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ABSTRACT

Decision trees are a convenient and established approach for any supervised learn-
ing task. Decision trees are used in a broad range of applications from medical
imaging to computer vision. Decision trees are trained by greedily splitting the
leaf nodes into a split and two leaf nodes until a certain stopping criterion is
reached. The procedure of splitting a node consists of finding the best feature
and threshold that minimizes a criterion. The criterion minimization problem is
solved through an exhaustive search algorithm. However, this exhaustive search
algorithm is very expensive, especially, if the number of samples and features
are high. In this paper, we propose a novel stochastic approach for the criterion
minimization. Asymptotically, the proposed algorithm is faster than conventional
exhaustive search by several orders of magnitude. It is further shown that the
proposed approach minimizes an upper bound for the criterion. Experimentally,
the algorithm is compared with several other related state-of-the-art decision tree
learning methods, including the baseline non-stochastic approach. The proposed
algorithm outperforms every other decision tree learning (including online and
fast) approaches and performs as well as the baseline algorithm in terms of accu-
racy and computational cost, despite being non-deterministic. For empirical eval-
uation, we apply the proposed algorithm to learn a Haar tree over MNIST dataset
that consists of over 200, 000 features and 60,000 samples. This tree achieved
a test accuracy of 94% over MNIST which is 4% higher than any other known
axis-aligned tree. This result is comparable to the performance of oblique trees,
while providing a significant speed-up at both inference and training times.

1 INTRODUCTION

Decision trees are among the most established machine learning models in the scientific community
and have been widely used in various applications, such as computer vision and medical imaging
Criminisi & Shotton| (2013)); |[Freund et al.| (1999); | Breiman| (2001)); [Tavallali et al. (2019). Deci-
sion trees are extensively used as a sub-procedure in ensemble models, such as boosting and forest
Criminisi & Shotton| (2013). Decision tree training consists of recursively splitting a leaf node into
one split and two leaf nodes Breiman et al.| (1984); (Gehrke et al.| (1999). The split node consists
of a decision stump that routs the samples to either of its left or right children. The splitting of a
leaf node is cast as selecting the best feature and threshold that minimizes a desired criterion. The
criterion is an impurity function, such as Gini index Breiman et al.| (1984), cross-entropy |Quinlan
(1986), uniform piece-wise constant densities Ram & Gray| (2011)), Gaussian differential (contin-
uous) entropy (Criminisi & Shotton| (2013) and others |Yang & Wong| (2014); [Liu & Wong| (2014);
Sheikhi & Babamir| (2018 2016). The best feature and threshold are selected through an incre-
mental algorithm that evaluates combination of every possible feature and threshold. However, this
algorithm becomes computationally very expensive if the dataset is large or high dimensional. The
computational complexity of solving criterion minimization problem is O(DNlogN), where N and
D are number of samples and dimensionality, respectively. The computational complexity becomes
very high especially when /N and D are high since N and D are multiplied in the computational
complexity term (O(DNlogN)). In this paper, we tackle the abovementioned issue by applying
the splitting algorithm in a novel iterative and stochastic fashion, where less important features are
discarded at each iteration.



Under review as a conference paper at ICLR 2022

The literature includes many proposals for speeding up the training procedures of various learning
algorithms. One common approach is preprocessing the dataset by reducing the sample size or
applying some feature selection technique |Dash & Liu|(1997));Jovi€ et al.|(2015); John et al.|(1994).
Pre-training feature selection will potentially lead to a less computationally expensive process for
learning Jovic et al.| (2015); |[Kohavi & Sommerfield (1995); Koller & Sahami| (1996); Korn et al.
(2001). Feature selection algorithms are generally categorized in two groups of filter and wrapper
approaches.

The filter approaches consist of selecting features with regard to a desired criterion JoviC et al.
(2015). Generally, filter approaches use statistical measures, such as minimum Redundancy max-
imum Relevance-(mRmR) Tang et al.| (2014)), correlation [Yu & Liul (2003), chi-square Moh’d
A Mesleh| (2007), information gain Bhattacharyya & Kalita (2013), gain ratio Witten & Frank:
(2002)), etc.

The wrapper approaches consist of selecting features and minimizing the loss function jointly |Bhat-
tacharyya & Kalita (2013)); Bradley & Mangasarian| (1998)); [Maldonado et al.| (2014)); |Hastie et al.
(2009). However, feature selection as a preprocessing method might not lead to an accurate final
model since features are not guaranteed to contribute to lower loss | Jovi¢ et al.[(2015). Nevertheless,
wrappers are practical only for fast modeling algorithms or greedy search strategies, such as linear
SVM [Liu et al.|(2014), Nave Bayes [Cortizo & Giraldez| (2006), and Extreme Learning Machines
Benoit et al.| (2013)).

In Embedded approaches, first a filter approach is applied to select a subset of features and then
followed by a wrapper approach to select the best candidate feature Guyon & Elisseeff| (2003)); Das
(2001). Different decision tree algorithms, such as CART |Breiman et al.| (1984), C4.5 |Quinlan
(2014), and random forest are commonly used as embedded methods [Sandri & Zuccolotto| (2006).

The feature selection as a preprocessing approach decreases the computational complexity of train-
ing algorithm. However, it is suboptimal w.r.t. the objective function of training, and is inefficient
for large datasets since it does not decrease computation over number of samples [Rodriguez-Lujan
et al.|(2010).

A well-known approach that tackles the issue of large datasets is online learning |Utgoff] (1989).
Various studies consider applying online learning to decision trees [Utgoff] (1989); Schlimmer
& Fisher] (1986); Wang et al.| (2003). Such algorithms are fast, simple, and often make few
statistical assumptions. The objective of online learning is to update and train the model from a
stream of data [Shalev-Shwartz et al.| (2011). At each time step, the model gets updated optimally
with respect to the recently acquired samples. Online learning is more computationally efficient
compared to offline learning where the entire trainset is used for training |[Shalev-Shwartz et al.
(2011). However, these algorithms increase the size of the tree when visiting a new batch of the data.

Despite the extensive usages and applications of decision trees |Criminisi & Shotton| (2013), few
algorithms have focused on decreasing the high computational cost of inducing a tree ??. However,
the literature leaves a gap in treating the high computational complexity of inducing the decision tree
and exploring potential improvements. None of the previous research propose the computational
complexity of their algorithm or provide any analysis of the goodness of features selected at the split
node. To address this gap, we investigated both computational complexity of SDT and its efficiency
in finding near optimum feature at the split node. In ?, authors propose to randomly select a subset
of features at the split node and then find the best feature among the set using all samples present at
the node. However, due to randomness, the optimality of this process is not guaranteed.

The high computational cost is mainly rooted in the exhaustive search algorithm applied for solving
the split criterion. This algorithm specially becomes computationally expensive if the dataset is large
and high dimensional. It is because the computational complexity of solving the splitting criterion
is O(DNlogN ) Hoare|(1961); Breiman et al.|(1984]).

To counter the aforementioned issues, we propose an accurate and fast Stochastic Decision Tree
(SDT) induction algorithm that minimizes the splitting criterion efficiently. At a node, the proposed
algorithm starts with an empty set S; and all D features. At node j, the algorithm iteratively se-
lects a tiny random set of samples from S; (in order of 2= x |S;|) and discards half of the less
important features w.r.t S;. S; and |.S;| are the set and number of samples present at the 7" node,
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respectively. For the best feature and threshold found at each iteration, SDT minimizes an upper
bound of the splitting criterion, monotonically. Overall, the algorithm steeply descends towards the
minimum of the criterion function. It is also demonstrated by the results at the experiments section.
Mathematically speaking, we show that the algorithm provides higher priority to more distinctive
features. Essentially, the more distinctive a feature, the greater the chance of it being selected at the

final iteration. The computational complexity of the algorithm for constructing a tree of depth A is
ADNlog X, . . . . .
O(#) C is a hyperparameter and in our experiments we set it to 10. The computational

complexity achieved by SDT is smaller than that of the original approach (with O(ADNlogN)) and
its optimal implementation (O(ADN + DNlogN)) by several orders of magnitude. Our approach
is faster because it focuses on breaking down the computational complexity created due to the large
number of samples and features. Numerically speaking, SDT shows its advantage over other im-
plementations when the sizes of samples and features are high (N D is very high). Experimentally,
the proposed algorithm could achieve same or improved accuracy as the original greedy algorithm
Breiman et al.| (1984) while surpassing every other related state-of-the-art algorithms both in terms
of accuracy and complexity by several orders of magnitude. For empirical evaluation, we applied
our algorithm to learn a Haar tree over MNIST where Haar [Viola & Jones| (2001)) filters were used
to extract 200, 000 features from the dataset. The Haar tree could achieve competitive accuracy to
more complicated trees, such as oblique trees and optimal oblique trees while its inference time was
far smaller. Theoretically, an oblique tree needs O(DA) operations to produce prediction, while
Haar tree only needs O(D + A). A is the maximum depth of the tree. In terms of size, Haar tree
takes O(22) space while oblique tree takes O(D24) space.

2 PRELIMINARIES

2.1 INDUCTION OF A DECISION TREE

Every decision tree construction algorithm tends to minimize the following objective function
L.(T)=L(T) + o x leaves(T), a >0, (1)

where, L(T) is a loss function of the tree (") over a trainset, leaves(.) represents the number of
leaves in a tree, and o > 0 is cost complexity coefficient. After constructing the tree, pruning is
performed to minimize the cost function L, (T") over the validationset. Finding the optimum of this
problem is NP-complete ?. Therefore, state-of-the-art algorithms for constructing a tree consist of
greedily splitting a leaf node into a split and two leaf nodes.

Assume a dataset S consisting N pairs of observation {(z;, )}, where z; € RP and y; €
{1,2,3,..., M}. The function f;(z) at the j'* split node consists of a decision stump f;(z) =
sign(x? — th) where superscript p and th represent p*” feature and the threshold, respectively. At
the growing phase of a decision tree, p and th are found optimally with respect to some criteria
Breiman et al.|(1984)). Usually the tree is grown until some stopping criterion or maximum depth is
reached.

The problem of constructing a split node consist of minimizing the desired criterion over the samples
of each child of the node.

fi
5571

min Z H (S{J )

b ST 19
st fi(xz) = sign(aP — th)

2

where, S]fj is set of samples at the left child (f; = —1) or right child (f; = 1) of a node j, Sj is

the set of samples present at the j*" node, and |.| returns the number of samples at its input set. H

is an entropy function. The optimum of problem equation can be found in O(DN;logN;) where
Nj; and D are number of samples at node j (|.S;|) and features, respectively. This is done by sorting
all samples along each feature and incrementally finding the best threshold for each feature Breiman
et al.|(1984).
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3 PROPOSED METHOD

The computational complexity of solving problem equation [2]is high, especially, if the number of
features and samples are large. In this section, we propose an algorithm that minimizes problem
equation [2|faster than original approach Breiman et al.| (1984) by several orders of magnitude.

Basic idea: Problem equation 2| consists of selecting the best feature to partition the space into
two parts optimally. State-of-the-art algorithms find the best feature through the exhaustive search
mentioned in Section 2.1. In this section, we propose a stochastic exhaustive search method for
solving problem equation [2] that has a low computational cost. The idea is based on 3 pieces of
information. Info. #1 Each feature can be approximately ranked based on the objective function of
equation [2| over a small random subset of the samples. Info. #2 A precise ranking of the features
requires larger subset of the samples. Info. #3 The good news is that only ranking of the most
competitive features require high precision. As a result, by combining Info #1-3, the algorithm
consists of discarding less important features and randomly selecting more samples from the dataset
at each iteration. This procedure gradually increases the precision of ranking for more important
features. We call this algorithm the stochastic induction of decision tree (SDT).

The algorithm Now we describe the proposed algorithm for solving criterion problem equation[2]
The algorithm starts with Sjc = S;, an empty set S;¢, and set of features D = {p}Z’?:1 features. p

represents the p'” feature. The algorithm proceeds as follows:

Step 1 Randomly select and remove 12\/% samples from S;. and add them to set S;.. C'is a user
defined hyper-parameter.

Step 2 Vp € D', at k'™ iteration, find feature importance of p*"* feature (FI¥) by solving

B
H(S%
5] 10550) G)

ky—1 _
(FIL;)" " = min Z
fj:{flﬁl}
st fj(x) = sign(a? — th)

where, S jff represents the set of samples from S+ routed to the left child (f; = —1) or the right
child f; = 1. FI} represents the feature importance of p'" feature at k™" iteration. Note that the
optimization is only happening over th in equation and (FI }’;)_1 is equal to the optimum of ob-

jective function in equation Problem in equation [3|can be efficiently solved in O(|S;:|log(|S;t]))
Breiman et al.|(1984).

Step 3 Sort all the features in D based on F'I I’f and discard half of the features in D? with lowest
FI.

Step 4 Iterate over steps 1-3 for o times. « is a user-defined hyper-parameter.
Step 5 Solve problem equation for only the remaining features in D' over the .S;.

In practice, we select C' to be around 10 and « to be around 7 — 10, depending on the dataset.
Intuitively, C' and « are the hyper-parameters that control the computational complexity of the algo-
rithm. C' controls the number of samples to be used at each iteration and « controls the number of
features to be used at the last iteration. With higher values for C' and «, the computational complex-
ity decreases further. However, there is a possibility that the model loses accuracy with extremely
high C and « .

To keep the computational complexity low, one can keep the samples in S} sorted for the remaining
features (D?) from the previous iterations at Step 2. Only the newly selected samples from Step 1
have to be sorted and merged with S;:. The merging will take at most |S;+|. In total, this will keep
the computational complexity of step 2 at O(2D%log(%)) for all the « steps (assuming ov — 00).

4 ANALYSIS OF THE PROPOSED ALGORITHM

In this section, several theoretical properties of the algorithm are explored and analyzed.
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4.1 COMPUTATIONAL COMPLEXITY

The computational complexity of splitting a node and induction of a tree are analyzed in this Sub-
section.

In the following theorem, we assume that the samples of S« from previous iterations are NOT kept
sorted. After the theorem, we will show how keeping samples sorted can affect the node training
complexity and storage overhead.

Theorem 1 (node training complexity). The computational complexity of splitting the node using
SDT is O(4D NylogNy), where Ny = év—é

Proof. At each iteration, Ny samples are added to the set S;: and half of the features are dis-
carded. To solve equation [3] samples along each remaining feature have to be sorted that takes

O(]Sjt|logS;+). At the k" iteration, |S;¢| is (k + 1)No. Therefore, the total complexity of steps
1-4 is as follows:

[e3

D
> o (kb + 1)Nolog(k + 1)No (4)
k=0

The summation in equation 4] can further be simplified to:
k41

Z (k4 1)No(logNo + log(k 4+ 1)) < DNy(logNg + log(a + 1)) Z o
pari k=0

%2

(&)

Using the formula for the geometrical series of Y- o AL =30 b+ 37 L 430 g+
=24+1+= —1— L 4 .. = 4in the right hand side of inequality of equatron we have

DNy (logNo + log(a + 1)) Z
k=0

k+1

ok (logNg + log(a:+ 1)) (6)
Asymptotically speaking, the computational complexity is being driven by the term 4D NylogNj.
Note that log(c + 1) is relatively very small compared to logNy (Numerically speaking, Ny is

in order of 100 — 200 while « is in order of 7 — 10). Therefore, the computational complexity
asymptotically becomes O (4D NylogNy). O

The computational complexity of the baseline algorithm for solving equation [2|is O(DN,logN;),
which is 2¢ times larger than the proposed stochastic approach.

Effect of keeping the S;: sorted Effect of keeping the S sorted is that k + 1 is removed from the
formula equation E] Therefore the computational complexrty changes to O(2DNylogNy). How-
ever, it will increase the space usage slightly ((k + 1) Ny new variables need to be saved to keep the
label of samples along each feature).

Assuming a maximum depth of A for the tree, the computational complexity of inducing the whole

A4DNlog -
tree will be (’)(%). It is trivial to prove by simply using the fact that the children of each

node receive a disjoint set of samples from its parent and the fact that total samples at the same depth
are at most V. This complexity is smaller than complexity of the baseline approach Breiman et al.
(1984) by an order of 2¢.

4.2 RELATION TO OBJECTIVE FUNCTION

In this section, the value of the objective function in equation[2]is evaluated using the best combina-
tion of feature and threshold found by the SDT at each iteration over S;:. For simplicity, throughout
this section, the objective function of equatlonlrs represented by L(.S; ) Consequently, L(.S;+) rep-
resents error over the set S;:. In this section, we assume the used criterion is misclassification error

(Sf N=1- pm*, where pf 7 and m* represent ratio of class m in the f; child and majority class in
the partmon respectively. All the theorems and analysis can be readily extended to Gini-index and
Cross-entropy [Breiman et al.| (1984) by applying their corresponding differences. The differences
and how to apply them are explained after next theorem.
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Table 1: The used datasets Information

Index Name Train Test Description
1 MNIST 60000 x 784 10000 x 784 A large database of handwritten digits 0 to 9 that is serving as a basis for classification algorithms
2 FASHIOMNIST 60000 x 784 10000 x 784 A dataset of Zalando’s article images contaianes 10 different classes of gray images of T-shirt/top
,Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot
3 SIGNMNIST 27455 x 784 7172 x 784 The American Sign Language letter database of hand gestures represent
a multi-class problem with 24 classes of letters (excluding J and Z which require motion)
4 ISOLET 5238 x 617 1559 x 617 ISOLET (Isolated Letter Speech Recognition) is the name of each letter of the alphabet
twice that is spoken by 52 speakers and a good domain for a noisy, perceptual task
5 SATIMAGE 4825 x 36 1610 x 36 The database consists of the multi-spectral values of pixels in 33 neighbourhoods in
a satellite image, and the classification associated with the central pixel in each neighbourhood
6 COVERTYPE 435759 x 54 145253 x 54 This dataset contains tree observations from four areas of the Roosevelt National Forest

in Colorado. All observations are cartographic variables

Theorem 2 (Monotonic decrease of an upper bound). The algorithm will monotonically decrease
an upper bound over the objective function of equation

Proof. At each iteration k, the following equality holds:
|S51L%(S;) = S5 |L*(S}) + | Sje | L* (SFe) )

where, the superscript k for sets and L*(.) represents the set of samples at the k" iteration and
the value of error with optimum parameters for S¥, over the input set, respectively. The loss L(.)

is always bounded from above (e.g., for misclassification, it is 1) by a constant value L,,,,. By
replacing L*(S%.) with Ly,q, in equation for iteration k we have

|SI1L¥(85) < 187 L (S5:) + |S5e [ Lmaz = 85| Lipper(S5) ®)

upper

At each iteration, the first term in equation |8|is minimized. Therefore, the new optimum parameters
at each iteration provide lower error to the first term of equation [§] than the optimum parameters of
previous iteration which is |S§i+1 |LE(S J’,"fl) > |S]li+1 |Lk+1 (Sﬁ“). Note that the superscript of the

loss L is different for both sides of the inequality. Also, |SjkcJr <8 ;-“c |. Therefore,

SEFLEHL(SEFY) 4+ 1S5 Lias
| j | ( ] ) | J ‘ — [F+1 (Sj)SLk (S]) 9)

|Sj‘ - Hupper upper

O

For the case of Gini-index or Cross-entropy, formula equation |7|should be replaced with L*(S;) <
Lk(Sj’i) + L*(S}.). The reason for this change is that the algorithm finds optimum over S]’i and

min(L¥(S}.), L¥(S}.)) < L*(S;) < max(L*(S,), L*(S}.))-

Average Decrease The Theorem equation [2]is based on worst case scenario. The proof of Theo-
rem equation [2] assumes that the samples selected at each iteration do not have any correlation with
the rest of samples. In reality, this is not necessarily correct and set of S;+ can partially represent
the whole trainset .S; and as size of S;: increases through iterations, the F'I,, is measured more cor-
rectly. In our experiments, we observed a very steep decrease in Lk(Sjt) after each iteration and
after several iterations, it almost converged to the loss of the best possible feature and threshold.
More discussion and experiments are presented in supplemental materials.

Theorem 3 (Probability of discarding a feature). Assume a binary classification dataset where sam-
ples are generated from some distribution along each feature and features are independent. We
assume the samples of both classes have varying degrees of overlap along each feature. Proba-
bility of a sample being generated from the overlap area is P? for p*" feature. The probability of
discarding a feature depends on P?Y.

Proof. Picking Ny samples randomly from an infinitely large /N, is equivalent to directly sampling
from the distribution itself. Selecting samples is the same as flipping a coin with probability of P?
to be 1 and 1 — PP to be 0. Expectation of observing 1 is PP and essentially, on average, we expect
to observe PP x Nj samples from the overlap area. Probability of deviating from average case and
observing FIZ’f being worse than the true F'I, (please note that F'I corresponds to goodness of a
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Figure 1: Error ratio versus computational complexity for various models.

feature) over the whole trainset is equivalent to probability of observing at least 1 extra (observing
PP x Ny + 1 from overlap area) sample from the overlap area. Therefore, P(FI;f < FI,) =

1— (1= PK)No(1=F5) (or 1— probability of observing no extra sample from overlap area) which is
an upper bound to probability of discarding a feature. O

The probability of overlap area P? is inversely related to FI/; since samples with lower overlap area

(lower P?) are more distinctive; thus, such features have higher FII’f. The Theorem [3|implies that
the features with higher true F'I,, are more likely to stay in the iterations on average. For example,
assume a feature that completely separates samples of both classes (P? = 0) — any random set of
samples will represent this distinction because of having no overlap. Such a feature will achieve
FII’f = 00, hence, the feature will remain in the D?.

Theorem 4 (Consistency of SDT). The SDT is consistent and can learn the function that generated
the classes.

Theorem 5 (Decrease of the cost). The objective function of equation2|decreases as new nodes are
added.

The proofs are provided in the supplemental materials. It is worth mentioning that both the theorems
of@]and [5]are true for original decision trees (such as CART) under some mild assumptions and here
we show that SDT follows them too.

5 EXPERIMENTAL RESULTS

In this section, we present results of experiments to show the merits of our proposed method. The
SDT is compared with several other state-of-the-art algorithms and the baseline tree induction. Fig-
ures [I|and 2] present error ratio of train and test versus the computational complexity of each studied
algorithm. The existing algorithms selected in the study consist of adaptive re-sampling |[[yengar
et al.| (2000), using feature selection as pre-training procedureTang et al.|(2014); Moh’d A Mesleh
(2007), C4.5|Quinlan|(2014), and CART |Breiman et al.|(1984). The adaptive re-sampling consists of
iteratively training a tree from the scratch with respect to a tiny set of samples and expanding the set
with wrongly classified samples by the tree at each iteration. We applied the adaptive re-sampling in
two different setups. In one setup, we applied the adaptive re-sampling of Iyengar et al.|(2000) until
the algorithm achieves better accuracy or similar to that of SDT (Adaptive re-sampling 2). In the
other setup, we followed the same steps as provided by Iyengar et al.| (2000) (Adaptive re-sampling
2). For feature selection as a pre-training setup, we used ChiSquare and mRmR |Tang et al.|(2014);
Moh’d A Mesleh| (2007). The pre-training feature selections were applied to select 1%, 50%, and



Under review as a conference paper at ICLR 2022

T SIGNMNIST
S9LE ” oy SATIMAGE
80 20 'g% 670010
%
wk v 13
Y .
op N
5 ’)" 5 514
Esor 6 £ 7
S A S,
= =12
Fap 97 ¢ H 3
= 10 =10
30 g
12 3
N 0
» 0 6 o
o 3
0 30
10 2 1
s i 4 . ) 2
25
10° 10 10 0 10 TR 10° 0 10° 10 0 101 10"
Computational Complexity Computational Complexity Computational Complexity
ISQLET SATIMAGE " SIGNMNIST
21 95
T Wte
80 e m % %}5&:&
¥ 19 £ 10 5 seTenme
7n \.I 85
18
5 1. ‘
6 80
" 17 Bl " s
5 s 5
O £ © E s
= 50 =6 = 7
F : z f
a0 15 7
i °
30 o 65
13 !
20 2 0 a2 " 60 2

10° 107 10° 10’ 10
Computational Complexity

10

1
i

10° 107 10° 10°
Computational Complexity

Computational Complexity

Figure 2: Error ratio versus computational complexity for various models.

90% of features. The C4.5 was trained using the same setup as (2014). The decision tree
curve represents the CART algorithm Breiman et al.| (1984). All the trees were trained for depths of
5-12. In figures[T]and [2] the number at each point on the curve represents the depth of the tree. The
vertical axis shows the error ratio and horizontal axis shows the computational complexity of the
trained model. For SDT, we set Ny = 20 for all experiments. The SDT iterated until the number of
features remained in D? are around 0.5% of the total features. Description of datasets are presented

in table [Tl

Figures |1 and [2] depict that SDT outperformed other fast tree training algorithms in both accuracy
and computational complexity. The training complexity of SDT is smaller by several orders of
magnitude (10273). It is worth mentioning that although SDT uses less computation, its accuracy
is the same as CART algorithm. Therefore, SDT has served its purpose which was decreasing the
complexity of training while maintaining the accuracy.

5.1 HAAR TREE

Haar-like features are well-known in the literature of image processing and have been extensively

used for face detection (200T); [Jones & Viola

Hwang| (2014); |Chen et al.

Mita et al| (2003); [Pham & Cham| (2007), object detection |l

2003)); [Demirkir & Sankur| (2004)
Lienhart & Maydt (2002); |[Park &

>

(2013)); [Larios et al.| (201

the Haar-filters with the im-
age. Haar features are ex-
plained further in the sup-
plemental materials. How-
ever, the number of fea-
tures extracted by Haar-
like features is very high;
thus, training a model using
these features can be very
challenging and expensive.
SDT is designed to over-
come such a challenging
task and we trained trees
over Haar-like features us-
ing SDT. We call such tree
as Haar tree. We applied
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Haar-like features to MNIST and FMNIST to extract new features. The size of each region of
used Haar filters are (3n, 3m) form,n = 1,2, ..., 8. 121000 features were extracted from images of
28 x 28.

Figure [3] presents inference complexity versus error ratio for each model. We compared Haar trees
with oblique trees Heath et al.| (1993)), axis-aligned trees Breiman et al.| (1984), RBF-SVM and
nearest neighbor k-means. The RBF-SVM consists of training SVM over various Radial Basis
Functions (RBF). The center of RBFs are found using k-means algorithm. The width of the RBFs
were found using a validationset (trainset was split to 80% train and 20% validation). The k-means
model consisted of training a k-means and then using centroids as a nearest neighbor model (used
similar to [Tavallali et al.| (2020))). The label of centroids were selected as the majority of label of
samples assigned to each centroid. The horizontal axis in figure [3| represents the computational
complexity of evaluating the model for an input (inference complexity). The vertical axis shows the
error ratio over the testset. The number at each point on a curve represents the depth of the tree or
number of centroids. We observed that the Haar trees were able to achieve better accuracy than the
other trees and also better or similar accuracy to other nearest neighbor-based models. The Haar
trees are the first axis-aligned trees to achieve accuracy higher than any other axis-aligned trees as
per our study. Other axis-aligned trees have never passed the accuracy of 90% over MNIST while
Haar Tree could achieve accuracy of 93%. Asymptotically, the inference of a Haar Tree is O(D+A)
because first an integral image is calculated and then at each node, the desired feature is calculated
only using the integral image [Viola & Jones|(2001). The inference of oblique tree (OC1), k-means,
and RBF-SVM are O(DA), O(DK) and O(D(K + 1)), respectively. As can be observed, Haar
Trees are faster than other models asymptotically while Haar Trees could achieve smaller test error.

6 LIMITATIONS:

This paper provides the first stochastic approach for induction of a decision tree. Consequently,
the model and the proposed algorithm suffers from limitations that a decision tree might suffer.
However, in the context of decision tree and ensemble models it potentially can enhance the state
of the field, since the approach enables faster and more computationally efficient creation of deci-
sion tree and forest models. The approach essentially opens the path for introduction of tree-based
convolution filters.

7 CONCLUSION

The tree training is expensive because of the exhaustive search for solving the criterion minimization
problem. Despite the vast usage of decision trees in a broad range of applications such image
processing, computer vision, and medical diagnosis, the mentioned problem has not been objectively
approached. We tackled the problem by proposing a novel stochastic approach for tree induction. To
the best of our knowledge, the SDT is the first stochastic algorithm designed for induction of trees
through greedy approach. Asymptotically, the SDT improved the decision tree induction complexity
by orders of magnitude. It was shown that the algorithm is likely to find the best feature and threshold
at the split node. It was also shown that the algorithm minimizes an upper bound for the criterion
problem. Experimentally, the SDT could achieve same accuracy as the baseline tree CART and
outperformed other similar methods (e.g., online and fast tree induction). In the experiments, SDT
could train a tree faster than other algorithms by several orders of magnitude. Finally, using SDT,
we tackled the challenging problem of training Haar Trees. The Haar Trees could achieve better
accuracy than other more complicated machine learning models, such as oblique trees and nearest
neighbor-based models.

8 REPRODUCIBILITY

The experiment codes (currently attached as supplementary materials) will be published on a Github
repository to facilitate reproduction and extension of our results. Furthermore, the datasets used in
our experiments are publicly available via the UCI repository.
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A APPENDIX

This is the Appendix (supplemental materials) for Stochastic Induction of Decision Trees with Ap-
plication to Learning Haar Tree.

A.1 PROPERTIES OF THE SDT

Theorem 4 is a result of theorem 20.1 and Lemma 20.1 in|Devroye et al.|(2013).
Proof sketch of theorem 5:

Proof Sketch: Assuming the data IID. The criterion is bounded by 0 from below. At each node, a
partition that is minimum of the objective function over a set of features is found. As a result, after
partitioning each node, the error will decrease.

A.2 HAAR FEATURES

The exact haar features used for generating new features are presented in figure [d] The sizes of row
pixels and column pixels are written right to each filter. For each filter, various filters with every
combination of possible row and column pixels are created and convolved with the image to extract
create new features.

3 xN (3,6,9,12,15,18,21,24,28)
6 x N (3,6,9,12,15,18,21,24,28)
3 x N (3,6,9,12,15,18,21,24,28)
6 x N (3,6,9,12,15,18,21,24,28)

™

4 x N (2,4,6,8,10,12,14,16,18,20,22,24,26)

Figure 4: Haar Filters

A.3 EXPERIMENTAL RESULTS

In this section, several experiments that demonstrate properties of SDT are presented.

Figure [5] shows the reduction in impurity (criterion in formula 2) at each iteration of the algorithm
for MNIST dataset. Each point on the curve represents the impurity of the best feature and threshold
found by the algorithm (L* (S i) As figure |5| demonstrate, at each iteration, the loss function has
decreased drastically and eventually has converged to the true best feature and threshold.

Figures [6] and [7] present the importance of features at each iteration for problem of inducing one
single split node for 2 classes. The feature importances were normalized to between 0 and 1.

From figures[6]and[7] it is observable that the SDT gradually discards the less discriminative features
and gives higher value to more distinctive features.

Figures [A.3] and [A.3] represents computational complexity versus error ratio of train and test. In
figures and various values are used for Ny to explore the effect of Ny over the final tree.
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Figure 5: The horizontal axis shows the iteration number of SDT for a single node. Vertical axis
shows the impurity. The dashed line represents the impurity of the best feature and threshold. The
points on the curves represent exact impurity of the best split found by the algorithm at that iteration.

The text above each plot shows the classes used for creating the split node.

1st Iteration 2nd Iteration

5 gt 15 20 2

4th lteration 5th lteration

3rd Iteration

Figure 6: Feature importance of features by SDT at each iteration for problem of O versus 1. Brighter

pixels show higher value of FI and darker pixels show lower value of FI.

1t Iteration 2nd Iteration

4th lteration

3rd Iteration

Figure 7: Feature importance of features by SDT at each iteration for problem of 1 versus 7. Brighter

pixels show higher value of FI and darker pixels show lower value of FI.

Each curve represents the [Ny by its color. The Ny for each color is defined at the legend of the plot.

The depth of the tree is shown at the points on each curve.
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Figure 8: Horizontal axis represents the computational complexity of training a model. The vertical
axis shows the error ratio. The colors represent the used value for V.
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Figure 9: Horizontal axis represents the computational complexity of training a model. The vertical
axis shows the error ratio. The colors represent the used value for Vg.
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