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Abstract

Inferring contextually-relevant and diverse
commonsense to understand narratives remains
challenging for knowledge models. In this
work, we develop a series of knowledge mod-
els, DIFFUCOMET, that leverage diffusion
to learn to reconstruct the implicit semantic
connections between narrative contexts and
relevant commonsense knowledge. Across
multiple diffusion steps, our method progres-
sively refines a representation of commonsense
facts that is anchored to a narrative, produc-
ing contextually-relevant and diverse common-
sense inferences for an input context. To
evaluate DIFFUCOMET, we introduce new
metrics for commonsense inference that more
closely measure knowledge diversity and con-
textual relevance. Our results on two different
benchmarks, ComFact and WebNLG+, show
that knowledge generated by DIFFUCOMET
achieves a better trade-off between common-
sense diversity, contextual relevance and align-
ment to known gold references, compared to
baseline knowledge models.1

1 Introduction

Identifying the commonsense inferences that un-
derlie narratives, such as stories or dialogues (Guan
et al., 2019; Zhou et al., 2022), is crucial to under-
standing those same narratives. For example, to
understand why “Hank ... got the shopping bags”
in the context in Figure 1, a model would need
to infer that (1) Hank was not finished wrapping
gifts, and so (2) would need to buy more wrapping
paper. However, comprehensively inferring these
diverse, yet implicit, commonsense inferences that
are relevant to a context remains a challenging task.

Recent methods for identifying contextually-
relevant commonsense inferences (Bosselut et al.,

†Corresponding author.
1We release our code to the community at https://

github.com/Silin159/DiffuCOMET
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Figure 1: Overview of our diffusion-based contextual
commonsense knowledge generation.

2021; Tu et al., 2022; Peng et al., 2022) use knowl-
edge models (Bosselut et al., 2019; West et al.,
2022) to generate commonsense facts. While
knowledge models have been less brittle than pre-
vious retrieval-based methods for commonsense
inference, they have two major shortcomings. First,
they are trained to verbalize tuples from general
commonsense knowledge graphs (Sap et al., 2019;
Hwang et al., 2021), leading them to produce valid,
but often contextually-irrelevant, commonsense in-
ferences when applied out-of-the-box to real nar-
ratives. Second, because they are trained using au-
toregressive training objectives, they subsequently
decode high-likelihood, non-diverse sequences that
only identify limited collections of commonsense
inferences relevant to an input context.

In this work, we address these challenges
of contextual commonsense knowledge genera-
tion by developing Diffusion (Ho et al., 2020)
COMmonsEnse Transformer (Bosselut et al.,
2019) models. DIFFUCOMET models (shown in
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Figure 1) uses diffusion-based decoding to gener-
ate relevant knowledge embeddings that are con-
strained to the narrative context. Over multiple it-
erations of constrained diffusion, our models refine
a latent representation of the semantic connections
between a context and its relevant facts, ensuring
that it generates commonsense knowledge that is
more contextually relevant to the narrative. At the
same time, by jointly refining multiple fact embed-
dings during diffusion, DIFFUCOMET also gener-
ates more diverse inferences than comparable-size
autoregressive knowledge models.

We evaluate DIFFUCOMET models using tra-
ditional NLG metrics (e.g., BLEU; Papineni et al.,
2002) commonly used for evaluating knowledge
models. However, these metrics focus on surface
form matching to gold references, and fall short
of measuring the diversity of commonsense infer-
ences and their semantic relevance to real narrative
contexts. Our second contribution is a novel set
of metrics that assess the diversity and contextual
relevance of knowledge generated by knowledge
models. Using both the traditional evaluation met-
rics and our new suite, we evaluate our models on
a commonsense inference linking benchmark (Gao
et al., 2022a) that covers both social and physical
knowledge, and a second knowledge generation
benchmark that involves extracting RDF triplets
from language, WebNLG+ (Ferreira et al., 2020).

Our result show that DIFFUCOMET models
generate knowledge that achieves a better balance
of diversity and contextual relevance compared to
other knowledge models. DIFFUCOMET models
also more robustly generalize to generate knowl-
edge for out-of-distribution narratives, and are bet-
ter at producing novel knowledge tuples that are not
in their initial training set. Finally, on our second
benchmark, WebNLG+, we verify that our diffu-
sion modeling method also generalizes well to a
completely new factual knowledge generation task
beyond the commonsense domain.

2 Background: Diffusion Models

Diffusion models learn to construct synthetic data
from random noise. They use a forward process to
gradually corrupt real data samples with additive
noise, and learn a reverse process to recover (or
de-noise) the corrupted data samples. Through
the de-noising of corrupted data, diffusion models
learn to map from a random noise distribution to
their target data distribution, which grounds their

synthetic data generation.
In this paper, we adopt the DDPM2 (Ho et al.,

2020) formulation of the forward and reverse diffu-
sion processes. Specifically, based on a sample z0
from a continuous input data distribution q(z0), the
forward process constructs noisy sample zt over a
sequence of time steps t ∈ {1, 2, ..., T}. In DDPM,
zt is sampled from a Gaussian distribution condi-
tioned on the previous sample zt−1, given by:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI) (1)

where βt is a noise schedule hyperparameter
unique to each diffusion step.

In the reverse process, diffusion models learn an
inverse distribution q(zt−1|zt) to de-noise samples
created by the forward process. To more precisely
couple the intermediate states of the reverse process
with the final de-noised sample z0, Diffusion-LM
(Li et al., 2022) reformulates the task of predicting
zt−1 as directly predicting z0 (based on zt), and
uses a mean-squared error training loss on the z0
prediction at each time step3:

Lz0-mse =
T∑
t=1

E∥z0 − fθ(zt, t)∥2 (2)

where fθ(zt, t) = ẑt−1
0 denotes the model’s learned

prediction of z0 at the reverse stage of step t to t−1.
To formulate ẑt−1

0 as a refinement of the former
reverse stage’s output ẑt0, Bit-Diffusion (Chen et al.,
2022) improves the model function of predicting
z0 with self-conditioning, i.e., ẑt−1

0 = fθ(ẑ
t
0, zt, t).

At inference time, the noisy sample at step t is
predicted from ẑt0 via the Eq. (1) forward process,
denoted as ẑt to replace the unknown gold input
zt, while the initial input zT is pure Gaussian noise
sampled from N (0, I).

3 Contextual Knowledge Diffusion

In this section, we first introduce the task of contex-
tual commonsense knowledge generation, and then
propose DIFFUCOMET, our diffusion approach
for this task. The overview of our method is pre-
sented in Figure 1.

Task Description Given a narrative sample S
as context, e.g., a story snippet or a dialogue, the
model needs to generate commonsense inferences

2Denoising Diffusion Probabilistic Models
3We include more detailed formulation of the reverse dif-

fusion training in Appendix A.
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Figure 2: Knowledge diffusion based on facts or enti-
ties. Dashed arrows denote the forward process used for
constructing gold references at the training phase. Solid
arrows denote the reverse process used for generating
knowledge with attention to the narrative context.

as a set facts K = {k1, ..., kn, ..., kN}, which are
relevant for understanding the situation described
in the context. Each fact kn = (hn, rn, an) is repre-
sented as a triple containing a head entity hn, a tail
(attribute) entity an, and a relation rn connecting
them, e.g., (wrapping paper, used for, wrap gifts),
as shown in Figure 1. We denote the set of unique
head entities, relations and tail entities in K as H,
R and A, respectively.

Contextualization We ground knowledge dif-
fusion on the given context S by using encoder-
decoder cross attention, inspired by SeqDiffuSeq
(Yuan et al., 2022). In particular, we use a BART
(Lewis et al., 2020) encoder fθs to learn the context
encoding that represents S as hidden state zS :

zS = fθs(S) (3)

Then, a BART decoder fθz , serving as the diffu-
sion module, learns to predict the de-noised data
sample z0. Given the context hidden state zS (via
cross-attention to the encoder fθs), fθz makes a
prediction of z0 at time step t-1 (i.e., ẑt−1

0 ) based
on its former prediction ẑt0 and time step t’s noisy
sample zt:

ẑt−1
0 = fθz(ẑ

t
0, zt, t|zS) (4)

Unlike traditional transformer decoders (Vaswani
et al., 2017), the diffusion module fθz applies a
bi-directional self-attention to ẑt0 and zt, since all
positions of ẑt−1

0 are decoded simultaneously, i.e.,
in non-autoregressive manner.4

Discrete Knowledge Diffusion We consider two
formulations for representing discrete knowledge
in continuous embedding spaces for diffusion: DIF-
FUCOMET-Fact, where we learn to reconstruct
continuous representations of facts kn using diffu-
sion, and DIFFUCOMET-Entity, where we use
separate diffusion processes to reconstruct head
hn and tail an representations and then predict the
relation between them to complete the fact. We
highlight these differences in Figure 2.

For diffusion on the fact-level embedding space
(DIFFUCOMET-Fact), we first pre-train a BART
encoder fθe to produce an embedding en of each
fact kn in the knowledge set K (with embedding
size d same as the hidden state size of BART):

en = fθe(kn) ∈ Rd (5)

where we input the concatenation of each fact’s
head, relation and tail tokens to the encoder fθe ,
and take the output hidden state of a start token <s>
as the embedding of the fact. The initial input z0 of
the forward diffusion process is then sampled from
a Gaussian centered on the concatenation of all
fact embeddings e = [e1; e2; ...; e|K|] ∈ Rd×|K|,
formulated as qe(z0|e) = N (z0; e, β0I).

In the reverse process, the diffusion module fθz
is trained to generate the final output ẑ00 (using
time step 1’s input z1 and ẑ10) as its predicted fact
embeddings ê, i.e., ê = ẑ00 = fθz(ẑ

1
0, z1, 1|zS).

Finally, we pre-train another BART decoder fθg to
generate the synthetic fact k̂n with conditioned on
the diffusion module’s predicted n-th embedding
ên = ê[:][n], (n = 1, 2, ..., |K|)5:

k̂n = fθg(ên) (6)

For diffusion on the entity-level embedding space
(DIFFUCOMET-Entity), we use a pipeline to
generate head entities, tail entities and their rela-
tions. First, to generate head entities, we use a sim-
ilar process as in DIFFUCOMET-Fact, i.e., pre-
train a BART encoder to produce a gold embedding

4More implementation details of the diffusion module fθz
are presented in Appendix B.1.

5At inference time, the maximum value of n (number
of generated facts) can be arbitrary depending on the user’s
choice. In Appendix B.2, we introduce how we control the
number of facts that our models generate for each context.



of each unique head entity hi ∈ H (for training the
diffusion module), and then pre-train a BART de-
coder to generate synthetic head entities ĥi from
the diffusion module’s predicted embeddings. Each
predicted head entity ĥi is then appended to the
context (i.e., S in Eq. 3), expanding the context to
Si = [S, ĥi]. A second diffusion module predicts
embeddings of synthetic tail entities âj related to
Si (trained using gold embeddings of tail entities
aj ∈ A that possess relations rij ∈ R to the gold
head hi). A final BART model predicts the relation
r̂ij between each pair of generated head and tail
entities, grounded on the context.

Embedding Module Training We pretrain the
embedding modules (fθe , fθg ), which focus on
modeling generic knowledge representations in-
dependent to the context, before the diffusion mod-
ules (fθs , fθz ), which learn the specific mapping
from the context to its relevant knowledge. When
training the diffusion modules, we freeze the pre-
trained embedding modules.

To pretrain the fact (or entity) embedding mod-
ules, we minimize the decoder’s negative log-
likelihood of re-constructing facts k (or entity h
or a) in the full set of knowledge Kfull involved in
the whole narrative dataset (or domain), based on
its embedding given by encoder fθe :

Lθe,θg = − log pθg(k|fθe(k)) (7)

Diffusion Module Training We optimize a dual
loss to train the diffusion modules. First, we con-
sider the mean-square error loss of the diffusion
module’s de-noised sample prediction ẑt0 at each
time step t, compared to the reference sample z0
(for t > 0) and gold embeddings e (for t = 0):

Lmse
θs,θz = E∥e− ẑ00∥2 +

T−1∑
t=1

E∥z0 − ẑt0∥2 (8)

We also use an anchor loss (Gao et al., 2022b) to
supervise the final fact (or entity) generation. For
each time step t, we minimize the negative log-
likelihood of the embedding module decoder (with
frozen parameters θg) generating each fact kn in
knowledge set K, based on the diffusion module’s
predicted de-noised sample ẑt0:

Lgen
θs,θz

=
T−1∑
t=0

|K|∑
n=1

− log pθg(kn|ẑt0[:][n]) (9)

where ẑt0[:][n] is the predicted de-noised represen-
tation of kn. The final loss is Lθs,θz = Lmse

θs,θz
+

γLgen
θs,θz

, where γ is a tunable hyperparameter.

Inference At inference time, the reverse diffu-
sion process is initialized with noise sampled from
the Gaussian distribution N (0, I), while the em-
bedding module encoder fθe , which provides gold
diffusion references for training, is not used.

4 Evaluation

Prior work in commonsense knowledge generation
(Hwang et al., 2021; Da et al., 2021) evaluated
knowledge models using traditional NLG metrics
(e.g., BLEU; Papineni et al., 2002) in controlled
studies with KGs, where the inputs to the models
were head entities and relations and the knowl-
edge model produced tail attributes. In practice,
however, knowledge models are used to generate
implicit commonsense inferences for natural lan-
guage contexts (Ismayilzada and Bosselut, 2023),
requiring generated inferences to be relevant to a
more complex input than a basic KG head entity,
and necessitating diverse generated inferences that
comprehensively augment the context. However,
traditional NLG metrics fall short of measuring
these important dimensions because they measure
surface form overlap between model outputs and
references, which rewards generating facts with
similar or duplicated semantics, limiting diversity.

Motivated by these shortcomings, we propose
novel evaluation metrics that assess the diversity
and contextual relevance of generated knowledge.
First, to eliminate the effect of knowledge repe-
tition in generations, we cluster similar facts and
treat each fact cluster (instead of each single fact)
as a unit piece of knowledge. In particular, we
use the DBSCAN (Ester et al., 1996) algorithm to
group gold facts K = {k1, k2, ..., kN} and gen-
erated facts K̂ = {k̂1, k̂2, ..., k̂N̂} into clusters
C = {c1, c2, ..., cM} and Ĉ = {ĉ1, ĉ2, ..., ĉM̂}, re-
spectively. We test two methods for measuring
the similarity of facts for clustering: word-level
edit distance (Levenshtein et al., 1966), which mea-
sures the difference of two facts’ surface-form to-
kens, and Euclidean distance of Sentence-BERT
(Reimers and Gurevych, 2019) embeddings, which
measures the semantic difference of two facts.
Based on these clusters, we develop three metrics
to measure the diversity of generated facts, their
contextual relevance, and their alignment to gold
references, as shown in Figure 3.

Diversity. To measure the diversity of generated
facts (i.e., amount of distinctive knowledge being
generated), we count the number of fact clusters
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Figure 3: Illustration of clustering-based evaluation metrics for contextual commonsense knowledge generation.

(# Clusters), i.e., M̂ (or M for gold references).
We also report the number of facts (# Facts), i.e., N̂
(or N for gold references), to compare the number
of fact clusters to the number of generated facts
produced by the models.

Relevance. We measure the relevance of the fact
clusters to the narrative context using a fact linker6

trained on the ComFact dataset (Gao et al., 2022a)
that scores the relevance of each fact k̂n to the
context S, denoted as rel(k̂n,S) ∈ [0, 1]. The
relevance score of a fact cluster ĉm is defined
as the average relevance score of its facts, i.e.,∑

k̂n∈ĉm rel(k̂n,S)/|ĉm|. Finally, we measure the
average relevance over all fact clusters in Ĉ:

rel(Ĉ,S) = 1

M̂

∑
ĉm∈Ĉ

1

|ĉm|
∑

k̂n∈ĉm

rel(k̂n,S)

(10)
We note that Relevance can be viewed as a pre-
cision measure for generated facts, which tends
to decrease as more facts are generated because
irrelevant facts are more likely to be generated.

Alignment measures the average similarity of
generated facts to gold fact clusters. Specifically,
we define a function sim(k̂i, kj) ∈ [0, 1] to mea-
sure the pairwise similarity between a generated
fact and a gold reference (using similar distance
functions to define clusters above7). Using this
function, we measure the maximum pairwise simi-
larity of generated facts to references in each gold
cluster cm∈ C, which serves as the alignment score
to the gold cluster. Finally, we average the align-
ment scores of generated facts to all gold clusters:

sim(K̂, C) = 1

M

∑
cm∈C

max
k̂i∈K̂,
kj∈cm

sim(k̂i, kj) (11)

6Fact linking models predict the relevance of knowledge
tuples to textual passages (Gao et al., 2022a)

7Further details on exact definitions are in Appendix C.1.

We note that Alignment can be viewed as the gener-
ated facts’ recall of gold fact clusters, which tends
to increase as more facts are generated because
more facts will be aligned to gold clusters. Given
this trade-off between Relevance and Alignment,
we also present the harmonic mean of Relevance
and Alignment as an overall evaluation of the two
dimensions, denoted as RA-F1.

5 Experimental Settings

Datasets First, we evaluate our approach on the
ComFact (Gao et al., 2022a) benchmark, where
models need to generate ATOMIC20

20 (Hwang et al.,
2021) social commonsense facts that are relevant
to narrative contexts sampled from four diverse cor-
pora: PERSONA-CHAT (Zhang et al., 2018), Mu-
Tual (Cui et al., 2020), ROCStories (Mostafazadeh
et al., 2016) and CMU Movie Summary (Bamman
et al., 2013). We only use training data from the
ROCStories portion of ComFact, to enable the
evaluation of zero-shot generalization on the other
three partitions of the dataset. Our fact embed-
ding module is pretrained on the full ATOMIC20

20

knowledge base, which contains ∼ 972K common-
sense facts after preprocessing.8 We also evaluate
our approach in a conceptually different setting,
the WebNLG+ 2020 (Ferreira et al., 2020) dataset,
which consists of RDF (Ora, 1999) facts sampled
from the DBpedia (Lehmann et al., 2015) knowl-
edge base, with corresponding natural language
texts verbalizations. The task is to generate the
sampled RDF facts given their verbalizations. We
use ∼13k facts from the training data to pretrain
the fact embedding module.

Baselines We train DIFFUCOMET using BART-
base and BART-large as pretrained models, and
compare with three baselines developed on the
same backbones: a) a Greedy baseline that is

8More data preprocessing details are in Appendix D.



Model # Facts # Clusters Relevance Alignment RA-F1 BLEU METEOR ROUGE-L
Greedy-COMET 1.96 1.19 61.42 50.64 55.51 18.01 52.32 54.96
Sampling-COMET 15.00 8.39 56.19 77.97 65.31 12.69 44.43 45.58
Beam-BART 15.00 4.60 64.35 71.35 67.67 13.11 47.70 46.35
Beam-COMET 15.00 5.09 65.03 71.64 68.18 16.97 47.39 47.19
Grapher 5.08 2.60 68.29 40.58 50.91 1.40 23.96 27.21

DIFFUCOMET-Fact 12.88 5.24 65.64 71.65 68.51 15.98 50.06 51.44
DIFFUCOMET-Entity 12.89 5.67 66.39 74.38 70.16 17.01 47.61 48.40

Gold 10.55 5.64 80.90 - - - - -

Table 1: Evaluation results on the ROCStories portion of ComFact. Both DIFFUCOMET models presented are
developed based on BART-large. Models with suffix “-COMET” and “-BART” are fine-tuned on COMET-BART
and BART-large. Presented results of our proposed metrics are based on fact clustering w.r.t. embedding Euclidean
distance. Best and second-best results (excluding Gold references) are bolded and underlined, respectively.

trained to autoregressively generate the concate-
nation of all relevant facts,9 b) a Sampling base-
line that uses nucleus sampling (Holtzman et al.,
2019) to generate multiple individual facts in par-
allel, and c) a Diverse Beam search baseline that
uses diverse beam search to generate multiple in-
ferences in parallel. We also compare our models
trained using BART-large to baselines developed
on models of similar scale: d) the aforementioned
greedy decoding, sampling and beam search base-
lines trained from COMET-BART (Hwang et al.,
2021), a BART-large model further pre-trained on
ATOMIC20

20 for commonsense knowledge comple-
tion, and e) Grapher (Melnyk et al., 2022), which
trains a T5-large (Raffel et al., 2020) model to gen-
erate entities (nodes) related to the context, fol-
lowed by a MLP classifier to predict the relations
(edges) between entities.

Metrics We evaluate these methods on our
clustering-based metrics described in Section 4. As
the clustering algorithm (i.e., DBSCAN) used in
our metrics has an adjustable clustering granularity
controlled by a distance threshold, we consider a
range of distance thresholds and take the average
of evaluation results across all thresholds in the
range, allowing us to avoid biasing our metrics to
a specific distance threshold.10 For ComFact, we
also test on the metrics from Hwang et al., 2021 for
evaluating commonsense knowledge generation, in-
cluding BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005) and ROUGE-L (Lin,
2004). For evaluation on WebNLG+ 2020, we
also report the official metrics for this dataset’s
challenge (Ferreira et al., 2020), which construct

9Facts are concatenated by a special token <fsep>.
10We include more details of our clustering threshold selec-

tion in Appendix C.2.

optimal pairings between predicted facts and gold
references, and then compute precision, recall, and
F1 scores based on the surface-form matching of
paired facts. We denote these WebNLG metrics as
Web-Prec., Web-Rec. and Web-F1.11

6 Results and Analysis

Table 1 shows evaluation results on the ROCSto-
ries portion of the ComFact benchmark for our
DIFFUCOMET models developed based on BART-
large.12 On our new cluster-based metrics, DIFFU-
COMET models demonstrate a better balance be-
tween diversity and accuracy in contextual knowl-
edge generation. Specifically, DIFFUCOMET
models achieve Relevance and Alignment scores
that are both comparable to the best baseline re-
sults, contributing to their higher overall RA-F1
measures, while also producing a larger number
of distinct knowledge clusters. By contrast, the
Greedy, Sampling and Grapher baselines signifi-
cantly sacrifice one or two dimensions of diversity
and quality w.r.t. # Clusters, Relevance and Align-
ment. Beam baselines consistently underperform
DIFFUCOMET on cluster metrics.

For evaluation on the traditional NLG metrics,
we find that DIFFUCOMET models score higher
overall than most baseline models on metrics that
check the alignment with gold references, i.e.,
BLEU, METEOR and ROUGE-L, except for the
Greedy decoding baseline, whose higher scores
are artificially high because it generates very lit-
tle knowledge, i.e., only ∼2 facts per context. We
also include further comparisons of models with

11More details of WebNLG metrics are in Appendix C.3.
12Presented results of our metrics are based on fact clus-

tering w.r.t. embedding Euclidean distance. Results based on
word-level edit distance are included in Appendix F.1, and
promote the same conclusions.



Model Validity Relevance

Sampling-COMET 49.45 30.20
Beam-COMET 74.80 42.81

DIFFUCOMET-Fact 70.00 48.27
DIFFUCOMET-Entity 74.15 54.18

Gold 94.79 82.04

Table 2: Human evaluation results.

Model # Novel Facts # Novel Clusters

Sampling-COMET 0.26 0.19
Beam-COMET 0.27 0.17

DIFFUCOMET-Fact 0.30 0.20
DIFFUCOMET-Entity 0.30 0.24

Table 3: Novelty of generated knowledge.

BART-base backbones in Appendix F.1, where our
models outperform baselines by a larger gap, i.e.,
∼15% absolute RA-F1 improvement on average.

We also test DIFFUCOMET’s ability to gen-
eralize to out-of-domain contexts using the other
portions of ComFact with contexts sampled from
PersonaChat, MuTual and MovieSummaries. We
report generalization results to the above three por-
tions in Appendix Tables 8-13, and observe similar
results where DIFFUCOMET-Entity outperforms
baselines by ∼5% RA-F1 and produces ∼20%
more knowledge clusters.

The results of our automatic evaluation are also
supported by our human evaluation. We hire Ama-
zon Mechanical Turk workers13 to evaluate the
validity and contextual relevance of models’ gen-
erated knowledge on the ROCStories portion of
ComFact. Specifically, given a narrative context
and a list of commonsense facts that a model gen-
erates about the context, we ask three workers to
independently judge whether each fact is valid and
relevant14 to the context, and take their majority
vote as the assessment. In Table 2, we see that DIF-
FUCOMET models produce valid facts at about
the same rate as the best baseline, but produce facts
that are far more relevant to the narrative context.

Novelty DIFFUCOMET models also produce
more novel commonsense inferences. A histori-
cal advantage of knowledge models (e.g., COMET)
was their ability to generate knowledge beyond the
graphs they used for pretraining (Bosselut et al.,
2019), making them powerful tools to generate

13Details on workers and their payment are in Appendix E
14invalid facts are automatically labeled irrelevant

Number of Facts (# Facts)

Relevance (%)

Alignment (%)

Number of Clusters (# Clusters)

RA-F1 (%)

Backward Diffusion Steps at Inference Phase

Figure 4: DIFFUCOMET performance at different dif-
fusion steps during inference. Both DIFFUCOMET-
Fact and DIFFUCOMET-Entity are developed based on
BART-large and tested on the ROCStories portion of
ComFact. Beam-COMET performance is shown as a
baseline, with the number of decoded facts set to match
DIFFUCOMET-Entity at each diffusion step.

commonsense knowledge for unseen narratives. To
test the novelty of generated commonsense knowl-
edge from DIFFUCOMET, we develop a heuristic
method that identifies knowledge as novel if its
maximum pair-wise (Sentence-BERT embedding)
cosine similarity to ComFact gold references is
lower than 0.45. However, as this cut-off would
likely cause invalid and irrelevant facts to be consid-
ered novel, we only include facts whose relevance
score is higher than 0.97.15 In Table 3, we see that
DIFFUCOMET models produce more novel facts
and clusters compared to baselines.16

Diffusion Steps To investigate how DIFFU-
COMET’s multiple rounds of knowledge represen-
tation refinement through the diffusion process af-
fect the quality of generated knowledge, we record
the performance of our DIFFUCOMET models as
a function of diffusion steps conducted during in-
ference. Figure 4 shows how DIFFUCOMET’s
performance varies when knowledge is generated
at earlier time steps.

15Thresholds are tuned by a manual check of 100 sampled
results to ensure a decent cutoff of novel and relevant facts.

16We conduct analysis on some examples of novel facts in
a case study in Appendix F.3.



Model Web-Prec. Web-Rec. Web-F1

Beam-BART 73.36 76.27 74.75
Grapher 71.20 73.00 71.90

DIFFUCOMET-Fact 76.30 78.07 77.19
DIFFUCOMET-Entity 80.68 82.89 81.74

Table 4: Results on WebNLG+ 2020. Official metrics
used for the benchmark challenge are presented.

We find that DIFFUCOMET models gradually
produce more facts and more diverse facts (i.e.,
# Clusters) as the number of diffusion steps in-
crease, indicating that the multiple rounds of diffu-
sion produce a more separable representation capa-
ble of representing more facts. While the greater
number of facts leads to a slight drop in contextual
relevance across the generated facts, a greater corre-
sponding increase in alignment to the gold clusters
(as observed by the increase in Alignment and RA-
F1) also emerges. On RA-F1, DIFFUCOMET-Fact
surpasses Beam-COMET17 as the diffusion steps
increase to larger than 200, and DIFFUCOMET-
Entity consistently scores higher and continues ben-
efiting from further diffusion, even after 1000 dif-
fusion steps. These results shows that multi-step re-
finement of facts via diffusion effectively improves
contextual knowledge generation.

6.1 WebNLG+ 2020 Benchmark

Finally, to test whether our method generalizes
outside the domain of generating commonsense
inferences, we present our evaluation results on
the WebNLG+ 2020 dataset in Table 4. DIFFU-
COMET models achieve better performances on
the WebNLG factual knowledge generation task,
verified by the official metrics of the benchmark.18

This results suggests that our diffusion approach to
knowledge graph construction could be adapted to
other knowledge generation tasks.

7 Related Work

Commonsense Knowledge Grounding To aug-
ment NLP systems with commonsense knowledge,
various systems for question answering (Zhang
et al., 2022; Yasunaga et al., 2021, 2022) and nar-
rative generation (Ji et al., 2020; Zhou et al., 2022)
use retrieval methods based on heuristics to link rel-

17To make the comparison intuitive, for each test context,
we dynamically set the beam size of Beam-COMET to the
number of facts generated by DIFFUCOMET-Entity.

18We also include the evaluation results on traditional NLG
and our proposed clustering-based metrics in Appendix F.4.

evant facts from commonsense knowledge graphs
(Speer et al., 2017; Sap et al., 2019; Gao et al.,
2023). However, these systems typically have low
precision when adapted to more general and com-
plex commonsense linking (Hwang et al., 2021;
Jiang et al., 2021). Gao et al., 2022a developed
commonsense fact linking to improve retrieval pre-
cision, but this requires inefficiently traversing all
candidate facts to check their contextual relevance.

Due to above limitations of retrieval-based
knowledge grounding, one line of research (Bosse-
lut et al., 2021; Tu et al., 2022) uses knowledge
models (Bosselut et al., 2019; West et al., 2022) to
generate tail inferences from narrative statements.
However, these methods often produce irrelevant
facts as the knowledge models are pre-trained for
context-free knowledge graph completion. Finally,
developing new knowledge models to learn con-
textual commonsense generation turns out to be a
promising track of research, while current works
are limited to simple physical (Zhou et al., 2022)
or RDF-style factual (Melnyk et al., 2022) knowl-
edge. We build new models to address contextual
commonsense generation in a more general scope.

Diffusion Models Considerable recent works
(Gao et al., 2022b; Lin et al., 2022; Han et al., 2024)
have developed methods to improve text genera-
tion with diffusion models (Sohl-Dickstein et al.,
2015; Song and Ermon, 2019; Ho et al., 2020).
However, the potential of diffusion models in text-
to-knowledge generation is still under-explored. In
this paper, we introduce diffusion models for the
task of contextual knowledge generation.

8 Conclusion

In this work, we leverage the power of diffusion
models for contextual commonsense knowledge
generation, and formulate novel metrics to high-
light important dimensions of diversity and contex-
tual relevance for this task. Our diffusion knowl-
edge models, DIFFUCOMET, outperform vari-
ous autoregressive knowledge models, producing
more diverse, novel, and contextually-relevant com-
monsense knowledge, and achieving better out-of-
distribution performance. Finally, our analysis re-
veals how DIFFUCOMET refines implicit knowl-
edge representations over the course of the diffu-
sion process to produce more relevant and diverse
inferences, hinting at our method’s potential benefit
in other text-to-graph generation tasks.



Limitations

We notice a few limitations in this work. First, nar-
rative samples in our experimental datasets, i.e.,
ComFact (Gao et al., 2022a) and WebNLG+ 2020
(Ferreira et al., 2020), have short context windows
(five sentences at maximum). Therefore, our knowl-
edge models trained on these datasets may have
limited inference capacities if applied to longer nar-
ratives that involve richer commonsense grounding.
Moreover, our models are trained on solely English
corpora, and may need additional resources to be
adapted to other languages or multilingual settings.
Finally, our diffusion modeling method is tested
on an encoder-decoder model structure, i.e., BART
(Lewis et al., 2020), with maximum model size
406M (BART-large). We leave the feasibility of
our method on other model structures, e.g. decoder-
only GPT (Radford et al., 2019), and larger model
scales, to future work.
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A Backward Diffusion Process

Inverting from the forward diffusion process for-
mulated as Eq.(1), the backward diffusion pro-
cess follows a Gaussian posterior distribution
q(zt−1|zt, z0):

q(zt−1|zt, z0) = N (zt−1; µ̃(zt, z0), β̃tI)

µ̃(zt, z0) =

√
αt−1βt
1− αt

z0 +

√
αt(1− αt−1)

1− αt
zt

β̃t =
1− αt−1

1− αt
βt

(12)

where αt = 1 − βt and αt =
∏t

i=1 αi are weight
hyperparameters of the posterior Gaussian defined
by the noise schedule βt. The posterior formulation
indicates that only the mean µ̃ of zt−1 is correlated
to the condition zt and z0. So the training loss for
diffusion models, derived from the KL-divergence
between gold and learned posterior distributions, is
typically defined as a mean-squared error loss on
the posterior Gaussian mean:

Lmse =

T∑
t=1

E∥µ̃(zt, z0)− µθ(zt, t)∥2 (13)

where model (with parameter θ) learns the function
µθ(zt, t) to predict the mean of zt−1. Diffusion-
LM (Li et al., 2022) further re-weights the mean-
squared error as Eq.(2) to enforce direct prediction
of z0 in every loss term, which is shown to be more
efficient at tuning the model to precisely predict
the final de-noised sample.



B Model Implementation Details

B.1 Diffusion Module
To conduct the diffusion process defined by Eq.(4)
using Transformers (Vaswani et al., 2017), zt and
ẑt0 are first concatenated at the hidden-state dimen-
sion and projected by a MLP layer to form their
joint representation. The positional encoding layer
of Transformers is applied to the time step t (same
for every position of self-attention), whose output
time step embedding is added to the joint represen-
tation of zt and ẑt0. The decoder fθz takes the joint
representation (with time step embedding added)
as its bi-directional self-attention input, to ground
its decoding of refined z0 prediction ẑt−1

0 .

B.2 Number of Generated Facts
To enable our diffusion module (fθz ) to control
the number of facts (or entities) generated for each
context, we also pre-train our fact (or entity) em-
bedding module (fθe and fθg ) to learn the represen-
tation of a special token kend :=<eok>, by adding
it as a special fact (or entity) to the pre-training
data, which indicates the end of a knowledge set.
During the training of diffusion module, kend is
appended to the end of knowledge set K, whose
embedding and decoding also contributes to the
training loss. At inference phase, we post-process
our model’s generations to keep only the facts that
are at positions before kend.

B.3 Noise Schedule
For the noise schedule hyperparameter of diffusion
process, we adopt the sqrt initialization (Li et al.,
2022) to set αt = 1−

√
t/T + s, where s = 1e−4

that sets the initial variance of noise (β0) to be 0.01.
Based on that, we follow SeqDiffuSeq (Yuan et al.,
2022) to implement an adaptive noise schedule,
which dynamically adjusts αt for each sample po-
sition n (n = 1, 2, ...|K|) of the knowledge set K
(the adjusted αt for position n is denoted as αn

t ),
according to the diffusion mean square error (MSE)
loss Lmse

θs,θz
defined in Eq. (8). Specifically, for an

adaptive noise schedule update, we first record the
MSE loss at each time t and position n as:

Ln
t = E∥z0[:][n]− ẑt0[:][n]∥2 (14)

Then we use a linear interpolation function to up-
date the adjusted noise schedule, formulated as:

Fn
t (L) =

αn
t − αn

t−1

Ln
t − Ln

t−1

(L − Ln
t−1) + αn

t−1 (15)

where new loss value Ln,new
t is re-arranged across

time step t with equal interval between mint(Ln
t )

and maxt(Ln
t ), which is finally given to the update

function to get αn,new
t = Fn

t (L
n,new
t ). The noise

schedule is adjusted every 2000 training steps.

B.4 Model Training

For the loss weight hyperparameter γ used to com-
bine mean-square error and anchor losses defined
by Eq. (8) and (9), we use γ = 1 for training
our DIFFUCOMET models based on BART-base,
while γ = 0.01 for training our models with BART-
large backbone, which achieve the best conver-
gence results, respectively. For training DIFFU-
COMET based on BART-large, we also follow
Difformer (Gao et al., 2022b) to amplify the stan-
dard deviation of diffusion noise by a factor of
A = 4, i.e., to change the forward process as:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtA

2I) (16)

where t = 1, 2, ...T , which effectively avoids
model collapse in training. The total diffusion steps
T is set to 2000. We use AdamW (Loshchilov
and Hutter, 2018) as our training optimizer, with
learning rate 1e−5 and no weight decay. A lin-
ear learning rate scheduler is adopted with warm-
up steps 2000 and total training steps 150000 and
200000 for models based on BART-base (139M)
and BART-large (406M), respectively. We train
our base-scale DIFFUCOMET on 4 Tesla V100-
SXM2 (32GB) GPUs with batch size set to 4, while
for large-scale DIFFUCOMET, we use 4 NVIDIA
A100-SXM4 (40GB) GPUs, with batch size set to
2 instead. 15 and 36 hours are required to train
base-scale and large-scale DIFFUCOMET models,
respectively.

For the pre-training of our fact embedding mod-
ule with loss described in Eq. (7), we adopt the
same hyperparameter setting as training our dif-
fusion module, except for learning rate changed
to 2e−6 and batch size set to 128 and 64 for base-
scale and large-scale models, respectively. For pre-
training large-scale (i.e., BART-large) fact embed-
ding module, we add a weight decay of 0.01, which
leads to better convergence. In DIFFUCOMET-
Entity, the two diffusion modules trained for gener-
ating contextual relevant head and tail entities share
the same pre-trained entity embedding module.



C Evaluation Metrics

C.1 Clustering and Similarity Function

For our evaluation based on fact clustering w.r.t.
edit distance, we define the similarity function
in our Alignment metric as sim(k̂i, kj) = 1 −
Edit(k̂i, kj)/MaxLen(k̂i, kj), where Edit de-
notes the word-level edit distance of two facts, and
MaxLen denotes the length of the longer fact of
the two, i.e., the maximum possible edit distance
for normalization. Our distance measure for clus-
tering also adopts the normalized edit distance, i.e.,
Edit/MaxLen. For evaluation based on fact clus-
tering w.r.t. Sentence-BERT embedding, we define
the similarity function in our Alignment metric as
sim(k̂i, kj) = max(CoS(k̂i, kj), 0), where CoS
denotes the cosine similarity of two facts’ Sentence-
BERT embeddings. We assume that facts with op-
posite meanings, i.e., negative similarity, are not
considered as aligned with each other, so we cut off
the negative values of cosine similarity. While for
the distance measure of clustering, we use the Eu-
clidean distance of two facts’ embeddings instead,
which is typically adopted in DBSCAN (Ester et al.,
1996) clustering algorithm.

C.2 Clustering Threshold Selection

For our proposed clustering-based metrics as de-
scribed in Section 4, we use DBSCAN (Ester et al.,
1996) algorithm to group facts into clusters. To
avoid bias on a specific clustering granularity, we
consider a range of DBSCAN thresholds and take
the average evaluation results across all thresholds
in the range. We consider a range with equal inter-
val of 0.05, where the number of gold fact clusters
significantly changes from near the maximum (i.e.,
each fact as a cluster) to near the minimum (i.e.,
all facts grouped into one cluster). Figure 5 shows
the number of gold clusters as a function of the
DBSCAN clustering threshold, and our selection
of threshold ranges (red square) on each dataset.

C.3 WebNLG Metrics

In the evaluation of WebNLG 2020 Challenge (Fer-
reira et al., 2020), each generated RDF fact (i.e.,
subject-predicate-object triple) is paired to a gold
reference to compute its precision, recall and F1
based on named entity matching (Segura-Bedmar
et al., 2013). Three types of matching criterias are
considered, including: a) each named entity in gen-
erated RDF needs to exactly match an entity in gold
reference in order to be counted as true-positive,
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[0.15, 0.20, …, 0.75] [0.25, 0.30, …, 1.05]

ComFact-
PersonaChat

[0.15, 0.20, …, 0.80] [0.30, 0.35, …, 1.30]

ComFact-
MuTual

[0.15, 0.20, …, 0.80] [0.25, 0.30, …, 1.10]

ComFact-Movie
Summaries

[0.15, 0.20, …, 0.80] [0.35, 0.40, …, 1.30]

WebNLG+
2020

[0.15, 0.20, …, 0.80] [0.40, 0.45, …, 1.15]

Figure 5: Range selection (red square) of DBSCN clus-
tering thresholds for our proposed metrics.

while its type in the RDF (i.e., whether it is in sub-
ject, predicate or object) does not need to match
(Exact Match), b) each entity in generated RDF
only needs to partially match an entity in gold refer-
ence, and its type does not matter (Partial Match),
and c) each named entity in generated RDF needs
to exactly match an entity in gold reference, and
its type also needs to match (Strict Match). For
each matching criteria, optimal pairing (with the
highest F1 score) between generated facts and gold
references is searched by enumerating all possible
permutations. We report Strict Match scores in the
main body of our paper in Table 4, and include all
three kinds of match scores in Table 18.

D Data Preprocessing

ComFact (Gao et al., 2022a) benchmark con-
tains social commonsense knowledge linked from
ATOMIC20

20 (Hwang et al., 2021) knowledge base,
which contains ∼1.33M facts covering physi-
cal entities, daily events and social interactions.
ATOMIC20

20 commonsense relations considered in
our experiments are listed in Table 5. We prepro-
cess ComFact and ATOMIC20

20 to filter out facts



Type Relation Relation Description

Physical-

ObjectUse used for

Entity

AtLocation located or found at/in/on
MadeUpOf made (up) of
HasProperty can be characterized by being/having
CapableOf is/are capable of
Desires desires
NotDesires do(es) not desire

Event

IsAfter happens after
IsBefore happens before
HasSubEvent includes the event/action
HinderedBy can be hindered by
Causes causes
xReason because

Social-

xNeed but before, person X needs

Interaction

xAttr person X is seen as
xEffect as a result, person X will
xReact as a result, person X feels
xWant as a result, person X wants
xIntent because person X wants
oEffect as a result, others will
oReact as a result, others feel
oWant as a result, others want

Table 5: Commonsense relations in ATOMIC20
20 knowl-

edge base that are considered in our experiments on
ComFact benchmark.

that have invalid tail entity “none” or contain fil-
lable blank “___”, i.e., we do not consider facts
with relation “IsFilledBy”. After preprocessing,
∼972K facts are involved in the training of our fact
embedding and diffusion modules. The original
ComFact training data in the ROCStories portion
only has ∼ 1K contexts with gold annotations
of relevant facts. Due to the limited supervised
data, we augment the training data with ∼ 50K
additional contexts sampled from the ROCStories
corpus, and use a DeBERTa (He et al., 2020) fact
linker developed from the ComFact benchmark
to extract silver annotations of relevant facts from
ATOMIC20

20 to each additional context.
For preprocessing WebNLG+ 2020 (Ferreira

et al., 2020) dataset, we follow Grapher (Melnyk
et al., 2022) to remove underscores and surround-
ing quotes appeared in the dataset, and convert
non-English characters into their closest available
English characters, e.g., “õ” and “å” are mapped
to “o” and “a”. After preprocessing, We develop
our models based on the ∼ 35K WebNLG training
texts and their linked RDF facts.

E Human Evaluation Details

Our annotator pool for human evaluation contains
58 Amazon Mechanical Turk workers who are lo-
cated in the USA and have been previously qual-
ified by us for other similar tasks. To prepare the

workers for the new tasks of assessing the validity
and relevance of knowledge in a given context, we
share the instructions with them beforehand and do
a small pilot run where we evaluate the quality of
the worker annotations and give feedback if needed.
We pay each worker $0.10 for each task. Figure 6,
7 and 8 show screenshots of our acceptance/privacy
policy and instructions for knowledge validation
and relevance tasks. Our data collection protocol
follows Amazon Mechanical Turk regulations, and
is approved by our organization in terms of ethics.

F Full Results of Knowledge Generation

F.1 ROCStories

In Table 6 and 7, we present our full evaluation
results of contextual commonsense knowledge gen-
eration on the ROCStories portion of ComFact
benchmark. For evaluating Sampling and Beam
baseline models, we test two sampling or beam
search sizes around the average number of gold
facts per context, i.e., 10 and 15 as indicated
by the suffix numbers, and adopt the size which
achieves better F1 results. On both base and large
model scales, DIFFUCOMET models achieve con-
sistently better balance between the diversity (i.e.,
# Clusters) and accuracy (i.e., RA-F1) of knowl-
edge generation, compared to baseline models that
typically perform generation in the autoregressive
manner.

F.2 Context Generalization

In this section, we present zero-shot evaluation
results of models (trained on the contexts of ROC-
Stories) generalizing to the contexts of other three
ComFact portions, including PersonaChat (Ta-
ble 8 and 9), MuTual (Table 10 and 11) and
MovieSummaries (Table 12 and 13).

We observe that both DIFFUCOMET models
generalize well to the contexts of PersonaChat
and MuTual, whose generated knowledge pos-
sesses comparable diversity (i.e., # Clusters) and
better accuracy (i.e., RA-F1) than the strongest
baseline model Beam-COMET. More interest-
ingly, we find that DIFFUCOMET-Entity achieves
larger points of improvements over baselines on the
more challenging MovieSummaries-style contexts,
while DIFFUCOMET-Fact struggles to outper-
form the strongest baseline Beam-COMET, show-
ing that entity-level diffusion is more robust to
the shift of narrative contexts, likely due to the
more fine-grained multi-step learning of context-



Figure 6: Screenshot of Amazon MTurk Acceptance and Privacy Policy

Figure 7: Screenshot of Amazon MTurk instructions for knowledge validation task.



Figure 8: Screenshot of Amazon MTurk instructions for knowledge relevance task.



Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.48 1.08 32.04 31.98 32.01 1.09 32.11 48.59 38.67

(base)

Sampling-10 10.00 5.59 39.20 46.03 42.34 5.64 38.93 64.51 48.56
Sampling-15 15.00 7.64 37.18 49.78 42.57 7.82 36.86 68.00 47.81
Beam-10 10.00 2.63 38.30 44.96 41.36 2.83 38.87 59.58 47.05
Beam-15 15.00 3.48 41.46 48.04 44.51 3.97 42.88 63.14 51.07

DIFFUCOMET-Fact 13.40 4.74 59.75 54.07 56.77 5.85 60.32 73.38 66.21
DIFFUCOMET-Entity 10.08 4.51 62.27 54.61 58.19 5.24 61.77 71.54 66.30

BART

Greedy 2.20 1.38 60.45 36.11 45.21 1.37 60.22 52.31 55.99

(large)

Sampling-10 10.00 6.68 56.09 52.10 54.02 6.40 56.68 73.86 64.14
Sampling-15 15.00 8.89 56.24 55.18 55.70 8.56 56.57 76.30 64.97
Beam-10 10.00 3.32 64.94 50.72 56.96 3.51 64.37 69.14 66.67
Beam-15 15.00 4.17 64.18 53.66 58.45 4.60 64.35 71.35 67.67

DIFFUCOMET-Fact 12.88 4.47 65.82 54.18 59.44 5.24 65.64 71.65 68.51
DIFFUCOMET-Entity 12.89 5.09 67.00 58.22 62.30 5.67 66.39 74.38 70.16

COMET-

Greedy 1.96 1.14 61.27 34.76 44.36 1.19 61.42 50.64 55.51

BART

Sampling-10 10.00 6.45 56.79 53.36 55.02 6.30 56.60 73.64 64.01
Sampling-15 15.00 8.52 55.78 58.99 57.34 8.39 56.19 77.97 65.31
Beam-10 10.00 3.78 65.62 53.45 58.91 3.89 65.73 70.65 68.10
Beam-15 15.00 4.78 64.91 54.77 59.41 5.09 65.03 71.64 68.18

T5 (large) Grapher 5.08 1.75 67.82 33.07 44.46 2.60 68.29 40.58 50.91

- Gold 10.55 5.64 81.06 - - 5.64 80.90 - -

Table 6: Clustering-based evaluation results on the ROCStories portion of ComFact. Best results (excluding Gold
references) are in bold. Different numbers after Sampling and Beam denote various sampling numbers or beam
search sizes being tested.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 99.90 8.70 40.49 44.43

(base)

Sampling-10 85.29 7.16 37.78 39.20
Sampling-15 81.57 8.24 38.35 40.13
Beam-10 50.32 12.25 42.23 43.53
Beam-15 45.21 11.51 42.04 42.91

DIFFUCOMET-Fact 57.87 12.09 46.43 47.13
DIFFUCOMET-Entity 70.02 14.25 43.34 45.08

BART

Greedy 93.01 9.12 43.98 46.26

(large)

Sampling-10 86.33 9.89 43.85 43.69
Sampling-15 81.56 9.47 43.28 43.15
Beam-10 47.03 15.02 48.56 48.15
Beam-15 43.73 13.11 47.70 46.35

DIFFUCOMET-Fact 52.46 15.98 50.06 51.44
DIFFUCOMET-Entity 63.49 17.01 47.61 48.40

COMET-

Greedy 65.95 18.01 52.32 54.96

BART

Sampling-10 83.29 13.35 44.77 45.80
Sampling-15 79.01 12.69 44.43 45.58
Beam-10 51.13 19.89 50.14 50.48
Beam-15 47.27 16.97 47.39 47.19

T5 (large) Grapher 67.83 1.40 23.96 27.21

- Gold 80.45 - - -

Table 7: Evaluation results of natural language genera-
tion metrics on the ROCStories portion of ComFact.
Notations are same as Table 6.

to-knowledge mapping.

F.3 Case Study and Knowledge Types
Table 14 showcases the knowledge generation re-
sults of DIFFUCOMET models in a narrative con-
text sampled from ComFact ROCStories, com-
pared to the sampling and beam search baselines
Sample-COMET and Beam-COMET. Facts that
are novel (i.e., beyond the coverage of gold ref-
erences) and relevant to the context are labeled in
bold. We find that both DIFFUCOMET-Fact and

DIFFUCOMET-Entity can generate facts that are
rich in diversity, covering both physical entities
(e.g., baseball cap) and social events (e.g., go on va-
cation). Novel facts generated by DIFFUCOMET
models also uncover implicit inter-connections be-
tween entities or events in the narrative context,
e.g., “vacation” and “family” are associated be-
cause “X goes on vacation” to “spend time with
family”. By contrast, Beam-COMET model mainly
generates simple facts about physical entities, and
Sample-COMET model generates many facts that
are irrelevant to the context, e.g., “field is used for
playing baseball”.

We also conduct a study on the proportion of
different knowledge types that each model gener-
ates per context, based on the ROCStories portion
of ComFact benchmark. In particular, we divide
commonsense facts into three types according to
their relation groups under ATOMIC20

20 knowledge
scheme, as shown in Table 5, including facts that
are centered on physical entities, events and social
interactions. Table 15 shows the results of knowl-
edge proportion generated by DIFFUCOMET and
baseline models, with gold references. Compared
to Sampling-COMET and Beam-COMET baselines,
DIFFUCOMET models generate a larger propor-
tion of facts that reveal complex event or social
inter-connections. The proportion of social-based
facts generated by DIFFUCOMET even signifi-



Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.62 1.24 33.52 35.64 34.55 1.24 33.57 48.61 39.71

(base)

Sampling-10 10.00 5.23 29.35 44.49 35.37 4.63 28.26 58.85 38.18
Beam-15 15.00 3.65 31.11 47.01 37.44 3.49 30.41 58.90 40.11
DIFFUCOMET-Fact 13.73 4.97 44.25 52.81 48.15 5.24 44.76 69.24 54.37
DIFFUCOMET-Entity 11.40 4.99 50.39 54.84 52.52 4.94 49.36 68.55 57.39

BART
Beam-15 15.00 4.44 53.98 54.13 54.05 4.04 54.07 63.17 58.27

(large)
DIFFUCOMET-Fact 10.82 4.48 55.44 55.20 55.32 3.89 55.02 65.20 59.68
DIFFUCOMET-Entity 12.06 4.72 55.08 57.12 56.08 4.48 54.42 68.11 60.50

COMET-BART Beam-15 15.00 4.86 54.02 54.78 54.40 4.27 53.97 65.15 59.04
T5 (large) Grapher 4.53 1.68 47.74 30.51 37.23 1.57 47.94 36.18 41.24

- Gold 8.60 4.76 70.42 - - 4.28 70.42 - -

Table 8: Zero-shot clustering-based evaluation results on the PersonaChat portion of ComFact. Notations are
same as Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 97.83 8.72 44.44 46.52

(base)

Sampling-10 86.81 4.09 32.95 33.80
Beam-15 53.05 8.06 37.43 38.62
DIFFUCOMET-Fact 63.40 5.84 37.53 39.33
DIFFUCOMET-Entity 73.38 9.04 34.35 36.46

BART
Beam-15 47.64 8.71 41.40 40.44

(large)
DIFFUCOMET-Fact 57.23 8.05 45.83 47.11
DIFFUCOMET-Entity 68.54 11.11 38.88 40.04

COMET-BART Beam-15 50.13 10.25 43.47 42.38
T5 (large) Grapher 52.99 0.68 19.91 22.41

- Gold 84.96 - - -

Table 9: Zero-shot evaluation results of natural lan-
guage generation metrics on the PersonaChat portion
of ComFact. Notations are same as Table 6.

cantly surpasses the gold references. All above re-
sults imply that diffusion models have the potential
to uncover more in-depth and implicit common-
sense inferences from narrative contexts, which
may not be easily extracted from existing knowl-
edge bases.

F.4 WebNLG+ 2020

We present our full evaluation results on the
WebNLG+ 2020 benchmark in Table 16, 17 and
18. For evaluating Sampling and Beam baselines,
we set both sampling and beam search sizes as 5,
which is around the average number of gold facts
per context. Consistent with the evaluation results
on ComFact, DIFFUCOMET models keep achiev-
ing better performances on the WebNLG task of
factual knowledge generation, implying that our
method of diffusion-based contextual knowledge
generation can generalize well to knowledge be-
yond commonsense.

F.5 Comparison of Fact and Entity Diffusion

For the comparison in between our two diffusion
models, DIFFUCOMET-Entity in general outper-
forms DIFFUCOMET-Fact on our proposed met-
rics, which may benefit from more fine-grained

multi-step learning of knowledge construction in
pipeline. However, DIFFUCOMET-Fact is compu-
tational cheaper, i.e., only requires a single step of
fact diffusion instead of two steps of (head and tail)
entity diffusion and a relation prediction.

G Claim of Usage

Our use of existing scientific artifacts cited in this
paper is consistent with their intended use. Our
developed code and models are intended to be used
for only research purposes, any usage of our sci-
entific artifacts that is outside of research contexts
should not be allowed.



Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.50 1.16 35.85 33.63 34.70 1.19 36.10 48.53 41.40

(base)

Sampling-10 10.00 5.68 43.77 45.76 44.74 5.88 43.98 63.75 52.05
Beam-15 15.00 3.55 41.27 49.72 45.10 4.08 42.27 63.17 50.65
DIFFUCOMET-Fact 13.11 4.54 57.64 52.25 54.81 5.57 57.51 70.10 63.18
DIFFUCOMET-Entity 10.63 4.60 60.08 54.65 57.24 5.27 59.08 68.88 63.60

BART
Beam-15 15.00 3.92 64.19 51.75 57.30 4.45 62.41 67.31 64.77

(large)
DIFFUCOMET-Fact 10.46 4.33 64.74 54.51 59.19 4.80 64.13 68.07 66.04
DIFFUCOMET-Entity 11.85 4.70 64.39 55.91 59.85 5.39 63.82 71.22 67.32

COMET-BART Beam-15 15.00 4.52 61.88 54.04 57.69 4.75 60.56 69.72 64.82
T5 (large) Grapher 4.50 1.70 73.30 32.74 45.26 1.78 73.33 43.13 54.31

- Gold 10.80 5.58 74.63 - - 5.79 74.77 - -

Table 10: Zero-shot clustering-based evaluation results on the MuTual portion of ComFact. Notations are same as
Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 97.47 14.05 49.89 50.78

(base)

Sampling-10 86.42 5.61 37.11 38.60
Beam-15 49.31 11.57 45.47 45.51
DIFFUCOMET-Fact 60.66 8.71 44.23 46.11
DIFFUCOMET-Entity 70.94 11.08 40.28 42.15

BART
Beam-15 43.91 11.37 46.86 46.75

(large)
DIFFUCOMET-Fact 52.00 12.33 49.50 50.97
DIFFUCOMET-Entity 66.12 12.68 45.11 45.73

COMET-BART Beam-15 47.40 12.40 49.12 48.57
T5 (large) Grapher 51.30 1.96 24.70 29.36

- Gold 80.99 - - -

Table 11: Zero-shot evaluation results of natural lan-
guage generation metrics on the MuTual portion of
ComFact. Notations are same as Table 6.



Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 2.59 1.12 33.50 25.28 28.82 1.11 33.38 37.95 35.52

(base)

Sampling-10 10.00 4.90 26.61 33.31 29.59 4.24 24.96 50.26 33.36
Beam-15 15.00 3.54 30.45 36.07 33.02 3.17 29.13 49.63 36.71
DIFFUCOMET-Fact 14.61 6.02 35.97 38.76 37.31 5.49 36.29 59.83 45.18
DIFFUCOMET-Entity 15.82 6.31 39.86 39.93 39.89 5.76 39.57 57.55 46.90

BART
Beam-15 15.00 4.46 42.92 32.79 37.18 3.70 42.52 50.46 46.15

(large)
DIFFUCOMET-Fact 8.29 3.01 41.50 30.47 35.14 2.89 40.82 46.59 43.51
DIFFUCOMET-Entity 13.50 6.28 44.08 40.46 42.19 5.84 42.70 61.56 50.42

COMET-BART Beam-15 15.00 5.06 41.97 34.63 37.95 4.04 41.54 51.24 45.88
T5 (large) Grapher 5.34 1.83 54.09 23.74 33.00 1.50 54.12 34.27 41.97

- Gold 9.00 5.64 58.55 - - 4.81 58.37 - -

Table 12: Zero-shot clustering-based evaluation results on the MovieSummaries portion of ComFact. Notations
are same as Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 95.18 5.14 34.24 36.53

(base)

Sampling-10 90.99 2.52 24.56 28.08
Beam-15 53.65 4.82 28.33 31.56
DIFFUCOMET-Fact 63.93 2.27 27.09 30.08
DIFFUCOMET-Entity 67.24 2.68 24.14 26.95

BART
Beam-15 47.57 4.89 31.41 33.19

(large)
DIFFUCOMET-Fact 43.68 5.26 34.55 38.80
DIFFUCOMET-Entity 67.13 3.83 26.63 29.32

COMET-BART Beam-15 50.29 5.18 31.36 33.39
T5 (large) Grapher 42.76 0.46 18.24 21.28

- Gold 87.39 - - -

Table 13: Zero-shot evaluation results of natural lan-
guage generation metrics on the MovieSummaries por-
tion of ComFact. Notations are same as Table 6.



Narrative

Dustin loved to wear his baseball cap everywhere he went.

Context

On vacation his family visited the windy city of Chicago.
Dustin’s baseball cap blew off his head and into the street.
His dad waited until it was safe before getting Dustin’s cap.
He loved his baseball cap even though it was a little dirty.

Gold

cap, used for, to wear on head
cap, used for, wear on their heads
head cap, used for, put on head
vacation, used for, have fun on
vacation, used for, fun
vacation, used for, relax out of work and school
family, is capable of, plan to go on vacation
X takes a family trip, because X wants, to go on vacation
X visits the city, X is seen as, traveling
dad, can be characterized by being, one of human’s parents

Sample

baseball cap, used for, protect the head

-COMET

baseball cap, used for, protect your head while playing baseball
baseball cap, used for, wearing over head
X ops for baseball, but before X needs, to find a baseball
X’s favorite baseball, because X wants to, enjoy the sport
baseball, used for, sport as a mascot
vacation, used for, have fun on
X chases the wind, because X wants, to walk around
port, used for, get vacation
field, used for, playing baseball
cap, used for, keep their head up
cap, used for, protection from wind
cap, used for, protect head while traveling
cap, used for, wear around head
jersey, used for, wear while playing

Beam

baseball cap, used for, wear while playing baseball

-COMET

baseball cap, used for, wear on their head
baseball cap, used for, wear on the head
baseball, used for, playing baseball with friends
baseball, used for, playing baseball with family
sport cap, used for, wear while playing
Chicago, can be characterized by having, many streets
Chicago, can be characterized by having, many cities
Chicago, can be characterized by having, many neighborhoods
cap, used for, wear on head while playing baseball
cap, used for, wear to the game with
cap, used for, protect head from wind
cap, used for, protect head from wind blows
cap, used for, keep the cap on
cap, used for, keep the cap clean

DIFFUCOMET

baseball cap, used for, to put on

-Fact

baseball cap, used for, to keep baseball cap on head
baseball cap, used for, wear
baseball cap, used for, to play baseball with
city, used for, live in
vacation, used for, relax
X takes a family trip, but before X needs, to spend time with family
X takes a family trip, because X wants, to enjoy family time
X goes on vacation, because X wants, to spend time with family
X is on vacation, because X wants, to spend time with family
dad, can be characterized by being, one of human’s parents
dad’s car, used for, to be safe
safe, used for, safe to wear

DIFFUCOMET

cap, used for, wear on head

-Entity

cap, used for, wear on the head
baseball cap, used for, look professional
baseball cap, used for, to play baseball with
X is wearing cap, but before X needs, have a cap
X is wearing cap, but before X needs, put on a cap
go on vacation, includes the action, take family to beach
go on vacation, includes the action, go somewhere nice
vacation, used for, enjoy your time off
X goes on vacation, because X wants, to spend time with family
dad, can be characterized by being, one of human’s parents
safe, used for, keeping things safe

Table 14: Examples of contextual knowledge generation.
Novel and contextually relevant facts are in bold. Model
notations are same as Table 1.

Model Physical Event Social
Sampling-COMET 46.17 4.01 49.82
Beam-COMET 60.72 2.36 36.92

DIFFUCOMET-Fact 41.00 4.66 54.34
DIFFUCOMET-Entity 35.75 4.53 59.72

Gold 43.54 7.32 49.14

Table 15: Proportion (%) of different types of
knowledge generation on the ROCStories portion of
ComFact. “Physical”, “Event” and “Social” denote
facts with relation types belonging to physical-entity,
event and social-interaction, respectively, as shown in
Table 5. Model notations are same as Table 1.



Backbone Model # Facts Clustering w.r.t. Word-Level Edit Distance Clustering w.r.t. Embedding Euclidean Distance

# Clusters Relevance Alignment RA-F1 # Clusters Relevance Alignment RA-F1

BART

Greedy 1.69 0.88 83.16 50.26 62.65 0.88 83.16 71.71 77.01

(large)

Sampling-5 5.00 2.09 81.10 71.25 75.86 1.73 80.89 83.93 82.38
Beam-5 5.00 2.12 82.70 72.69 77.37 1.64 82.50 85.78 84.11
DIFFUCOMET-Fact 2.56 1.69 84.39 74.12 78.92 1.51 84.38 86.18 85.27
DIFFUCOMET-Entity 2.71 1.82 87.86 78.46 82.89 1.57 87.76 88.59 88.17

COMET-
Greedy 1.61 0.96 83.33 54.34 65.78 0.95 83.33 77.23 80.16

BART
Sampling-5 5.00 2.09 80.89 72.77 76.62 1.76 80.72 84.21 82.43
Beam-5 5.00 2.15 82.11 72.94 77.25 1.70 81.94 85.94 83.89

T5 (large) Grapher 2.10 1.39 83.48 70.66 76.54 1.29 83.46 82.21 82.83

- Gold 3.22 2.27 96.43 - - 1.91 96.43 - -

Table 16: Clustering-based evaluation results on the WebNLG+ 2020 benchmark. Notations are same as Table 6.

Backbone Model Distinct-4 BLEU METEOR ROUGE-L

BART

Greedy 87.29 81.12 84.57 84.92

(large)

Sampling-5 48.24 74.22 81.71 81.19
Beam-5 45.58 75.01 81.78 80.51
DIFFUCOMET-Fact 81.02 80.43 83.23 84.30
DIFFUCOMET-Entity 82.20 83.04 89.88 89.72

COMET-
Greedy 93.17 81.43 84.95 85.34

BART
Sampling-5 47.36 75.44 81.84 81.85
Beam-5 46.17 73.56 80.93 79.46

T5 (large) Grapher 89.95 76.17 79.61 80.89

- Gold 82.05 - - -

Table 17: Evaluation results of natural language gen-
eration metrics on the WebNLG+ 2020 benchmark.
Notations are same as Table 6.



Backbone Model Exact Match Partial Match Strict Match

Web-Prec. Web-Rec. Web-F1 Web-Prec. Web-Rec. Web-F1 Web-Prec. Web-Rec. Web-F1

BART

Greedy 50.42 52.79 51.51 53.76 56.84 55.20 50.14 52.53 51.25

(large)

Sampling-5 73.65 76.73 75.11 79.57 83.89 81.66 72.37 75.45 73.83
Beam-5 75.32 78.39 76.76 81.32 85.72 83.38 73.36 76.27 74.75
DIFFUCOMET-Fact 76.59 78.35 77.47 79.17 81.52 80.35 76.30 78.07 77.19
DIFFUCOMET-Entity 80.80 82.97 81.84 83.72 86.48 85.07 80.68 82.89 81.74

COMET-
Greedy 52.55 54.82 53.62 55.99 58.95 57.39 52.30 54.59 53.37

BART
Sampling-5 74.96 77.87 76.33 80.31 84.41 82.18 73.77 76.67 75.15
Beam-5 75.95 78.88 77.03 81.66 85.84 83.15 73.80 76.61 74.85

T5 (large) Grapher 71.50 73.30 72.20 74.10 76.50 75.00 71.20 73.00 71.90

Table 18: Evaluation results on official metrics provided by the WebNLG+ 2020 benchmark challenge. We present
the results of Grapher as reported in its paper. Notations are same as Table 6.
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