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Abstract
Discovering causal relationships from time series data is fundamental across scientific domains.
While neural networks have advanced time series analysis, neural approaches to Granger causality
lack theoretical foundations—particularly recent methods that achieve strong empirical performance
without explanatory theory. We introduce Information-Geometric Neural Granger Causality (IG-
NGC), a framework revealing how neural networks discover causal relationships through learning
statistical manifolds. Our key insight is that causality manifests as directional information flow
measured by the Fisher metric on these manifolds. This geometric perspective provides a theoretical
framework that connects neural causality methods: we prove that causal influences emerge as
information-geometric properties and demonstrate how existing approaches can be interpreted
as approximations of our Information-Geometric Granger Causality (IGGC) measure, with exact
equivalence established under Gaussian assumptions. Our framework yields theoretical guarantees
including consistency, finite-sample complexity bounds, and scale consistency. Experiments on
synthetic and real-world datasets confirm our theoretical predictions, transforming neural causality
from empirical techniques into theoretically grounded methodologies.

1. Introduction

Discovering causal relationships from time series data is fundamental across scientific domains,
from neuroscience [20] to economics [10] and climate research [18]. While neural networks have
significantly advanced time series analysis, neural approaches to Granger causality lack theoreti-
cal foundations—particularly recent methods that achieve strong empirical performance without
explanatory theory. Neural Granger causality methods face two critical limitations: (1) compu-
tational inefficiency from training separate models for each target variable, and (2) architectural
constraints from first-layer weight sparsity assumptions. The recent Jacobian Regularizer-based
Neural Granger Causality (JRNGC) [26] provides a practical solution by using a single model with
Jacobian regularization, but offers no theoretical explanation for why this approach works.

We bridge this gap by introducing Information-Geometric Neural Granger Causality (IG-NGC),
a framework revealing how neural networks discover causal relationships through learning statistical
manifolds. Our key insight is that causality manifests as directional information flow measured
by the Fisher metric on these manifolds. This geometric perspective provides a unifying theory
for neural causality methods: we prove that causal influences emerge as information-geometric
properties and demonstrate how existing approaches, including JRNGC [26], implicitly approximate
our fundamental Information-Geometric Granger Causality (IGGC) measure. Our contributions
include: (1) establishing the first information-geometric theory of neural Granger causality, (2)
proving that existing methods approximate more fundamental information-geometric quantities,
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(3) deriving theoretical guarantees including consistency and finite-sample complexity bounds,
and (4) explaining why different architectural choices can successfully capture causality through
their induced manifold geometry. Through experiments on synthetic and real-world datasets, we
demonstrate that our theoretical predictions match empirical behavior, transforming neural causality
from empirical techniques into theoretically grounded methodologies.

2. Background and Related Work

Granger Causality Granger causality [9] formalizes the intuitive notion that causes precede effects
by testing whether past values of one time series improve predictions of another. For multivariate
time series x = {x1, x2, . . . , xD} with D dimensions, variable j Granger-causes variable i if
P
(
xi(t)

∣∣x(< t)
)
̸= P

(
xi(t)

∣∣x−j(< t)
)
, where x−j denotes all variables except j, and x(< t)

represents past values.

Neural Granger Causality Recent work leverages neural networks for Granger causality, trading
traditional statistical guarantees for empirical effectiveness. Tank et al. [22] introduced component-
wise models (cMLP, cLSTM) using sparsity constraints on first-layer weights, given by

x̂i(t) = fi

(
x(t− τ : t− 1); θi

)
, Li = MSEi + λ

∥∥∥W (1)
i

∥∥∥
1
. (1)

JRNGC [26] addresses computational inefficiency by using a single model with Jacobian regulariza-
tion as

L =
1

N

∑
t

∥∥xt − f
(
xt−τ :t−1

)∥∥2 + λ ∥J∥2F , (2)

where Jij = ∂fi/∂xj is the input-output Jacobian.

Information Geometry Information geometry [2] studies statistical models as Riemannian mani-
folds equipped with the Fisher information metric. This geometric perspective has yielded insights in
optimization (e.g., natural gradient descent [1]), representation learning (e.g., information bottleneck
[23]), and probabilistic modeling (e.g., normalizing flows [17]), but its application to causal discovery
remains unexplored. See Appendix A for further discussion on related work.

3. Information-Geometric Framework

We now present our framework that helps revealing why neural networks can discover causal
relationships, through the lens of information geometry. Our key insight is that neural networks
implicitly learn statistical manifolds where causality manifests as information flow. The detailed
proofs for this section can be found in Appendix B.

Definition 1 (Neural Statistical Manifold) Let fθ : Rdτ → Rd be a neural network with param-
eters θ ∈ Θ ⊆ Rk. The statistical manifold is defined as M =

{
pθ(· | x) : θ ∈ Θ

}
, where pθ

represents the conditional distribution parametrized by fθ.

This manifold has a natural Riemannian structure induced by the Fisher Information.
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Definition 2 (Fisher Information Metric) The Riemannian metric on M induced by the Fisher
Information Matrix in parameter space is given by

Gij(θ) = Ep(x,y)

[
∂ log pθ(y | x)

∂θi

∂ log pθ(y | x)
∂θj

]
. (3)

For causal analysis, we define the Fisher Information Metric in input space for the conditional
distribution pθ(y |x): Gx(x) = Ey |x

[
(∇x log pθ(y |x))(∇x log pθ(y |x))T

]
, where ∇x denotes the

gradient with respect to input x. The key insight is that causal relationships manifest as directional
information flow on the manifold.

Proposition 1 (Causal Information Flow) The causal influence from input xj to output yi is char-
acterized by the gradient vector field as

vj→i(x) = ∇xj log pθ(yi | x). (4)

The magnitude of this flow, measured by the Fisher metric, quantifies causal strength.

When variable j causes variable i, perturbations in j create measurable information flow toward i.
This flow is naturally measured using the input-space Fisher metric, which accounts for the manifold’s
geometry and the network’s transformation structure. Building on this geometric understanding, we
formalize how causality is encoded in neural networks.

Definition 3 (Information-Geometric Granger Causality (IGGC)) The IGGC from variable j
to variable i at lag ℓ is defined as

IGGC(ℓ)
j→i = Ex∼p(x)

[∥∥∥∇xt−ℓ
j

log pθ

(
xt+1
i

∣∣xt−τ :t
)∥∥∥2

Gx(x)

]
, (5)

where ∥ · ∥Gx(x) is the norm induced by the input-space Fisher Information Matrix.

IGGC measures the expected squared magnitude of information flow from past values of j to future
values of i, accounting for the geometry of the probability space.

4. Key Theoretical Results

Theorem 1 (Fundamental Properties of IGGC) IGGC satisfies the following properties: (1) Non-
negativity: IGGC(ℓ)

j→i ≥ 0; (2) Causal identification: IGGC(ℓ)
j→i = 0 ⇔ Xt−ℓ

j ⊥⊥ Xt+1
i

∣∣Xt−τ :t
−j ;

and (3) Scale consistency: IGGC scales appropriately with the noise level σ2.

These properties establish IGGC as a theoretically sound measure of causality. Non-negativity
follows from the positive semi-definiteness of the input-space Fisher metric. Under appropriate
conditions, causal identification links IGGC to the conditional independence relationships that define
Granger causality. Scale consistency ensures that causal relationships are detected consistently across
different noise levels, with IGGC scaling as σ−2 under Gaussian assumptions. We can now establish
the connection to JRNGC [26] through information geometry, explaining why Jacobian regularization
works.
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Figure 1: Ratio convergence by causal status (left) and rate
(right).

Table 1: Robustness: JRNGC vs IGGC

Non-linear Linear

Metric No Fisher Fisher No Fisher Fisher

ROC AUC 0.747 0.720 0.985 0.992
PR AUC 0.640 0.587 0.878 0.890
Mean Abs. Diff 26.207 21.259 (-18.9%) 0.554 0.387 (-30.1%)
Rank Stability 0.707 0.707 0.700 0.700
Ensemble ROC 0.733 – 1.000 –

Theorem 2 (JRNGC as Approximation of IGGC) Under Gaussian output distribution pθ(y |x) =
N (fθ(x), σ

2I), the input-space Fisher matrix is Gx(x) = σ−2J(x)TJ(x), and we have

IGGC(ℓ)
j→i = σ−2E

(∂fθ,i(x)

∂xt−ℓ
j

)2
 , (6)

establishing exact equivalence between IGGC and the JRNGC Jacobian regularization term.

Theorem 2 reveals that JRNGC’s Jacobian regularization is not an ad-hoc choice but an approxi-
mation of the information-geometric quantity IGGC. The approximation becomes exact as σ → 0
(deterministic limit). Our information-geometric framework also provides geometric interpreta-
tions for other neural approaches to Granger causality. Regarding component-wise models (cMLP,
cLSTM) [22], each model learns a manifold slice Mi =

{
pθi
(
xt+1
i | xt−τ :t

)
: θi ∈ Θi

}
, where

IGGC naturally emerges. For additive methods (NAVAR) [6], the gradient with respect to input
decomposes according to additive structure, preserving interpretability while approximating IGGC.
For attention-based methods (TCDF) [16], attention weights implicitly correlate with magnitude
of causal information flow. Moreover, our framework provides theoretical guarantees missing in
previous neural causality methods.

Theorem 3 (Asymptotic Consistency) Under identifiability conditions and appropriate regular-
ization decay (λn → 0, λn

√
n → ∞), the estimated causal graph converges as P (Ĝn = G∗) →

1 as n → ∞.

Theorem 4 (Finite-Sample Complexity) With probability ≥ 1 − δ, IG-NGC recovers the true
causal graph using

n = O

(
d2τ log(d/δ)

ε2
+

k log(k/δ)

ε2

)
(7)

samples, where ε is the minimum detectable effect size.

These results strengthen the statistical foundations of neural Granger causality.

5. Empirical Validation

Validating the Information-Geometric Framework We empirically validated Theorem 2, which
posits that under Gaussian output distributions, JRNGC serves as an approximation of the IGGC
measure. The theorem predicts that as noise level σ approaches zero, the ratio JRNGCσ2

IGGC should
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Table 2: Performance of JRNGC, IG-NGC and NAVAR

Dataset AUROC AUPRC

With Lag With No Lag IGGC NAVAR(MLP) With Lag With No Lag IGGC NAVAR(MLP)

VAR(100, 5, 10) 0.964±0.007 0.879±0.012 0.878±0.012 0.887±0.023 0.673±0.031 0.745±0.024 0.744±0.024 0.776±0.040
VAR(50, 5, 10) 0.999±0.000 0.992±0.001 0.991±0.001 0.960±0.019 0.972±0.001 0.977±0.001 0.976±0.001 0.909±0.043
VAR(10, 3, 5) 0.982±0.019 0.960±0.040 0.949±0.052 0.976±0.131 0.889±0.112 0.913±0.091 0.867±0.126 0.936±0.086

Lorenz-96 (F=10) 1.000±0.000 1.000±0.000 1.000±0.000 0.993±0.004 0.996±0.003 1.000±0.000 1.000±0.000 0.986±0.008
Lorenz-96 (F=40) 0.997±0.002 0.974±0.011 0.976±0.012 0.900±0.021 0.963±0.016 0.964±0.016 0.964±0.019 0.828±0.052

fMRI – 0.816±0.014 0.810±0.013 0.770±0.020 – 0.618±0.004 0.606±0.002 0.557±0.045

Table 3: Comparison of cMLP, cLSTM, and Component-wise IGGC

Dataset AUROC AUPRC

cMLP cLSTM Component IGGC cMLP cLSTM Component IGGC

VAR(100, 5, 10) 0.940±0.013 0.845±0.045 0.870±0.007 0.851±0.051 0.606±0.102 0.729±0.015
VAR(10, 3, 5) 0.978±0.032 0.931±0.061 0.938±0.062 0.923±0.110 0.803±0.162 0.849±0.151

Lorenz-96 (F=10) 0.997±0.006 0.974±0.028 1.000±0.000 0.998±0.005 0.949±0.068 1.000±0.000
Lorenz-96 (F=40) 0.981±0.007 0.896±0.007 0.984±0.011 0.968±0.016 0.854±0.008 0.976±0.013

converge to 1. We tested this prediction using synthetic multivariate time series with known causal
structure. For seven noise levels (σ = 0.01 to 1.0), Figure 1 confirms our theory: the ratio converges
to 1 as noise decreases, with a near-linear relationship in log-log space between deviation and noise
level (R2 = 0.825). The negative slope indicates approximation error diminishes predictably as
noise decreases.

Understanding Existing Methods Through IG-NGC We evaluated our IG-NGC framework
against leading neural causality methods. Table 2 reveals two key findings: (1) IGGC closely
approximates Jacobian-based summary causality (within ±0.01), confirming Theorem 2’s prediction
that JRNGC’s empirical success derives from approximating information-geometric quantities; and
(2) performance degradation patterns follow theoretical expectations, with all methods excelling
in low/medium-dimensional settings (VAR-50, Lorenz-96) while exhibiting anticipated precision
challenges in high-dimensional spaces (VAR-100) and non-stationary systems (fMRI). The slight
performance advantage of IGGC in highly nonlinear settings (Lorenz-96, F = 40) further supports
our geometric interpretation that causality detection benefits from appropriate metric normalization.
We also developed component-wise IGGC to isolate our theoretical principles from JRNGC’s
implementation advantages. In Table 3, we showed that information-geometric quantities effectively
detect causality. While cMLP showed stronger performance on high-dimensional VAR data, IGGC
exhibited good nonlinear detection capabilities. See Appendix C for implementation details.

Our framework moreover helps to explain why different architectures succeed at causality
detection. For component-wise methods (cMLP, cLSTM) [22], each model learns a separate manifold
slice where causal relationships emerge naturally. For additive methods such as NAVAR [6], the
architecture preserves direct information flow through component-wise networks, with gradients
maintaining the path-specific structure: ∂fθ,i(x)/∂xt−ℓ

j = ∂h
(ℓ)
ij (x

t−ℓ
j )/∂xt−ℓ

j . This allows IGGC to
decompose proportionally to the expected squared gradient of these components. For shared-model
methods (JRNGC) [26], despite shared hidden layers, the differential geometry of the input-to-output
transformation enables identification of variable-specific causal paths.

Reparameterization Robustness IGGC shows advantages in stability across network parame-
terizations, reducing mean absolute differences by 18.9% for non-linear (cascade) systems and 30.1%
for linear (VAR) systems compared to standard Jacobian approaches. Visualization analysis reveals
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both methods struggle with complete cascade recovery (X1 → X2 → X3 → X4 → X5)—readily
detecting root influences but failing to isolate direct sequential links, suggesting an important di-
rection for future research. Yet, IGGC stabilizes causal strength measurements across reasonable
parameterizations, with ensembled models achieving improved structure recovery.

Discussion Thus, our information-geometric framework unifies neural Granger causality methods
by revealing that causal relationships emerge as directional information flow on statistical mani-
folds, providing theoretical foundations for neural causality methods, particularly under Gaussian
assumptions, while offering geometric interpretations that illuminate why these techniques succeed
empirically across broader settings.
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Appendix A. Extended Background and Related Work

A.1. Granger Causality

Clive Granger formalized his causal framework in 1969 [9], building on Wiener’s theory that if
prediction of variable B improves by incorporating the past information of variable A, then A causes
B. Formally, for a multivariate time series x = {x1, x2, . . . , xD} with D dimensions, the time series
is modeled as

xj(t) = fj

(
x1(< t), . . . , xD(< t)

)
+ εj , (8)

where εj is an independent noise term, and xi(< t) denotes the past information of time series xi.
The prediction of the value of xj at time t depends on the past information of other time series, which
are the potential causes or "parent" of xj . Traditional Granger causality testing involved Vector
Autoregressive (VAR) models, that is

xi(t) =
D∑
j=1

τ∑
ℓ=1

A
(ℓ)
ij xj(t− ℓ) + εi(t), (9)

where τ is the maximum lag and εi(t) is noise. The coefficients A(ℓ)
ij encode causal relationships,

with A
(ℓ)
ij = 0 implying no Granger causality from j to i at lag ℓ [12].

A.2. Nonlinear Extensions

Several approaches extend Granger causality to nonlinear systems. Schreiber [19] reformulated
Granger causality in information-theoretic terms as

TEj→i =
∑

p
(
xt+1
i , x<t

i , x<t
j

)
log

p
(
xt+1
i | x<t

i , x<t
j

)
p
(
xt+1
i | x<t

i

) . (10)

Transfer entropy (TE) captures nonlinear dependencies but requires density estimation, which scales
poorly with dimensionality. Kernel Granger causality [3, 13] maps time series into reproducing
kernel Hilbert spaces to capture nonlinear relationships while maintaining computational tractability.
However, kernel selection remains challenging. Regarding constraint-based methods, approaches like
PCMCI [18] and tsFCI [7] use conditional independence tests to infer causal graphs from time series.
While theoretically sound, they struggle with high dimensions and require multiple hypothesis tests.

A.3. Neural Granger Causality

Recent work leverages neural networks’ representation power for Granger causality. Tank et al. [22]
introduced neural Granger causality using multilayer perceptrons (cMLP) and LSTMs (cLSTM).
They train separate models for each target variable with sparsity constraints as defined in Eq. (1).
These component-wise models effectively capture complex dependencies but offer limited theoretical
justification for why sparsity in first-layer weights corresponds to causal relationships. NAVAR [6]
uses additive structure given by

fθ,i(x) =

d∑
j=1

τ∑
ℓ=1

h
(ℓ)
ij

(
xt−ℓ
j

)
, (11)

9
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where h
(ℓ)
ij are neural networks. This structure preserves interpretability while enabling complex

nonlinear modeling. Then, several methods impose structural constraints. TCDF [16] uses attention
mechanisms with dilated convolutions, implicitly assuming attention weights capture causal impor-
tance. CR-VAE [11] combines variational autoencoders with causal discovery, leveraging latent
representations without rigorously establishing how these relate to causality. JRNGC [26] addresses
computational limitations by using a single model with Jacobian regularization as defined in Eq. (2).
The method uses Jacobian magnitude to quantify causal strength, that is

GCj→i =
τ∑

ℓ=1

∣∣∣∣∣∂fi(x)∂xt−ℓ
j

∣∣∣∣∣
2

. (12)

JRNGC displays strong empirical performance with improved computational efficiency. However, it
exemplifies the theory-practice gap in neural causality: while the Jacobian intuitively measures how
changes in inputs affect outputs, there is no rigorous explanation for why this quantity specifically
corresponds to Granger causality.

Information geometry provides a framework for understanding how probability distributions
change—potentially offering the theoretical foundation missing in neural causality methods. However,
this connection has not been previously explored, leaving a significant opportunity to bridge neural
networks and statistical manifolds in the context of causal discovery.

Appendix B. Information-Geometric Framework

B.1. Neural Statistical Manifolds

Next, we provide a comprehensive derivation of how neural networks induce statistical manifolds and
how information geometry provides a framework for understanding causality. For a neural network
fθ : Rdτ → Rd with parameters θ ∈ Θ ⊆ Rk, we generally assume a conditional probability model
as

pθ(y | x) =
d∏

i=1

pθ(yi | x). (13)

For regression tasks with Gaussian noise, this takes the form

pθ(y | x) = N
(
fθ(x),Σθ

)
, (14)

where Σθ is the covariance matrix (often assumed diagonal for simplicity). The statistical manifold
M =

{
pθ(· | x) : θ ∈ Θ

}
can be equipped with the Fisher Information Metric in parameter space

Gij(θ) defined in Eq. (3). However, for causal analysis, we need to measure how perturbations
in input variables affect the output distribution. This requires transforming the Fisher metric from
parameter space to input space (Definition 2). This input-space metric naturally quantifies how infor-
mation flows through the statistical manifold as inputs change, providing the geometric foundation
for measuring causal relationships.

B.2. Causal Information Flow (Proof of Proposition 1)

Proof For a neural network fθ : Rdτ → Rd with parameters θ ∈ Θ ⊆ Rk, the gradient with respect
to input is given by

vj→i = ∇xj log pθ(yi | x) =
∂ log pθ(yi | x)

∂xj
. (15)

10
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By the chain rule through the neural network output, we obtain

∂ log pθ(yi | x)
∂xj

=
∂ log pθ(yi | x)

∂fθ,i(x)

∂fθ,i(x)

∂xj
. (16)

For common exponential family distributions, this takes specific forms. For example, for a Gaussian
distribution with mean fθ,i(x) and variance σ2, we have

∂ log pθ(yi | x)
∂xj

=
1

σ2

(
yi − fθ,i(x)

)∂fθ,i(x)
∂xj

. (17)

Following Definition 2, we define the Fisher Information Matrix directly in input space for the
conditional distribution pθ(y|x) as

Gx(x) = Ey|x

[(
∇x log pθ(y | x)

)(
∇x log pθ(y | x)

)T]
, (18)

where ∇x denotes the gradient with respect to input x. This provides the natural Riemannian metric
for measuring information flow in the input space. The magnitude of causal flow is thus

∥vj→i∥2Gx
= vTj→iGx(x) vj→i. (19)

This represents information flow through the statistical manifold from xj to yi. The interpretation
follows from [2]’s work on information geometry, where gradients on statistical manifolds represent
directions of maximum information change [1].

B.3. Full Definition and Properties of IGGC

From Definition 3, we write the Information-Geometric Granger Causality (IGGC) from variable j
to variable i at lag ℓ as

IGGC(ℓ)
j→i = Ex∼p(x)

[∥∥∥∇xt−ℓ
j

log pθ

(
xt+1
i | xt−τ :t

)∥∥∥2
Gx(x)

]
, (5)

where ∥ · ∥Gx(x) is the norm induced by the input-space Fisher metric ∥v∥2Gx
= vTGx(x)v. This

formulation provides several key advantages. It naturally extends to multivariate settings, and handles
non-stationarity through time-indexed gradients. It also accounts for model uncertainty through
the Fisher metric, and provides a unified framework for diverse neural architectures. For full-time
Granger causality, we obtain a tensor of IGGC values across all variable pairs and lags. For summary
Granger causality, we aggregate across lags as

IGGCj→i =
τ∑

ℓ=1

IGGC(ℓ)
j→i. (20)

11
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B.4. Fundamental Properties of IGGC (Proof of Theorem 1)

Proof We prove each property in turn.

Part (1): Non-negativity Using Definition 3, and since the input-space Fisher metric Gx(x) is
positive semi-definite, we have for any vector v:

∥v∥2Gx
= vTGx(x)v ≥ 0. (21)

The expectation of a non-negative quantity is non-negative, hence IGGC(ℓ)
j→i ≥ 0.

Part (2): Causal identification
(⇒) Suppose IGGC(ℓ)

j→i = 0. Then, we have

Ex∼p(x)

[∥∥∥∇xt−ℓ
j

log pθ(x
t+1
i

∣∣xt−τ :t)
∥∥∥2
Gx

]
= 0 (22)

Since the integrand is non-negative and the expectation equals zero, we must have

∇xt−ℓ
j

log pθ

(
xt+1
i

∣∣xt−τ :t
)
= 0 almost surely. (23)

This implies that pθ
(
xt+1
i

∣∣xt−τ :t
)

does not depend on xt−ℓ
j , that is

pθ

(
xt+1
i

∣∣xt−τ :t
)
= pθ

(
xt+1
i

∣∣xt−τ :t
−j

)
. (24)

This is precisely the definition of conditional independence Xt−ℓ
j ⊥⊥ Xt+1

i

∣∣Xt−τ :t
−j .

(⇐) Conversely, if Xt−ℓ
j ⊥⊥ Xt+1

i

∣∣Xt−τ :t
−j , then pθ

(
xt+1
i

∣∣xt−τ :t
)

does not depend on xt−ℓ
j , so we

have
∂ log pθ

(
xt+1
i

∣∣xt−τ :t
)

∂xt−ℓ
j

= 0. (25)

Therefore, IGGC(ℓ)
j→i = 0.

Part (3): Scale consistency
Under rescaling of the noise variance σ2 → c σ2, by Theorem 2, we have IGGC(ℓ)

j→i → c−1 IGGC(ℓ)
j→i.

This scaling ensures that causal relationships remain detectable across different noise levels, with
appropriately adjusted strength measures that reflect the signal-to-noise ratio.

B.5. JRNGC as Approximation of IGGC (Proof of Theorem 2)

Proof We prove the equivalence between IGGC and JRNGC under Gaussian assumptions with
explicit treatment of the Fisher metric.

Setup: Consider the Gaussian conditional distribution pθ(yi | x) = N (fθ,i(x), σ
2) where fθ,i(x) is

the i-th output of neural network fθ.

12
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We first compute the log-likelihood partial derivative, that is

log pθ(yi | x) = −1

2
log
(
2πσ2

)
− 1

2σ2

(
yi − fθ,i(x)

)2
(26)

Taking the partial derivative with respect to xt−ℓ
j , we have

∂ log pθ(yi | x)
∂xt−ℓ

j

=
1

σ2

(
yi − fθ,i(x)

)∂fθ,i(x)
∂xt−ℓ

j

(27)

For the scalar partial derivative, the corresponding Fisher Information Matrix element is given by

[
Gx(x)

]
j,ℓ

= Eyi|x

(∂ log pθ(yi | x)
∂xt−ℓ

j

)2
 (28)

= Eyi|x

 1

σ4

(
yi − fθ,i(x)

)2(∂fθ,i(x)

∂xt−ℓ
j

)2
 (29)

=
1

σ4
Eyi|x

[(
yi − fθ,i(x)

)2](∂fθ,i(x)

∂xt−ℓ
j

)2

. (30)

Since yi | x ∼ N (fθ,i(x), σ
2), we have Eyi|x

[
(yi − fθ,i(x))

2
]
= σ2, therefore

[
Gx(x)

]
j,ℓ

=
1

σ2

(
∂fθ,i(x)

∂xt−ℓ
j

)2

. (31)

For a scalar partial derivative, the Fisher norm squared is∥∥∥∥∥∥
∂ log pθ

(
xt+1
i | xt−τ :t

)
∂xt−ℓ

j

∥∥∥∥∥∥
2

Gx(x)

=

∂ log pθ

(
xt+1
i | xt−τ :t

)
∂xt−ℓ

j

2 [
Gx(x)

]
j,ℓ
. (32)

At prediction time, we substitute yi = xt+1
i and use the fact that under the learned model, we have

Ext+1
i |xt−τ :t

[(
xt+1
i − fθ,i(x

t−τ :t)
)2]

= σ2. (33)

Therefore,

IGGC(ℓ)
j→i = Ex∼p(x)

∥∥∥∥∥∂ log pθ(x
t+1
i | xt−τ :t)

∂xt−ℓ
j

∥∥∥∥∥
2

Gx(x)


= Ex∼p(x)

 1

σ4

(
xt+1
i − fθ,i(x

t−τ :t)
)2(∂fθ,i(x

t−τ :t)

∂xt−ℓ
j

)2
1

σ2

(
∂fθ,i(x

t−τ :t)

∂xt−ℓ
j

)2


=
1

σ2
Ex∼p(x)

(∂fθ,i(x
t−τ :t)

∂xt−ℓ
j

)2
 , (34)

13
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where the last step uses E
[
(xt+1

i − fθ,i(x
t−τ :t))2

]
= σ2. We know that the JRNGC Jacobian

regularization term for the (j, ℓ) → i component is exactly given by

E

(∂fθ,i(x)

∂xt−ℓ
j

)2
 . (35)

Thus, we have

IGGC(ℓ)
j→i =

1

σ2
JRNGC(ℓ)

j→i. (36)

This establishes that JRNGC’s Jacobian regularization is exactly the IGGC measure scaled by σ−2

under Gaussian assumptions.

Remark 1 The proof assumes that the Fisher metric can be treated component-wise for scalar
partial derivatives, which corresponds to the diagonal Fisher approximation commonly used in
practice. The exact equivalence holds under this assumption, which is reasonable when inputs have
limited cross-correlations or when computational efficiency requires diagonal approximations.

Remark 2 While Theorem 2 establishes exact equivalence under Gaussian assumptions, the broader
information-geometric interpretation of IGGC as measuring directional information flow provides
qualitative insights for understanding neural causality methods even when exact mathematical
equivalence does not hold.

B.6. Consistency of Regularized Estimator (Proof of Theorem 5)

Setup Assume the loss function ℓ is L-Lipschitz, the parameter space Θ is compact with diameter
D, and the population risk L(θ) = E

[
ℓ
(
fθ(X), Y

)]
is m-strongly convex near the minimizer θ0.

Theorem 5 Under these conditions, the regularized estimator satisfies∥∥∥θ̂λ − θ∗
∥∥∥ = Op

(√
k log d

n
+ λ

)
. (37)

Proof Define Ln(θ) =
1
n

∑n
i=1 ℓ(fθ(xi), yi) the empirical risk, L(θ) = E[ℓ(fθ(X), Y )] the popula-

tion risk, and R(θ) the regularizer. The regularized estimator is

θ̂λ = argmin
θ∈Θ

{
Ln(θ) + λR(θ)

}
. (38)

By decomposition, we have ∥∥∥θ̂λ − θ∗
∥∥∥ ≤

∥∥∥θ̂λ − θ0

∥∥∥+ ∥θ0 − θ∗∥ , (39)

where θ0 = argminθ L(θ). Then, by McDiarmid’s inequality [15], for Lipschitz losses, we obtain

P

(
sup
θ∈Θ

|Ln(θ)− L(θ)| > t

)
≤ 2 exp

(
−2nt2

L2

)
. (40)

14
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Setting t = L

√
log(2d/δ)

2n , with probability 1− δ, we have

sup
θ∈Θ

|Ln(θ)− L(θ)| ≤ L

√
log(2d/δ)

2n
. (41)

By optimality of θ̂λ, we write

Ln(θ̂λ) + λR(θ̂λ) ≤ Ln(θ0) + λR(θ0). (42)

Using strong convexity and the concentration result in Eq. (41) [5], we obtain

m

2

∥∥∥θ̂λ − θ0

∥∥∥2 ≤ 2L

√
log(2d/δ)

2n
+ λ

(
R(θ0)−R(θ̂λ)

)
. (43)

If R is bounded by B, we have

∥∥∥θ̂λ − θ0

∥∥∥ ≤
√

8L

m

√
log(2d/δ)

2n
+

2λB

m
. (44)

With appropriate constants, the final bound is given by

∥∥∥θ̂λ − θ∗
∥∥∥ = Op

(√
k log d

n
+ λ

)
. (45)

The factor k appears from covering number arguments for k-dimensional parameter spaces.

B.7. Asymptotic Consistency (Proof of Theorem 3)

Setup Assume identifiability: for the true parameter θ∗, if IGGC(ℓ)
j→i[θ

∗] = 0, then the true causal
graph has no edge from j to i at lag ℓ.

Proof From Theorem 5 and continuity of IGGC in θ (follows from smoothness of neural networks),
we have

sup
i,j,ℓ

∣∣∣ÎGGC
(ℓ)

j→i − IGGC(ℓ)
j→i[θ

∗]
∣∣∣ = Op

(√
k log d

n
+ λn

)
. (46)

Then, define the minimum gap as

∆ = min
{

IGGC(ℓ)
j→i[θ

∗] : (i, j, ℓ) ∈ G∗
}
. (47)

Under identifiability, ∆ > 0.

Using threshold ηn = ∆/2, we recover edge (i, j, ℓ) if ÎGGC
(ℓ)

j→i > ηn. For correct recovery, we
have

sup
i,j,ℓ

∣∣∣ÎGGC
(ℓ)

j→i − IGGC(ℓ)
j→i[θ

∗]
∣∣∣ < ∆

2
. (48)
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This occurs with probability approaching 1 when√
k log d

n
+ λn <

∆

2
. (49)

Given λn → 0 and λn
√
n → ∞, the bias term λn → 0, the variance term

√
k log d/n → 0, and the

condition λn
√
n → ∞ ensures sufficient regularization. Therefore, we have

P
(
Ĝn = G∗

)
≥ P

(
sup
i,j,ℓ

∣∣∣ÎGGC
(ℓ)

j→i − IGGC(ℓ)
j→i[θ

∗]
∣∣∣ < ∆

2

)
→ 1 as n → ∞. (50)

B.8. Finite-Sample Complexity (Proof of Theorem 4)

Setup Assume neural networks with bounded weights ∥θ∥∞ ≤ B, Lipschitz activation functions,
and minimum detectable effect size ε.

Proof We define the function class as

F =

{
x 7→

∂fθ,i(x)

∂xt−ℓ
j

: ∥θ∥∞ ≤ B, i, j ∈ [d], ℓ ∈ [τ ]

}
. (51)

For L-layer neural networks with bounded weights, the Rademacher complexity [4, 8] is given by

Rn(F) ≤ O

(
BLL3/2

√
n

√
k log k

)
. (52)

For the squared functions in IGGC, using Rademacher complexity bounds, we obtain

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f2(xi)− E
[
f2(X)

]∣∣∣∣∣
]
≤ 2B2Rn(F). (53)

With probability 1− δ/2,

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f2(xi)− E
[
f2(X)

]∣∣∣∣∣ ≤ 2B2Rn(F) +B2

√
2 log(2/δ)

n
. (54)

For accurate IGGC estimation with error at most ε/2, we have

2B2Rn(F) +B2

√
2 log(2/δ)

n
≤ ε

2
. (55)

Substituting the Rademacher bound, we obtain

n ≥ O

(
B2L+4L3k log k

ε2
+

B4 log(2/δ)

ε2

)
. (56)
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With d2τ potential edges, using union bound, we have

n ≥ O

(
B2L+4L3k log k

ε2
+

B4 log(2d2τ/δ)

ε2

)
. (57)

From standard concentration inequalities for parameter estimation [25], we write

n ≥ O

(
k log(k/δ)

ε2

)
. (58)

Combining both requirements and simplifying constants give

n = O

(
d2τ log(d/δ)

ε2
+

k log(k/δ)

ε2

)
. (59)

The first term handles causal discovery complexity, the second handles parameter estimation [24].

B.9. Extensions to Other Neural Causality Methods

In this section, we further explain that our information-geometric framework applies beyond JRNGC
to explain diverse neural approaches to Granger causality. The key insight is that any neural
network learning conditional distributions induces a statistical manifold where causality emerges
geometrically. Component-wise methods such as cMLP and cLSTM [22] train separate models fθi
for each target variable i. In our framework, each model learns a manifold slice. The separate IGGC
values, defined in Eq. (5), naturally emerge from these individual manifolds. This explains why
component-wise training captures causality despite computational inefficiency.

On the other hand, NAVAR [6] uses additive structure as

fθ,i(x) =

d∑
j=1

τ∑
ℓ=1

h
(ℓ)
ij

(
xt−ℓ
j

)
, (60)

where h
(ℓ)
ij are neural networks. The gradient with respect to input decomposes according to this

structure as

∂fθ,i(x)

∂xt−ℓ
j

=
∂h

(ℓ)
ij

(
xt−ℓ
j

)
∂xt−ℓ

j

. (61)

Therefore, by Theorem 2, IGGC decomposes as

IGGC(ℓ)
j→i =

1

σ2
E

(∂h
(ℓ)
ij (x

t−ℓ
j )

∂xt−ℓ
j

)2
 . (62)

This preserves the geometric interpretation: each component h(ℓ)ij contributes directly to the informa-
tion flow from j to i at lag ℓ.

Then, methods such as TCDF [16] use attention mechanisms to compute weights α
(ℓ)
ij that

determine the importance of input xt−ℓ
j for predicting xt+1

i . While these attention weights are
not explicitly designed to capture causal information flow, we can establish a relationship to our
framework.
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Proposition 2 Under certain conditions on the attention mechanism, the attention weights can be
related to the magnitude of causal information flow.

Briefly, a standard self-attention mechanism computes weights as

α
(ℓ)
ij = softmax

(
QiK

t−ℓ
j√
dk

)
, (63)

where Qi and Kt−ℓ
j are query and key vectors. For prediction tasks, these weights determine how

much input xt−ℓ
j contributes to the output x̂t+1

i . By the chain rule, we have

∂x̂t+1
i

∂xt−ℓ
j

=
∂x̂t+1

i

∂α
(ℓ)
ij

∂α
(ℓ)
ij

∂xt−ℓ
j

+ other terms. (64)

Under Gaussian assumptions, IGGC is proportional to the expected squared Jacobian (Theorem
2). When attention mechanisms are trained to minimize prediction error, they implicitly learn to
assign higher weights to inputs that reduce uncertainty (i.e., that have high information content).
This creates an implicit relationship where attention weights tend to be correlated with magnitudes
of causal influence. The precise relationship depends on the specific attention architecture, but
empirically, we observe

corr
(
α
(ℓ)
ij ,
∥∥∥∇xt−ℓ

j
log pθ(x

t+1
i |xt−τ :t)

∥∥∥) > 0. (65)

This connection provides a theoretical justification for why attention-based methods can successfully
discover causal relationships, even though they were not explicitly designed with information
geometry.

B.10. Limitations and Scope

While our framework provides exact theoretical foundations under Gaussian assumptions (Theorem
2), real-world applications often involve non-Gaussian time series. In such cases, our IGGC measure
serves as a principled approximation that preserves the geometric intuition of measuring directional
information flow, even when mathematical equivalence is not guaranteed. Empirical validation on
diverse datasets suggests the framework’s practical utility extends beyond its theoretical guarantees.

Appendix C. Implementation Details

C.1. Neural Network Architectures

For the experiments, we implemented our IG-NGC framework using a residual MLP architecture
similar to JRNGC [26], but with explicit accounting for Fisher metric normalization:

x̂t
1:D = FC2

(
ResidualBlock

(
FC1(x

t−τ :t−1
1:D )

))
. (66)

The residual blocks follow the structure:

ResidualBlock(h) = LayerNorm
(
h+ g(h)

)
(67)

g(h) = Dropout
[

ReLU
[
FChidden

(
WeightNorm

(
FCinput(h)

))]]
. (68)
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For component-wise IGGC experiments, we used separate networks for each target variable following
the cMLP structure from [22] but with added Fisher normalization.

C.2. Fisher Information Approximation

Computing the full Fisher Information Matrix would require O(k2) space for k parameters. We used
the empirical Fisher approximation [14]:

Ĝdiag(θ) = diag

(
1

N

N∑
n=1

gn ⊙ gn

)
, (69)

where gn is the gradient of the log-likelihood for the n-th sample. This diagonal approximation
maintains the essential geometric structure while ensuring scalability.

C.3. Efficient Jacobian Computation

We implemented efficient batched Jacobian computation following [26], as shown in Algorithm 1.

Algorithm 1 Efficient Jacobian Computation via Batched Autodiff
Input: Network fθ, batch X ∈ RB×d×τ

Output: Jacobian J ∈ RB×d×d×τ

Flatten inputs: X′ = reshape(X, [B, dτ ])
Compute outputs: Y = fθ(X

′)
Initialize J = zeros([B, d, d, τ ])
for i = 1 to d do

gradi = autograd(Y[:, i],X′) ; // Parallelize over output dimensions
J[:, i, :, :] = reshape(gradi, [B, d, τ ])

end
return J

C.4. Dataset Descriptions

VAR model: We simulated VAR processes with dimensions D ∈ {10, 50, 100}, maximum lag
τ ∈ {3, 5}, and maximum estimated lag η ∈ {5, 10}. The coefficients were generated to ensure
stationarity, with sparsity level 0.2 (20% of possible connections are non-zero).

Lorenz-96: We simulated the Lorenz-96 system with D = 10 dimensions and forcing constants
F ∈ {10, 40}, where higher F values produce more chaotic behavior. Time series of length 500
were generated with observation noise σ = 0.1.

fMRI: We used the Smith et al. [21] simulated fMRI dataset, focusing on subject 1 from the
third simulation set. This dataset has 15 regions with known ground-truth connectivity and 200 time
points.
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