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Abstract
Emotion recognition systems face significant chal-
lenges in real-world applications, where novel
emotion categories continually emerge and multi-
ple emotions often co-occur. This paper intro-
duces multi-label fine-grained class incremen-
tal emotion decoding, which aims to develop
models capable of incrementally learning new
emotion categories while maintaining the abil-
ity to recognize multiple concurrent emotions.
We propose an Augmented Emotional Semantics
Learning (AESL) framework to address two crit-
ical challenges: past- and future-missing partial
label problems. AESL incorporates an augmented
Emotional Relation Graph (ERG) for reliable
soft label generation and affective dimension-
based knowledge distillation for future-aware
feature learning. We evaluate our approach on
three datasets spanning brain activity and mul-
timedia domains, demonstrating its effective-
ness in decoding up to 28 fine-grained emo-
tion categories. Results show that AESL signif-
icantly outperforms existing methods while ef-
fectively mitigating catastrophic forgetting. Our
code is available at https://github.com/
ChangdeDu/EmoGrowth.

1. Introduction
Accurately decoding human emotional states remains a fun-
damental challenge in affective computing research. While
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Figure 1. The class-incremental learning process is demonstrated
through three sequential tasks: Task 1 begins with emotion adora-
tion, Task 2 introduces ”awe”, and Task 3 adds joy. The unified
model ψ with parameters Φ1, Φ2, Φ3 evolves across tasks while
maintaining the ability to recognize all previously learned emo-
tions.

conventional deep learning approaches have demonstrated
promising performance (Li & Deng, 2020; Poria et al.,
2017), they struggle to adapt to the evolving nature of real-
world scenarios, where novel emotion categories continu-
ously emerge to capture increasingly nuanced emotional
experiences. As eloquently expressed by the renowned nov-
elist Jeffrey Eugenides (Eugenides, 2003), “Emotions, in my
experience, are not covered by single words. I do not believe
in ’sadness’, ’joy’, or ’regret’” – this profound observation
underscores the inherent complexity of human emotions. In-
deed, individuals typically experience a sophisticated blend
of multiple emotions simultaneously when responding to
emotional stimuli (Fu et al., 2022). Motivated by these in-
sights, we introduce a novel research paradigm: multi-label
fine-grained class incremental emotion decoding.

As illustrated in Figure 1, multi-label class incremental
emotion decoding aims to develop a unified model capable
of incrementally learning and integrating knowledge from
both existing and emerging emotion classes while compre-
hensively decoding multiple concurrent emotional states.
Unlike traditional single-label class incremental learning
(SLCIL), the multi-label class incremental learning (ML-
CIL) faces unique challenges in addressing catastrophic for-
getting, primarily stemming from past- and future-missing
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partial label problems. Consider the past-missing partial
label scenario: the left screenshot (The corgi is diving) in
task 3’s training dataset contains the label Adoration, yet
this emotion remains imperceptible to the model during the
current task. Similarly, in the future-missing partial label
case, the right screenshot (The father is combing his daugh-
ter’s hair) in task 1’s dataset encompasses the label Joy,
which is inaccessible to the model in the current task. Ex-
isting MLCIL approaches either rely on storing historical
instances (Kim et al., 2020; Liang & Li, 2022), limiting
their practical applicability, or overlook the critical future-
missing partial label problem (Du et al., 2022), leading to
suboptimal performance.

To address these challenges, we propose a novel Augmented
Emotional Semantics Learning (AESL) framework. First,
we tackle the past-missing partial label problem by introduc-
ing an augmented Emotional Relation Graph (ERG) module
with graph-based label disambiguation. Upon encountering
new tasks, this module not only generates reliable soft labels
for existing emotion classes but also constructs an enhanced
ERG by integrating historical ERG with new data, thereby
preserving crucial emotional label correlations. Second, to
resolve the future-missing partial label problem, we lever-
age the affective dimension space – an alternative emotion
model capable of representing infinite emotion categories
(Russell & Mehrabian, 1977) – to provide complementary
domain knowledge (Le et al., 2023) for continuous emotion
learning. This insight leads to our development of a relation-
based knowledge distillation framework that aligns model
features with the affective dimension space. Furthermore,
we utilize the ERG to design an emotional semantics learn-
ing module incorporating a graph autoencoder, which learns
emotion embeddings to facilitate semantic-specific feature
decoupling, crucial for enhanced multi-label learning. We
conduct extensive evaluations across three datasets: a hu-
man brain activity dataset (Brain27) with 5 subjects and two
multimedia datasets (Video27 and Audio28), implementing
multiple incremental learning protocols that encompass up
to 28 fine-grained emotion categories. Our key contributions
are threefold:

• We pioneer the investigation of multi-label class incre-
mental emotion decoding, advancing emotion recogni-
tion capabilities in dynamic real-world environments.

• We develop an innovative augmented emotional se-
mantics learning framework that enhances emotion de-
coding performance while effectively mitigating catas-
trophic forgetting in MLCIL scenarios.

• We demonstrate the superior effectiveness of our ap-
proach through comprehensive experiments across
three datasets and multiple incremental learning proto-
cols.

2. Related Work
Class Incremental Learning. Class incremental learning
has gained significant attention in machine learning research
(De Lange et al., 2021; Masana et al., 2020). Traditional
methods mainly focus on preventing catastrophic forgetting
through regularization (Kirkpatrick et al., 2017), knowledge
distillation (Li & Hoiem, 2017), or memory replay (Re-
buffi et al., 2017). Recent advances have explored more
sophisticated approaches such as parameter isolation (Serra
et al., 2018) and dynamic architecture adaptation (Yan et al.,
2021).

Multi-label Class Incremental Learning. MLCIL ad-
dresses the crucial challenge of simultaneously handling
incremental class learning and multi-label classification. Re-
cent works have explored various approaches: (Dong et al.,
2023) proposed an attention-based knowledge restore and
transfer framework, while AGCN (Du et al., 2022) em-
ployed GCN for label relationship learning. Online class
incremental learning has been addressed through specialized
replay buffer designs in PRS (Kim et al., 2020) and OCDM
(Liang & Li, 2022). Additional studies have investigated
prototype learning (Zhang et al., 2021) and knowledge dis-
tillation (Liu et al., 2022) for MLCIL. However, MLCIL
specifically focused on emotion decoding remains largely
unexplored, particularly concerning the challenges of partial
label problems and emotional semantic preservation.

Class Incremental Emotion Decoding. The continuous
learning of new emotion categories has emerged as a crucial
research direction in affective computing. (Churamani &
Gunes, 2020) proposed CLIFER, combining a generative
model with a complementary learning-based dual-memory
model for continual facial expression recognition. (Ma
et al., 2022) developed a GCN-based approach for few-shot
class-incremental classification across emotion categories,
while (Jiménez-Guarneros et al., 2022) introduced weight
alignment to address bias in new emotion classes. More
recent works have explored adaptive architectures (Wang
et al., 2023) and meta-learning approaches (Zhang et al.,
2022) for emotion recognition. However, these studies are
primarily limited to a small number of coarse-grained emo-
tion categories and fail to address the complexity of human
emotional expression.

3. Methodology
3.1. Problem Formulation

In the MLCIL scenario, we have a sequence of B train-
ing tasks {D1,D2, · · · ,DB} without overlapping emotion
classes, where Db = {(xib, Y ib)}nb

i=1 is the b-th incremen-
tal task with nb training instances. xb

i ∈ RD is an instance
with classes Y b

i ⊆ Cb. Cb is the label set of task b, where
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Figure 2. The framework of AESL for multi-label class incremental emotion decoding. (a) Emotional semantics learning and semantic-
guided feature decoupling procedure in incremental learning scenario. We omit the semantic-guided feature decoupling module in task
b− 1 for clarity. (b) The process of constructing augmented ERG with label disambiguation in task b.

Cb ∩ Cb′ = ∅ for b ̸= b′. Only data from Db is accessible
during task b training. yb

i ∈ R|Cb| is the multi-hot label
vector where ybic ∈ {0, 1} indicates whether emotion c is
relevant to instance xb

i . After task b, the model is evaluated
over all seen emotion classes Cb = C1 ∪ · · ·Cb.

3.2. Framework Overview

As shown in Figure 2(a), AESL processes each incremental
task through four interconnected modules. The ERG mod-
ule first constructs and maintains the emotion relationship
graph, providing the foundation for emotional semantics
learning. The graph autoencoder (GAE) then learns emotion
embeddings from ERG, which guide the feature decoupling
module to extract label-specific features. Finally, relation-
based knowledge distillation preserves previously learned
knowledge while accommodating new emotion categories.
These components work jointly to address both past-missing
and future-missing partial label problems in MLCIL.

3.3. Augmented Emotional Relation Graph

Here, we first introduce the Augmented Emotional rela-
tion Graph module with label Disambiguation (AEG-D), as
shown in Figure 2(b). At the beginning of task b, we have
access to new labels Cb. Compared with the existing emo-
tional relation graph Gb−1, we need to augment the node
set and adjacency matrix to V b and Ab, respectively. For
the former, we only need to sample |Cb| vectors from the
standard Gaussian distribution. For the latter, it is difficult
to infer Ab directly from statistical label co-occurrence due
to the partial label problem. The adjacency matrix on the

given class set C is defined based on label co-occurrence:

Aij = P (ℓi ∈ C|ℓj ∈ C)|i ̸=j =
Nij

Nj
, (1)

where Nij is the number of instances with both class ℓi and
ℓj , Nj is the number of instances with class ℓj . When the
task b is coming, the augmented adjacency matrix Ab can
be formulated as the following block form (Du et al., 2022):

Ab =

[
Ab−1 Rb

Qb Bb

]
⇔

[
Old-Old Old-New
New-Old New-New

]
. (2)

Ab−1 can be directly inherited from task b, and Bb can be
easily computed from Db. However, Rb and Qb involve
the inter-task label relationship between old classes in past
tasks and new classes in task b. We should first assign
soft labels in the past label set Cb−1 for the instances in
new dataset Db for subsequent calculation. For clarity, we
use s = ψ(x,A; Φ) to denote the procedures of emotional
semantics learning and semantic-guided feature decoupling,
with Φ = {θ, ϕ,W}. Although sb = ψ(xb,Ab−1; Φb−1)
is a feasible solution for the soft labels construction, this
kind of soft labels contain a significant amount of noise and
fail to utilize the correlation among instances.

To tackle this problem, we adopt a Graph-based Label
Disambiguation (GLD) module to the label confidence score
sb. Firstly, the similarity between two instances is calculated
with Gaussian kernel (omit b without ambiguity) Pij =

exp(− ||xi−xj ||2
2σ2 ), in which xi and xj are two different sam-

ples in Db. Following the label propagation procedure,
let P̂ = PD−1 be the propagation matrix by normalizing
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weight matrix P in column, where D = diag[d1, · · · , dnb ]
is the diagonal matrix with dj =

∑n
i=1 Pij . Assume that

we have access to a past label confidence matrix using
ψ(; Φb−1) for Db, which denotes as S ∈ Rnb×|Cb−1|. And
we set the initial label confidence matrix F0 = S. For the
t-th iteration, the refined label confidence matrix is updated
by propagating current labeling confidence over P̂:

Ft = β · P̂TFt−1 + (1− β) · F0. (3)

The balancing parameter β ∈ [0, 1] controls the amount of
labeling information inherited from iterative label propaga-
tion and F0. Let F∗ be the final label confidence matrix
and also serve as the soft labels after disambiguation, which
means Ŝ = F∗. We set the balancing parameter β to 0.95
during label disambiguation according to (Chen et al., 2020).

With the dataset Db and soft label matrix Ŝ, we are able to
compute Rb ∈ R|Cb−1|×|Cb| as follows:

Rb
ij = P (ℓi ∈ Cb−1|ℓj ∈ Cb) =

∑
x ŝiyj
Nj

, (4)

in which ŝi denotes the value of class i corresponding to
instance x in the soft label matrix, and yj refers to the value
of class j corresponding to the same instance in the label
matrix derived from Db. Naturally, following the Bayes’
rule, we can obtain the Qb ∈ R|Cb|×|Cb−1| by:

Qb
ji = P (ℓj ∈ Cb|ℓi ∈ Cb−1)

=
P (ℓi ∈ Cb−1|ℓj ∈ Cb)P (ℓj ∈ Cb)

P (ℓi ∈ Cb−1)
=

Rb
ijNj∑
x ŝi

.

(5)

Above all, we have constructed the adjacency matrix Ab and
achieved continual learning of new emotion categories in the
multi-label scenario. It is noticeable that, in our experiments,
we actually utilize a symmetric adjacency matrix for model
training by applying the A+AT

2 operation.

3.4. Emotional Semantics Learning

Now, we focus on how to obtain the emotion embeddings
in task b. We construct an augmented ERG Gb = (V b, Eb),
where V b represents nodes corresponding to class labels Cb

and Eb refers to edges. Then, we adopt a GAE to project
emotion labels into a label co-occurrence semantic space
with the ERG. We exploit Graph Isomorphism Network
(GIN) (Xu et al., 2019) as the encoder of our GAE due to
its powerful representation learning capability. Specifically,
given a feature matrix of nodes Hb

l ∈ R|Cb|×dl in which
each row refers to the embedding of an emotion label and
dl corresponds to the dimensionality of node features in the
l-th GIN layer, the node features are able to update within a
GIN layer with a message passing strategy by:

Hb
l+1 = fl+1[(1 + ϵl+1)H

b
l +AbHb

l ; θ
b
l+1], (6)

in which Hb
l+1 ∈ R|Cb|×dl+1 is the updated feature matrix

of nodes, fl+1(:, θl+1) refers to a fully-connected neural
network. Additionally, ϵl+1 is a learnable parameter which
regulates the importance of the node’s own features during
the process of neighborhood aggregation. Unlike object
labels in image classification (Chen et al., 2019), emotion
category labels are difficult to obtain initial word embed-
dings directly from language models. Consequently, the
initial feature matrix of nodes Hb

0 ∈ R|Cb|×d0 is initialized
by standard Gaussian distribution and we set d0 = |Cb|
(can also be other task-agnostic constants). After stacking
L GIN layers, we use Eb = Hb

L ∈ R|Cb|×dL as the final
emotion label semantic embeddings in task b for further
semantic-specific feature extraction.

Furthermore, we introduce a pairwise decoder to reconstruct
the adjacency matrix Ab, which can ensure that the obtained
label embeddings capture the topological structure of the
label semantic space well. The loss function of the pairwise
decoder can be written as:

Lle =
1

|Cb|2

|Cb|∑
i=1

|Cb|∑
j=1

[
(ebi − ēb)T (ebj − ēb)

||ebi − ēb||||ebj − ēb||
− Âb

ij ]
2, (7)

where ēb = Ei[e
b
i ] corresponds to the average emotion

embeddings in task b, ebi denotes the i-th row of Eb, and
Âb = Ab + Ib, with Ib being an identity matrix. Over-
all, emotional semantics learning aims to fit the function
f(·, θb), leading to Eb = f(Hb

0,A
b; θb) in task b.

3.5. Semantic-Guided Feature Decoupling

A multi-label classification model with semantic-guided fea-
ture decoupling can be regarded as the composition of a
semantic-specific feature extractor g and a classification
head W (omitting bias for simplicity), where g(;ϕb) :

RD × R|Cb|×dL → R|Cb|×d and Wb ∈ Rd×|Cb| in task b.
For a specific emotion label ℓk ∈ Cb, the semantic-specific
mapping gk can be formulated as gk(xb, ebk;ϕ

b) ∈ Rd. The
linear layer can be further decomposed into the combina-
tion of classifiers Wb = [w1, · · · ,w|Cb|], in which each
classifier corresponds to one emotion embedding. The clas-
sification head will be expanded for new classes as the
continual learning progresses. The key issue is to design the
semantic-specific feature extractor gk.

To achieve this, we first map the instance representation xb

from the original feature space to a more powerful deep
latent feature z with a fully-connected network having pa-
rameters Wb

x ∈ RD×dz and bb
x ∈ Rdz . In order to uti-

lize emotional semantics to guide the feature extraction for
each label, we adopt an attention-like mechanism. Con-
cretely, we attempt to obtain feature importance values αk

for each emotion category by using a fully-connected net-
work followed by a sigmoid function for ebk with parameters
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Figure 3. Diagram of relation-based knowledge distillation with
two teachers in the process of training task b. Teachers 1&2 were
frozen during training. Each discrete emotion category represents
a point in the affective space formed by Arousal and Valence.

Wb
e ∈ RdL×dz and bb

e ∈ Rdz . Then, we select pertinent
features for each emotion category via the Hadamard prod-
uct between the feature importance vector and the latent
representation. Successively, we can obtain the semantic-
specific feature for each emotion category from another
fully-connected network. This procedure can be formulated
as follows:

ok = ζ[Wb
o

T
(z⊙αk) + bb

o], (8)

where Wb
o ∈ Rdz×d and bb

o ∈ Rd are shared learnable pa-
rameters. ⊙ refers to the Hadamard product, and ζ denotes
the activation function. At this point, we have defined the
semantic-specific feature extractor ok = gk(x

b, ebk;ϕ
b), in

which ϕ = {Wx,We,Wo,bx,be,bo}. Then, we can pre-
dict the confidence score of the presence of emotion label
ℓk through the corresponding classifier:

sk = σ(wT
k ok + bk) = σ(wT

k gk(x
b, ebk;ϕ

b) + bk).

k ∈
{
1, · · · , |Cb|

} (9)

3.6. Relation-based Knowledge Distillation

Although we have achieved the semantic-specific feature
learning and overcome the past-missing partial label prob-
lem by AEG-D, we have not yet addressed the issue of
future-missing partial label problem in MLCIL. Previous
studies (Schlosberg, 1954; Russell & Mehrabian, 1977) have
shown that the affective dimension, as a complementary
emotion model to emotion category, can represent infinitely
many emotion categories within its constructed affective
space. We propose that incorporating the domain knowledge
of affective dimension space into the model can alleviate the
problem of future-missing partial label problem. During the
training process for each task, we attempt to align the fea-
ture space of our model with the predefined affective space
constructed by some affective dimensions such as Arousal
and Valence. Taking into account the heterogeneity of the
two spaces, we adopt relation-based knowledge distillation
(RKD). Specifically, we firstly calculate the representation

similarity matrix (RSM) (Kriegeskorte et al., 2008) obtained
from model feature z for task b:

Mb
ij =

(zi − z̄)T (zj − z̄)

||zi − z̄||||zj − z̄||
, (10)

where z̄ = Ei[zi] denotes the mean model feature of all in-
stances. Similarly, RSM obtained from affective dimension
feature τ can be formulated as:

Maff
ij =

(τ i − τ̄ )T (τ j − τ̄ )

||τ i − τ̄ ||||τ j − τ̄ ||
. (11)

Then, we define the similarity loss Lkdaff as:

Lkdaff =Ei ̸=j [Lij
kdaff

]

=Ei ̸=j

{
[arctanh(Mb

ij)− arctanh(Maff
ij )]

2
}
,

(12)

where Lij
kdaff

is the sample-based centered kernel alignment
index. We leverage arctanh to reparameterize the similarity
values from the interval (−1, 1) to (−∞,∞) to approxi-
mately obey a Gaussian distribution. Besides, to ensure
training stability, we simultaneously pull together Mb

ij and
Mb−1

ij using the same method to obtain Lkdmodel . In this way,
the model has access to two teachers: the affective dimen-
sion and the old model, as shown in Figure 3. This approach
derives the overall knowledge distillation loss:

Lkd = λ1Lkdmodel + λ2Lkdaff . (13)

3.7. Objective Function

As mentioned above, the prediction confidence scores s for
an instance x can be computed by Eq. 9, which denotes
s = [s1, · · · , s|Cb|]

T ∈ R|Cb| in task b. We have access to
the ground truth from Db, which is denoted as the multi-
hot vector y = [y1, · · · , yCb ]T ∈ R|Cb|. Additionally, we
have computed the soft labels for the previous emotion
categories using the model b − 1, as described in Section
3.3, which are denoted as ŝ = [ŝ1, · · · , ŝ|Cb−1|]

T ∈ R|Cb−1|,
and Cb ∪ Cb−1 = Cb. In summary, we train task b using
the mixed ground truth ỹ = [ŝT ,yT ]T ∈ R|Cb|, with a the
binary cross entropy loss, formulated as follows:

Lce = −
|Cb|∑
i=1

[ỹilog(si) + (1− ỹi)log(1− si)]. (14)

Finally, our model is trained with the following objective
function in an end-to-end manner:

L = Lce + λ1Lkdmodel + λ2Lkdaff + λ3Lle. (15)

After training in task b, given an unseen instance, its asso-
ciated label set is predicted as

{
ℓk|sk > 0.5, 1 ≤ k ≤ Cb

}
.

The algorithm of AESL is written in Appendix A.
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Figure 4. Comparison results (mAP) on three datasets used in our experiment under different protocols against compared CIL methods.

4. Experiments
4.1. Experimental Setup

Datasets. For thoroughly evaluating the performance of
AESL and comparing approaches, three datasets are lever-
aged for experimental studies including Brain27 (Horikawa
et al., 2020), Video27 (Cowen & Keltner, 2017) and Audio28
(Cowen et al., 2020). We evaluate our method using two
popular protocols in class incremental learning work (Dong
et al., 2023), including (1) training all emotion classes in
several splits and (2) first training a base model on a few
classes while the remaining classes being divided into sev-
eral tasks. For Brain27 and Video27, we split the datasets
with B0-I9 (base class is 0 and incremental class is 9), B0-I3,
B15-I3 and B15-I2. For Audio28, we split the dataset with
B0-I7, B0-I4, B16-I3 and B16-I2.

Baselines. The performance of AESL is compared with
multiple essential and state-of-art class incremental meth-
ods. Finetune is a baseline which means fine-tuning the
model without any anti-forgetting constraints. We select
four SLCIL methods including EWC (Kirkpatrick et al.,
2017), LwF (Lee et al., 2019), ER (Rolnick et al., 2019)
and RS (Vitter, 1985) for comparison. Furthermore, other

three well-established MLCIL approaches AGCN (Du et al.,
2022), PRS (Kim et al., 2020), OCDM (Liang & Li, 2022),
and KRT-R (Dong et al., 2023) are also employed as com-
paring approaches. Besides, we set the Upper-bound as the
supervised training on the data of all tasks. More details
about the experimental setups can be found in Appendix B.

4.2. Experimental Results

Comparative Studies. Tables 1, 2, and 3 show the re-
sults on subject 1 of Brain27 (more results are shown in
Appendix C), Video27 and Audio, respectively. We can ob-
serve that AESL shows obvious superiority under different
datasets and protocols, in terms of three widely used metrics
mAP, maF1 and miF1 (Zhang & Zhou, 2013). Especially for
Brain27, AESL has a relative improvement of 9.6% in mAP
(4 protocols averaged) and 9.7% in maF1 compared with
the second place method. Figure 4 exhibits the comparison
curves of AESL and comparing methods, which indicates
that our method is consistently optimal at each task of incre-
mental learning. Among the compared methods, EWC and
LwF are traditional SLCIL methods. We can find that EWC
is not suitable for direct application to MLCIL task due to its
poor performance. In contrast, LwF achieves impressive per-
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Table 1. Class incremental results on subject 1 of Brain27 dataset. AGCN, PRS, OCDM and KRT-R are MLCIL algorithms among these
compared methods.

Method
Brain27 B0-I9 Brain27 B0-I3 Brain27 B15-I3 Brain27 B15-I2

Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc
mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP

Upper-bound - 39.1 47.2 45.8 - 39.1 47.2 45.8 - 39.1 47.2 45.8 - 39.1 47.2 45.8

Finetune 34.8 9.2 19.3 26.0 30.8 5.0 13.8 21.2 26.0 5.0 13.9 21.1 23.7 3.6 13.2 18.7
EWC 33.2 8.1 17.1 25.0 30.9 5.0 13.9 22.1 26.7 5.3 14.3 22.1 24.8 3.6 13.2 19.5
LwF 37.3 12.2 29.1 29.1 37.0 23.4 40.0 27.0 31.9 14.2 28.6 24.9 29.1 15.2 31.8 20.4
ER 40.7 8.0 11.7 36.2 40.2 4.9 9.1 34.3 37.9 9.7 12.3 35.4 37.5 9.6 11.7 33.7
RS 42.1 9.4 12.6 39.8 41.2 4.5 7.4 33.3 38.3 8.0 11.1 33.9 37.9 5.1 8.7 32.5

AGCN 42.2 29.5 44.5 40.4 42.1 35.4 43.7 34.9 39.3 28.8 41.7 37.2 36.3 24.4 36.4 30.9
PRS 41.6 9.3 15.1 38.2 41.7 5.5 8.4 33.5 39.5 8.2 12.2 36.1 37.7 9.4 13.1 33.2
OCDM 41.6 9.7 15.9 37.7 40.6 5.3 7.6 31.6 37.2 4.9 7.1 31.4 37.3 4.4 7.6 32.5
KRT-R 42.5 18.2 30.3 41.1 44.3 22.9 32.1 39.1 40.4 20.0 33.2 39.1 39.5 20.3 33.7 37.1
AESL 44.2 32.8 44.7 42.6 43.8 37.1 44.0 36.9 41.9 32.5 41.7 39.3 39.5 26.8 36.5 34.8

Table 2. Class incremental results on Video27 dataset. AGCN, PRS, OCDM, and KRT-R are MLCIL algorithms among these compared
methods.

Method
Video27 B0-I9 Video27 B0-I3 Video27 B15-I3 Video27 B15-I2

Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc
mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP

Upper-bound - 36.8 46.3 45.4 - 36.8 46.3 45.4 - 36.8 46.3 45.4 - 36.8 46.3 45.4

Finetune 33.8 6.6 13.7 25.1 31.5 4.2 13.0 21.7 26.0 4.3 13.3 21.6 24.3 4.2 13.7 19.1
EWC 35.6 7.5 17.8 27.8 32.9 4.7 13.2 23.6 28.4 4.9 13.9 23.3 26.0 3.9 13.1 19.9
LwF 34.4 6.8 23.3 24.0 38.2 19.9 37.3 24.7 30.0 12.5 33.4 24.2 27.7 15.8 32.7 20.4
ER 42.0 5.1 7.0 39.0 43.0 4.5 4.8 35.4 39.4 8.0 8.3 37.6 37.2 10.1 12.6 34.0
RS 42.8 4.6 6.1 40.1 43.6 4.6 7.8 34.5 39.3 4.2 5.2 37.0 37.2 6.7 9.9 32.0

AGCN 42.1 22.4 39.4 39.2 44.5 34.2 44.5 36.1 39.5 22.7 38.4 37.0 38.0 23.8 36.2 34.0
PRS 42.6 9.5 15.0 40.4 43.0 5.8 9.6 33.4 37.8 8.9 13.4 36.0 37.7 7.4 13.3 33.7
OCDM 43.1 5.5 6.8 40.2 43.8 5.0 7.8 35.0 38.9 4.9 6.6 36.3 37.1 5.2 5.8 32.7
KRT-R 42.9 26.7 35.8 40.1 45.5 26.3 34.7 37.0 41.5 25.0 35.5 40.4 39.5 24.2 34.2 38.3
AESL 44.6 23.4 39.7 41.9 47.1 35.2 45.0 37.1 41.5 23.5 39.2 38.1 39.8 24.5 36.7 36.1

Table 3. Class incremental results on Audio28 dataset. AGCN, PRS, OCDM and KRT-R are MLCIL algorithms among these compared
methods.

Method
Audio28 B0-I7 Audio28 B0-I4 Audio28 B16-I3 Audio28 B16-I2

Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc
mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP

Upper-bound - 51.4 61.1 57.1 - 51.4 61.1 57.1 - 51.4 61.1 57.1 - 51.4 61.1 57.1

Finetune 36.4 9.2 14.8 27.3 33.9 5.3 10.0 23.3 29.9 4.4 10.3 22.6 27.6 2.8 8.2 20.2
EWC 37.9 8.3 14.3 29.3 37.1 5.4 10.5 26.6 32.2 4.4 9.7 24.7 28.1 2.8 8.7 22.5
LwF 46.6 37.9 51.7 40.6 45.8 39.9 49.8 37.6 45.0 32.3 45.2 40.0 42.3 28.8 41.4 36.5
ER 44.7 8.1 11.4 38.0 45.6 6.5 5.5 35.2 41.3 9.2 13.3 36.8 39.4 10.1 13.6 34.1
RS 43.7 8.1 12.3 36.5 43.6 5.9 9.3 32.0 38.7 7.5 11.7 32.9 38.2 5.8 11.6 31.8

AGCN 47.3 35.3 50.9 41.9 46.6 37.5 51.0 38.6 44.5 29.3 44.6 39.6 41.1 27.5 42.4 34.8
PRS 43.3 9.0 12.8 35.5 44.5 6.8 9.0 34.2 39.2 6.2 8.3 32.9 39.1 8.8 11.4 35.2
OCDM 44.5 8.7 12.0 38.0 43.8 7.5 8.8 31.5 38.2 5.5 9.7 30.1 36.3 3.7 7.9 30.2
KRT-R 46.3 8.2 23.7 41.3 47.3 18.1 33.0 40.0 42.6 11.4 27.9 38.9 42.3 13.1 29.2 38.8
AESL 49.0 38.4 51.8 42.7 48.7 41.1 51.7 39.8 47.8 32.3 48.0 42.3 45.3 30.8 45.1 39.3

formance on the Audio28 dataset. We infer that knowledge
distillation, which essentially provides soft labels for old
classes, contributes to overcoming catastrophic forgetting in
MLCIL. Besides, it is noticeable that rehearsal-based meth-
ods, including ER, RS, PRS, OCDM and KRT-R, are not
satisfactory, especially for maF1 and miF1. This is because
just saving the labels of current task aggravates the partial
label problem in subsequent training, which illustrates that
data replay is not suitable for MLCIL. Furthermore, AGCN
serves as a strong baseline which can rank 2nd for most
cases, and our method surpasses AGCN by incorporating ef-
fective label semantics learning and introducing knowledge

distillation from the affective space.

Furthermore, we adopt the Friedman test (Demšar, 2006)
for statistical testing in order to discuss the relative per-
formance among the compared methods1. If there are k
algorithms and N datasets, we take use of the average ranks
of algorithms Rj =

1
N

∑
i r

j
i for Friedman test in which rji

is the ranks of the j-th algorithm on the i-th dataset. If the
null-hypothesis is that all the algorithms have the equivalent
performance, the Friedman statistic FF which will satisfy

1We average the last mAP of four protocols regarding each
dataset for further analysis.
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Figure 5. Pairwise comparisons with the Nemenyi test in 7 datasets and 9 algorithms used in our experiments. Algorithms not connected
with each other in the CD diagram are considered to have significantly different performance (CD = 4.540 at 0.05 significance level).

the F-distribution with k − 1 and (k − 1)(N − 1) degrees
of freedom can be written as:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, (16)

in which

χ2
F =

12N

k(k + 1)

[
k∑

j=1

R2
j −

k(k + 1)2

4

]
. (17)

Table 4 shows the Friedman statistics FF and the corre-
sponding critical value in regard to each metric (# compar-
ing algorithms k = 9, # datasets N = 7). With respect to
each metric, the null hypothesis of equivalent performance
among the compared methods can be rejected at the 0.05
significance level.

Then, we perform the strict post-hoc Nemenyi test (Demšar,
2006) which is used to account for pairwise comparisons
for all compared approaches. The critical difference (CD)
value of the rank difference between two algorithms is:

CD = qα

√
k(k + 1)

6N
, (18)

in which qα = 3.102 at 0.05 significance level. There-
fore, one algorithm can be considered as having signifi-
cantly different performance than another method if their
average ranks difference is larger than CD (CD = 4.540
in our experimental setting). Figure 5 reports the CD di-
agrams on each metric, where the average rank of each
compared method is marked along the axis (the smaller the
better). The algorithms that are not connected by a hori-
zontal line are considered to have significant differences in
performance. We can observe that: (1) In terms of mAP,

Table 4. Friedman statistics FF in terms of each metric and the
critical value at 0.05 significance level. (# compared algorithms
k = 9, # subjects N = 7.)

maF1 miF1 mAP critical value
37.025 64.000 70.696 2.138

Table 5. The contribution of each component. Accuracy of these
models is measured by mAP.

Model ESL LD RKD Avg. Acc ∆ Last Acc ∆

w/o ESL&LD

✓

47.6 -1.4 41.3 -1.4
+SE 45.3 -3.7 40.9 -1.8
+LE 46.8 -2.2 41.9 -0.8
+AD 48.4 -0.6 42.3 -0.4

w/o LD ✓ ✓ 48.1 -0.9 42.0 -0.7

w/o RKD
✓ ✓

48.3 -0.7 42.1 -0.6
+LR 47.0 -2.0 41.8 -0.9

AESL ✓ ✓ ✓ 49.0 0.0 42.7 0.0

AESL and other MLCIL approaches (except OCDM) sig-
nificantly outperform SLCIL methods. (2) In terms of miF1
and maF1, rehearsal-free methods are significantly better
than rehearsal-based algorithms. (3) AESL is not signifi-
cantly different from some MLCIL approaches. This is due
to the factor that these approaches beat other comparing
approaches and the Nemenyi test fails to detect that AESL
achieves a consistently better average ranks than other meth-
ods on all evaluation metrics.

Ablation Studies. To evaluate the roles of AESL’s three
key components, we conduct ablation experiments on the
Audio28 dataset under the B0-I7 setting. We design seven
baselines, as shown in Table 5: (1) w/o ESL&LD: Feed the
feature vector z directly into the classifier without semantic-
guided feature decoupling. (2) w/o ESL&LD, +SE: Extract
sentence embeddings of emotion category descriptions via
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Figure 6. t-SNE on the emotion embeddings learned by AESL.

the advanced LLaMA 3.1-8B (Dubey et al., 2024) and utilize
them as emotion embeddings. (3) w/o ESL&LD, +LE:
Assign a learnable embedding to each new emotion category.
(4) w/o ESL&LD, +AD: Directly integrate the sample-wise
affective dimension into category-wise emotion embeddings.
(5) w/o LD: Use original confidence score S for constructing
adjacency matrix without label disambiguation. (6) w/o
RKD: Remove the module of knowledge distillation from
affective space. (7) w/o RKD, + LR: Replace RKD with
a linear regressor with a non-linear activation to predict
the target affective dimension, thereby constraining z and
incorporating the affective dimension.

It is noteworthy, but not surprising, that even when sentence
embeddings are extracted using state-of-the-art large lan-
guage models, their usage as emotion category labels fails
to achieve comparable performance to semantic-guided fea-
ture decoupling. This performance degradation suggests
that the effectiveness of AESL relies not only on the quality
of embeddings but also on the explicit structural alignment
provided by semantic-guided decoupling. Results show that
all the three components in AESL are critical for preventing
forgetting and improving the model performance of MLCIL.

Emotional Semantics Visualization. Emotional semantics
learning is an essential module for our approach. In Figure
6, we adopt the t-SNE (Van der Maaten & Hinton, 2008)
to visualize the emotion embeddings learned by the emo-
tional semantics learning module. It is clear to see that, the
learned embeddings maintain meaningful emotional seman-
tic topology. Specifically, in Brain27, positive emotions are
predominantly distributed in the bottom right, while neg-
ative emotions are distributed in the top left. In Audio28,
Bittersweet is just located between Sad and other positive
emotions. This visualization further demonstrates the neces-
sity of modeling label dependencies.

Augmented ERG Visualization. In Figure 7(a), we provide
the augmented ERG visulization on Audio28 dataset. We
utilize the oracle ERG, which is constructed using ground
truth label statistics of all tasks, as the upper bound. We also
compute the Pearson’s Correlation Coefficients (PCCs) to
measure the similarity between the augmented and oracle

Oracle ERG
Augmented ERG 

(AESL)
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(AESL-w/o RKD)
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Figure 7. (a) Visualization of augmented emotional relation graph
in Audio28 dataset. (b) The performance of AESL measured by
the last mAP changes as λ2 and λ3 vary.

ERG. Using the proposed method, inter- and intra-task label
relationships are reconstructed well. Besides, by incorporat-
ing RKD from the affective dimension space, the augmented
ERG is closer to the oracle ERG (r = 0.86 vs r = 0.75).

Parameter Sensitivity. Figure 7(b) gives an illustrative
example of how the performance of AESL changes as the
regulation parameters λ2 and λ3 vary on the B0-I9 and
B0-I7 protocols of three datasets (λ1 is fixed to 1). Here,
when the value of one parameter varies, the other is fixed
to a reasonable value. We find that too large value of λ2
dramatically degrades the model performance due to the
noise in affective ratings, while too small value will not
play the role of alleviating the future-missing partial label
problem. As for λ3, too large value will cause the model
to focus too much on graph reconstruction, while too small
value will not be able to learn label embeddings well, which
both lead to a decline in model performance.

5. Conclusion
In this paper, we have proposed a novel AESL framework
for multi-label class incremental emotion decoding. In de-
tail, we developed an augmented ERG generation method
with label disambiguation for handling the past-missing
partial label problem. Then, knowledge distillation from
affective dimension space was introduced for alleviating
the future-missing partial label problem. Besides, we con-
structed an emotional semantics learning module to learn
indispensable label embeddings for subsequent semantic-
specific feature extraction. Extensive experiments have il-
lustrated the effectiveness of AESL.
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A. The Algorithm of AESL

Algorithm 1 Training procedure of AESL.

Input: Training sequence
{
D1, · · · ,DB

}
. Hyperparameters σ, β, λ1, λ2, λ3. Affective dimension features{

τ 1, · · · , τB
}

.
for b = 1 : B do

while not converged do
for (xb,yb) ∼ Db do

if b = 1 then
Compute Ab directy with label matrix Yb using Eq.1.

else
Compute soft label matrix S with s = ψ(xb,Ab−1; Φb−1) and set intial label confidence matrix F0 = S.
Compute the normalizing weight matrix P̂ = PD−1. Pij is the similarity between two instances in Db.
Implement label propagating to obatin refined soft label matrix Ŝ with Eq.3.
Compute Bb directy with label matrix Yb using Eq.1.

Compute Rb and Qb with Ŝ and Yb using Eq.4 and 5, then obtain Ab =

[
Ab−1 Rb

Qb Bb

]
.

{Get augmented ERG shown in Section 3.3.}
end if
Construct (augmented) ERG Gb with initial node features Hb

0 and adjacency matrix Ab.
Implement message passing strategy using Eq.6 to obtain label semantic embeddings Eb.
{Implement label semantics learning shown in Section 3.4.}
Compute importance vectors α using a fully-connected network followed by a sigmoid function.
Compute semantic-specific features o with deep latent feature z and importance vectors α with Eq.8.
Compute the label confidence scores s using Eq.9 to obtain the prediction for emotion classes 1, ..., Cb.
{Implement semantic-guided feature decoupling to obtain semantic-specific features shown in Section 3.5.}
Compute the representation similarity matrix Mb, Mb−1 and Maff with Eq.10 and 11.
{Implement relation-based knowledge distillation with affective dimension features shonw in Section 3.6.}
Compute the final loss L with Eq.7, 12 and 13. Update AESL model by minimizing L.

end for
end while

end for

B. Details of Experiments
B.1. Details of Datasets

Brain27 is a visually evoked emotional brain activity dataset (Horikawa et al., 2020), which contains the blood-oxygen-level
dependent (BOLD) responses of five subjects, who were shown 2196 video clips while functional Magnetic Resonance
Imaging (fMRI) data were recorded. These data were collected using a 3T Siemens scanner with a multiband gradient
Echo-Planar Imaging (EPI) sequence (TR, 2000ms; TE, 43ms; flip angle, 80 deg; FOV, 192×192 mm; voxel size, 2×2×2
mm; number of slices, 76; multiband factor, 4). The fMRI data was preprocessed and averaged with each video stimulus,
which means the brain activity of one voxel is a scalar for a video stimulus.

Video27 is an emotionally evocative visual dataset (Cowen & Keltner, 2017), which had been used to collect the brain
activity in Brain27. This dataset contains 2196 videos whose durations ranged from 0.15s to 90s. Some video screenshots of
Video27 have been shown in Figure 1.

Audio28 is an emotionally evocative auditory dataset (Cowen et al., 2020), which consists of 1841 music samples without
lyrics. In these music clips, 1572 were selected from YouTube, 88 came from Howard Shore’s Lord of the Rings soundtrack,
and 181 came from Wagner’s Ring cycle. These segments of music can convey strong feelings, whose durations ranged
from 0.73s to 7.89s.
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In terms of emotion category and affective dimension ratings, in Brain27 and Video27, each instance was voted by multiple
raters across 27 emotion categories and 14 affective dimensions. In Audio28, each music clip was judged by multiple rates
across 28 emotion categories and 11 affective dimensions. Emotion category ratings range from 0 to 1 and we set threshold
0.1 for Brain27 and Video27 and 0.15 for Audio28 to construct emotion label matrix. The average number of emotion labels
for the former two datasets and Audio28 is 4.64 and 5.27, respectively. Affective dimension ratings were rated by a 9-scale
Likert scale, which are standardized before RKD in our experiments.

In the process of splitting emotion labels for incremental learning, we just follow the order of the alphabet without other
interfere. The order of Brain27 and Video27 is Admiration, Adoration, Aesthetic appreciation, Amusement, Anger, Anxiety,
Awe, Awkwardness, Boredom, Calmness, Confusion, Craving, Disgust,Empathic pain, Entrancement,Excitement, Fear,
Horror, Interest, Joy, Nostalgia, Relief, Romance, Sadness, Satisfaction, Sexual desire and Surprise. The order of Audio28 is
Amusing, Angry, Annoying, Anxious, Amazing, Beautiful, Bittersweet, Calm, Compassionate, Dreamy, Eerie, Energizing,
Entrancing, Erotic, Euphoric, Exciting, Goose bumps, Indignant, Joyful, Nauseating, Painful, Proud, Romantic, Sad, Scary,
Tender, Transcendent and Triumphant. Definitions of the 27 and 28 emotion categories are detailed in Table 6.

Affective dimensions used in Brain27 and Video27 are Approach, Arousal, Attention, Certainty, Commitment, Control,
Dominance, Effort, Fairness, Identity, Obstruction, Safety, Upswing and Valence. Affective dimensions used in Audio28 are
Arousal, Attention, Certainty, Commitment, Dominance, Enjoyment, Familiarity, Identity, Obstruction, Safety and Valence.

Table 7 shows the characteristics of the three datasets used in our experiments. Properties of each dataset are characterized
by several statistics, including the number of training instances |Dtr|, the number of test instances |Dte|, the number of
features Dim(D), the threshold for constructing label matrix Th(D), the number of possible class labels L(D), the number
of affective dimensions Aff(D), the label cardinality (average number of labels per instance) LCard(D), the label density
(label cardinality over L(D)) LDen(D), and the modality. For Brain27, we also exhibit the number of voxels V (D) before
ROI-pooling used in our experiments.

B.2. Comparing Approaches

Details of these compared methods are as follows.

EWC (Kirkpatrick et al., 2017): A Single-Label Class Incremental Learning algorithm that reduces catastrophic forgetting
by constraining important parameters uses the Fisher information matrix to compute the importance of parameters.

LWF (Lee et al., 2019): The first algorithm to apply knowledge distillation to the Single-Label Class Incremental Learning
task uses the old model as a teacher and minimizes the KL divergence between the probability distributions of the outputs of
the new and old models.

ER (Lee et al., 2019): A Single-Label Class Incremental Learning algorithm based on data replay, where the construction of
a data buffer employs a random sampling strategy.

RS (Vitter, 1985): A Single-Label Class Incremental Learning algorithm based on data replay, where the construction of a
data buffer utilizes a reservoir sampling strategy.

AGCN (Vitter, 1985): A Multi-Label Class Incremental Learning algorithm based on graph convolutional neural networks,
where the graph adjacency matrix continuously expands as the tasks progress.

PRS (Kim et al., 2020): A Multi-Label Class Incremental Learning algorithm based on data replay, which improves upon the
reservoir sampling strategy to ensure that the number of samples for each class in the data buffer is as balanced as possible.

OCDM (Liang & Li, 2022): A Multi-Label Class Incremental Learning algorithm based on data replay that defines the
construction and updating of the data buffer as an optimization problem to be solved.

KRT-R (Dong et al., 2023): A Multi-Label Class Incremental Learning algorithm based on Knowledge Restore and Transfer
(KRT) framework.

B.3. Feature Extraction

In Brain27 dataset, we extract a 2880-dimensional feature vector with ROI-pooling (see Figure 8). In Video27, visual
object features have been extracted with a pre-trained VGG19 model (Simonyan & Zisserman, 2014) for one frame and
averaged across all frames to construct 1000-dimensional features. In Audio28 dataset, we compute Mel-frequency cepstral
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Table 6. Definitions of emotion categories for Brain27, Video28, and Audio28.
Name Definition

27
em

ot
io

n
ca

te
go

ri
es

Admiration A feeling of deep respect and appreciation for someone’s qualities or achievements.
Adoration A profound sense of love, devotion, or reverence for someone or something cherished.

Aesthetic appreciation The pleasure and admiration felt when encountering beauty or artistic excellence.
Amusement A lighthearted and joyful response to something funny or entertaining.

Anger A strong emotional reaction to perceived harm, injustice, or frustration.
Anxiety A tense, uneasy feeling often associated with fear or worry about uncertain outcomes.

Awe A profound emotional response to something vast, grand, or beyond ordinary comprehension.
Awkwardness A sense of discomfort or embarrassment in socially clumsy or uncertain situations.

Boredom A state of weariness or dissatisfaction caused by a lack of interest or engagement.
Calmness A serene, peaceful state of mind free from stress or agitation.
Confusion A feeling of bewilderment or uncertainty when faced with something unclear or unexpected.
Craving An intense desire or longing for something specific, often food or experiences.
Disgust A strong feeling of aversion or revulsion, often triggered by something offensive or unpleasant.

Empathic pain An emotional resonance with another’s suffering, leading to shared feelings of distress.
Entrancement A captivating, hypnotic feeling that draws one into a deeply absorbing experience.
Excitement A heightened state of anticipation or enthusiasm about something exhilarating or enjoyable.

Fear A powerful emotion in response to perceived danger or threat, prompting a fight-or-flight reaction.
Horror An intense fear mixed with shock or revulsion, often caused by something terrifying or gruesome.
Interest A sense of curiosity and attention sparked by something engaging or thought-provoking.

Joy A profound and uplifting feeling of happiness or delight.
Nostalgia A bittersweet longing for past experiences, often accompanied by fond memories.

Relief A lightened and eased feeling after the alleviation of stress, pain, or worry.
Romance A tender and affectionate emotion linked to love and intimate connection.
Sadness A heavy, sorrowful feeling typically associated with loss, disappointment, or empathy.

Satisfaction A contented sense of fulfillment after achieving a goal or desire.
Sexual desire A deep, physical and emotional yearning for intimacy and connection.

Surprise A sudden and unexpected emotion elicited by an unforeseen event or realization.

28
em

ot
io

n
ca

te
go

ri
es

Amusing This emotion brings a light-hearted, fun feeling, often sparking smiles and laughter.
Angry A powerful emotion, usually triggered by frustration or injustice, that drives a strong sense of displeasure.

Annoying A mild irritation or frustration caused by something persistently bothersome or inconvenient.
Anxious A feeling of worry, nervousness, or unease about an uncertain outcome or future event.
Amazing A sense of wonder and admiration often evoked by something remarkable or extraordinary.
Beautiful An emotion tied to the appreciation of visual, auditory, or conceptual harmony and appeal.

Bittersweet A mixed emotion of happiness and sadness, usually arising from nostalgia or a cherished memory.
Calm A soothing, peaceful feeling of tranquility and lack of disturbance.

Compassionate A warm, empathetic response that involves caring deeply for someone else’s suffering.
Dreamy A relaxed, whimsical feeling, often associated with a sense of escapism or fantasy.

Eerie A feeling of mystery tinged with unease, often evoked by something strange or uncanny.
Energizing A rush of motivation and vitality that makes one feel alert and ready for action.
Entrancing A mesmerizing, absorbing emotion that captivates one’s full attention.

Erotic A deeply intimate, sensual feeling characterized by physical and emotional desire.
Euphoric An intense, exhilarating joy that feels almost transcendent or surreal.
Exciting A feeling of lively anticipation and enthusiasm about something anticipated or unfolding.

Goose bumps A physical reaction to intense emotions, often linked to awe, fear, or admiration.
Indignant A righteous anger or resentment, typically provoked by perceived unfair treatment.

Joyful A pure, light-hearted happiness that uplifts and brightens one’s mood.
Nauseating A strong feeling of physical discomfort, often coupled with disgust or revulsion.

Painful An intense, often distressing sensation caused by physical or emotional suffering.
Proud A positive feeling of satisfaction and fulfillment, often in recognition of an achievement.

Romantic A tender, affectionate feeling centered around love and connection.
Sad A heavy, sorrowful feeling often caused by loss, disappointment, or empathy.

Scary A strong, unsettling sense of fear triggered by a perceived threat or danger.
Tender A gentle, warm-hearted feeling of affection and care.

Transcendent An emotion that goes beyond ordinary experience, often bringing a sense of awe or enlightenment.
Triumphant A victorious, celebratory emotion after overcoming a challenge or achieving success.
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Table 7. The characteristics of the experimental datasets.

Dataset |Dtr| |Dte| V (D) Dim(D) Th(D) L(D) Aff(D) LCard(D) LDen(D) Modality
Brain27(Subject1) 1800 396 120930 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject2) 1800 396 116260 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject3) 1800 396 102941 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject4) 1800 396 118533 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject5) 1800 396 116699 2880 0.10 27 14 4.64 0.17 fMRI

Video27 1800 396 - 1000 0.10 27 11 4.64 0.17 Video
Audio28 1500 341 - 512 0.15 28 11 5.27 0.19 Audio

ROI

Figure 8. A schematic diagram of ROI pooling. Each orange small cube represents a voxel. Using the brain voxels signal directly for
voxel-wise decoding will introduce lots of noise and easily cause overfitting. Therefore, we first use the HCP360 template (Glasser et al.,
2016) to divide the whole brain into multiple brain regions (ROIs) that include 360 cortical regions defined by a parcellation provided
from the Human Connectome Project. In order to further extract the features of each ROI, we place the voxels of each ROI in a 3-D
volume according to its coordinates, then split the volume evenly into 8 sub-volumes and calculate the average brain activity of voxels in
each sub-volume as the feature of this sub-volume as illustrated in Figure 8. In other words, for each ROI we get 8-dimensional features.
Then we concatenate the features of 360 ROIs in each hemisphere to get 2880-dimensional features.

coefficients (MFCC) for each audio fragment. All MFCC fragments from the same audio are then input into a pre-trained
ResNet-18 (He et al., 2016) model and averaged across all fragments to obtain 512-dimensional features.

B.4. Hyperparameters Settings

In our experiments, the balancing parameter β is set to 0.95 in Eq.3. We set λ1 to 1 in Eq.15. Besides, λ2 is searched
in {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and λ3 is searched in {0.001, 0.01, 0.1, 1, 2, 5, 10}. The dimensionality of deep latent
representations z is set to 64 in three datasets. We train the model using the Adam optimizer with {β1, β2} = {0.9, 0.9999}.
We set weight decay to 0.005 and learning rate to 10−4 for Brain27 and Video27, and weight decay of 0 and learning rate to
10−3 for Audio28. We conducted all the experiments on one NVIDIA TITAN GPU.

C. More Comparative Results
Tables 8, 9, 10 and 11 show the results on subject 2, subject 3, subject4 and subject 5 in Brain27 dataset. Figure 9 exhibits
the comparison curves of AESL and comparing methods for these subjects in Brain27 dataset. We observe that similar
conclusions can be drawn as mentioned in Section 4.2.

D. Limitations
At the application level, in the affective HCI tasks in real-life scenarios, in addition to learning new emotion categories, we
also need to adapt to new subjects. Therefore, it is necessary to further consider the continuous learning of emotions from
different subjects, which can be regarded as domain incremental learning. At the experimental level, the impact of the order
of learning emotion categories and the number of emotion categories in each task on the experimental results needs to be
further explored.
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Table 8. Class incremental results on subject 2 of Brain27 dataset. AGCN, PRS and OCDM are MLCIL algorithms among these compared
methods.

Method
Brain27 B0-I9 Brain27 B0-I3 Brain27 B15-I3 Brain27 B15-I2

Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc
mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP

Upper-bound - 34.0 44.3 42.3 - 34.0 44.3 42.3 - 34.0 44.3 42.3 - 34.0 44.3 42.3

Finetune 34.9 8.2 18.5 24.8 31.0 5.0 14.0 21.0 25.8 5.1 14.4 20.0 23.4 3.7 13.3 18.7
EWC 34.3 7.8 18.1 25.2 31.2 5.0 13.7 21.7 26.4 5.0 13.8 20.1 24.1 3.7 13.3 19.4
LwF 38.9 11.4 28.6 29.6 37.0 19.4 37.0 25.9 31.8 15.7 32.5 24.4 29.4 15.4 32.6 21.9
ER 40.4 8.5 13.1 34.9 39.3 3.8 4.8 20.8 37.3 6.9 11.6 34.1 36.3 7.4 11.0 32.7
RS 41.0 7.6 10.8 35.9 40.4 3.7 5.9 28.9 36.4 6.2 10.3 31.4 35.8 4.3 7.8 31.0

AGCN 43.4 28.8 43.1 39.8 43.0 32.4 43.6 33.7 39.0 24.8 39.5 35.2 37.3 24.0 35.5 32.1
PRS 40.4 7.9 14.4 34.4 40.9 3.6 7.8 20.2 37.8 8.4 12.0 34.1 37.2 8.5 11.8 32.5
OCDM 40.0 8.4 12.9 33.4 40.5 4.5 8.1 28.2 36.1 5.9 9.2 30.9 34.7 5.1 8.6 29.4
AESL 45.4 29.8 43.2 41.4 45.5 32.5 44.2 35.3 40.2 25.5 40.1 36.4 39.3 24.8 36.4 35.0

Table 9. Class incremental results on subject 3 of Brain27 dataset. AGCN, PRS and OCDM are MLCIL algorithms among these compared
methods.

Method
Brain27 B0-I9 Brain27 B0-I3 Brain27 B15-I3 Brain27 B15-I2

Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc
mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP

Upper-bound - 33.6 44.2 42.0 - 33.6 44.2 42.0 - 33.6 44.2 42.0 - 33.6 44.2 42.0

Finetune 33.0 7.7 17.3 25.8 29.4 5.0 14.0 20.5 25.0 5.3 14.0 20.0 23.2 4.1 13.8 19.2
EWC 32.4 7.7 16.7 25.3 29.6 5.2 13.8 19.8 25.5 5.3 14.0 20.0 24.0 4.0 13.6 19.6
LwF 36.4 11.7 28.7 30.3 34.7 21.7 38.3 23.5 30.3 15.4 31.5 23.6 28.2 15.6 31.8 21.3
ER 37.1 7.0 10.2 33.5 36.7 2.4 2.4 30.5 34.6 5.0 8.6 31.9 35.4 6.8 10.9 32.9
RS 38.1 6.5 9.2 35.8 37.7 2.9 5.2 29.0 34.1 5.0 7.7 30.3 33.8 3.6 6.8 30.0

AGCN 40.2 27.6 42.0 38.2 40.1 32.0 42.9 32.7 37.0 27.0 37.1 33.6 34.9 24.1 36.6 30.2
PRS 38.0 7.6 12.0 34.3 38.8 3.6 6.0 29.5 35.5 5.5 7.7 32.7 36.0 4.5 7.3 33.1
OCDM 37.9 8.4 11.7 35.0 38.0 5.4 8.2 30.1 34.4 4.0 6.0 30.3 33.2 3.1 5.3 28.5
AESL 42.6 28.5 44.0 40.8 42.3 33.4 43.2 33.4 38.8 27.2 38.9 35.4 37.9 25.5 37.7 34.1

Table 10. Class incremental results on subject 4 of Brain27 dataset. AGCN, PRS and OCDM are MLCIL algorithms among these
compared methods.

Method
Brain27 B0-I9 Brain27 B0-I3 Brain27 B15-I3 Brain27 B15-I2

Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc
mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP

Upper-bound - 38.3 48.6 45.1 - 38.3 48.6 45.1 - 38.3 48.6 45.1 - 38.3 48.6 45.1

Finetune 36.0 7.9 19.0 25.2 30.9 4.9 13.7 21.1 26.4 4.6 13.4 20.3 23.9 3.7 13.2 18.1
EWC 35.0 7.9 18.5 25.3 31.7 5.1 13.8 22.0 27.2 4.8 13.7 20.4 25.1 3.7 13.2 20.1
LwF 39.6 15.1 33.9 30.8 37.5 20.5 37.5 23.1 33.3 17.2 32.8 25.2 30.9 15.8 33.5 22.7
ER 42.0 10.1 15.6 37.7 41.8 3.9 4.8 34.8 40.1 9.3 11.3 37.0 38.8 9.7 12.4 36.4
RS 42.6 9.0 14.2 38.1 43.5 4.3 7.1 34.4 38.8 7.5 10.8 34.6 37.8 5.4 10.6 33.2

AGCN 43.7 31.8 46.4 40.9 44.1 36.1 44.5 36.3 41.0 30.3 43.7 38.6 39.3 26.6 37.1 35.0
PRS 43.5 10.7 15.9 39.9 44.2 4.0 5.6 32.8 40.2 8.5 11.1 36.1 39.3 9.1 12.2 35.6
OCDM 43.4 11.4 15.1 39.8 43.0 4.9 7.8 31.7 38.2 6.0 5.9 33.4 38.4 5.2 9.4 33.4
AESL 45.7 36.4 47.3 44.0 47.1 37.2 46.4 38.7 43.4 31.3 44.4 39.9 42.2 29.0 40.4 37.7
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Table 11. Class incremental results on subject 5 of Brain27 dataset. AGCN, PRS, OCDM are MLCIL algorithm in these compared
methods.

Method
Brain27 B0-I9 Brain27 B0-I3 Brain27 B15-I3 Brain27 B15-I2

Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc Avg. Acc Last Acc
mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP mAP maF1 miF1 mAP

Upper-bound - 36.6 46.8 45.0 - 36.6 46.8 45.0 - 36.6 46.8 45.0 - 36.6 46.8 45.0

Finetune 34.7 7.3 17.8 25.4 31.1 5.4 14.3 21.7 25.4 5.2 13.9 18.9 23.4 3.9 13.2 19.2
EWC 34.1 6.7 15.6 25.1 31.0 4.9 13.5 21.9 26.3 5.0 13.7 20.3 24.3 4.0 13.5 20.2
LwF 37.6 12.2 30.3 28.7 35.5 21.0 37.9 25.8 31.2 15.8 31.7 24.6 29.4 14.3 29.0 22.4
ER 40.7 8.8 13.9 35.8 41.7 4.5 7.6 34.0 38.1 6.9 8.9 36.4 36.3 6.9 9.8 32.9
RS 41.4 7.6 11.3 36.9 41.5 4.4 7.6 31.7 37.1 5.7 8.6 33.4 37.3 5.4 9.0 33.0

AGCN 43.8 29.5 44.0 41.4 42.9 32.5 42.5 34.1 38.4 28.7 41.5 35.0 37.3 24.6 37.6 33.1
PRS 41.2 8.9 16.4 37.0 42.4 5.3 8.3 32.0 37.8 6.7 9.0 34.1 38.4 6.5 9.4 34.9
OCDM 41.1 8.3 14.0 35.5 41.3 5.4 8.0 29.7 36.8 4.4 7.9 31.5 34.8 4.6 8.0 30.1
AESL 46.0 32.9 45.8 44.1 45.5 35.3 45.6 35.4 40.4 29.5 44.5 37.5 39.9 29.3 40.8 36.2
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Figure 9. Comparison results (mAP) on three datasets used in our experiment under different protocols against compared CIL methods.
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