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Ground truth 

Attack LeNet-7 network (PSNR:31.8; SSIM:0.94; LPIPS:0.037) 

Attack ResNet-18* network (PSNR:19.85; SSIM:0.59; LPIPS:0.382) 

Figure 1: Reconstruction of an input image from the gradients using GGDM. Top: Image from the validation dataset. Middle:
Reconstruction from a LeNet-7 network trained on FFHQ. Bottom: Reconstruction from a ResNet-18∗ network. In both cases,
the images are nearly perfectly reconstructed, indicating a significant breach in data privacy. It’s noteworthy that previous
attacks that solely rely on gradients cannot achieve this level of quality.

ABSTRACT
Federal Learning (FL) is highly respected for protecting data privacy
in a distributed environment. However, the correlation between
the updated gradient and the training data opens up the possibility
of data reconstruction for malicious attackers, thus threatening the
basic privacy requirements of FL. Previous research on such attacks
mainly focuses on two main perspectives: one exclusively relies
on gradient attacks, which performs well on small-scale data but
falter with large-scale data; the other incorporates images prior
but faces practical implementation challenges. So far, the effective-
ness of privacy leakage attacks in FL is still far from satisfactory.
In this paper, we introduce the Gradient Guided Diffusion Model
(GGDM), a novel learning-free approach based on a pre-trained
unconditional Denoising Diffusion Probabilistic Models (DDPM),
aimed at improving the effectiveness and reducing the difficulty of
implementing gradient based privacy attacks on complex networks
and high-resolution images. To the best of our knowledge, this is

the first work to employ the DDPM for privacy leakage attacks of
FL. GGDM capitalizes on the unique nature of gradients and guides
DDPM to ensure that reconstructed images closely mirror the orig-
inal data. In addition, in GGDM, we elegantly combine the gradient
similarity function with the Stochastic Differential Equation (SDE)
to guide the DDPM sampling process based on theoretical analysis,
and further reveal the impact of common similarity functions on
data reconstruction. Extensive evaluation results demonstrate the
excellent generalization ability of GGDM. Specifically, compared
with state-of-the-art methods, GGDM shows clear superiority in
both quantitative metrics and visualization, significantly enhancing
the reconstruction quality of privacy attacks.

CCS CONCEPTS
• Security and privacy→ Privacy protections.
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1 INTRODUCTION
Federated Learning (FL) [3, 5, 25], an avant-garde machine learning
approach, is acclaimed for its unique data privacy preservation in
distributed settings [3]. Its core strategy involves gathering model
updates from clients via a centralized server, without tapping into
raw data. This dual advantage of facilitating simultaneous model
training and ensuring user privacy has propelled its widespread
adoption amidst rising privacy concerns.

However, a closer examination of FL reveals underlying vul-
nerabilities [35]. The core of this issue centers on the discernible
correlation between the gradients of the model parameter and the
training data. Malicious attackers [33] can potentially craft datasets
from known parameters, aligning them with the training data. A
successful gradient match between the two could enable attackers
to reconstruct, or at the very least approximate, the private dataset.
This potential risk fundamentally undermines FL’s promise of user
privacy protection.

Given the increasing concerns about data security and its ethical
implications, gradient-based privacy breaches have garnered signif-
icant attention, as illustrated in Table 1. Such investigations focus
on two primary avenues. The first relies solely on gradient-based
attacks [10, 14, 37, 39], proving efficient with simpler datasets and
networks but faltering with intricate large-scale content. The alter-
native avenue [13, 18, 34] enhances its potency by incorporating
prior image data but grapples with its stringent prerequisites in
real-world applications. The performance of privacy leakage at-
tacks is still not satisfactory in the realm of FL, which leads to a
fraudulent sense of security.

In this paper, we focus on enhancing the efficacy of privacy at-
tacks by optimizing gradient-based methods that rely solely on
gradients for complex networks and high-resolution images in FL.
We introduce the Gradient Guided Diffusion Model (GGDM), a
novel learning-free approach based on the Denoising Diffusion
Probabilistic Models (DDPM) [12, 22], as shown in Figure 2. It is
designed to improve the effectiveness and reduce the difficulty
of implementing gradient-based privacy attacks. This technique
allows the server to use the gradients reported by clients in the
FL model as guidance for a pre-trained unconditional DDPM dur-
ing the image generation process. The strength of DDPM lies in
its ability to generate images from noisy data and iteratively re-
fine them from noisy data, approaching the distribution of natural
images, and showing distinct superiority when generating high-
resolution images. Building on this strength, the GGDM approach
significantly amplifies original data reconstruction capabilities for
high-resolution images, consequently increasing the vulnerability
to potential privacy breaches.

In conventional DDPM sampling processes, specific conditions,
such as images or languages, are typically employed as guidance.
These approaches [19, 23] initially map guiding information to a
particular space using an encoder, and subsequently, images gener-
ated within the DDPM sampling process are mapped with the same

generation process

Client-side

FL model
fw(x)

v
FL model

fw(x*)
Similarity equation

xT x0xt-1

Sever-side (Privacy attack)
Guidance

xt

Iteration generation process of GGDM

Figure 2: Overview of privacy leakage attacks in Federated
learning resulting from gradient exploitation using GGDM.

encoder. The adherence of the generated images to the guidance con-
dition is determined by gauging the distance between them in the
mapped space. This method yields diverse results, implying that the
same space could decode images that are similar but not identical.
However, the objective of privacy leakage attacks is precision, not
diversity. Therefore, the gradient-guided DDPM image generation
method deviates from the conventional approaches. Specifically,
when two distinct images pass through the same network, the prob-
ability of them producing the same gradient is extremely low [7].
Intuitively, if two images yield very similar gradients, they should
be very much alike, ensuring the uniqueness of the image. During
the generating process of GGDM based on DDPM, we employ a
similarity function to compare the difference between the gradient
of the generated images and the shared gradient. This is paired
with the Stochastic Differential Equation (SDE) [15] to guide image
generation. Given that stochastic differentials can easily lead to
gradient explosions during multiple iterations, we address this issue
by employing gradient clipping combined with scaling parameters,
aiming to enhance the quality of the reconstructed images.

Our experiment results demonstrate that our proposed GGDM, a
learning-free privacy attack method, shows strong generalizability
while only requiring a low attack cost. Specifically, there’s no need
to pre-train a specific DDPM model for a particular dataset. Privacy
attacks can be implemented just by using a pre-training model
with the same size as the target image. In addition, compared to
state-of-the-art methods, our GGDM shows clear superiority in
both quantitative metrics and visualization, significantly enhancing
the reconstruction quality of privacy attacks.

Our main contributions are as follows:
• We introduce theGradient GuidedDiffusionModel (GGDM),

a novel learning-free approach based on a pre-trained un-
conditional DDPM, which capitalizes on the unique na-
ture of gradients to guide DDPM, ensuring that the recon-
structed images closely mirror the original data, and thus
improving the effectiveness and reducing the difficulty of
implementing gradient based privacy attacks on complex
networks and high-resolution images. This is, to our best
knowledge, the first work to employ the DDPM for privacy
leakage attacks of FL.

• To effectively capture and utilize the nature of gradient
to guide the sampling process of DDPM, we also propose
a novel algorithm that elegantly combines the gradient
similarity functionwith the Stochastic Differential Equation
(SDE) to guarantee the uniqueness of images generated by

2
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DDPM, and further reveals the impact of common similarity
functions on data reconstruction.

• We have conducted extensive and in-depth experiments
to demonstrate the effectiveness and generalization abil-
ity of GGDM in implementing privacy attacks in FL. By
capitalizing on DDPM’s superior capability in generating
high-resolution images, we have markedly amplified the
success rate of privacy data leakage attacks.

2 RELATEDWORK
2.1 Private Data Reconstruction with FL
Previous studies have explored how information about training
data can be inferred from shared gradients in FL. For example,
earlier studies [20, 26] focused on inferencing data membership
from gradients to assess the risk of privacy breaches. In addition,
it is demonstrated in [1] that detailed input images can be recon-
structed when FL training is performed using shallow networks
such as single-layer perceptrons. Since the introduction of DLG
[39], the leakage of training data through shared gradients has
garnered increasing attention. By optimizing "dummy" training
data and label, and minimizing the Euclidean distance between the
gradients corresponding to these dummy data and the shared gradi-
ents, the effectiveness of data leakage attacks on multi-layer neural
networks, especially when considering individual data samples, is
markedly improved. Expanding upon the DLG framework, iDLG
[37] demonstrated that direct analysis of shared gradients allows
for the inference of ground truth labels, thus greatly enhancing
the potential for malicious exploitation. While the Euclidean dis-
tance is commonly employed as a loss function for optimization,
the study by [10] highlights its limitations with high-dimensional
parameters about gradients. The research suggests that leveraging
cosine distance unites the Total Variation (TV) [24] paradigm as
a loss function, yields superior attack performance due to the in-
herent advantages of cosine distance in handling high-dimensional
spaces. To enhance the generality of the attack model, particularly
addressing the impact of weight initialization distribution on data
leakage attacks in neural network architectures, SAPAG [31] pro-
posed the use of a Gaussian kernel as a loss function. To enhance
the theoretical interpretability of privacy attacks using gradients,
Zhu and Blaschko [38] introduced the concept of Exclusively Acti-
vated Neurons (ExANs) to delineate the security boundary for data
reconstruction. Leveraging this insight, it also proposes a novel
deterministic attack algorithm that enhances the reconstruction
of training batches. Further enhancements are reported by [34]
and [18] on large networks (like ResNet, vision transformers) and
complex datasets, using techniques like image priors and group
consistency regularization. The GIAS method by [13] optimally
exploits prior information on user data sourced from a pre-trained
generative model for gradient inversion. Lastly, CAFE [14], with its
approach to align data index and internal representation alignments
in VFL, manages to recover data on a large scale in VFL protocols.

2.2 Image Creation with Diffusion Models
Diffusion models encompass two primary processes: converting
signal into noise (forward process) and reconstructing signal from

X

x*

Xt+1Xt

SDE

  Q
K V

  Q
K V

  Q
K V

  Q
K V

Diffusion Process

Xt+1Xt Fw(xt)

XT

 Pre-trained Unconditional DDPM

 Gradient guided DDPM  

x0 xt-1

x0 xt-1
xt

xt xT

Figure 3: Our method employs the DDPM model, which gen-
erates an image from a noise map by iteratively removing
noise at each timestep. This diffusion generation process
is steered by Gradients Diffusion Guidance Model (GGDM),
which is introduced iteratively at every step. The figure illus-
trates the guidance at just one timestep for simplicity.

noise (reverse process); they have come to the forefront as promis-
ing generative models. Both the Denoising Diffusion Probabilistic
Models (DDPM) [12] and [27] are instances of latent variable mod-
els that utilize a denoising autoencoder to progressively convert
Gaussian noise into meaningful signal. Score-based generative mod-
els, as described in [28], [29], and [30], are distinct in their method,
employing a neural network to predict a score function. This score
function is then employed to create samples using Langevin Dy-
namics. Notably, diffusion models have proven to generate image
quality that is either comparable to or exceeds that of Generative
Adversarial Networks (GANs), additionally boasting superior mode
coverage and enhanced stability during learning. Furthermore, the
application of diffusion models in conditional generation has been
investigated, encompassing areas such as class-conditional gener-
ation, guiding the synthesis of images, and enhancing resolution
[30], [8], [6], and [21]. More recent works include that of [2], which
explores image editing guided by text using diffusion models, and
Dhariwal and Nichol [8] who proposed the guidance of classifiers
for the conditional synthesis of images using diffusion models.

3 METHODOLOGY
In the majority of current privacy attacks via gradient [10, 37, 39],
the assumption is that the adversary is an honest but curious
server who has access to both the current FL model and the shared
gradients. Based on this setting, we propose Gradients Diffusion
Guidance Model (GGDM), which utilizes the shared gradients and
FL model on the server as guidance for a pre-trained uncondi-
tional DDPM to generate reconstructed data. Specifically, during
the DDPM sampling process, GGDM employs known gradients to
guide the generation of reconstructed private data. The implemen-
tation detail is depicted in Figure 3.

3.1 Gradient Guided Diffusion Model for Image
Reconstruction

DDPM [12] is used to define a Markov chain where random noise
is gradually introduced to the data, which is referred to as the
forward process. Directly, the forward process starts by sampling a
data point from a real-data distribution 𝑥0 ∼ 𝑞(𝑥), and then adds
Gaussian noise to the sample over T timesteps, as expressed by the

3
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Table 1: Comparison of GGDM with state-of-the-art data leakage attack methods in Federated Learning. The table compares
methods based on data size, network architecture, additional conditions, whether the network is trained, and label requirements.

Method Data size Network architecture Additional Information the network is trained label requirements
DLG [39] 64 × 64 LetNet no no no
iDLG [37] 32 × 32 LetNet no no no
CAFA [14] 32 × 32 LoopNet Batch indices no no
GAIS [13] 64 × 64 ResNet image prior no yes
IG [10] 128 × 128 ResNet Total Variation Norm yes yes

ExAN [34] 224 × 224 FCN Number of Exclusive activated neuron no no
Grad Inversion [34] 224 × 224 ResNet image prior and BN statistics no no repeat

GGDM (ours) 256 × 256 ResNet no yes no

equation:
𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;

√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 ), (1)

where 𝛽𝑡 is a scalar value that controls the amount of noise added
at each timestep. By multiplying the conditional distributions over
all timesteps, we obtain the joint distribution:

𝑞(𝑥1:T |𝑥0) =
T∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1), (2)

this allows us to simulate the forward process and generate syn-
thetic data. A property of the forward process is that we can sample
𝑥𝑡 from 𝑥0 in a closed form:

𝑞(𝑥𝑡 ) =
√
𝛼𝑡𝑥0 + 𝜖

√
1 − 𝛼𝑡 , 𝜖 ∼ N(0, 1), (3)

where 𝛼𝑡 = 1 − 𝛽𝑡 , and 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 .
Generative modeling is achieved by learning the backward pro-

cess, which involves reversing the forward process using a parame-
terized diagonal Gaussian transition given by the equation:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 ), 𝜎2
𝜃
(𝑥𝑡 )I). (4)

For brevity, we adopt the notation 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝜇𝜃 , 𝜎2
𝜃
I), 𝜇𝜃

and𝜎2
𝜃
represent themean and variance of the Gaussian distribution

for each time step, respectively, and are obtained by training a
neural network. This allows us to iteratively apply the backward
process and generate samples from the underlying distribution.

The above formulations describe the unconditional backward
process 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) with the additional guidance signal 𝑦. By uti-
lizing the model probability and Bayes’ formula, we can derive the
expression for 𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) as follows:

𝑝𝜃,𝜙 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) =
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )𝑝𝜙 (𝑥𝑡−1 |𝑦)∑

𝑥𝑡−1 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )𝑝𝜙 (𝑥𝑡−1 |𝑦)
, (5)

The sampling distribution is given by:

𝑝𝜃,𝜙 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) = 𝑍𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )𝑝𝜙 (𝑦 |𝑥𝑡−1), (6)

where 𝑍 is a normalizing constant. Class-guided synthesis was
explored in [19], where 𝑦 was a discrete class label, and 𝑝𝜙 (𝑦 |𝑥𝑡−1)
represented the probability of output 𝑦 given the input 𝑥𝑡−1 at time
𝑡 − 1, with 𝜙 representing the parameters of the probabilistic model.
This probability can be seen as a prediction for the next time step
𝑡 , i.e., the probability of the output being 𝑦 at the next time step,
given the input 𝑥𝑡−1 at the current time step.

Drawing on the principles of this method, we consider a feder-
ated learning scenario where the variable 𝑦 signifies the gradients
shared between the clients and the server. However, in this con-
text, developing a probabilistic interpretation of 𝑝𝜙 (𝑥𝑡−1 |𝑦) can be
both extraneous and computationally burdensome. Therefore, we
propose to define 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) in the following manner:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) =
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )𝑒𝛾 ·sim(𝑥𝑡−1,𝑦)

𝑍 (𝑥𝑡 , 𝑦)
, (7)

Here, the normalization constant 𝑍 (𝑥𝑡 , 𝑦) is defined as:

𝑍 (𝑥𝑡 , 𝑦) =
∑︁
𝑥𝑡−1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )𝑒𝛾 ·sim(𝑥𝑡−1,𝑦) , (8)

where sim(𝑥𝑡−1, 𝑦) signifies a measure of resemblance or correla-
tion between the transformed output 𝑥𝑡−1, which has been altered
to have the same data structure as 𝑦, and the conditioning variable
𝑦. The symbol𝛾 stands as a scaling parameter that can be fine-tuned
and optimized to enhance the quality of the model’s output.

In an effort to derive a more pragmatic and representative ap-
proximation, we propose expanding the expression via a Taylor
series [9], centered around the point where 𝑥𝑡−1 = 𝑥𝑡 :

𝑒𝛾 ·sim(𝑥𝑡−1,𝑦) ≈ 𝑒𝛾 ·sim(𝑥𝑡 ,𝑦)+𝛾 · (𝑥𝑡−1−𝑥𝑡 ) ·∇𝑥𝑡 sim(𝑥𝑡 ,𝑦) . (9)

Subsequently, the ensuing expression can be deduced as follows:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) ∝ 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )𝑒𝛾 · (𝑥𝑡−1−𝑥𝑡 ) ·∇𝑥𝑡 sim(𝑥𝑡 ,𝑦) . (10)

Applying the equation:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) ∝ 𝑒−| |𝑥𝑡−1−𝜇 (𝑥𝑡 ) | |2/2𝜎2
𝑡 , (11)

and utilizing Equation 4, we arrive at the subsequent conditional
probability density function:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) = N(𝑥𝑡−1; 𝜇 + 𝛾Σ𝑔, Σ) . (12)

Here, 𝜇 = 𝜇𝜃 (𝑥𝑡 ), Σ = 𝜎2
𝜃
(𝑥𝑡 )I and 𝑔 = ∇𝑥𝑡 sim(𝑥𝑡 , 𝑦).

Below, we will introduce how gradients similarity can guide a
pre-trained unconditional diffusion model to carry out data recon-
struction attacks, by leveraging known parameters of the federated
learning model and shared update gradients.

3.2 Gradients Guidance
In this section, we delve into the capacity of gradients to mediate
data reconstruction. Prevailing research indicates that the opti-
mization trajectory of a machine learning model during training

4
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is chiefly predicated on the descent gradients of its parameters,
attributes that have a significant bearing on the input data. In the
FL paradigm, numerous clients each hold private data and under-
take local model training, distributing the training process across
the network. This localized training yields a series of parameter
update gradients, which are then dispatched to the server for amal-
gamation and consequent model refinement. A potential adversary,
granted access to these gradients, could exploit them as a conduit
to retrospectively reconstruct the original data.

In a standard supervised image classification training procedure,
the objective is to minimize the following expression using a ma-
chine learning model 𝑓𝑤 , which is parameterized by𝑤 :

min
𝑤

∑︁
(𝑥,𝑐 ) ∈D

L(𝑓𝑤 (𝑥), 𝑐), (13)

in this context, 𝑥 denotes the original data, and the symbol L
stands for a point-wise loss function that quantifies the discrepancy
between the predictions of the model 𝑓𝑤 (𝑥) and the actual labels 𝑐
for all data points (𝑥, 𝑐) ∈ D within the training set.

Clients train models on their personal data and transmit gradient
updates to the server for parameter refinement. One issue that arises
with data reconstruction is that the server endeavors to reconstruct
the original private data from the shared gradients computed by
the clients. The task of reconstructing training image data 𝑥 ∈ Rd
based on its gradients 𝑦 ∈ Rm may be cast as a non-linear problem:

𝑦 = 𝐹𝑤 (𝑥), (14)
where 𝐹𝑤 (𝑥) = ∇𝑤L(𝑓𝑤 (𝑥), 𝑐) is the forward operator responsible
for calculating the gradients of the loss function. With specified
parameters𝑤 and shared gradients 𝑦, our primary objective is to
construct a reconstructed data point, denoted as 𝑥∗. This point is
purposed to minimize a predetermined objective function, outlined
as follows:

𝑥∗ = argmin𝑥 Lgrad (𝐹𝑤 (𝑥), 𝑦), (15)
Within this equation, 𝑥 assigns a synthetic image data point which
is initially generated as a random noise. The function Lgrad (·) is
the distance between 𝐹𝑤 (𝑥) and shared gradients 𝑦. As Lgrad (·)
becomes smaller, the synthetic image data point 𝑥 becomes more
similar to the training image data 𝑥 . Intuitively, this can be refor-
mulated as:

𝑥∗ = argmax𝑥 sim(𝐹𝑤 (𝑥), 𝑦). (16)
In this representation, the symbol sim(·) denotes a similarity func-
tion.

Moving further by incorporating into equation (12), we observe
that within the sampling process of the diffusion model, a particular
similarity function plays a vital role in guiding the sampling process.
Specially, equation (12) is characterized as:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) = N(𝑥𝑡−1; 𝜇 + 𝛾Σ∇𝑥𝑡 sim(𝐹𝑤 (𝑥𝑡 ), 𝑦), Σ) (17)

where 𝜇 = 𝜇𝜃 (𝑥𝑡 ) and Σ = 𝜎2
𝜃
(𝑥𝑡 )I.

Both Figure 3 and Algorithm 1 illustrate the principles of GGDM
reconstruction process. Central to the algorithm are two key ele-
ments. The first one is a parameter 𝛾 of guidance that scales the
effect of the guiding conditions during the sampling process of the
DDPM. The second is a specific similarity function, which stands
as an essential component within the entire schema of GGDM.
SDE guiding the DDPM sampling process. Given that stochastic

differentials can easily lead to gradient explosions during multiple
iterations, we address this issue by employing gradient clipping
combined with scaling parameters, aiming to enhance the quality
of the reconstructed images.

Algorithm 1 Gradients Diffusion Guidance
Input: : gradient 𝑦, scaling parameter 𝛾 .
Given: :

diffusion model(𝜇𝜃 , 𝜎𝜃 ),
Compute current gradient of the Federated Learning model
𝐹𝑤 (·).
similarity function sim(·),

1: 𝑥𝑇 ← sample N(0, I)
2: for each step in sample(𝑡 = 𝑇, ...1, 0) do
3: Compute similarity 𝑠𝑖𝑚 = sim(𝐹𝑤 (𝑥𝑡 ), 𝑦) {with 𝐹𝑤 as some

transformation}
4: 𝜇, Σ← 𝜇𝜃 (𝑥𝑡 ), 𝜎2

𝜃
(𝑥𝑡 )I

5: 𝑥𝑡−1 ← sample from N(𝜇 + 𝛾Σ∇𝑥𝑡 𝑠𝑖𝑚, Σ)
6: end for
7: return 𝑥0

The scaling parameter evidently needs to be adjusted according
to the guiding condition (i.e., the gradient). However, the selection
of the similarity function has a profound effect, which we will
discuss in depth next

3.3 Similarity Function
In data reconstruction tasks, two commonly used loss functions are
Euclidean Distance and Cosine Distance. Consequently, we opted
for two types of similarity measures:
(1) Euclidean Distance similarity:

𝑠𝑖𝑚1 (𝐹𝑤 (𝑥𝑡 ), 𝑦) =
1

1 + ||𝐹𝑤 (𝑥𝑡 ) − 𝑦 | |22
. (18)

(2) Cosine similarity:

𝑠𝑖𝑚2 (𝐹𝑤 (𝑥𝑡 ), 𝑦) =
| |𝐹𝑤 (𝑥𝑡 ) | |22 · | |𝑦 | |

2
2

| |𝐹𝑤 (𝑥𝑡 ) · 𝑦 | |22
. (19)

As we further explore the guiding value, often termed as the
gradient, two distinct characteristics emerge: the norm magnitude
and the direction. When employing Euclidean similarity as the
guiding method, the norm magnitude captures the state of training
and articulates the local optimality of the sampled data with respect
to the current model. Interestingly, for strongly convex functions
[10], the norm could even potentially serve as the upper bound
of the optimization solution [4, 16]. In contrast, the direction of
the gradient powerfully depicts the correlation among various data
points. The angular difference, embodied in the gradient direction,
quantifies the prediction shift at one data point when a gradient
step towards another data point occurs. Hence, in this study, we
have chosen to use Cosine similarity as our preferred similarity
function.
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4 EXPERIMENTS
4.1 Experimental Setups
4.1.1 Implementation details. In our experiments, unless otherwise
specified, we focus on attacking network structures by utilizing
the ResNet-18 [11] variant of the ResNet-18∗ model for image
classification tasks. This model is initialized randomly and it has 17
convolutional layers, one fully connected layer, and also employs
ReLU as the activation function. The convolutional layers have a
kernel size of 3, with the first layer containing 64 output channels.
For our evaluations, we use the validation set from the FFHQ
dataset. The images in this set have been cropped and resized to
a resolution of 256 × 256 pixels for computational efficiency. For
the FL setting, clients execute a single local step with a batch size
of 1 (this also applies when using batch sizes larger than 1). They
then share the updated computed gradients with the server. These
gradients are used to guide the reconstruction of images in our
privacy attack method.

GGDM employs the pre-trained unconditional DDPM [22]. Noise
images are initialized from a Gaussian distribution, beginning with
a learning rate of 10−4. The procedure encompasses 1,000 diffusion
steps and is further bolstered by a cosine noise scheduler. The
scaling parameter 𝛾 , is manually adjusted for each guidance, as
detailed in Sec. 4.3. We set the default scaling factor to 100.

All gradient computations and image reconstructions were exe-
cuted on a single NVIDIA A100 GPU.

4.1.2 Metrics. For a quantitative assessment of target image and
reconstruction similarity, we adopted the following metrics:

• Peak Signal-to-Noise Ratio (PSNR ↑): Determines the
ratio of the maximum squared pixel value to the Mean
Square Error (MSE) between the target and reconstructed
images.

• Structural Similarity Index Measure (SSIM ↑) [36]: A
perceptual metric quantifying the image quality degrada-
tion due to reconstruction.

• Learned Perceptual Image Patch Similarity (LPIPS ↓)
[32]: Computes similarity between target and reconstructed
images using a neural network, typically AlexNet [17].
Lower LPIPS values suggest higher perceptual similarity
between image patches.

4.2 Choice of Similarity Function
We first evaluate the performance differences among various simi-
larity functions in the context of our attack. For this purpose, we
randomly select 10 images from the FFHQ dataset and reconstruct
the data using the ResNet-18∗ network. We focus on two common
types of similarity measures: (1) Euclidean Distance similarity and
(2) Cosine similarity, with further details provided in Section 3.3.
Subsequently, we compute the metrics between each original im-
age and its reconstructed counterpart. The results, as presented in
Table 2, indicate that the cosine similarity function outperforms
the Euclidean Distance similarity in terms of image reconstruction
quality. This observation aligns well with our prior analysis. Thus,
we opted to employ the cosine similarity function in our subsequent
experiments.

Table 2: Compare different similar function

metric PSNR ↑ SSIM ↑ LPIPS ↓
𝑠𝑖𝑚1 14.46 0.47 0.58
𝑠𝑖𝑚2 19.85 0.59 0.38

4.3 Choice of Scaling Parameter (𝛾 )
As indicated in Section 3.2 and Algorithm 1, the scaling parameter
𝛾 serves as a controllable hyperparameter. Adjusting this parameter
has a significant impact on the ability to reconstruct private data
from attacks.

4.3.1 Scaling Parameter 𝛾 across Different Datasets and Networks.
We deeply investigate the influence of the scaling parameter, 𝛾 , on
attack outcomes across diverse network architectures and images
of varying dimensions. In addition to experimenting on the default
network structure and datasets: CIFAR: Image classification with
images cropped to 32×32 pixels. ImageNet: Image classification
with images cropped and subsequently resized to 64×64 pixels. And
a network structure: LeNet-7: Our model is inspired by the LeNet-
7 variant, encompassing 6 convolutional layers and a single fully
connected layer. It uses ReLU as the activation function, and its
convolutional layers have a kernel size of 5, 12 output channels,
and a stride of 1.

As illustrated in Table 3, the choice of the scaling parameter
significantly varies across different FL models and image resolu-
tions. From our observations, as the scaling parameter increases,
the results of the data reconstruction in the privacy attack improve.
However, when the parameter surpasses a certain threshold, the
quality of reconstruction degrades. Within the same network struc-
ture, the impact of the scaling parameter on data of different sizes
remains relatively consistent. We noticed a substantial influence
of the scaling parameter across different network architectures. A
higher scaling parameter enhances the reconstruction accuracy
in the LeNet-7 network, while a lower one yields better results in
ResNet-18∗. This phenomenon can be attributed to the iterative
sampling process in GGDM, where each step is guided by a stochas-
tic differential equation, leading to potential gradient explosions.
To mitigate this, we employed gradient clipping to constrain the
guiding value within the range [-1,1]. Since ResNet is inherently
more complex than LeNet and has more parameters, it implies that
with the same number of sampling steps, a smaller gradient update
is required. Thus, to reach the optimal point, a more substantial
step size, and consequently, a larger value of 𝛾 is necessary. Figure 4
provides a visual representation of the partial data reconstructions
using the optimal scaling parameter for various network structures
and datasets. Consequently, in the subsequent experiments, we set
𝛾 to 100 to attack the ResNet network with the FFHQ dataset.

4.3.2 Scaling Parameter 𝛾 about Generating Process. To study the
effect of the scaling parameter 𝛾 in the process of image generation,
we set 𝛾 to 10, 100, and 200 respectively, and attacked LeNet and
ResNet network structures on the FFHQ dataset. We obtain the
metrics and the similarity at the end of each step of conditional
DDPM sampling, as shown in Figure 5. We find that the setting of
𝛾 has different impacts on each stage of the sampling process.
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Table 3: Comparison of Data Reconstruction Quality with Scaling Parameters across Different Networks and Datasets

𝛾 CIFAR ImageNet FFHQ

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LeNet-7 10 20.22±2.74 0.82±0.08 0.03±0.01 16.34±2.46 0.57±0.17 0.131±0.04 17.73±1.12 0.61±0.06 0.37±0.06
100 30.56±3.93 0.98±0.01 0.001±0.001 30.48±2.78 0.94±0.08 0.007±0.002 29.76±2.25 0.91±0.02 0.06±0.01
200 32.08±2.43 0.98±0.01 0.001±0.001 36.88±5.81 0.98±0.001 0.002± 0.001 31.81±2.59 0.94±0.013 0.037±0.007

ResNet-18∗ 10 16.27±2.23 0.57±0.13 0.05±0.01 14.38±2.32 0.42±0.13 0.33± 0.04 13.72 ±1.69 0.47±0.07 0.54±0.06
100 23.36±2.55 0.91±0.04 0.011±0.003 20.19±2.11 0.66±0.07 0.12±0.03 19.85±1.33 0.59±0.059 0.38±0.06
200 23.08 ± 2.46 0.90±0.04 0.017± 0.002 19.71±2.8 0.63±0.09 0.13±0.03 19.2±1.53 0.45±0.06 0.52±0.04
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Figure 4: Visualization of partial data reconstruction of opti-
mal scaling parameters 𝛾 for different network architectures
and datasets

0 200 400 600 800 1000
(a) similarity over time

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sim
ila

rit
y

0 200 400 600 800 1000
(b) PSNR over time

10

15

20

25

30

PS
NR

0 200 400 600 800 1000
(c) SSIM over time

0.2

0.4

0.6

0.8

SS
IM

0 200 400 600 800 1000
(d) LPIPS over time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LP
IP

S

lenet_10 lenet_100 lenet_200 resnet_10 resnet_100 resnet_200

Figure 5: Variation in Similarity and Metrics during Each
Step of Image Generation across Different Networks with
Respective Scaling Parameter 𝛾

Regardless of the network structure and the setting of 𝛾 , the
PSNR and SSIM metrics always show an upward trend with the
sampling process, while the LPIPS metric always shows a down-
ward trend, indicating that 𝛾 played a guiding role in the generation
process. This observation indicates that when focusing on the same

FL model, the higher the 𝛾 , the result is higher similarity, however,
in the initial stages of DDPM sampling. This indicates that a rela-
tively small 𝛾 provides a relatively small step size, which is more
likely to fall into local optimal solutions in the early stages, while a
relatively large 𝛾 provides a relatively large step size and requires
more steps to find the optimal solution. In addition, if the 𝛾 value
is too small, the guidance effect of 𝛾 on the network is not enough,
leading to a sharp drop in the value of the similarity function in the
later stages of sampling, while a relatively large 𝛾 can still provide
appropriate guidance in the later stages of sampling, keeping the
value of the similarity function rising or preventing the value de-
creasing dramatically. We also notice that in the cases where 𝛾 take
values of 100 and 200, the value of the similarity function at the end
of DDPM sampling is over 0.95. However, a relatively high value
does not necessarily mean that the reconstruction result is good,
which is more obvious in the ResNet network. Although a higher
similarity can be achieved when 𝛾 takes 200, better metrics can be
obtained when 𝛾 is 100. This is because when 𝛾 is too large, exces-
sive guidance is likely to be applied on the sampling at the later
stages of DDPM, leading to additional noise in the reconstructed
image. Fixing the value of 𝛾 , we noticed that the growth rate of the
similarity function value under ResNet is much faster than that un-
der LeNet, as mentioned earlier, which is due to the larger number
of parameters in the ResNet structure.

4.4 Evaluation of initial and trained networks
To verify the generalizability of GGDM, we conduct gradient leak-
age attacks using DDPM on both initial and trained models. When
a network is trained such that the gradients of its loss function L
approach zero for all inputs, the network, theoretically, becomes
nearly indistinguishable from its gradients. However, in practical
scenarios—owing to factors such as stochastic gradient descent,
data augmentation, and limited training epochs—the gradient of an
image rarely reaches an absolute zero. This results in the magnitude
of image gradients in trained networks being significantly lower
than in untrained ones. However, the similarity function described
in 19, which is amplitude-independent, can guide the DDPM in
generating reconstructed data based on minute variations in the
trained gradient. As shown in Table 4, the reconstruction quality
of GGDM for the trained model is slightly lower than that of the
initial model.

4.5 Comparison with state-of-the-art methods
We benchmarked our GGDM against three state-of-the-art methods:
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Table 4: Evaluation of Initial and Trained networks

Trained PSNR ↑ SSIM ↑ LPIPS ↓
Initial 23.36 0.91 0.011

Trained 15.49 0.59 0.11

(1) Deep Leakage from Gradients (DLG) [39]: Utilizes gra-
dient leakage attack with ℓ2 loss and the L-BFGS optimizer.

(2) Improved Deep Leakage from Gradients (iDLG) [37] :
improved DLG attack with label inference;

(3) Inverting Gradients (IG) [10]: Employs gradient leakage
attack using cosine and total variation losses, optimized
with the Adam optimizer.

4.5.1 Attack quality comparison . We conducted the described at-
tacks, Implementations for these attacks were based on the code
repositories shared by the respective authors. For the DLG and
iDLG attack using second-order method, we employed the L-BFGS
optimizer with 2400 iterations. For the first-order IG attack, we
applied the Adam optimizer with an initial learning rate of 0.1,
completing 24000 iterations. It’s noteworthy that the performance
of some methods can vary due to different random seeds. To facil-
itate calculation, we used ImageNet which images were cropped
to 256×256 pixels as attack targets. To address this variability, we
conducted four trials for each attack and selected the one with the
lowest loss as our final output.

As shown in Table 5 and Figure 6, the performance of GGDM is
compared with other gradient leakage attack methods. Visually, the
GGDM method has certain superiority compared to the existing
methods that reconstruct data for privacy attacks under generic
conditions using only gradients. The DLG [39] method shows good
superiority in shallow networks [39] [10]. However, this method
not only relates to the initialized noise images, but when faced
with complex data and a large number of parameters, the DLG
method finds it difficult to converge, causing the attack effect to
worsen. The iDLG [37] method, based on DLG, infers the labels, but
this does not significantly enhance the reconstruction capability
for large data size. The IG [10] method uses the TV norm and the
cosine function, which indeed improves the recovery capability for
large size data. However, since our method is executed on the basis
of DDPM, the advantages of DDPM in image fidelity and recovery
details are exploited, showing good attack effects both visually and
in metrics.

Table 5: Quality comparison of GGDM with state-of-the-art
methods

Method PSNR ↑ SSIM ↑ LPIPS ↓
DLG [39] 7.71 0.018 0.95
iDLG [37] 7.89 0.017 0.92

IG [10] 13.25 0.43 0.83
GGDM(our) 19.85 0.59 0.38

Ground 

Truth

DLG

Ours

iDLG

IG

Figure 6: ImageNet (256×256 pixels) gradient inversion for
ResNet-18∗ visual comparison with state-of-the-art methods,
including DLG [39], iDLG [37], and IG [10].

4.5.2 Attack cost comparison. In the realm of gradient leakage
attacks, the GGDM method distinguishes itself by leveraging a
pre-trained DDPM. Instead of undergoing extensive training, this
approach merely requires guiding the sampling direction through
continual adjustments using the loss function during the DDPM’s
sampling phase. Conversely, the other three methods depend not
only on the distribution of the initial noise image but also require
optimizing the loss function over numerous iterations.

As a result, the efficiency of GGDM significantly surpasses that
of the three alternative models under consideration. For clarity,
executing a gradient leakage attack with GGDM on a single image
takes approximately 288 seconds. Meanwhile, under our experimen-
tal conditions, the times required by DLG, iDLG, and IG are 2006,
2020, and 1467 seconds, respectively. These results underscore the
superior efficacy of GGDM in gradient leakage attacks.

5 CONCLUSION
Federated learning, an important paradigm in distributed learn-
ing, has always been a subject of significant security concerns. In
this study, we propose a learning-free attack approach based on
diffusion models that rely solely on shared gradients to guide the
iterative sampling process of the diffusion model. Through experi-
ments, we validate the effectiveness of this novel attack method,
which fully leverages the superiority of the diffusion model in gen-
erating high fidelity and restoring details. Additionally, the GGDM
method shows strong generalization and feasibility, posing a sig-
nificant threat to privacy protection in federated learning. Our
research is the first to involve privacy attacks based on DDPM,
demonstrating the feasibility of using DDPM for reconstructing
privacy data. In further research, if this work can be extended to
the reconstruction of multimodal data, it will significantly enhance
the threat of privacy attacks in multimodal data tasks. We hope that
this work can raise people’s awareness of gradient security and
prompt the community to reconsider the existing gradient-sharing
schemes.
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Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. Proceedings of Machine Learning and Systems 1 (2019), 374–388.

[4] Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. 2019.
Input similarity from the neural network perspective. Advances in Neural Infor-
mation Processing Systems 32 (2019).

[5] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project adam: Building an efficient and scalable deep learning training sys-
tem. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). 571–582.

[6] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh
Yoon. 2021. Ilvr: Conditioning method for denoising diffusion probabilistic
models. arXiv preprint arXiv:2108.02938 (2021).

[7] Frank H Clarke. 1975. Generalized gradients and applications. Trans. Amer. Math.
Soc. 205 (1975), 247–262.

[8] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on
image synthesis. Advances in Neural Information Processing Systems 34 (2021),
8780–8794.

[9] Wade H Foy. 1976. Position-location solutions by Taylor-series estimation. IEEE
Trans. Aerospace Electron. Systems 2 (1976), 187–194.

[10] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.
2020. Inverting gradients-how easy is it to break privacy in federated learning?
Advances in Neural Information Processing Systems 33 (2020), 16937–16947.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.

[13] Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. 2021. Gradient
inversion with generative image prior. Advances in Neural Information Processing
Systems 34 (2021), 29898–29908.

[14] Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. 2021. Cafe:
Catastrophic data leakage in vertical federated learning. Advances in Neural
Information Processing Systems 34 (2021), 994–1006.

[15] Peter E Kloeden, Eckhard Platen, Peter E Kloeden, and Eckhard Platen. 1992.
Stochastic differential equations. Springer.

[16] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions
via influence functions. In International Conference on Machine Learning. PMLR,
1885–1894.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in Neural Information
Processing Systems 25 (2012).

[18] Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. 2022. Auditing privacy
defenses in federated learning via generative gradient leakage. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10132–
10142.

[19] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan,
Yuxiao Hu, Humphrey Shi, Anna Rohrbach, and Trevor Darrell. 2023. More
control for free! image synthesis with semantic diffusion guidance. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision. 289–299.

[20] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 691–706.

[21] Seonghyeon Nam, Yunji Kim, and Seon Joo Kim. 2018. Text-adaptive generative
adversarial networks: manipulating images with natural language. Advances in
Neural Information Processing Systems 31 (2018).

[22] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising
diffusion probabilistic models. In International Conference on Machine Learning.
PMLR, 8162–8171.

[23] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125 1, 2 (2022), 3.

[24] Leonid I Rudin, Stanley Osher, and Emad Fatemi. 1992. Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 1-4 (1992),
259–268.

[25] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 1310–1321.

[26] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.
Membership inference attacks against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 3–18.

[27] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
International Conference on Machine Learning. PMLR, 2256–2265.

[28] Yang Song and Stefano Ermon. 2019. Generative modeling by estimating gradi-
ents of the data distribution. Advances in Neural Information Processing Systems
32 (2019).

[29] Yang Song and Stefano Ermon. 2020. Improved techniques for training score-
based generative models. Advances in Neural Information Processing Systems 33
(2020), 12438–12448.

[30] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. 2020. Score-based generative modeling through stochastic
differential equations. arXiv preprint arXiv:2011.13456 (2020).

[31] Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang
Liu, Caiwen Ding, and Sanguthevar Rajasekaran. 2020. Sapag: A self-adaptive
privacy attack from gradients. arXiv preprint arXiv:2009.06228 (2020).

[32] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

[33] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy,
Stacey Truex, and Yanzhao Wu. 2020. A framework for evaluating client privacy
leakages in federated learning. In Computer Security–ESORICS 2020: 25th Euro-
pean Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK,
September 14–18, 2020, Proceedings, Part I 25. Springer, 545–566.

[34] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo
Molchanov. 2021. See through gradients: Image batch recovery via gradinver-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 16337–16346.

[35] Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. 2022. A survey
on gradient inversion: Attacks, defenses and future directions. arXiv preprint
arXiv:2206.07284 (2022).

[36] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 586–595.
https://doi.org/10.1109/CVPR.2018.00068

[37] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).

[38] Junyi Zhu and Matthew Blaschko. 2020. R-gap: Recursive gradient attack on
privacy. arXiv preprint arXiv:2010.07733 (2020).

[39] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.
Advances in Neural Information Processing Systems 32 (2019).

9

https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2018.00068

	Abstract
	1 Introduction
	2 Related Work
	2.1 Private Data Reconstruction with FL
	2.2 Image Creation with Diffusion Models

	3 Methodology
	3.1 Gradient Guided Diffusion Model for Image Reconstruction
	3.2 Gradients Guidance 
	3.3 Similarity Function

	4 Experiments
	4.1 Experimental Setups
	4.2 Choice of Similarity Function
	4.3 Choice of Scaling Parameter ()
	4.4 Evaluation of initial and trained networks
	4.5 Comparison with state-of-the-art methods

	5 Conclusion
	References

