of tokens as the “proxy” of the underlying diffusion procedure on pixels controlled by conditioning tokens $\mathbf{c}(t)$. With sequential diffusion decoding, we can decode increments of AR tokens into consecutive diffusion sampling steps on pixels in the streaming way when reading out tokens sequentially. This token order is naturally linearized by the diffusion process, where early tokens represent conditions needed in early diffusion steps ($t \rightarrow 0$) over noisy inputs, often low-frequency spatial layout. Later tokens describe the information needed in later steps ($t \rightarrow 1$) over less noisy inputs, typically localized details or structures (Rissanen et al., 2023). This coarse-to-fine token ordering is well-suited for autoregressive modeling, as shown in experimental section. Also, by the diffusion decoder, the tokenizer decoder can delegate ambiguous details to diffusion and thus focus on semantics (Hudson et al., 2024).

3.2 AUTOREGRESSIVE MODELING

Once we have the linearized sequence of discrete tokens by our proposed tokenizer, we can apply standard autoregressive next token prediction to model the image generation process:

$$p_{\theta}(\mathbf{z}) = \prod_{i=1}^N p_{\theta}(\mathbf{z}_i | \mathbf{z}_1, \dots, \mathbf{z}_{i-1}), \quad (6)$$

where θ is the AR model parameters and one can use simple cross entropy loss to optimize parameters. In this paper, we resort to the decoder-only transformer architecture (Touvron et al., 2023; Sun et al., 2024) for autoregressive modeling.

Vanilla vision autoregressive modeling. General autoregressive modeling assumes a linear ordering of data elements, which is hard to define in images. By using tokens produced by the sequential diffusion tokenizer, D-AR keeps the same discrete inputs and outputs, attention masks/kernels, loss functions, and inference logistics as standard AR models

3.3 DIFFUSION VIA AUTOREGRESSIVE MODELS

The presented framework, diffusion via autoregressive models, simply consists of the sequential diffusion visual tokenizer and the Llama decoder-only transformer on discrete token sequences. Note here that the sequential diffusion tokenizer directly operates on raw pixels and do not require extra VAEs (Kingma & Welling, 2014; Rombach et al., 2022).

Markovian diffusion procedure via vanilla autoregressive models. As the name implies, sequential generation in the D-AR framework directly corresponds to diffusion procedure on image pixels via the bridge of token conditioning. When we are generating a sequence of tokens, we can perform the diffusion sampling on pixels simultaneously whenever we have condition tokens needed at diffusion timestep t ready, i.e., $\mathbf{c}(t)$. Since the diffusion is only controlled by autoregressive models via condition tokens, we do not break the Markovian convention of diffusion models, different from a conceptually related work (Gu et al., 2025a). Therefore, D-AR can leverage advantages of both diffusion and autoregressive worlds:

1. **KV cache-friendly inference:** as the D-AR framework uses autoregressive decoder-only transformers on token sequences, it natively supports KV cache-friendly fast inference;

270

271 2. **Streaming pixel decoding and consistent previews at no extra costs.** We can perform

272 diffusion steps on pixels instantly whenever we have needed tokens ready in a streaming

273 manner. Also, since the diffusion decoder is directly operating on pixels, we can use the

274 diffusion property to jump-estimate the target and generate consistent previews effortlessly;

275 3. **Zero-shot controlled synthesis.** As the token sequence is linearized by diffusion, we can

276 simply condition several prefix tokens to control the visual generation without finetuning.

277

278 4 IMPLEMENTATIONS

279 **Sequential diffusion tokenizer architecture.** For the encoder in diffusion tokenizer, we mainly

280 follow the design of 1D tokenizer (Yu et al., 2024b) to use the transformer encoder layers jointly

281 processing image patches and learnable query tokens. We apply a causal mask to query tokens

282 to enforce the basic causality on queries but allow both query tokens and image tokens to attend

283 to arbitrary image tokens. As default, we set the number of queries $N = 256$, input patch size

284 $p = 16$, the dimension of transformer $d = 768$, and the transformer layer $L = 8$. Following (Sun

285 et al., 2024), we use the vanilla vector quantization with ℓ_2 -normalized codebook entries, configured

286 with codebook size $n_e = 16384$ and dimension $d_e = 8$. We expect better performance with more

287 advanced quantization approaches (Mentzer et al., 2024; Yu et al., 2023) but leave for future work.

288 We design the diffusion decoder as the diffusion transformer architecture (Peebles & Xie, 2023; Ma

289 et al., 2024a) but on raw pixel patches, which integrates zero-initialized adaptive layer normalization

290 (AdaLN)(Perez et al., 2018). To condition the diffusion decoder with condition tokens $\mathbf{c}(t)$, we use

291 the cross attention layer on patch tokens to attend to condition tokens and take attention output as

292 the input of the AdaLN, together added by the time t embedding. The diffusion transformer decoder

293 is configured moderately with $L_d = 12$ layers, $d_d = 768$ hidden dimension, and patch size $p_d = 8$,

294 resulting in a total parameter of 185M.

295 We add causal decoder transformer layers on encoded tokens \mathbf{z} , after the vector quantization and

296 before diffusion decoding, to produce \mathbf{z}' for more nonlinearity. We configure it as the same as the

297 transformer encoder. Note that these decoder transformer layers with causal masks do not break the

298 causality of the token sequence. The total parameter of the sequential diffusion tokenizer is 300M.

300 **Training sequential diffusion tokenizer.** Training diffusion models on raw pixels with few in-

301 ference steps is a challenging task (Hoogeboom et al., 2023; 2024), even with the strong image

302 encoded conditions (Zhao et al., 2024). To enable few-step inference and speed up the convergence,

303 we use the perceptual matching loss based on LPIPS (Zhang et al., 2018; Zhao et al., 2024) and

304 representation alignment (REPA) loss (Yu et al., 2024c) together with flow matching (2) and vector

305 quantization loss to train the sequential diffusion tokenizer:

$$\ell_{\text{tokenizer}} = \ell_{\text{fm}} + \ell_{\text{vQ}} + \lambda_1 \ell_{\text{LPIPS}} + \lambda_2 \ell_{\text{repa}}, \quad (7)$$

306 where we assign $\lambda_1 = 0.5$ and $\lambda_2 = 0.5$. We do not use adversarial matching loss (Zhao et al.,

307 2024) in our training since we observe the instability and over-saturation issue.

308 In a training forward pass, we first encode an image into a quantized token sequence and use trans-

309 former decoder layers to compute \mathbf{z}' . Then we randomly sample a flow matching timestep $t \in [0, 1]$,

310 determine which group \mathbf{g}_i of \mathbf{z}' should be used as conditions for diffusion decoder according to the

311 condition schedule $\mathbf{c}(t)$, and compute the final loss $\ell_{\text{tokenizer}}$.

312 **Sampling with sequential diffusion tokenizer.** Given the token sequence, either encoded from

313 images or generated from autoregressive modeling, we can perform the flow matching sampling by

314 reading out tokens in the sequential order based on the condition schedule $\mathbf{c}(t)$. For simplicity and

315 efficiency, we design the default sampling schedule to use each condition group exactly once, that

316 is, to bind the number of sampling steps to the number of condition groups K and use a timeshifted

317 schedule in the reversed form of (5), following (Esser et al., 2024):

$$t_i = \frac{i/K}{(i/K) + \beta * (1 - i/K)}, \quad i = 0, 1, \dots, K - 1. \quad (8)$$

318 This sampling schedule results in denser early sampling steps when $\beta > 1$ and we default set

319 $\beta = 2$ and $K = 8$ for sampling efficiency, resulting in each conditioning group with $N/K = 32$

324 tokens. Again, for efficiency, we do not use classifier-free guidance (CFG) (Ho & Salimans, 2022)
 325 in diffusion sampling decoding steps.
 326

327 **AR models.** Our AR model architecture is exactly the same as Llama decoder-only transformers,
 328 which are with RMSNorm (Zhang & Sennrich, 2019) and SwiGLU (Shazeer, 2020). Note that since
 329 tokens by sequential diffusion tokenizer are inherently one-dimensional, we apply the original 1D
 330 RoPE (Su et al., 2024), rather than 2D RoPE, in attention layers as positional embedding. The class
 331 conditions, e.g., image labels, are injected as a single prefix token following (Sun et al., 2024). We
 332 do not use AdaLN in our AR models. Classifier-free guidance on logits is used during AR inference.
 333 We mainly experiment three variants of D-AR models, D-AR- $\{L, XL, XXL\}$, with 343M, 775M,
 334 and 1.4B parameters respectively, also following (Sun et al., 2024). To generate an image, D-AR
 335 models first produce a sequence of tokens conditioned on the given label in the standard token-by-
 336 token manner with KV cache enabled. In pace with sequential generation, we can decode tokens
 337 generated into diffusion sampling steps on pixels either concurrently or offline.
 338

339 5 EXPERIMENTS

340 **Experimental Setup.** We conduct D-AR experiments on the ImageNet 256×256 class-conditional
 341 generation benchmark (Deng et al., 2009). The sequential diffusion tokenizer is trained on the Im-
 342 ageNet training set with a batch size of 1024, Adam optimizer (Kingma & Ba, 2015) of learning rate
 343 $2 * 10^{-4}$ and a total of 210K iterations till convergence, together with an exponential moving aver-
 344 age with a 0.999 decay rate. The training procedure took around 5 days on 16 A100 GPUs to finish.
 345 We follow the training recipe (Pang et al., 2024) to train D-AR autoregressive models with a batch
 346 size of 1024 for 300 epochs. We use AdamW optimizer (Loshchilov & Hutter, 2017) with learning
 347 rate $4 * 10^{-4}$, $(\beta_1, \beta_2) = (0.9, 0.95)$ and weight decay of 0.05. The learning rate is decayed to
 348 $1 * 10^{-5}$ linearly within the last 50 epochs, following (Pang et al., 2024). The performance of D-AR
 349 is evaluated in terms of FID (Heusel et al., 2017), Inception Score (Salimans et al., 2016), preci-
 350 sion and recall scores, following the standard ADM evaluation pipeline (Dhariwal & Nichol, 2021).
 351 For the reconstruction performance of the sequential diffusion tokenizer, we mainly investigate the
 352 reconstruction FID (rFID) on the ImageNet validation 50K set.
 353

354 5.1 RESULTS

355 **Tokenizer results.** We investigate the key component of our D-AR framework, i.e., the sequential
 356 diffusion tokenizer. In Table 1, we compare our sequential diffusion tokenizer with the conventional
 357 LlamaGen tokenizer, which has the same budget of 256 tokens and the same vector quantization
 358 configuration, as strong baselines. Despite having more parameters (300M versus 72M), which is
 359 mainly due to the pixel diffusion decoder, our sequential diffusion tokenizer achieves better recon-
 360 struction fidelity and is more endurable to smaller codebook size.
 361

362 We also study different sampling configurations of the proposed sequential diffusion tokenizer in
 363 Table 2, where we vary the sampling steps and flow matching ODE solver. We use Adams–Bashforth
 364 solver for flow matching with 8 steps as it provides clearer samples without increasing numbers of
 365 function evaluations (NFEs) on the diffusion decoder.
 366

367 **System-level comparison.** To compare with state-of-the-art methods, we experiment with D-AR
 368 models on the ImageNet 256×256 class-conditional generation benchmark. Following common
 369 practice (Li et al., 2024; Pang et al., 2024), the linear CFG schedule is used in D-AR ($1.1 \rightarrow 8.0$
 370 for D-AR-L, $1.1 \rightarrow 10.0$ for D-AR-XL, and $1.1 \rightarrow 11.0$ for D-AR-XXL). In Table 3, D-AR models
 371

tokenizer	#tokens	codebook size	rFID \downarrow
RQ-VAE (Lee et al., 2022)	256	16384	3.20
Titok-S (Yu et al., 2024b)	128	4096	1.71
LlamaGen (Sun et al., 2024)	256	4096	3.02
LlamaGen (Sun et al., 2024)	256	16384	2.19
ours	256	4096	1.84
ours	256	16384	1.58

372 **Table 1: Reconstruction results** on Im-
 373 ageNet validation 50K samples with 256 dis-
 374 crete tokens. We also finetune our sequen-
 375 tial diffusion tokenizer with smaller code-
 376 book size, 4096, and compare with Llama-
 377 Gen tokenizer counterpart.

steps	4	8	8, Adams 2nd	12	16
rFID \downarrow	2.35	1.58	1.52	1.73	1.93

Table 2: **Different sampling configurations** on our sequential diffusion tokenizer. Adams 2nd refers to the two step Adams–Bashforth solver Bashforth & Adams (1883), while others use Euler.

achieve the leading level of performance in their parameter count regions. Among vanilla AR models in the strict next-token-prediction manner, D-AR-XL achieves 2.09 FID with 775M parameters, outperforming LlamaGen-XXL and even competing with IBQ-XXL 2.1B. D-AR-XXL achieves a state-of-the-art FID of 2.00 on ImageNet for vanilla AR models with 1.4B parameters.

Recent attempts to incorporate diffusion into autoregressive models, such as CausalFusion, DART-FM, and MAR, have also shown highly competitive results. However, they require significant modifications in the autoregressive framework to tackle continuous-valued inputs and outputs of images. In contrast, D-AR maintains the vanilla autoregressive mechanism with favored performance. DDT-Llama (Pan et al., 2025a) reported its 6.1 FID on ImageNet 256 but without mentioning parameter counts (2B or 8B), therefore we do not compare it in the table.

Coarse-to-fine diffusion order for AR modeling. The order linearized by our proposed sequential diffusion decoder is naturally coarse-to-fine, which we argue is good for AR modeling. Here, we ablate this point by feeding the *reversed* token sequence into D-AR-L modeling by the sequential diffusion tokenizer, which is corresponding *fine-to-coarse* visual AR process, with the strict fair experiment setting. We name this *reversed* D-AR-XL and the generated sequence is then reversed again and decoded by the tokenizer decoder to get final image pixels. We searched multiple CFG schedules and the best result by *reversed* D-AR-XL is 4.17, which lags much behind the coarse-to-fine D-AR-L 2.44. More results can be found in the appendix. This comparison indicates that the diffusion induced coarse-to-fine order is the key to good visual autoregressive modeling, which is in line with Tian et al. (2024).

Table 3: System-level comparison on class-conditional generation over 50K samples on 256×256 ImageNet benchmark. Note that #params in the table only counts in AR model parameters and our tokenizer is with 300M parameters. MAR is difficult to categorize into mask-based or tailored AR methods.

type	method	#params	FID \downarrow	IS \uparrow	Prec \uparrow	Rec \uparrow
diffusion	DiT-XL (Peebles & Xie, 2023)	675M	2.27	278.2	0.83	0.57
	SiT-XL (Ma et al., 2024a)	675M	2.06	270.3	0.82	0.59
mask-based	MaskGIT (Chang et al., 2022)	227M	6.18	182.1	0.80	0.51
	TiTok-S-128 (Yu et al., 2024b)	287M	1.97	281.8	-	-
	MAR-L (Li et al., 2024)	479M	1.78	296.0	0.81	0.60
	MAR-H (Li et al., 2024)	943M	1.55	303.7	0.81	0.62
tailored AR	VAR-d24 (Tian et al., 2024)	1.0B	2.09	312.9	0.82	0.59
	VAR-d30 (Tian et al., 2024)	2.0B	1.92	323.1	0.82	0.59
	RAR-L (Yu et al., 2024a)	461M	1.70	299.5	0.81	0.60
	RAR-XL (Yu et al., 2024a)	955M	1.50	306.9	0.80	0.62
	RandAR-L (Pang et al., 2024)	343M	2.55	288.82	0.81	0.58
	RandAR-XL (Pang et al., 2024)	775M	2.22	314.21	0.80	0.60
	RandAR-XXL (Pang et al., 2024)	1.4B	2.15	321.97	0.79	0.62
	DART-FM (Gu et al., 2025a)	820M	3.82	263.8	-	-
	CausalFusion-XL (Deng et al., 2024)	676M	1.77	282.3	0.82	0.61
vanilla AR	LlamaGen-L (Sun et al., 2024)	343M	3.07	256.06	0.83	0.52
	LlamaGen-XL (Sun et al., 2024)	775M	2.62	244.08	0.80	0.57
	LlamaGen-XXL (Sun et al., 2024)	1.4B	2.34	253.90	0.80	0.59
	IBQ-XL (Shi et al., 2024)	1.1B	2.14	278.99	0.83	0.56
	IBQ-XXL (Shi et al., 2024)	2.1B	2.05	286.73	0.83	0.57
	stronger LlamaGen-L (Pang et al., 2024)	343M	2.20	274.26	0.80	0.59
	stronger LlamaGen-XL (Pang et al., 2024)	775M	2.16	282.71	0.80	0.61
	D-AR-L (ours)	343M	2.44	262.97	0.78	0.61
	D-AR-XL (ours)	775M	2.09	298.42	0.79	0.62
	D-AR-XXL (ours)	1.4B	2.00	300.56	0.79	0.63

Figure 4: **Consistent previews as generation trajectories** for every increment of 32 tokens (a group). Note that these previews can be generated in a streaming manner with AR tokens partially generated.

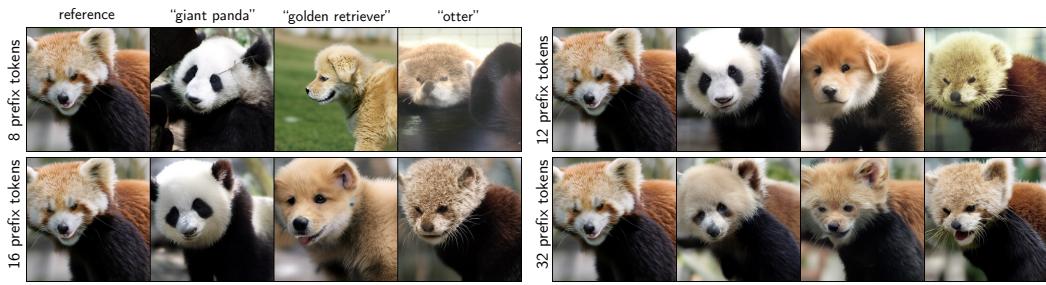


Figure 5: **Zero-shot layout-controlled synthesis** with different prefix tokens and varying labels.

Consistent previews and generation trajectories. As discussed in Section 3.1, the sequential diffusion tokenizer can generate consistent previews of generated images when partial tokens are generated, inherited from the diffusion property to jump-estimate the target $\hat{\mathbf{x}}_1 = (1 - t)\mathbf{v}_t + \mathbf{x}_t$ for every sampling timestep t . As our diffusion model is on raw pixels, this operation takes almost no extra cost. We visualize these previews in Figure 4, which are consistent with final samples. These previews can also be interpreted as generation trajectories of our autoregressive model and inherently follow a coarse-to-fine progression (Rissanen et al., 2023).

Zero-shot layout-controlled synthesis. We also investigate the zero-shot layout-controlled synthesis with D-AR, where several prefix tokens are given and fixed, in Fig 5. Thanks to the linearized structure by the diffusion decoder, we can generate plausible images with reference layouts conditioned on reference prefix tokens and given labels, without specific finetuning. As more prefix tokens are provided, layout control becomes stronger, while label-relevant information increasingly concentrates on fine-grained details such as fur textures. We include more ablation studies and qualitative results in the appendix.

6 CONCLUSION

In this paper, we present Diffusion via Autoregressive models (D-AR), a framework to bridge the pixel diffusion and autoregressive modeling for visual generation. With the linearized sequence of discrete tokens by the presented sequential diffusion tokenizer, we can perform vanilla autoregressive process in the standard next token prediction fashion. Thus, the AR sequence generation process in the D-AR framework directly mirrors consecutive diffusion denoising steps on pixels. Experiments on the standard ImageNet benchmark shows that D-AR can generate high-quality images as a vanilla autoregressive model, together with several properties from both autoregressive and diffusion worlds.

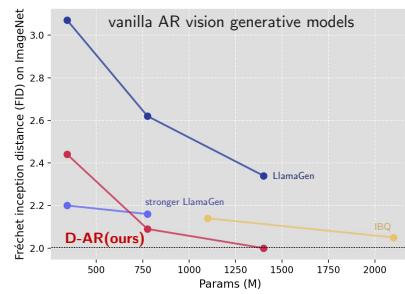


Figure 6: Vanilla AR comparison for ImageNet generation.

486 REFERENCES
487

488 Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. *arXiv*,
489 abs/1607.06450, 2016.

490 Roman Bachmann, Jesse Allardice, David Mizrahi, Enrico Fini, Oguzhan Fatih Kar, Elmira Amir-
491 loo, Alaaeldin El-Nouby, Amir Zamir, and Afshin Dehghan. FlexTok: Resampling images into 1d
492 token sequences of flexible length. *arXiv*, abs/2502.13967, 2025.

493 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
494 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
495 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
496 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
497 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
498 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
499 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
500 <https://arxiv.org/abs/2309.16609>.

501 Francis Bashforth and John Couch Adams. *An Attempt to Test the Theories of Capillary Action by
502 Comparing the Theoretical and Measured Forms of Drops of Fluid. With an Explanation of the
503 Method of Integration Employed in Constructing the Tables Which Give the Theoretical Forms of
504 Such Drops*. Cambridge University Press, Cambridge, 1883.

505 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
506 image transformer. In *CVPR*, pp. 11305–11315. IEEE, 2022.

507 Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
508 mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. In *NeurIPS*, 2024.

509 Yinbo Chen, Rohit Girdhar, Xiaolong Wang, Sai Saketh Rambhatla, and Ishan Misra. Diffusion
510 autoencoders are scalable image tokenizers. *arXiv*, abs/2501.18593, 2025.

511 Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, and Haoqi Fan. Causal diffusion transformers
512 for generative modeling. *arXiv*, abs/2412.12095, 2024.

513 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
514 hierarchical image database. In *CVPR*, 2009. doi: 10.1109/CVPRW.2009.5206848.

515 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
516 *NeurIPS*, pp. 8780–8794, 2021.

517 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
518 function approximation in reinforcement learning. *Neural Networks*, 107:3–11, 2018.

519 Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
520 synthesis. In *CVPR*, pp. 12873–12883. Computer Vision Foundation / IEEE, 2021.

521 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
522 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
523 and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
524 *ICML*. OpenReview.net, 2024.

525 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
526 Shan. SEED-X: multimodal models with unified multi-granularity comprehension and generation.
527 *arXiv*, abs/2404.14396, 2024.

528 GPT-4-Team. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

529 Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang, Dinghuai Zhang, Navdeep Jaitly, Joshua M
530 Susskind, and Shuangfei Zhai. Denoising autoregressive transformers for scalable text-to-image
531 generation. In *The Thirteenth International Conference on Learning Representations*, 2025a.

532 Yuchao Gu, Weijia Mao, and Mike Zheng Shou. Long-context autoregressive video modeling with
533 next-frame prediction. *CoRR*, abs/2503.19325, 2025b.

540 Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
 541 normalization for transformers. In *EMNLP (Findings)*, volume EMNLP 2020 of *Findings of*
 542 *ACL*, pp. 4246–4253. Association for Computational Linguistics, 2020.

543

544 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 545 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *NIPS*, pp.
 546 6626–6637, 2017.

547 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv*, abs/2207.12598, 2022.

548

549 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 550 2020.

551 Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
 552 high resolution images. In *ICML*, volume 202 of *Proceedings of Machine Learning Research*, pp.
 553 13213–13232. PMLR, 2023.

554 Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Sal-
 555 imans. Simpler diffusion (sid2): 1.5 FID on imagenet512 with pixel-space diffusion. *arXiv*,
 556 abs/2410.19324, 2024.

557

558 Drew A Hudson, Daniel Zoran, Mateusz Malinowski, Andrew K Lampinen, Andrew Jaegle, James L
 559 McClelland, Loic Matthey, Felix Hill, and Alexander Lerchner. Soda: Bottleneck diffusion mod-
 560 els for representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 561 and Pattern Recognition*, pp. 23115–23127, 2024.

562 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

563

564 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *ICLR*, 2014.

565 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 566 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 567 serving with pagedattention. In *SOSP*, pp. 611–626. ACM, 2023.

568

569 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2023.

570 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 571 generation using residual quantization. In *CVPR*, pp. 11513–11522. IEEE, 2022.

572

573 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 574 generation without vector quantization. In *NeurIPS*, 2024.

575 Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Juxiang Gu, Bhiksha Raj, and Zhe Lin. Imagefolder:
 576 Autoregressive image generation with folded tokens. In *ICLR*, 2025.

577

578 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 579 matching for generative modeling. In *ICLR*. OpenReview.net, 2023.

580 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 581 transfer data with rectified flow. In *ICLR*. OpenReview.net, 2023.

582

583 Llama-3-Team. The llama 3 herd of models, 2024.

584

585 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 arXiv:1711.05101*, 2017.

586

587 Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
 588 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 589 transformers. In *ECCV (77)*, volume 15135 of *Lecture Notes in Computer Science*, pp. 23–40.
 590 Springer, 2024a.

591

592 Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan,
 593 Zhenda Xie, Haowei Zhang, Xingkai Yu, Liang Zhao, Yisong Wang, Jiaying Liu, and Chong
 Ruan. Janusflow: Harmonizing autoregression and rectified flow for unified multimodal under-
 standing and generation. *arXiv*, abs/2411.07975, 2024b.

594 Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
 595 tion: VQ-VAE made simple. In *ICLR*. OpenReview.net, 2024.
 596

597 OpenAI. consistencydecoder. <https://github.com/openai/consistencydecoder>,
 598 2023.

599 Kaihang Pan, Wang Lin, Zhongqi Yue, Tenglong Ao, Liyu Jia, Wei Zhao, Juncheng Li, Siliang Tang,
 600 and Hanwang Zhang. Generative multimodal pretraining with discrete diffusion timestep tokens.
 601 *arXiv*, abs/2504.14666, 2025a.

602

603 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
 604 Wang, Zhiyang Xu, Juhai Chen, Kunpeng Li, Felix Juefei-Xu, Ji Hou, and Saining Xie. Transfer
 605 between modalities with metaqueries. *arXiv*, abs/2504.06256, 2025b.

606

607 Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T. Freeman,
 608 and Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders.
 609 *arXiv*, abs/2412.01827, 2024.

610 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, pp. 4172–
 611 4182. IEEE, 2023.

612

613 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
 614 reasoning with a general conditioning layer. In *AAAI*, pp. 3942–3951. AAAI Press, 2018.

615

616 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 617 Penna, and Robin Rombach. SDXL: improving latent diffusion models for high-resolution image
 618 synthesis. In *ICLR*. OpenReview.net, 2024.

619

620 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 621 and Ilya Sutskever. Zero-shot text-to-image generation. In *ICML*, volume 139 of *Proceedings of
 622 Machine Learning Research*, pp. 8821–8831. PMLR, 2021.

623

624 Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan L. Yuille, and Liang-Chieh Chen. Beyond
 625 next-token: Next-x prediction for autoregressive visual generation. *arXiv*, abs/2502.20388, 2025.

626

627 Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissipa-
 628 tion. In *ICLR*. OpenReview.net, 2023.

629

630 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 631 resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10674–10685. IEEE, 2022.

632

633 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 634 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 635 2016.

636

637 Kyle Sargent, Kyle Hsu, Justin Johnson, Li Fei-Fei, and Jiajun Wu. Flow to the mode: Mode-seeking
 638 diffusion autoencoders for state-of-the-art image tokenization. *arXiv*, abs/2503.11056, 2025.

639

640 Noam Shazeer. GLU variants improve transformer. *arXiv*, abs/2002.05202, 2020.

641

642 Fengyuan Shi, Zhuoyan Luo, Yixiao Ge, Yujiu Yang, Ying Shan, and Limin Wang. Scalable image
 643 tokenization with index backpropagation quantization. *arXiv*, 2024.

644

645 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 646 Catanzaro. Megatron-Lm: Training multi-billion parameter language models using model par-
 647 allelism, 2020. URL <https://arxiv.org/abs/1909.08053>.

648

649 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*.
 650 OpenReview.net, 2021.

651

652 Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 653 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

648 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Au-
 649 totegressive model beats diffusion: Llama for scalable image generation. *arXiv*, abs/2406.06525,
 650 2024.

651

652 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 653 Han Cai, Yao Lu, and Song Han. HART: efficient visual generation with hybrid autoregressive
 654 transformer. *arXiv*, abs/2410.10812, 2024.

655 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv*,
 656 abs/2405.09818, 2024.

657

658 Gemini Team. Gemini: A family of highly capable multimodal models, 2025. URL <https://arxiv.org/abs/2312.11805>.

659

660 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 661 Scalable image generation via next-scale prediction. In *NeurIPS*, 2024.

662

663 Hugo Touvron, Thibaut Lavrille, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 664 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 665 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 666 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

667

668 Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
 669 ing. In *NIPS*, pp. 6306–6315, 2017.

670

671 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NIPS*, pp. 5998–6008, 2017.

672

673 Bohan Wang, Zhongqi Yue, Fengda Zhang, Shuo Chen, Li'an Bi, Junzhe Zhang, Xue Song, Ken-
 674 nnard Yanting Chan, Jiachun Pan, Weijia Wu, Mingze Zhou, Wang Lin, Kaihang Pan, Saining
 675 Zhang, Liyu Jia, Wentao Hu, Wei Zhao, and Hanwang Zhang. Selftok: Discrete visual tokens of
 676 autoregression, by diffusion, and for reasoning. *CoRR*, abs/2505.07538, 2025.

677

678 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 679 Zhang, Yueze Wang, Zhen Li, Qiyi Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya
 680 Wu, Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu,
 Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you
 681 need. *CoRR*, abs/2409.18869, 2024.

682

683 Xin Wen, Bingchen Zhao, Ismail Elezi, Jiankang Deng, and Xiaojuan Qi. "principal components"
 684 enable A new language of images. *arXiv*, abs/2503.08685, 2025.

685

686 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
 687 modal llm. In *Forty-first International Conference on Machine Learning*, 2024.

688

689 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 690 to unify multimodal understanding and generation. In *ICLR*. OpenReview.net, 2025.

691

692 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
 693 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved VQ-
 694 GAN. In *ICLR*. OpenReview.net, 2022.

695

696 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 697 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 698 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

699

700 Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregres-
 701 sive visual generation. *arXiv*, abs/2411.00776, 2024a.

702

703 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
 704 An image is worth 32 tokens for reconstruction and generation. *Advances in Neural Information
 705 Processing Systems*, 37:128940–128966, 2024b.

702 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
703 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
704 than you think. *arXiv*, abs/2410.06940, 2024c.

705 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In *NeurIPS*, pp. 12360–
706 12371, 2019.

708 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
709 effectiveness of deep features as a perceptual metric. In *CVPR*, pp. 586–595. Computer Vision
710 Foundation / IEEE Computer Society, 2018.

711 Long Zhao, Sanghyun Woo, Ziyu Wan, Yandong Li, Han Zhang, Boqing Gong, Hartwig Adam,
712 Xuhui Jia, and Ting Liu. ϵ -vae: Denoising as visual decoding. *arXiv*, abs/2410.04081, 2024.

714 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
715 Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W. Barrett, and Ying Sheng. Sglang:
716 Efficient execution of structured language model programs. In *NeurIPS*, 2024.

717 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
718 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
719 diffuse images with one multi-modal model. In *ICLR*. OpenReview.net, 2025.

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A APPENDIX**
757758 **A.1 LLM USAGE**
759760 We use LLM to aid or polish writing, more specifically, to review and revise typos and grammar in
761 this submission. We confirm that we fully reviewed the LLM-generated revisions and that the final
762 revised text authentically reflects our original expression and ideas.
763764 **A.2 DETAILED ARCHITECTURE OF SEQUENTIAL DIFFUSION TOKENIZERS**
765766 **Vector quantization.** We follow LLamaGen (Sun et al., 2024) to set up the vanilla vector quanti-
767 zation (van den Oord et al., 2017) as well as its loss: $\ell_{\text{VQ}} = \|\text{sg}[f] - z\|_2^2 + \beta\|f - \text{sg}[z]\|_2^2$, where
768 $\text{sg}[\cdot]$ is the stop gradient operator and $\beta = 0.25$. We do not impose the entropy loss on codebook
769 learning.
770771 **Transformer architecture.** In our sequential diffusion tokenizer, we adopt the transformer archi-
772 tecture with vanilla LayerNorm (Ba et al., 2016) and SiLU activation function (Elfwing et al., 2018).
773 We also apply QK normalization (Henry et al., 2020) in attention computation for training stability.
774 For tokens with explicit spatial locations, e.g., those patchified from images in the tokenizer encoder
775 or in diffusion transformer, we apply the 2D RoPE (Su et al., 2024) in attention to encode spatial
776 relations. For those who do not have 2D inherent locations, i.e., 1D query tokens in the transformer
777 encoder and decoder, we simply disable rotation in RoPE by using the identity matrix.
778779 **A.3 DETAILED EVALUATION OF D-AR MODELS**
780781 Table 4: D-AR with different CFG schedules. The value 1.0 indicates disabling CFG.
782

model	CFG schedule	FID \downarrow	IS \uparrow	Prec \uparrow	Recall \uparrow
D-AR-L	1.0	7.43	117.60	0.71	0.63
	1.5	3.50	245.22	0.83	0.54
	1.75	4.70	291.76	0.86	0.50
	1.1 \rightarrow 8.0	2.44	262.97	0.78	0.61
D-AR-XL	1.0	5.11	145.78	0.73	0.64
	1.5	3.39	276.37	0.84	0.55
	1.1 \rightarrow 10.0	2.09	298.42	0.78	0.62

792 **CFG schedules.** In the main paper, we present the performance of D-AR-L and D-AR-XL with
793 linear CFG schedule, following RandAR (Pang et al., 2024). Note that previous work also explore
794 customized CFG schedule for better performance, as a common practice on ImageNet (Li et al.,
795 2024; Pang et al., 2024; Yu et al., 2024a). We report D-AR models results with different CFG
796 strategies in Table 4. The models here are exactly the models in the main paper in Table 3. We do
797 not use top-p, top-k, and temperature in our sampling in the main paper and appendix.
798799 Table 5: D-AR-L jump-estimation results with partial AR tokens.
800

#AR tokens	64	128	192	256
#diffusion steps	2	4	6	8
FID \downarrow	7.38	3.94	2.93	2.44
IS \uparrow	165.25	227.74	257.08	262.97
Prec \uparrow	0.74	0.78	0.80	0.78
Recall \uparrow	0.48	0.54	0.57	0.61

808 **Partial AR tokens results.** In the main paper, we have visualized the diffusion target sample
809 estimation with partial AR tokens generated. We here report quantitative results by D-AR-L in
Table 5.
810

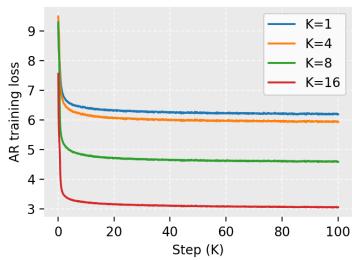
810 A.4 TOKENIZER ABLATIONS
811

812 Due to the limited computation resource, we design a lightweight version of our proposed sequential
813 diffusion tokenizer with 113M parameters (we change the dimension in the transformer to 512 and
814 the depth of diffusion transformer to 8) and train for 50K iterations with 256 batch size. This ablation
815 training typically takes about 8 hours to complete on 4 A100s.

816 Table 6: Effects of β on tokenizer training.
817

β	1	2	4
rFID \downarrow	39.75	28.65	27.10
codebook utilization \uparrow	97.8	99.4	99.8

823 **Ablations on β in conditioning schedules.** The control parameter, β , in the conditioning sched-
824 ule, also acts as timeshift parameter in the diffusion procedure in our sequential diffusion tokenizer.
825 Since we are operating on pixels, we set β to 2 as default. Here we investigate different β on
826 tokenizer training in Table 6. We can see that there is a large gap between $\beta = 1$ and $\beta = 2$ in re-
827 construction FID as well as in coodebook utilization, while $\beta = 2$ and $\beta = 4$ matches closer. These
828 empirical results show that early diffusion need denser steps as well as AR tokens as conditioning
829 on diffusion in the pixel space.



K	rFID \downarrow	gFID \downarrow
1	8.37	34.85
4	9.66	34.54
8	14.18	35.69
16	22.58	41.20

830
831 Figure 7: Effects of the group K on tokenizer and AR training. For fair comparison, for $K < 8$
832 variants, we use 8 diffusion sampling steps to decode images. rFID refers to sequential diffusion
833 tokenizer reconstruction FID and gFID refers to D-AR-B generation FID at 100K iterations.
834

835 **The numbers of conditioning group K .** In this ablation, we stretch the sequential diffusion tok-
836 enizer training to longer 100K iterations. The number of conditioning group K decides how many
837 tokens are feed into pixel diffusion model per diffusion step, N/K . We investigate the effects of K
838 in the Table 7. The sequential diffusion tokenizer with single group $K = 1$ with multiple sampling
839 steps degrades into conventional tokenizers with diffusion decoder (Sargent et al., 2025; Chen et al.,
840 2025), which denoises an image with full token sequence on every timestep. This $K = 1$ setup
841 does not yield a linearized ordering of visual tokens and lacks the sequential nature central to our
842 approach.

843 For reconstruction FID here, it is reasonable and expected for small group number variants to per-
844 form better, since the number of conditioning tokens per denoising step become more as K de-
845 creases, therefore reducing bottleneck. In the other side, $K = 16$ enforces the diffusion-induced
846 linearized order most strongly, but came out with the worst reconstruction FID.

847 We also train a D-AR-B with 111M parameters for 100K iterations with a batch size of 1024 with
848 tokens by these tokenizers. In the training loss curve in Figure 7, we can find that the large group
849 number K facilitates AR training, which we believe the stronger coarse-to-fine order is more well-
850 suited for autoregressive modeling. Interestingly, although the reconstruction FID with $K = 8$ falls
851 behind $K = 4$ and 1 variants, the generation FID achieved by D-AR-B models remains comparable.
852 This suggests that more strongly linearized token sequences (higher K) can be better for autoregres-
853 sive generation modeling even if they degrade reconstruction. For this reason, we adopt $K = 8$ as
854 our default: it offers a moderate trade-off between reconstruction fidelity and a linearized structure

864 that benefits AR modeling, and as demonstrated in our main experiments, our $K = 8$ sequential
 865 diffusion tokenizer can eventually achieve competitive reconstruction performance.
 866

867 Table 7: reversed D-AR-L with different CFG schedules. The value 1.0 indicates disabling CFG.
 868

869 model	870 CFG schedule	871 FID \downarrow	872 IS \uparrow	873 Prec \uparrow	874 Recall \uparrow
870 D-AR-L	1.0	7.43	117.60	0.71	0.63
	1.5	3.50	245.22	0.83	0.54
	1.75	4.70	291.76	0.86	0.50
	1.1 \rightarrow 8.0	2.44	262.97	0.78	0.61
874 <i>reversed</i> D-AR-L	1.0	11.22	96.23	0.68	0.62
	1.5	4.17	238.05	0.84	0.50
	1.75	5.83	292.94	0.88	0.44
	1.1 \rightarrow 8.0	9.79	417.78	0.90	0.40
	8.0 \rightarrow 1.1	21.15	320.15	0.85	0.15

880 A.5 REVERSED D-AR

881 We here include more results by the *reversed* D-AR-L with different CFG configurations in Table 7.
 882 Note that the *reversed* D-AR-L training strictly follows the normal D-AR-L training setting, except
 883 for input token ordering. For the same CFG setting, the *reversed* D-AR-L falls behind the normal
 884 D-AR-L by a large margin.
 885

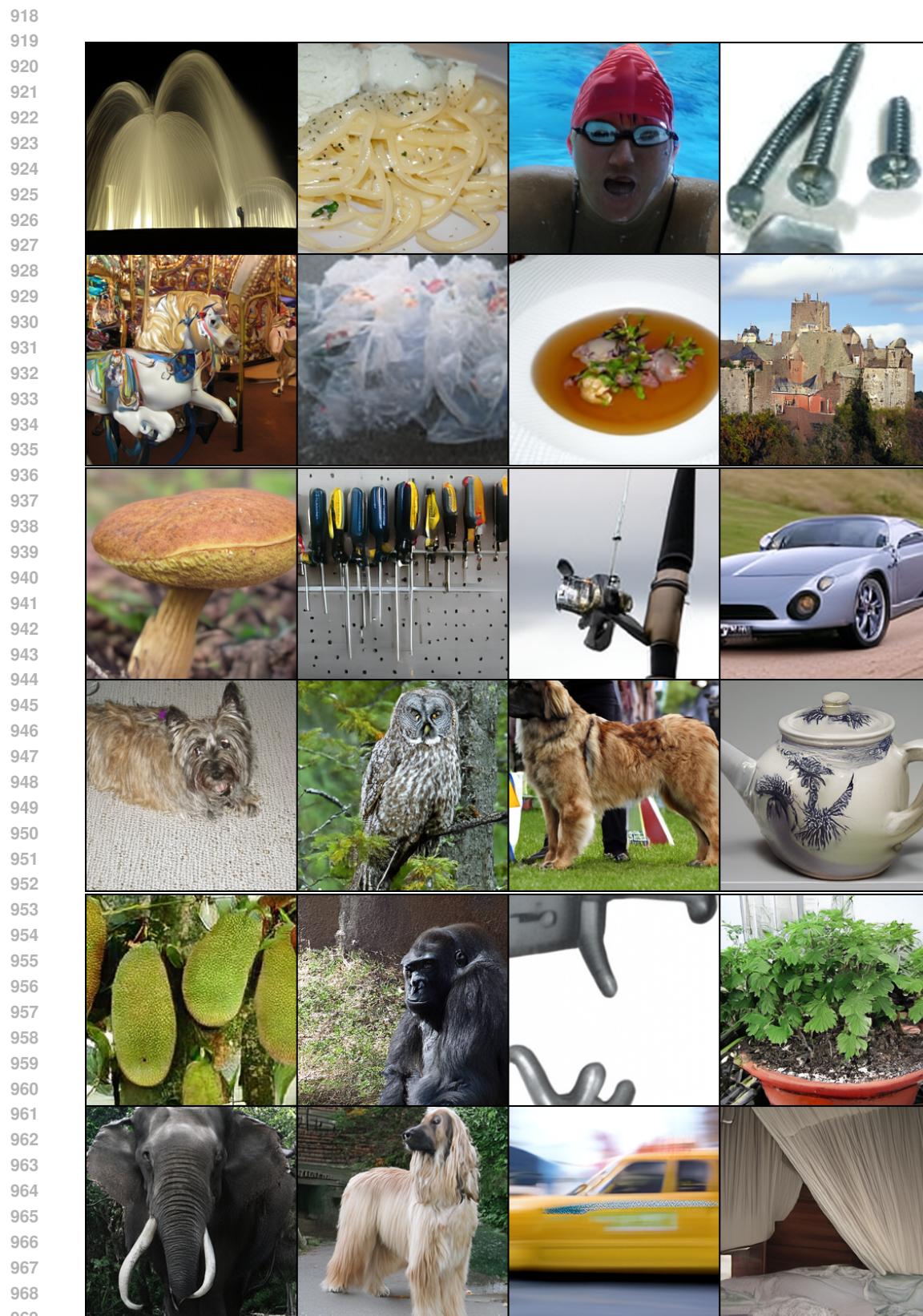
886 A.6 MORE VISUALIZATIONS

887 **Tokenizer reconstruction results.** We also present reconstruction samples from our sequential
 888 diffusion tokenizer ($rFID = 1.52$) in Fig 9. As observed, fine details are not strictly reconstructed,
 889 which is mainly attributed to the inherent stochastic and denoising nature of the diffusion process.
 890 Since our primary objective is to model image generation rather than achieve exact pixel-level re-
 891 construction, this trade-off is acceptable and consistent with our diffusion tokenizer design.
 892

893 **Generation trajectories.** We show more generation trajectories as well as previews in Fig 10. Our
 894 D-AR models follow coarse-to-fine generation with consistent previews with final targets.
 895

896 **Zero-shot layout-controlled synthesis.** As discussed in the main paper, we can simply condi-
 897 tion on prefix tokens to generate layout-following images in a zero-shot manner. We here show
 898 more zero-shot layout-controlled generated samples by fixing different numbers of prefix tokens
 899 and varying labels in Fig 11.
 900

901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

Figure 8: **Uncurated generated samples** by D-AR-XL with random labels and CFG=4.0.

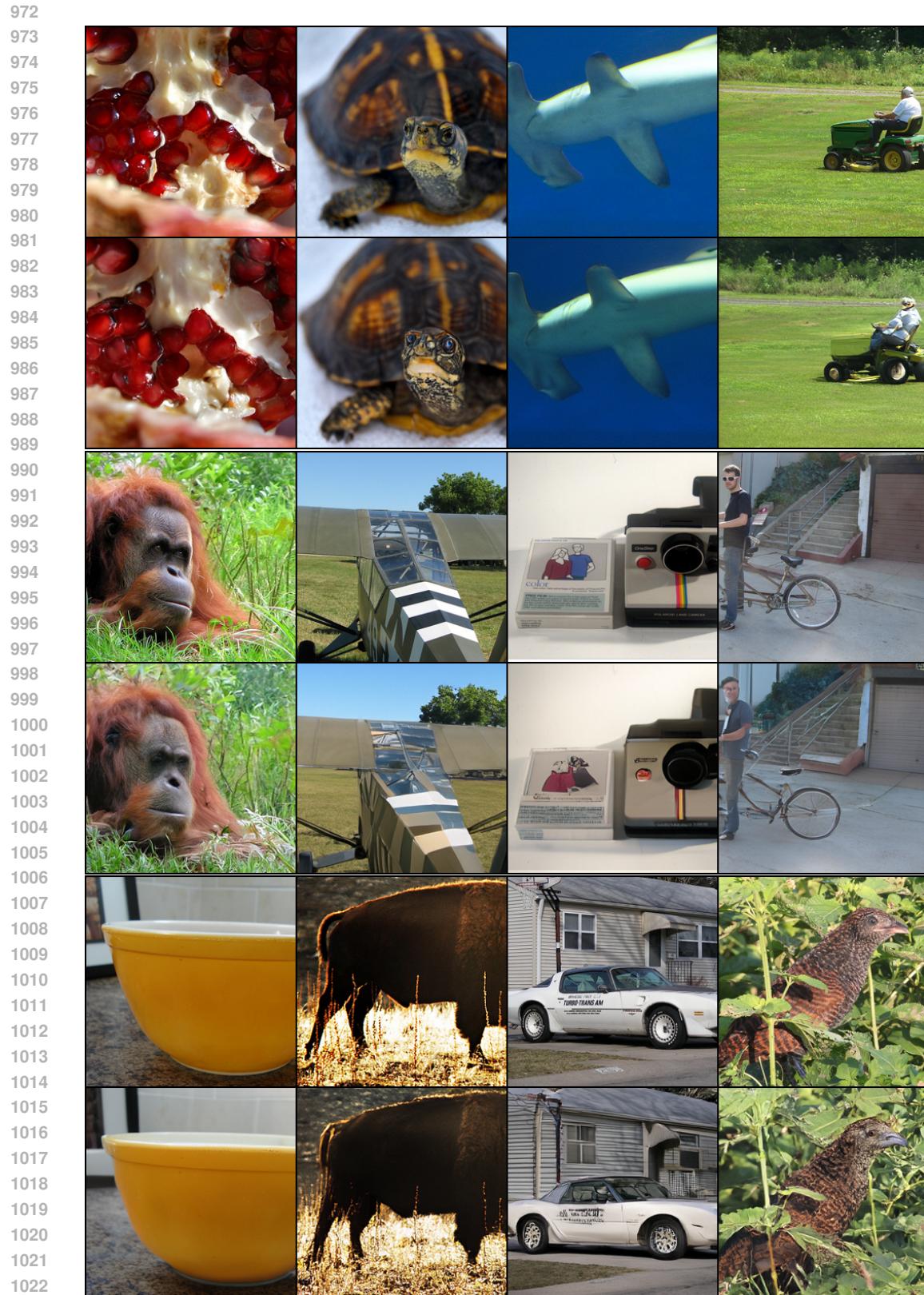
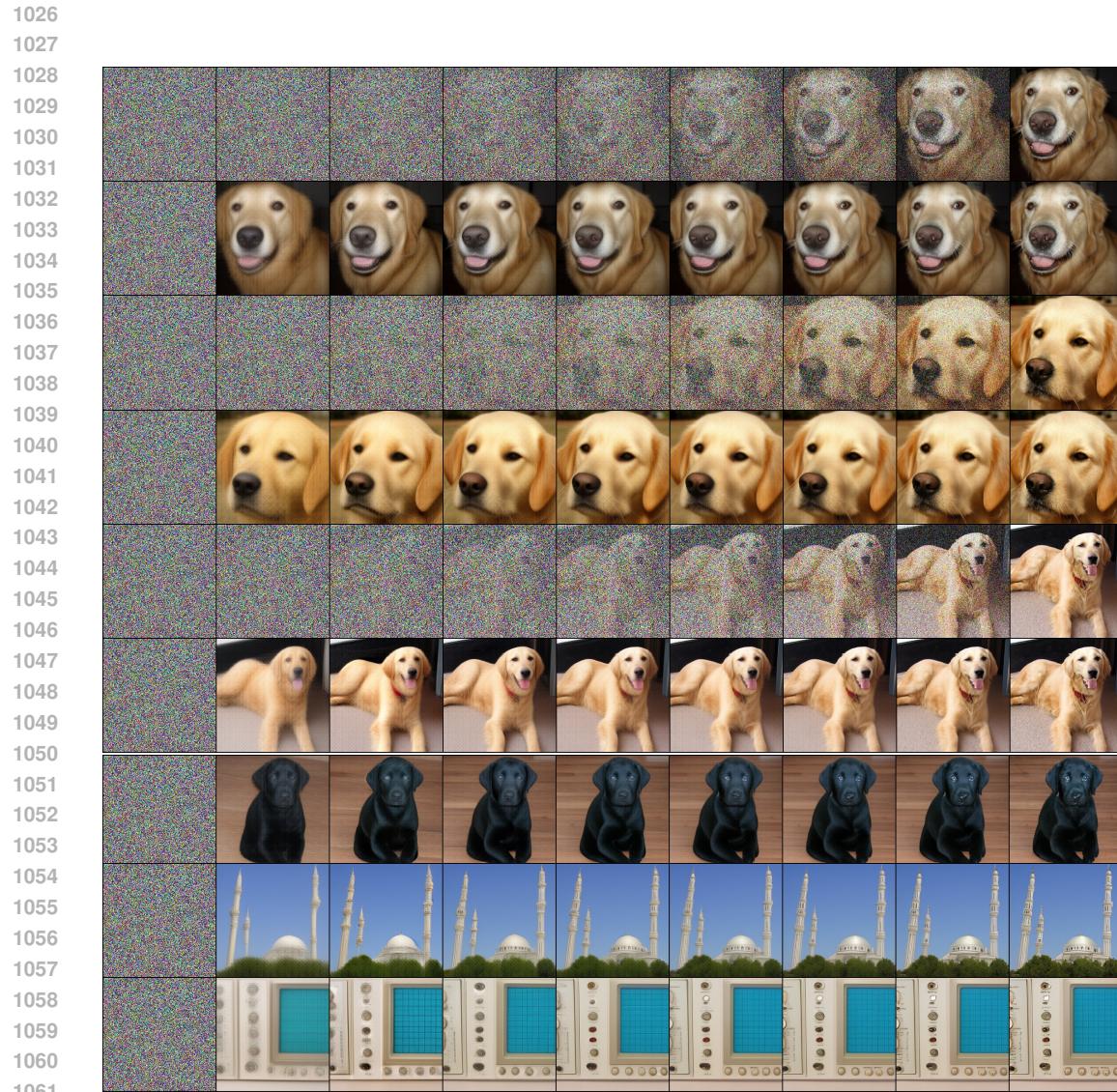
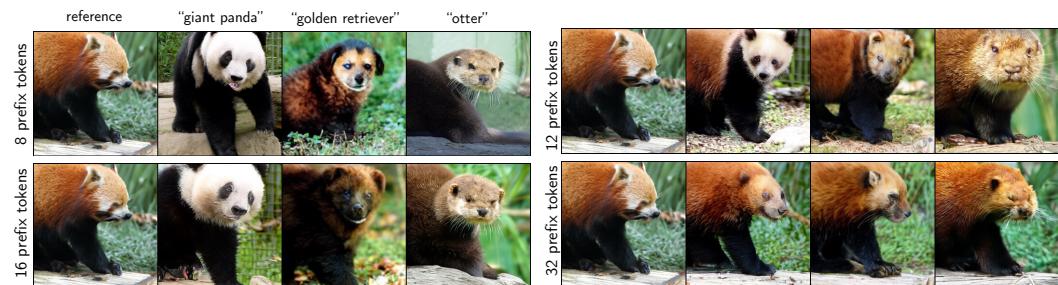


Figure 9: **Reconstruction results** with samples from the ImageNet validation set. Each pair of rows shows: first row — input; second row — reconstruction.

1062 **Figure 10: Generation trajectory and previews** at each diffusion sampling step by D-AR-L.
10631062 **Figure 11: Zero-shot layout-controlled synthesis.**
1063