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ABSTRACT

Multi-Agent System (MAS) powered by Visual Language Models (VLMs) en-
ables challenging tasks but suffers from a novel failure term, multi-agent visual
hallucination snowballing, where hallucinations are seeded in a single agent and
amplified by following ones due to the over-reliance on textual flow to relay visual
information. Through turn-, layer-, and token-wise attention analyses, we provide
detailed insights into the essence of hallucination snowballing regarding the reduc-
tion of visual attention allocation. It leads us to identify a subset of vision tokens
with a unimodal attention peak in middle layers that best preserve visual evidence
but gradually diminish in deeper agent turns, resulting in the visual hallucination
snowballing in MAS. Thus, we propose ViF, a lightweight, model-agnostic mit-
igation paradigm that relays inter-agent messages with Visual Flow powered by
the selected visual relay tokens and applies attention reallocation to amplify this
pattern. The experiment results demonstrate that our method markedly reduces
hallucination snowballing, consistently improving the performance across eight
benchmarks based on four common MAS structures and ten base models. The
source code will be publicly available.

1 INTRODUCTION

MAS equipped with advanced VLMs are rapidly emerging as a solution for complex tasks, such
as collaborative reasoning, multi-turn instruction following, and sophisticated multi-modal under-
standing, by enabling agents to communicate and collaborate over multiple turns so as to tackle
problems that are intractable for a single model (Cemri et al., 2025; Li et al., 2025b). However, this
collaboration also exposes a fundamental reliability failure due to the problem of multi-agent visual
hallucination snowballing, that is, visual misinterpretations or over-preference to textual messages
in previous agents that are amplified as information flows through subsequent agents, producing
propagatively hallucinated outputs about the visual contents and, ultimately, catastrophic hallucina-
tion snowballing. This introduces new reliability and effectiveness challenges in VLM-based MAS
that can not be addressed by single-agent research.

It is noteworthy that the visual hallucination snowballing phenomenon in MAS is essentially differ-
ent from such problem discussed in the previous works (Zhang et al., 2024b; Zhong et al., 2024),
given that the hallucination snowballing arises from two distinct but interacting mechanisms, as
shown in Figure 1a: (1) intrinsic hallucination, where individual VLM-based agent produces er-
roneous textual descriptions or assertions about visual contents, and (2) hallucination propagation,
where the over-reliance on textual information flow, i.e, the generated text, compresses and se-
lectively emphasizes visual features, allowing surviving hallucinated assertions to be treated as au-
thoritative by downstream agents. Since later agents typically accept prior textual context as strong
evidence, early hallucinations are hence amplified rather than corrected, producing a snowballing
effect across turns. Due to the interaction between these two mechanisms, reducing per-agent hallu-
cination alone, as focused by previous works (Wang et al., 2025; Tang et al., 2025b; Yin et al., 2025;
Li et al., 2025c; Zou et al., 2025; Tang et al., 2025a), cannot fully solve the hallucination propagation
problem, thus failing to prevent multi-agent hallucination snowballing.

To diagnose how multi-agent pipelines lose visual fidelity across turns, we first conduct a set of
preliminary analyses that dissect attention dynamics among turn-wise, layer-wise, and token-wise,
through which we empirically conclude that the hallucination snowballing can be evident by the
reduction of attention allocated to vision tokens over agent turns, as indicated in Figure 1b and
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Agent Turn N Agent Turn N+1 Agent Turn N+2

Hallucination LevelText From Previous Agents
[PRE TXT]

Describe the types of 
food on the plate.

[PRE TXT]

There is a fruit, a dairy 
product, some snacks, 
and a type of meat.

Figure out what kind 
of meat is on the plate.

[PRE TXT]

The meat here is 
marinated pork strips.

Determine if this meal 
is high in salt.

[PRE TXT]

Yes, because marinated 
products often contain 
high levels of salt.

i) Textual Flow (Eixsting Methods) 

ii) Visual Flow (Ours)

 A plate 
of food.

Visual Relay Tokens 

Multi-Agent Hallucination Snowballing Visual Information Relay 

OutputInstructionPropagation

(a) An example of multi-agent hallucination snowballing, and a comparison of visual informa-
tion relay between existing i) textual flow approaches and ii) our proposed visual flow method.
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(b) Maps of average visual attention allocation
across agent turns.
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(c) Relations between visual attention alloca-
tion reduction and hallucination snowballing.

Figure 1: Introduction to the multi-agent visual hallucination snowballing phenomenon: (a) presents
an example illustrating how it happens; (b) and (c) specify the visual attention allocation reduction
in different agent turns, potentially contributing to the occurrence of hallucination snowballing.

Figure 1c. Moreover, vision tokens characterized by unimodal attention peak in middle layers,
as a small but vital subset of all vision tokens, can best preserve vision-specific information and
whose removal most degrades visual understanding, thus being significant for enhancing the visual
information flow among agents. Such a token pattern, however, diminishes in deeper agent turns, im-
plying the gradual dominance of textual information flow, leading to the hallucination snowballing.

Motivated by these insights, we propose an innovative a plug-and-play mitigation strategy for multi-
agent hallucination snowballing dubbed as ViF. Instead of relying solely on textual flows, an addi-
tional visual flow is introduced to relay visual evidence by selecting a subset of visual relay tokens
and being contextualized by previous instructions, then engaging them in the process of following
agents. Such a design can provide downstream agents with preserved visual evidence that resists
visual-to-text information loss, meanwhile preventing textual priors from entirely displacing visual
signals during subsequent agent turns. In addition, an attention reallocation mechanism is introduced
to amplify the ideal attention patterns and preserve visual contributions into deeper agent turns. We
evaluate ViF across eight benchmarks covering both comprehensive and hallucination tasks, demon-
strating its striking effectiveness in alleviating hallucination snowballing in four different structures
and ten base VLMs. Overall, our contributions are summarized as follows:

• We formalize the multi-agent visual hallucination snowballing phenomenon and systemat-
ically link it to visual attention degradation in deeper agent turns.

• We provide extensive analyses that identify a subset of vision tokens that are critical for
relaying visual information flow.

• We introduce ViF, a model-agnostic plug-and-play method that optimizes inter-agent visual
messages with visual flows and an attention reallocation mechanism to augment attention
patterns.

• Comprehensive experiments validate the efficacy of our ViF to reduce hallucination snow-
balling, and additional analyses provide more convincing evidences.
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2 REQUISITE ANALYSES

As mentioned in Section 1, the hallucination snowballing can be presented by the negative correla-
tion with the attention allocation to vision tokens. Quantitatively, as shown in Fig. 1c, the average
attention allocation to vision tokens reduces from 0.165 to 0.099 at the 10th agent turn, and further
to 0.063 at the 20th turn, with a total 62% reduction. Furthermore, the reduction in the middle layer
(-60%) is much more remarkable than that in the first (-21%) and last (-30%) layers. For more thor-
ough understanding, we conduct extensive requisite analyses among various VLMs. For simplicity,
we mainly focus on LLaVA-NeXT-7B (Liu et al., 2024b) on the POPE (Li et al., 2023) benchmark in
the main paper, while Appendix B provides more detailed settings and comprehensive results on six
VLMs to support the generalization ability of our claims, from which several insights are derived,
thus leading to our research motivations.

2.1 ANALYTICAL EXPERIMENTS

Layer-Wise Attention Allocation in Different Agent Turns. To find out the underlying cause of
visual hallucination snowballing in MAS, we begin by measuring the trend of layer-wise attention
allocation among different agent turns. In VLMs with multi-modal architectures, the decoder dy-
namically allocates attention to three types of textual tokens (instruction, system and output tokens)
and one visual token that produced by visual encoder. Other special tokens, such as start and end
signals of visual input, are negligible and thus excluded.
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Figure 2: Layer-wise attention allocation of four tokens in different agent turns.

As depicted in Figure 2, in general, when the agent turns increase, vision tokens receive gradually
decreasing attention in all layers, while the attention being directed towards instruction tokens is
raised accordingly; the attention allocations to system token and output token are relatively stable,
without discernible trend of change. Focusing further on the middle layers of visual and instruction
tokens, which are zoomed in, the opposite trend between visual and instruction tokens is more
pronounced than other layers. In the first agent turn, a scenario equivalent to a single-agent setting,
there exists an obvious unimodal morphology peak in vision attention, and allocation to instruction is
reduced conversely. However, in the 20th turn, the vision attention peak has almost disappeared and
evolved into a fluctuation, and is redistributed to instruction tokens. Based on previous research (Yin
et al., 2025; Zhang et al., 2025c) that textual and visual information are mainly fused and interacted
in these layers, this tendency of attention in MAS suggests that agents in later turns tend to largely
ignore the vision tokens and over-rely on the instruction tokens, including visual contents relayed
by textual output from previous agents. This preference for textual tokens, however, partially leads
to the multi-agent hallucination snowballing. The previous agent may experience visual-to-text
information loss and potential cognitive bias when relaying visual evidence through textual flow.
Conversely, vision tokens, as the initial visual semantic carrier, contain native and unbiased visual
messages, which reduces the potential for hallucinations when relaying visual information. Based
on these observations, we hypothesize: Can a subset of vision tokens, acting as visual flow, directly
relay visual information across agent turns?

Dropping Subsets of Vision Tokens in Different Layers. To intuitively verify the hypothesis,
we ablate specific subsets of vision tokens in shallow/middle/deep layers (implementation modified
from (Zhang et al., 2025b)) and compare the corresponding performance degradation. We choose
five subsets of vision tokens to ablate: (1) Random Tokens: randomly select tokens from the whole
vision token set and maintain a relatively uniform distribution in the image. (2) Inactive Tokens:
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Table 1: Results of dropping vision token subsets in the shallow, middle, and deep layers.

Shallow Layers Middle Layers Deep Layers
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

w/o Dropping 85.2

(a) Random 51.8 ↓33.4 44.5 ↓40.7 38.4 ↓46.8 30.5 ↓54.7 78.9 ↓ 6.3 66.1 ↓19.1 62.7 ↓22.5 59.0 ↓26.2 84.4 ↓0.8 83.2 ↓2.0 82.9 ↓2.3 82.6 ↓2.6
(b) Inactive 55.1 ↓30.1 46.2 ↓39.0 41.8 ↓43.4 32.5 ↓52.7 84.3 ↓ 0.9 82.9 ↓ 2.3 81.5 ↓ 3.7 78.3 ↓ 6.9 85.0 ↓0.2 84.6 ↓0.6 84.3 ↓0.9 84.6 ↓0.6
(c) Rise 41.9 ↓43.3 35.6 ↓49.6 29.6 ↓55.6 20.8 ↓64.4 79.4 ↓ 5.8 64.2 ↓21.0 56.4 ↓28.8 52.3 ↓32.9 83.6 ↓1.6 82.7 ↓2.5 81.8 ↓3.4 81.6 ↓3.6
(d) Fall 41.6 ↓43.6 38.8 ↓46.4 30.7 ↓54.5 22.5 ↓62.7 78.3 ↓ 6.9 64.8 ↓20.4 58.5 ↓26.7 52.9 ↓32.3 84.1 ↓1.1 82.8 ↓2.4 82.0 ↓3.2 82.4 ↓2.8
(e) Unimodal 42.1 ↓43.1 37.6 ↓47.6 30.0 ↓55.2 22.8 ↓62.4 52.9 ↓32.3 44.5 ↓40.7 36.6 ↓48.6 25.3 ↓59.9 84.4 ↓0.8 83.0 ↓2.2 82.3 ↓2.9 81.8 ↓3.4

Is there a streetlight
in the image?

Is there a person in the 
image?

Are there boots in the 
image?

Is there a dog in the 
image?

Are there snowboards 
in the image?

Is there a person taking 
photos in the image?

Figure 4: The demonstrations of selected unimodal vision tokens in various cases.

select the tokens with constantly low attention and tiny fluctuation. (3) Rise Tokens and (4) Fall
Tokens: select tokens allocated with a gradually upward or downward trend of attention. (5) Uni-
modal Tokens: select tokens allocated with an unimodal attention peak. In terms of the unimodal
tokens, we introduce a parameter ω to regulate the salience of the attention peak.
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Figure 3: Performance when dropping different vision to-
ken subsets in middle layers.

As listed in Table 1, the ablation of vi-
sion tokens leads to varying degrees of
performance degradation across layers.
In shallow layers, all vision tokens are
necessary for the visual understanding
capacity; even ablating one-quarter of
the tokens from any subset causes over
a 30% loss. On the contrary, in the deep
layers, vision tokens play an insignif-
icant role, with performance reduction
of less than 1% even when dropping all
inactive vision tokens. Figure 3 further
highlights that, compared to the results
of other subsets, the dropping of uni-
modal tokens in middle layers leads to
more significant performance degradation. Specifically, the decrease from this subset is almost three
times that of other subsets when dropping one-quarter of the tokens, and about twice when dropping
half, three-quarters, and all tokens. In conclusion, the ablation study reveals that in shallow and deep
layers, all vision tokens are almost equally important or unimportant; however, in the middle layers,
vision tokens with unimodal morphology play a much more crucial role in interaction information
between vision and text tokens.

Investigation of Unimodal Tokens. To validate our previous hypothesis that certain vision tokens
can act as a visual flow for relaying visual information, we visualize the unimodal vision tokens
in various cases and track their ratios across agent turns. As demonstrated in Figure 4, we choose
two images, each with three distinct questions, as examples. The selected tokens are highly se-
mantically relevant and contain very few other irrelevant tokens. Besides, as depicted in Figure 5,
the proportion of unimodal vision tokens continuously declines from 1.22% at the first agent turn
to 0.10% at the 20th agent turn, while the percentages of the other two tokens slightly increase.
The downward trend of the unimodal token proportion aligns with visual attention allocation among
agent turns, which suggests that the reduction of unimodal vision tokens contributes significantly
to the onset of hallucination snowballing through the disappearance of the visual attention peak.
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Figure 5: Proportions of vision tokens subsets in different agent turns.

Thus, we believe that
the subset of uni-
modal vision tokens
could meet the hy-
pothesis to relay vi-
sual evidence as vi-
sual flow. It ensures
that semantically rel-
evant visual messages
can be relayed suffi-
ciently, while avoiding carrying substantial irrelevant vision tokens with high efficiency.

2.2 INSIGHTS

Based on experimental results and analyses, three significant insights can be summarized:

• The visual evidence relayed in MAS, which is typically via textual flow, potentially results
in multi-agent hallucination snowballing.

• When the agent turns increase, the average attention allocated to vision tokens reduces,
and the attention peak in middle layers diminishes, while attention to instruction tokens
increases accordingly; system and output tokens receive relatively stable attention.

• In middle layers, vision tokens with unimodal attention allocation relay visual information;
all vision tokens are significant in shallow layers and less significant in deep layers.

3 METHODOLOGIES

Building on the insights from the previous section, we propose a straightforward and efficient model-
agnostic plug-and-play method named ViF to mitigate hallucination snowballing in VLM-based
MAS. As demonstrated in Figure 6, our proposed method involves relaying the visual information
from the previous agent via a selected subset of vision tokens, and reallocating attention in middle
and deep layers to facilitate this process. Besides, we provide a suitable alternative for attention
score based token selection, since in some recently released models with Flash-Attention 2/3 (Dao,
2024), the attention scores are not accessible.

3.1 VISUAL INFORMATION RELAY

Leveraging the previous insights, we employ the unimodal vision tokens as additional visual flow to
relay information from the previous agent. Specifically, we token-wise decompose the vision tokens
V = {v1, . . . , vm} according to the trend of the attention allocation in the middle layers, and select
the vision tokens with unimodal morphology as initial visual relay tokens R = {r1, . . . , rn} ⊂ V ,
where n ≪ m. However, the original selected tokens are semantically irrelevant, which are only
tokenized by the vision encoder, without particular semantics. Thus, we contextualize the initial
visual relay tokens R with the instruction tokens I as follows:

R̂ = f (R⊕ I) [: n] , (1)

where f (·) is a lightweight transformer block (Mehta et al., 2021), ⊕ denotes concatenation. Here,
we extract the former n component to maintain the initial length of visual relay tokens R̂.

To retain the spatial information of visual relay tokens, we apply the same positional encoding
strategy as the previous agent. Then, the visual relay tokens will be transmitted to the subsequent
agent, which will be inserted between the original vision tokens and instruction tokens, and be fed
to the final LLM together with other tokens.

3.2 ATTENTION REALLOCATION

Considering the insights that tokens are of different significance in the shallow, middle, and deep
layers respectively, we reallocate attention to optimize attention patterns. Our objectives are to
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Figure 6: Overview of our proposed ViF, including the generation of visual relay tokens and attention
reallocation to alleviate multi-agent hallucination snowballing.

activate the visual relay tokens and to optimize the distribution of attention among various tokens.
Therefore, we amplify dynamic trends, both the upward and downward, of visual attention in the
middle layers by adding temperature scaling to the Softmax operation in the middle layers:

A = Softmaxτ (S) =
exp

(
s
τ

)∑m
i=1 exp

(
si
τ

) , (2)

where τ is temperature parameter, S and s are attention score matrix and attention score, and A is
attention matrix. It promotes the emergence of vision tokens with unimodal morphology. Besides,
in the middle layers, we collect the attention of inactive vision tokens and instruction tokens, and
then reallocate the collected attention to other vision tokens, which is formulated as:

C = α
∑m

i=1 si ◦Mc,Mc (i, j) = I ((i ∈ T , j ∈ V⊘) ∨ (i ∈ T , j ∈ I)) , (3)

ŝ = s+
s∑l

i=1 si
C ◦Mr,Mr (i, j) = I (i ∈ T , j ∈ V◦) , (4)

where Mc and Mr are the collection and reallocation mask matrices respectively, which designate
the source and destination of the attention reallocation. Besides, α is the reallocation coefficient,
T is the whole token set, V⊘ ⊂ V is inactive vision token set, and V◦ = V − V⊘ = {v1, . . . , vl}.
During the reallocation, the sum of the total attention is always 1. Additionally, in the deep layers,
the reallocation is from vision tokens to instruction tokens, with the same process. Thus, the two
mask matrices and the reallocation coefficient are modified correspondingly.

3.3 ALTERNATIVE OF ATTENTION SCORE BASED STRATEGY

To accelerate the computation and reduce memory, flash-attention (Dao, 2024) mechanisms are
widely used in recently released models, making the attention scores not obtainable. Inspired
by (Wen et al., 2025), we design a Key-Norm (L2 norm of the key matrix) based alternative for the
original attention score based method. More discussions about the alternative are in Appendix C.2.

4 EXPERIMENTS

We conduct experiments on three comprehensive benchmarks: MME (Yin et al., 2024), MM-
Bench (Liu et al., 2024d), MM-Vet (Yu et al., 2024), and five visual hallucanation benchmarks:
CHAIR (Rohrbach et al., 2018), POPE (Li et al., 2023), AMBER (Wang et al., 2023), MMHal-
Bench (Sun et al., 2023), HallBench (Guan et al., 2024). Besides, we also include four bench-
marks in augmented visual domains: MMIU (Meng et al., 2024), MuirBench (Wang et al., 2024a),
MVBench (Li et al., 2024), and Video-MME (Fu et al., 2025). For detailed experimental settings,
configurations, and additional results, please refer to Appendix D.1 and D.2.

4.1 MAIN RESULTS

Performance on Comprehensive and Hallucination Benchmarks. For comprehensive assess-
ments of our proposed ViF, we first compare the results on six base VLMs, namely, LLaVA-v1.5-

6
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Table 2: Results across eight comprehensive and hallucination benchmarks. ∗ indicates implemen-
tation with Key-Norm, while others use attention scores. The best and the second best values with
our method are bolded and underlined respectively, and the rightmost column shows the average
results. For identical values, we compare the following digit after the decimal point.

MAS Base Agent MME↑ MM MM-Vet↑ CHAIR↓ POPE↑ AMBER↑ MMHal- Hall Avg.↑Structure Bench↑ Bench↑ Bench↑

Linear

LLaVA-v1.5-7B 1516.2 66.1 32.4 52.4 86.7 85.2 40.5 48.0
+Ours 1531.8 ↑15.6 67.8 ↑1.7 34.6 ↑2.2 51.7 ↓0.7 88.6 ↑1.9 87.8 ↑2.6 42.8 ↑2.3 50.6 ↑2.6 ↑ 3.5%
LLaVA-v1.6-7B 1511.7 68.7 36.9 45.5 86.7 88.5 43.4 52.6
+Ours 1524.3 ↑12.6 69.4 ↑0.7 38.2 ↑1.3 43.6 ↓1.9 88.2 ↑1.5 91.5 ↑3.0 46.0 ↑2.6 54.7 ↑2.1 ↑ 3.1%
LLaVA-NeXT-7B 1567.0 72.1 47.1 44.6 88.6 87.0 45.9 52.9
+Ours 1585.2 ↑18.2 73.5 ↑1.4 49.3 ↑2.2 42.9 ↓1.7 90.4 ↑1.8 89.3 ↑2.3 48.1 ↑2.2 55.3 ↑2.4 ↑ 3.2%
LLaVA-OV-7B 1587.6 82.3 58.4 38.3 91.4 91.3 47.8 53.7
+Ours∗ 1598.8 ↑11.2 83.4 ↑1.1 59.9 ↑1.5 37.2 ↓1.1 93.0 ↑1.6 93.9 ↑2.6 49.6 ↑1.8 56.1 ↑2.4 ↑ 2.6%
Qwen2-VL-7B 1686.4 81.9 63.3 38.4 90.5 91.2 48.2 51.9
+Ours∗ 1699.6 ↑13.2 82.4 ↑0.5 65.2 ↑1.9 37.8 ↓0.6 91.7 ↑1.2 94.0 ↑2.8 50.2 ↑2.0 54.4 ↑2.5 ↑ 2.4%
Qwen2.5-VL-7B 1730.4 83.9 67.3 38.6 89.9 92.8 51.6 53.8
+Ours∗ 1746.2 ↑15.8 85.3 ↑1.4 69.1 ↑1.8 37.6 ↓1.0 91.4 ↑1.5 94.4 ↑1.6 53.7 ↑2.1 56.2 ↑2.4 ↑ 2.5%

Layered

LLaVA-v1.5-7B 1512.5 63.6 30.6 49.0 86.0 83.5 41.3 46.6
+Ours 1520.9 ↑8.4 64.7 ↑1.1 32.0 ↑1.4 49.3 ↑0.3 87.6 ↑1.6 86.1 ↑2.6 43.7 ↑2.4 48.9 ↑2.3 ↑ 2.7%
LLaVA-v1.6-7B 1508.0 66.6 35.1 44.2 86.8 85.2 42.0 48.2
+Ours 1518.9 ↑10.9 68.4 ↑1.8 37.5 ↑2.4 42.7 ↓1.5 87.9 ↑1.1 87.1 ↑1.9 43.6 ↑1.6 50.4 ↑2.2 ↑ 3.2%
LLaVA-NeXT-7B 1555.2 69.2 44.0 44.2 87.0 85.6 44.7 49.5
+Ours 1571.3 ↑16.1 70.7 ↑1.5 46.5 ↑2.5 42.5 ↓1.7 89.2 ↑2.2 87.7 ↑2.1 47.2 ↑2.5 51.6 ↑2.1 ↑ 3.5%
LLaVA-OV-7B 1584.2 80.6 57.9 37.6 89.9 89.1 45.2 52.7
+Ours∗ 1596.7 ↑12.5 82.0 ↑1.4 59.5 ↑1.6 36.4 ↓1.2 91.5 ↑1.6 90.9 ↑1.8 46.9 ↑1.7 54.5 ↑1.8 ↑ 2.5%
Qwen2-VL-7B 1679.0 79.3 61.5 37.7 88.6 88.5 45.9 49.1
+Ours∗ 1692.6 ↑13.6 80.6 ↑1.3 63.4 ↑1.9 37.1 ↓0.6 90.5 ↑1.9 90.6 ↑2.1 48.1 ↑2.2 50.9 ↑1.8 ↑ 2.5%
Qwen2.5-VL-7B 1722.5 81.0 62.1 36.8 87.5 90.1 47.0 51.2
+Ours∗ 1737.0 ↑14.5 82.4 ↑1.4 63.8 ↑1.7 36.0 ↓0.8 89.6 ↑2.1 91.7 ↑1.6 49.3 ↑2.3 53.2 ↑2.0 ↑ 2.6%

Random

LLaVA-v1.5-7B 1519.6 67.1 33.1 49.4 88.3 89.0 44.6 52.8
+Ours 1537.6 ↑18.0 68.4 ↑1.3 34.7 ↑1.6 49.8 ↑0.4 90.2 ↑1.9 92.2 ↑3.2 47.0 ↑2.4 55.0 ↑2.2 ↑ 2.8%
LLaVA-v1.6-7B 1519.8 69.0 36.9 43.9 88.6 91.3 44.3 54.9
+Ours 1534.4 ↑14.6 69.7 ↑0.7 38.0 ↑1.1 41.8 ↓2.1 89.7 ↑1.1 94.0 ↑2.7 46.8 ↑2.5 57.3 ↑2.4 ↑ 3.1%
LLaVA-NeXT-7B 1576.2 73.0 49.2 43.4 90.4 89.2 47.2 55.4
+Ours 1596.1 ↑19.9 75.3 ↑2.3 50.1 ↑0.9 41.6 ↓1.8 93.0 ↑2.6 92.9 ↑3.7 49.3 ↑2.1 58.4 ↑3.0 ↑ 3.5%
LLaVA-OV-7B 1590.1 83.7 58.5 37.7 92.5 91.9 46.3 56.2
+Ours∗ 1605.2 ↑15.1 85.1 ↑1.4 59.7 ↑1.2 37.1 ↓0.6 94.1 ↑1.6 94.9 ↑3.0 48.5 ↑2.2 59.1 ↑2.9 ↑ 2.6%
Qwen2-VL-7B 1690.1 84.1 64.4 38.1 90.8 92.3 46.5 53.7
+Ours∗ 1703.1 ↑13.0 84.9 ↑0.8 65.2 ↑0.8 37.2 ↓0.9 92.7 ↑1.9 95.4 ↑3.1 48.4 ↑1.9 56.3 ↑2.6 ↑ 2.5%
Qwen2.5-VL-7B 1737.7 86.5 67.0 37.8 90.4 93.6 48.9 56.8
+Ours∗ 1756.8 ↑19.1 88.4 ↑1.9 68.1 ↑1.1 37.0 ↓0.8 92.8 ↑2.4 95.8 ↑2.2 50.6 ↑1.7 59.5 ↑2.7 ↑ 2.5%

Circular

LLaVA-v1.5-7B 1520.9 67.9 33.5 52.7 88.9 88.7 42.4 51.7
+Ours 1539.1 ↑18.2 68.4 ↑0.5 36.0 ↑2.5 51.3 ↓1.4 90.4 ↑1.5 91.6 ↑2.9 44.7 ↑2.3 54.1 ↑2.4 ↑ 3.4%
LLaVA-v1.6-7B 1519.5 69.7 37.7 42.7 88.5 91.2 43.4 53.8
+Ours 1537.1 ↑17.6 71.3 ↑1.6 39.3 ↑1.6 40.7 ↓2.0 90.1 ↑1.6 93.8 ↑2.6 46.0 ↑2.6 56.1 ↑2.3 ↑ 3.5%
LLaVA-NeXT-7B 1580.5 73.2 49.5 43.0 91.0 89.4 47.9 53.1
+Ours 1599.5 ↑19.0 74.6 ↑1.4 51.8 ↑2.3 41.2 ↓1.8 93.3 ↑2.3 92.7 ↑3.3 51.1 ↑3.2 55.7 ↑2.6 ↑ 3.8%
LLaVA-OV-7B 1592.8 84.0 59.1 38.7 92.8 92.2 47.3 54.6
+Ours∗ 1606.1 ↑13.3 84.6 ↑0.6 60.2 ↑1.1 36.9 ↓1.8 94.0 ↑1.2 95.0 ↑2.8 49.4 ↑2.1 56.9 ↑2.3 ↑ 2.7%
Qwen2-VL-7B 1692.8 83.3 63.9 38.1 91.6 92.8 47.7 52.4
+Ours∗ 1706.3 ↑13.5 84.1 ↑0.8 65.1 ↑1.2 37.2 ↓0.9 93.3 ↑1.7 94.8 ↑2.0 50.2 ↑2.5 54.6 ↑2.2 ↑ 2.4%
Qwen2.5-VL-7B 1738.1 85.2 66.7 38.2 91.3 93.5 50.1 54.9
+Ours∗ 1756.2 ↑18.1 86.6 ↑1.4 68.1 ↑1.4 37.4 ↓0.8 93.4 ↑2.1 95.9 ↑2.4 52.5 ↑2.4 57.3 ↑2.4 ↑ 2.6%

Table 3: Results of larger-size models on circular MAS structure.

Base Agent MME↑ MM MM-Vet↑ CHAIR↓ POPE↑ AMBER↑ MMHal- Hall Avg.↑Bench↑ Bench↑ Bench↑
LLaVA-1.5-13B 1528.7 70.2 38.3 40.8 90.0 89.6 44.7 52.9
+Ours 1547.6 ↑18.9 71.1 ↑0.9 40.5 ↑2.2 39.1 ↓1.7 92.4 ↑2.4 92.7 ↑3.1 47.2 ↑2.5 55.3 ↑2.4 ↑ 3.6%
LLaVA-NeXT-13B 1583.5 68.8 42.3 36.0 91.9 92.4 48.2 54.3
+Ours 1602.6 ↑19.1 70.1 ↑1.3 44.5 ↑2.2 34.2 ↓1.8 93.7 ↑1.8 95.4 ↑3.0 50.8 ↑2.6 56.8 ↑2.5 ↑ 3.6%
LLaVA-NeXT-34B 1644.9 78.6 54.6 27.6 91.4 94.1 48.9 55.0
+Ours 1670.8 ↑25.9 80.9 ↑2.3 57.0 ↑2.4 25.4 ↓2.2 93.6 ↑2.2 96.3 ↑2.2 52.4 ↑3.5 57.8 ↑2.8 ↑ 4.4%
Qwen2.5-VL-32B 1886.1 87.4 69.8 24.4 92.5 94.0 52.1 56.9
+Ours∗ 1906.2 ↑20.1 89.2 ↑1.8 71.9 ↑2.1 22.3 ↓2.1 94.0 ↑1.5 96.7 ↑2.7 55.1 ↑3.0 60.1 ↑3.2 ↑ 4.1%

7B (Liu et al., 2024a), LLaVA-v1.6-7B, LLaVA-NeXT-7B (Liu et al., 2024b), LLaVA-OV-7B (Li
et al., 2025a), Qwen2-VL-7B (Wang et al., 2024b), and Qwen2.5-VL-7B (Bai et al., 2025). We
choose four common MAS structures, including linear (Hong et al., 2024), layered (Ishibashi &
Nishimura, 2024), random (Qian et al., 2025), and circular (Qian et al., 2025) structures. As
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Table 4: Results across four augmented visual
benchmarks on circular MAS structure, including
multi-image and video based scenarios.

Base Agent MMIU↑ MuirBench↑ MVBench↑ Video-MME↑ Avg.↑
LLaVA-NeXT-7B 31.6 42.6 49.2 60.4
+Ours 33.9 ↑2.3 44.3 ↑1.7 52.0 ↑2.8 61.9 ↑1.5 ↑4.9
LLaVA-OV-7B 36.9 54.2 56.1 67.8
+Ours∗ 39.6 ↑2.7 55.5 ↑1.3 58.3 ↑2.2 68.8 ↑1.0 ↑3.8
Qwen2-VL-7B 45.5 62.8 69.8 70.6
+Ours∗ 47.7 ↑2.2 64.0 ↑1.2 71.0 ↑1.2 71.7 ↑1.1 ↑2.5
Qwen2.5-VL-7B 47.4 64.0 72.3 73.4
+Ours∗ 49.3 ↑1.9 65.0 ↑1.0 73.6 ↑1.3 74.0 ↑0.6 ↑2.0

Table 5: Evaluations of multi-agent hallucina-
tion snowballing with proposed HS metric.

MAS CHAIR↓ POPE↓ AMBER↓ MMHal- Hall Avg.↓Structure Bench↓ Bench↓

Linear 17.2 25.7 26.8 35.3 40.2
12.4 ↓4.8 16.4 ↓9.3 15.9 ↓10.9 22.6 ↓12.7 24.8 ↓15.4 ↓ 35.8%

Layered 12.7 21.5 20.5 31.6 36.4
10.6 ↓2.1 13.9 ↓7.6 13.1 ↓7.4 19.5 ↓12.1 21.3 ↓15.1 ↓ 33.6%

Circular 18.9 29.1 31.1 40.8 47.4
12.8 ↓6.1 17.0 ↓12.1 17.7 ↓13.4 24.1 ↓16.7 27.8 ↓19.6 ↓ 39.8%

Random 15.5 23.4 23.8 36.8 42.5
10.3 ↓5.2 15.0 ↓8.4 16.4 ↓7.4 21.2 ↓15.6 25.6 ↓16.9 ↓ 36.5%

Table 6: Comparison results of other SOTA methods and ours on LLaVA-NeXT-7B and circular
MAS structure. Orig. represents the original evaluation metric, and HS is our proposed one.

CHAIR POPE AMBER MMHal-Bench HallBench Avg.
Orig.↓ HS↓ Orig.↑ HS↓ Orig.↑ HS↓ Orig.↑ HS↓ Orig.↑ HS↓ Orig.↑ HS↓

Baseline 43.0 18.9 91.0 29.1 89.4 31.1 47.9 40.8 53.1 47.4

MemVR 43.8 ↑0.8 20.6 ↑1.7 90.5 ↓0.5 31.2 ↑2.1 88.9 ↓0.5 34.4 ↑3.3 44.8 ↓3.1 58.6 ↑17.8 49.2 ↓3.9 57.6 ↑10.2 ↓ 2.6% ↑ 18.4%
VISTA 43.4 ↑0.4 19.0 ↑0.1 91.2 ↑0.2 27.8 ↓1.3 90.5 ↑1.1 28.3 ↓2.8 46.3 ↓1.6 47.4 ↑6.6 50.7 ↓2.4 53.3 ↑5.9 ↓ 1.1% ↑ 3.1%
FarSight 42.1 ↓0.9 17.7 ↓1.2 91.9 ↑0.9 22.7 ↓6.4 91.0 ↑1.6 26.6 ↓4.5 47.4 ↓0.5 42.9 ↑2.1 51.9 ↓1.2 52.4 ↑5.0 ↓ 0.5% ↓ 5.4%
DeCo 42.6 ↓0.4 18.2 ↓0.7 91.3 ↑0.3 25.1 ↓4.0 91.6 ↑2.2 24.3 ↓6.8 47.0 ↓0.9 44.1 ↑3.3 50.4 ↓2.7 53.0 ↑5.6 ↓ 1.0% ↓ 3.8%
TAME 42.1 ↓0.9 18.8 ↓0.1 91.4 ↑0.4 22.8 ↓6.3 91.9 ↑2.5 22.7 ↓8.4 46.5 ↓1.4 47.8 ↑7.0 49.9 ↓3.2 53.8 ↑6.4 ↓ 1.6% ↓ 3.7%
Ours 41.2 ↓1.8 12.8 ↓6.1 93.3 ↑2.3 17.0 ↓12.1 92.7 ↑3.3 17.7 ↓13.4 51.1 ↑3.2 24.1 ↓16.7 55.7 ↑2.6 27.8 ↓19.6 ↑ 3.8% ↓ 39.8%

mentioned in Appendix C.1, we primarily follow the multi-agent collaboration strategy with lin-
ear increased context length, allowing the scaling of MAS. As demonstrated in Table 2, our ViF
consistently enhances the average performance of the six baselines by 2.4-3.8%, verifying the com-
patibility of our method on various MAS structures based on arbitrary base VLMs. Notably, on
the MMHal-Bench and HallBench benchmarks, which are more sophisticated and have unsatisfac-
tory baseline performance, our ViF achieves over 4% average improvement. When applied to the
circular structure, which is hallucination-concentrated with densest collaborations and interactions
among agents, our ViF dramatically reduces hallucination snowballing and further improves the
performance by 3% among the six base models, compared to the other three selected structures.

As reported in Table 3, we also analyze the performance of our proposed ViF on the scaled-up
models with higher parameters. It is observed that when equipped with our ViF, the larger base
models featuring more than 30B parameters, e.g., LLaVA-NeXT-34B and Qwen-2.5-VL-32B, ex-
hibit greater enhancement than all smaller ones, improving by more than 4% across all benchmarks.
This indicates that our model-agnostic method effectively improves their comprehensive perfor-
mance, likely because larger-parameter baselines possess stronger fundamental capabilities, and our
approach specifically unlocks their latent potential in multi-agent scenarios.

Performance on Augmented Visual Benchmarks. We include additional four benchmarks of
two augmented visual domains, including two multi-image based benchmarks: MMIU, MuirBench;
video based two benchmarks: MVBench, Video-MME. As presented in Table 4, our ViF method ex-
hibits significant improvements relative to the base models across multi-image and video scenarios.
Specifically, it yields an average 2.0–4.9% performance improvement across the four base models
and four additional benchmarks, demonstrating robust performance in multiple visual scenarios.

Multi-Agent Hallucination Snowballing Mitigation. In addition to the results of original metrics,
we attempt to assess the level of hallucination snowballing in MAS quantitatively. Thus, we formally
define a hallucination snowballing score (HS) as in Equation 7, measuring both the hallucination
level and propagation in MAS. As reported in Table 5, adding our ViF reduces at least 30% HS
score on the average of five hallucination benchmarks, significantly mitigating the hallucination
propagation from the textual flow of visual contents. Notably, the layered structure suffers the
least from the detrimental snowballing, while in circular structure, where the initial hallucination
snowballing is the most serious, the reduction of the score from our method is almost 40%.

Comparison Results. We compare the results of another five model-agnostic and token-wise
hallucination mitigation methodologies in multi-agent contexts, i.e., MemVR (Zou et al., 2025),
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VISTA (Li et al., 2025c), FarSight (Tang et al., 2025b), DeCo (Wang et al., 2025), and TAME (Tang
et al., 2025a). Specifically, we retain the multi-agent experimental settings unchanged and apply
these methodologies to the base model. These counterparts restrict the deepening of intrinsic hal-
lucinations in a single model to some extent, however, in multi-agent scenarios, the propagation of
visual contents via textual flow still introduces a vision-to-text cognitive bias and fails to restrain the
snowballing of multi-agent hallucinations commendably.

As shown in Table 6, our introduced ViF approach achieves distinctly superior performance among
all the benchmarks on both their original metrics and our proposed HS score. It obtains at least 4.2%
enhancements in original metrics and 34.4% in HS score on average, compared to other methods
tailored for single model hallucination mitigation. Although these counterparts are impressively
efficacious in single VLM, their performance is compromised when applied to MAS, because of the
failure to deal with hallucination propagation among agents and further snowballing. Surprisingly,
in MAS environments, the results of these counterparts are even inferior to the baseline, especially
on challenging ones. This counterintuitive observation is likely because they modify the initial
paradigm of decoding or attention in VLMs, but retain the textual flow to relay visual information,
which amplifies the preference for text over vision tokens. Our method, adopting visual flow to relay
information among agents, cuts the HS score almost in half and delivers tangible improvements in
the mitigation of hallucination snowballing.

4.2 ADDITIONAL ANALYSES

Impact of the Number of Agent Turns. To achieve satisfactory completion, typically, MAS ne-
cessitates a greater number of agent turns in more complicated and challenging tasks. However, the
hallucination snowballing effect restricts the multi-turn collaboration among agents, where halluci-
nations are amplified and propagated, leading to suboptimal performance. Therefore, we compare
our ViF with baselines and other counterparts to assess the impact of the number of agent turns.
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Figure 7: Impact of the number of agent turns. In (a) and (b), straight and dashed lines are the results
with or without our ViF on various baselines and circular MAS structure, respectively. (c) and (d)
show the results between other counterparts and our method based on LLaVA-NeXT-7B.

As demonstrated in Figure 7, our method maintains an upward trend in performance as the number
of agent turns increases, while both other contrast methods and baselines experience performance
degradation instead. More precisely, when the agent turn is set to one, which is equivalent to a
single-agent context, ViF exhibits only a marginal improvement over the baselines, and falls behind
some other methods designed for hallucination mitigation in a single model. As the turning trends of
the baselines in Figure 7a and 7b show, the performance begins to deteriorate when the turns are only
increased to 5, and at the 20th turn, their performance is even further less than that of a single agent.
Further compare with other methods as illustrated in Figure 7c and 7d, although hallucinations are
mitigated in early turns to some extent, the hallucination snowballing phenomenon still suffers in
later turns, essentially limiting the multi-agent collaboration and inhibiting the potential of MAS.

Ablation and Sensitivity Analyses. To verify the effectiveness of each component in our ViF, we
perform ablations on the visual relay tokens and the attention reallocation. As reported in Table 7, the
improvement from visual flow to relay information is prominent, and the results are still better than
most comparison methods even when ablating half of the visual relay tokens, showcasing excellent
robustness. The reallocation mechanism further optimizes the attention distribution among different
tokens and activates visual relay tokens, which is beneficial to our designs of visual relay flow.
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Table 8: Efficiency comparison between our ViF and the base models on the circular MAS archi-
tecture. All base models are evaluated in the multi-agent environment to quantify the additional
latency introduced by ViF, including the average latency (seconds), and the average floating point
operations, i.e., FLOPs (T).

Base Agent CHAIR POPE AMBER MMHal-Bench HallBench
Latency↓ FLOPs↓ Latency↓ FLOPs↓ Latency↓ FLOPs↓ Latency↓ FLOPs↓ Latency↓ FLOPs↓

LLaVA-NeXT-7B 3.16 157.3 2.46 103.4 2.79 127.2 3.48 184.0 3.91 248.3
+Ours 3.47 168.5 2.79 115.7 3.10 138.9 3.83 197.6 4.23 260.3

LLaVA-NeXT-13B 5.88 308.5 5.63 279.0 5.93 310.0 6.33 357.4 7.64 386.8
+Ours 6.17 320.6 5.91 289.6 6.25 321.2 6.67 372.8 8.03 399.6

LLaVA-NeXT-34B 8.80 417.2 8.49 387.3 8.61 408.7 9.41 444.1 11.06 478.1
+Ours 9.09 419.1 8.79 398.8 8.92 419.8 9.75 457.7 11.41 493.8

Table 7: Ablation study on LLaVA-NeXT-7B and circular
MAS structure, verifying the effectiveness of visual relay
tokens and attention reallocation.

Setting CHAIR↓ POPE↑ AMBER↑ MMHal- Hall
Bench↓ Bench↓

w/o Relay Token (25%) 41.4 (+0.2) 92.9 (-0.4) 92.3 (-0.4) 50.7 (-0.4) 55.2 (-0.5)
w/o Relay Token (50%) 42.3 (+1.1) 92.0 (-1.3) 91.6 (-1.1) 49.8 (-1.3) 54.8 (-0.9)
w/o Relay Token (75%) 42.6 (+1.4) 91.7 (-1.6) 91.1 (-1.6) 49.1 (-2.0) 54.1 (-1.6)

w/o Reallocation (Middle) 41.7 (+0.5) 92.1 (-1.2) 91.4 (-1.3) 49.9 (-1.2) 54.4 (-1.3)
w/o Reallocation (Deep) 41.4 (+0.2) 92.7 (-0.6) 92.5 (-0.2) 50.9 (-0.2) 55.0 (-0.7)
w/o Reallocation 42.2 (+1.0) 91.9 (-1.4) 91.5 (-1.2) 49.6 (-1.5) 54.2 (-1.5)

Ours 41.2 93.3 92.7 51.1 55.7

Furthermore, as listed in Table 12, 13,
and 14, we conduct an analysis of
the sensitivity of key hyper-parameters,
i.e., the salience threshold ω, the tem-
perature scaling τ , and the reallocation
coefficient α, quantitatively assess their
impact on model performance, and de-
termine a rational set of values.

Efficiency. To assess the inference effi-
ciency, particularly in multi-agent con-
texts, we first compare the time and
computational overheads of our pro-
posed ViF with those of the base mod-
els. As reported in Table 8, our ViF exhibits high efficiency with moderate overheads, incurring an
additional 8.1-13.4% inference latency and 4.8-11.9% computational costs (measured by FLOPs)
over the base model across five selected benchmarks. These extra overheads mainly stem from the
intrinsic components of ViF. Thus, the extra overhead remains stable across base models of varying
scales and exhibits only slightly linear increase. Notably, the additional latency and computation are
even more negligible for larger models, which are less than 4% and 3% on LLaVA-NeXT-34B. Fur-
thermore, as presented in Table 15, the time and computational overhead of our ViF remain efficient
when feeding visual images with varying resolutions and across different agent turns.

5 CONCLUSION

We unveil the phenomenon of multi-agent visual hallucination snowballing existing in MAS, where
subsequent agents progressively amplify errors originating in a single agent through textual infor-
mation flow that relays visual messages. Based on extensive analyses, the essence of hallucination
snowballing lies in a subset of vision tokens with an unimodal attention peak, well-preserving the
visual information, but these tokens gradually diminish with the increase in the agent turns. To al-
leviate this problem, a model-agnostic method named ViF is proposed, which redefines the visual
information flow in MAS. Specifically, we introduce a visual flow to relay visual messages based
on the selected unimodal vision tokens and utilize attention reallocation to optimize this pattern.
Comprehensive experiments indicate that this novel paradigm is effective, robust, and compatible,
paving the way for more efficient inter-agent visual information relay and more sophisticated MAS.

6 REPRODUCIBILITY STATEMENT

We have already elaborated on all the models or algorithms proposed, experimental configurations,
and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
the entire code used in this work has been released.
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7 THE USE OF LARGE LANGUAGE MODELS

We solely use large language models for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.
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APPENDIX

A RELATED WORKS

Visual Hallucination. The tendency of VLMs to generate plausible but non-factual or unsupported
content, i.e., visual hallucination, is well-documented in previous works. A common remedy has
been to retrain or fine-tune models to better align outputs with ground truth (Zhou et al., 2024;
Zhai et al., 2023; Yue et al., 2024), but these solutions often demand extensive training resources
and additional data. Consequently, interest has grown in training-free techniques, including self-
feedback correction (Lee et al., 2024; Yin et al., 2023), leveraging auxiliary models for external
knowledge integration (Yang et al., 2024), and modifying decoding procedures (Wang et al., 2024c;
Zou et al., 2025; Wang et al., 2025; Tang et al., 2025b; Li et al., 2025c; Tang et al., 2025a; Yin
et al., 2025; Liu et al., 2023). In contrast to these papers that focus on a single VLM agent, it is
not sufficient to address the failure mode of hallucination snowballing that emerges in multi-agent
collaboration, which is the core focus of our paper.

Attention in VLM-Based Agents. The hallucination problem of VLMs can be mainly attributed to
and indicated by the attention mechanism. Earlier work found that LVLMs tend to attend to broad,
global image cues and miss prompt-relevant details (Darcet et al., 2024; Gong et al., 2024; An et al.,
2024), a behavior often traced to the Vision Transformer encoder (Alexey, 2020). To address this,
some methods boost attention weights for pertinent image tokens (Liu et al., 2024c), others select
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or filter informative visual features and apply contrastive decoding to suppress hallucinations (Huo
et al., 2025). Our work presents an extensive study on the attention allocation token and layer-wise
analysis to provide a better understanding of how multi-agent pipelines lose visual fidelity during
inference turns. Based on this, we further introduce a novel visual flow to alleviate hallucination
snowballing in multi-agent systems.

B REQUISITE ANALYSES

B.1 SETTINGS

Attention Allocation. In Section 2, we first calculate the attention allocations of four tokens in
different layers among different agent turns. Formally, we first denote the whole token set as T ,
consisting of vision token subset V , instruction token subset I, system token subset S, and output
token subset O. The attention matrix is obtained as Equation 2, and each attention score si,j indicates
the attention from the ith token to the jth token. Thus, the attention allocation of a specific token
type should be the sum of the attention score where the target is this token, which could be calculated
as follows:

Allocationtoken type =
∑
i∈T

∑
j∈T

Al (i, j) ◦Mtoken type =
∑
i∈T

∑
j∈T

si,j , (5)

Mtoken type = I (i ∈ T , j ∈ Ttoken type) (6)

where A denotes the average attention matrix in all attention heads of the lth layer in this context.
The attention allocation of specific tokens explicitly represents the focus in each layer of the model
when understanding the task and outputting the responses.

Dropping Tokens in Certain Layers. To drop subsets of vision tokens in shallow, middle, or
deep layers, we set the hidden states of the subset in specific layers to zero instead of physical
removal, because the latter changes sequence length and disrupts sequence alignment of the attention
mechanism. Moreover, the implementation is mainly modified from (Liu et al., 2024b).

Token Selection. As described in Section 2, we select five subsets of vision tokens, and here we
elaborate on the selection rules for each subset: (1) Random Tokens: we randomly select from all
vision tokens, and limit the number of tokens in the subset to the average number in the other four
subsets. Besides, we re-select the random tokens if the size of the largest connected component of
selected tokens exceeds 10% of the total selected tokens, to avoid selecting centralized tokens that
destroy randomness; (2) Inactive Tokens: we first calculate the average attention value across all lay-
ers for each token, then select tokens whose attention values are below the lower quartile and whose
fluctuation does not exceed 20%; (3) Rise Tokens and (4) Fall Tokens: we select the tokens with
gradually upward or downward attention allocation in the consecutive layers. To filter out insignif-
icant fluctuations and better reflect the overall attention trend of each token, we utilize a tolerance
threshold. When deviations from the trend in the opposite direction do not exceed this threshold,
we still consider it as maintaining the original trend; (5) Unimodal Tokens: we select tokens with
attention allocation of a unimodal distribution, whose peak surpasses the salience threshold ω.

B.2 ADDITIONAL RESULTS

As discussed in Section 2, we use the results of the LLaVA-NeXT-7B (Liu et al., 2024b) model on
POPE (Li et al., 2023) as an example. Here, we provide results of different base VLMs to verify
the generality of our insights and to avoid model-specific conclusions. The token-wise attention
allocations of vision, instruction, system, and output tokens of six common VLMs are demonstrated
in Figure 13; the results of dropping different subsets of vision tokens in the shallow, middle and
deep layers are listed in Table 16; and the proportion of different vision tokens among different agent
turns are demonstrated in Figure 14. These experimental results from the six models are consistent
with the previous conclusions, demonstrating excellent generalization across various models.
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Linear Layered Random Circular

Figure 8: The four structures of MAS in our experiments.

C METHODOLOGIES

C.1 MAS STRUCTURES

Since our proposed ViF primarily centers on the snowballing of visual hallucinations in multi-agent
contexts, we first briefly delineate the MAS structures defined herein. Existing MAS can be primar-
ily categorized into two basic architectures (Guo et al., 2024): the centralized and the decentralized.
The former are function-specialized, involving intricate collaborative workflows or functional divi-
sion mechanisms. To mitigate such uncertainty, we adopt the latter decentralized ones, specifically
incorporating four distributed structures that feature no central agent and a relatively straightforward
structure; all agents are equal in status, save for sequential dependencies within the system. As il-
lustrated in Figure 8, we include four particular sub-structures: linear structure (Hong et al., 2024),
which implements a linear configuration for agent-mediated interactions; layered structure (Ishibashi
& Nishimura, 2024), which comprises multiple hierarchical layers, where agent nodes within the
current layer establish connections exclusively with those in the subsequent layer; random struc-
ture (Qian et al., 2025), which establishes random connections among agent nodes, where each
agent may dynamically decide to redirect to the subsequent node based on current contextual infor-
mation. Notably, this structure features unidirectional paths, thereby failing to ensure that a single
node can reach all other nodes within the network; and circular structure (Qian et al., 2025), which
utilizes fully-connected mesh, ensuring that each agent node can reach any other node in the system
via at least one path. Intuitively, among the four MAS structures, circular ones have the densest
collaborations and interactions among agents, and theoretically, the multi-agent hallucination snow-
balling effects are the most serious. Thus, all the experiments except the main results are conducted
on the circular structure with more obvious visual hallucination snowballing.

Primarily drawing on the multi-agent collaboration framework (Qian et al., 2025), we adopt an
interactive collaboration strategy in our MAS, one anchored in topological ordering of directed
acyclic graphs. This strategy employs a dual-agent multi-round interaction model: within each edge
of the network, in the iterative interaction, adjacent actors are assigned to nodes, and critics are
assigned to edges. Specifically, the preceding actor first requests feedback; the critic then provides
reflective suggestions and requests further refinement; and finally, the subsequent actor generates an
optimized artifact. Through this process, the prior artifact is iteratively refined. Specifically, this
collaboration expand the conventional single agent method to multi-agent environments and reduces
the context length from quadratic growth to linear growth, allowing the collaborative scaling law in
MAS. Consequently, this architectural design is adopted as the core MAS framework in this work.

C.2 ALTERNATIVE OF ATTENTION SCORE BASED STRATEGY

Given that Flash-Attention 2/3 (Dao, 2024) are widely used in the latest VLMs, resulting in attention
scores that are not explicitly stored and are not accessible, we design an alternative token selection
strategy inspired by (Wen et al., 2025). Specifically, we utilize the L2 norm of the key to replace
the attention score, which reflects the feature strength of the token; a higher value of the norm
indicates that the token is relatively more prominent and has more significant semantics. Unlike the
strategy introduced in (Wen et al., 2025), which adopts L1 norm, we choose L2 norm to amplify the
difference between tokens and promote the token selection. Statistically, the overlap of the initially
selected tokens of the two strategies is more than 70%; however, the total amount of the Key-Norm
based strategy is less than that of the other. Thus, we add buffer tokens of initially selected tokens,
which surround the initially selected token of the 3× 3 space.
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Table 9: Results of the attention score based and other alternative strategies on LLaVA-NeXT-7B
and circular MAS structure.

Selection Strategy MME↑ MM MM-Vet↑ CHAIR↓ POPE↑ AMBER↑ MMHal- Hall
Bench↑ Bench↑ Bench↑

Value-Norm 1585.6 (-13.9) 72.3 (-2.3) 49.7 (-2.1) 43.4 (+2.2) 90.5 (-2.8) 90.1 (-2.6) 49.0 (-2.1) 53.6 (-2.1)
Value-Norm (+1 Buffer) 1587.4 (-12.1) 72.6 (-2.0) 49.9 (-1.9) 43.6 (+2.4) 90.6 (-2.7) 90.4 (-2.3) 49.4 (-1.7) 53.9 (-1.8)
Value-Norm (+3 Buffer) 1588.9 (-10.6) 72.7 (-1.9) 50.3 (-1.5) 43.1 (+1.9) 90.8 (-2.5) 90.3 (-2.4) 49.2 (-1.9) 53.9 (-1.8)
Value-Norm (+5 Buffer) 1590.2 (-9.3) 73.4 (-1.2) 50.5 (-1.3) 43.0 (+1.8) 91.1 (-2.2) 90.6 (-2.1) 49.4 (-1.7) 54.1 (-1.6)
Value-Norm (+8 Buffer) 1589.8 (-9.7) 73.3 (-1.3) 50.7 (-1.1) 43.3 (+2.1) 90.9 (-2.4) 90.8 (-1.9) 49.6 (-1.5) 54.4 (-1.3)
Key-Norm 1593.0 (-6.5) 74.0 (-0.6) 51.6 (-0.2) 41.5 (+0.3) 92.9 (-0.4) 92.1 (-0.6) 50.6 (-0.5) 55.1 (-0.6)
Key-Norm (+1 Buffer) 1594.4 (-5.1) 74.2 (-0.4) 51.7 (-0.1) 41.3 (+0.1) 93.1 (-0.2) 92.4 (-0.3) 50.9 (-0.2) 55.4 (-0.3)
Key-Norm (+3 Buffer) 1595.9 (-3.6) 74.3 (-0.3) 51.9 (+0.1) 41.2 (-0.0) 93.1 (-0.2) 92.6 (-0.1) 51.2 (+0.1) 55.5 (-0.2)
Key-Norm (+5 Buffer) 1595.2 (-4.3) 74.3 (-0.3) 51.7 (-0.1) 41.4 (+0.2) 92.8 (-0.5) 92.3 (-0.4) 50.9 (-0.2) 55.6 (-0.1)
Key-Norm (+8 Buffer) 1594.7 (-4.8) 74.4 (-0.2) 51.5 (-0.3) 41.6 (+0.4) 92.9 (-0.4) 92.3 (-0.4) 50.8 (-0.3) 55.4 (-0.3)
Attention Score 1599.5 74.6 51.8 41.2 93.3 92.7 51.1 55.7

Origin Image Attention Score Key-Norm Key-Norm (1 Buffer) Key-Norm (3 Buffer) Key-Norm (5 Buffer) 

Is there a dog in the 
image?

Key-Norm (8 Buffer) 

Is there a person taking 
photos in the image?

Is there a streetlight in 
the image?

Are there boots in the 
image?

Figure 9: Comparisons of selected tokens using the attention scores and other alternative strategies.

To verify the effectiveness of the Key-Norm, we compare it with the attention score based strategy
as well as Value-Norm, which is similar to our alternative. As illustrated in Table 9, we observe
that the Key-Norm based strategies are superior to the Value-Norm based ones. Besides, selecting
by Key-Norm with three buffer tokens almost achieves the same performance as attention scores,
even surpassing them in partial benchmarks. For more intuitive results, we provide the visualization
comparisons of selected tokens based on these strategies from real cases. As visualized in Figure 9,
the initial Key-Norm based selection covers the most visual relay tokens compared to the attention
score based selection; however, the former one is relatively more sparse, losing partially important
visual semantics. Adding buffer tokens is a good solution, which selects the surrounding tokens and
supplements the information of the visual flow. It is worth noting that we add three buffer tokens
when using the alternative strategy in our experiments, thereby balancing accuracy and efficiency.

D EXPERIMENTS

D.1 SETTINGS

Baselines. To verify the generality, we totally adopt ten models covering from 7B to 34B in our
experiments, which are listed as follows:

• LLaVA-v1.5 (Liu et al., 2024a) uses a two-layer MLP to connect image features into the
word embedding space, and we choose the 7B and 13B models, which have 32 and 40
layers in the decoder of the LLM, respectively.
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• LLaVA-v1.6 (Liu et al., 2024b) increases resolution limits for input images with augmented
data. It is the early version of LLaVA-NeXT, which has 32 layers in the LLM.

• LLaVA-NeXT (Liu et al., 2024b) has significant improvements in reasoning, OCR, and
world knowledge, remaining the same structure as LLaVA-v1.6. We include 7B, 13B, and
34B models in our experiments, which have 32, 40, and 60 layers in the decoder.

• LLaVA-OV (Li et al., 2025a) is the most powerful base VLM in the LLaVA family, support-
ing single-image-, multi-image, and video scenes simultaneously. It uses the Qwen2 (Team,
2024) as the LLM, which has 28 layers.

• Qwen2-VL (Wang et al., 2024b) introduces naive dynamic resolution and multi-modal ro-
tary position embedding (M-RoPE), achieving impressive image and video understanding.
Its 7B model has 28 decoder layers.

• Qwen2.5-VL (Bai et al., 2025) compresses the vision tokens with an MLP-based fuser,
aligns M-RoPE and absolute time, and meticulously designs a three-stage training pipeline.
We select the 7B and 32B models with 32 layers of the LLM.

Benchmarks. We evaluate our method on eight widely adopted benchmarks, including three com-
prehensive benchmarks and five hallucination benchmarks, which are presented as follows:

• MME (Yin et al., 2024) is the first comprehensive benchmark and measures the perception
and cognitive abilities of 14 challenging subtasks. Moreover, the metric is the total score
across all the subtasks.

• MMBench (Liu et al., 2024d) consists of multiple-choice questions to assess over twenty
different ability dimensions, offering a hierarchical framework with three levels. During
the assessment, GPT-4 serves as the final judge. In our experiments, we only include the
English subset for evaluation.

• MM-Vet (Yu et al., 2024) is a comprehensive benchmark, which defines six core capacities
and assesses them on complicated visual tasks. It provides a GPT-4 based evaluator for
open-ended outputs.

• CHAIR (Rohrbach et al., 2018) is a captioning hallucination assessment benchmark, com-
paring the objects mentioned in the title with the objects actually existing in the image.
Here, we utilize the CHAIRS metric, calculating the proportion of titles that contain at
least one hallucinatory object.

• POPE (Li et al., 2023) merges several classic visual datasets, and generates binary questions
of the existence of objects. Each image is paired with six questions, and we use the accuracy
metric.

• AMBER (Wang et al., 2023) is tailored to assess both generative and discriminative tasks,
including existence, attribute, and relation hallucination. We follow the AMBER score in
the original paper.

• MMHal-Bench (Sun et al., 2023) is composed of high-quality image-question pairs to mea-
sure the hallucination, and the generated responses are automatically rated by GPT-4.

• HallBench (Guan et al., 2024) is meticulously handcrafted by experienced human experts,
and evaluated by a text-only GPT4-assisted evaluation framework.

• MMIU (Meng et al., 2024) is designed to assess abilities across diverse multi-image
tasks, encompassing 7 types of multi-image relationships, and 11K meticulously curated
multiple-choice questions.

• MuirBench (Wang et al., 2024a) consists of 12 diverse multi-image tasks, utilizing a pair-
wise construction approach. Each standard instance is paired with a minimally semantically
distinct unanswerable variant to ensure reliable assessment.

• MV-Bench (Li et al., 2024) covers 20 challenging video tasks intractable via single frames.
Specifically, it transforms diverse static tasks into dynamic ones enables video tasks requir-
ing a broad spectrum of temporal skills.

• Video-MME (Liu et al., 2024d) is the first full-spectrum benchmark in video analysis,
distinguished by diverse video coverage, comprehensive temporal scope, multi-modal in-
tegration, and expert manual annotations, ensuring precise, reliable model assessment.
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Table 10: Two-stage training details. VLMs utilize various strategies to project vision tokens, such
as MLP-based projectors.

Stage One Stage Two
Pre-Training Instruction Tuning

Modules

Vision Encoder Frozen Frozen
Projector Trainable Trainable
Large Language Model Frozen Trainable
Transformer Block (Ours) Trainable Trainable

Settings

Batch Size 256 256
Learning Rate - 1e-4
MM Learning Rate 5e-4 1e-5
Warmup Ratio 0.05 0.02
Optimizer AdamW (Loshchilov & Hutter, 2019) AdamW (Loshchilov & Hutter, 2019)
Epoch 1 2

Evaluations. For the eight selected benchmarks, we largely follow their original evaluation met-
rics. Besides, to assess the level of hallucination snowballing in multi-agent contexts, we propose a
hallucination snowballing score (HS), which quantifies both the severity and propagation of halluci-
nations. The score could be formulated as follows:

HS =
1

N

N∑
i=1

1

1 + exp(D2 − di)
hi, (7)

where d is the hallucination propagation distance, D and N are the total distance and the number of
agents in the multi-agent system. h represents the severity of hallucination, a centesimal-point scale
score produced by a judge model. Here, we employ GPT-5-20250807 as the judge with the prompt
as shown in the end of this paper. The average score on benchmarks measures the hallucination
snowballing; the deeper and broader the snowballing of the hallucination, the higher the score.

To investigate the sensitivity of hallucination severity assessment, based on external judges, we con-
duct comparative experiments employing Gemini 2.5 Pro (Comanici et al., 2025) as the judge based
on POPE benchmark. We observe that over 94% of data discrepancies fall below 10%, demonstrat-
ing the robustness of judge strategy. In practical applications, it suffices to ensure all comparisons
are conducted under identical judge settings to guarantee the fairness of evaluations.

Implementations. Experiments are conducted on four or eight NVIDIA H20 96G GPUs. The
salience of unimodal morphology ω is 0.3, the temperature scaling τ is 0.8, the reallocation coeffi-
cient α1, α2 in the middle and deep layers are set to 0.1 and 0.3, and the temperature of generation
is set to 1 for MAS. For other configurations of baselines, we refer to the original paper.

Training Pipelines. Our proposed method can be integrated with other base VLMs in MAS to
alleviate the multi-agent hallucination snowballing, requiring only one additional module for visual
relay selection. Following the typical training paradigm, we employ a two-stage training process
including a pre-training stage and instruction tuning stage, as reported in Table 10.

D.2 ADDITIONAL RESULTS

Additional Analyses of Visual Relay Tokens. To further validate the effectiveness of our selected
visual relay tokens in the visual flow, we conduct additional analyses with transformed visual fea-
tures and different combinations of subsets of vision tokens. Specifically, we employ an average
pooling, a two-layer MLP, and a lightweight transformer (Mehta et al., 2021) for visual token com-
pression, respectively. We also adopt object-level visual features (Neo et al., 2025), wherein we uti-
lize an external segmentation model (i.e., SAM2) and incorporate the vision tokens of the predicted
mask to relay visual information. Furthermore, we compare the results of different combinations of
vision token subsets, as defined in Table 1. These additional tokens are randomly selected from the
subsets, with the number of additional selections maintained below that of unimodal tokens.

As presented in Table 11, uniformly compressed visual features fail to relay information among
agents and even exacerbate visual hallucinations due to vision transformation loss, particularly in
complex visual scenarios (e.g., in MMHal-Bench and HallBench benchmarks). Object-level visual
features also yield suboptimal performance, owing to obstacles in external information selection
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Table 11: Results of different transformed visual features or various combinations of subsets of
vision tokens as the visual flow to relay visual information, evaluated on LLaVA-NeXT-7B and cir-
cular structure. Due to the need for external model to obtain object-level visual features, we cannot
calculate the end-to-end latency of this method. “Perf.” indicates the quantitative performance on
the benchmark.

Visual Flow CHAIR POPE AMBER MMHal-Bench HallBench
Perf.↓ Latency↓ Perf.↑ Latency↓ Perf.↑ Latency↓ Perf.↑ Latency↓ Perf.↑ Latency↓

Baseline 43.0 3.16 91.0 2.46 89.4 2.79 47.9 3.48 53.1 3.91
Compressed Visual Features (Pooling) 43.9 3.33 89.6 2.61 89.2 2.95 42.5 3.64 46.7 4.05
Compressed Visual Features (MLP) 42.7 3.40 91.6 2.73 90.4 3.02 44.9 3.77 51.8 4.18
Compressed Visual Features (Transformer) 42.2 3.61 91.9 2.96 91.1 3.27 48.5 3.99 53.3 4.40
Object-level Visual Features 42.5 - 92.3 - 91.8 - 47.2 - 53.4 -

(e) Unimodal + (a) Rise 41.0 3.55 92.7 2.87 92.1 3.20 50.6 3.87 54.8 4.33
(e) Unimodal + (b) Fall 42.0 3.56 92.3 2.89 91.3 3.22 49.7 3.88 53.7 4.34
(e) Unimodal + (a) Rise + (b) Fall 41.3 3.63 93.1 2.94 92.9 3.28 50.3 3.94 54.1 4.40

(e) Unimodal (Ours) 41.2 3.47 93.3 2.79 92.7 3.10 51.1 3.83 55.7 4.23

and the introduction of additional latency. Additionally, unimodal vision tokens, adopted for visual
information relay, do not gain significant benefits from the integration of other vision token subsets,
while incurring extra time and computational overheads.

Correction Capability on Adversarial Visual Inputs. We assess the correction ability of our ViF
in adversarial and noisy scenarios, including injecting edited images and mismatched images. The
former randomly masks the area in the image, and the latter directly inputs mismatched and wrong
image, both of them serve as strong adversarial scenarios. We stochastically inject the adversarial
image in the 2 to 4 agent turns, and assess the performance in the following 5, 10, 15, and 20 agent
turn, respectively.

As depicted in Figure 10, our ViF exhibits superior correction capability over the baseline when
processing noisy and adversarial visual inputs, achieving by dynamically revising visual cognition
across agent turns rather than adhering rigidly to prior outputs. As mentioned earlier, base VLMs
in the multi-agent context tend to over-rely on prior texts to relay erroneous visual information.
Conversely, our proposed visual flow mitigates the propagation and snowballing of hallucinations,
thereby enabling enhanced correction and anti-adversarial capacities.

Combination with Other Hallucination Mitigation Strategies. To further enhance the compati-
bility and applicability of our method, we evaluate the performance of combinations with existing
hallucination mitigation strategies, namely MemVR (Zou et al., 2025), VISTA (Li et al., 2025c),
FarSight (Tang et al., 2025b), DeCo (Wang et al., 2025), and TAME (Tang et al., 2025a). As com-
pared in Figure 11, we observe that most strategies achieve further improvements when combined
with our ViF in multi-agent environments.

Hyper-Parameter Analyses. There are three key hyper-parameters in our proposed method, i.e., the
salience of unimodal morphology ω when selecting visual relay tokens with unimodal distribution,
the temperature scaling τ in Equation 2, and the reallocation coefficient α1 and α2 in Equation 3 of
the middle and deep layers. As listed in Table 12, the lower the ω, the more proportions of visual
tokens would be included; however, excessive visual relay tokens will not bring extra performance
improvement but computation costs. When ω is set to 0.3, the model obtains the best results with
relatively less token overhead. Besides, as shown in Table 13, and Table 14, when τ , α1, α2 are set
to 0.8, 0.1, 0.3, our model exhibits the greatest potential.

Efficiency Analyses. As reported in Table 8, our proposed ViF incurs only marginal additional
computational overhead in respect of average latency and average number of operations. Addition-
ally, as listed in Table 15, the computational overhead of our method remains relatively constant and
exhibits no substantial increase with higher resolutions.

Case Study. As demonstrated in Figure 12, we visualize the generation procedure of the MAS
equipped with our proposed ViF on four selected samples from two benchmarks. We observe that
our method effectively mitigates the snowballing of multi-agent visual hallucinations, thereby en-
hancing overall performance. As shown in Example (b), although the agent outputs incorrect an-
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Figure 10: Analyses of cor-
rection ability on LLaVA-Next-
7B and circular structure when
feeding adversarial visual inputs,
evaluated by POPE benchmark.
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Figure 11: Comparisons of the combination of our proposed ViF
and other hallucination mitigation strategies on LLaVA-Next-7B
and circular structure, evaluated by POPE benchmark. Specifi-
cally, we incorporate five training-free methods, which are seam-
lessly integrated with our approach.

Table 12: Influence of the salience of unimodal
morphology ω on LLaVA-NeXT-7B and circu-
lar MAS structure.

ω
Ratio CHAIR↓ POPE↑ AMBER↑ MMHal- Hall
% Bench↑ Bench↑

0.1 17.6 44.5 90.2 88.6 45.9 52.7
0.2 6.7 42.8 91.5 89.2 49.1 52.8
0.3 2.3 41.2 93.3 92.7 51.1 55.7
0.4 1.3 41.7 92.5 92.0 49.8 54.9
0.5 0.2 42.9 91.1 89.6 47.9 53.0

Table 13: Influence of the temperature
scaling τ on LLaVA-NeXT-7B and circu-
lar MAS structure.

τ CHAIR↓ POPE↑ AMBER↑ MMHal- Hall
Bench↑ Bench↑

0.6 44.1 91.4 90.8 48.2 52.1
0.7 43.0 92.4 91.8 50.3 54.2
0.8 41.2 93.3 92.7 51.1 55.7
0.9 41.0 93.1 92.2 48.9 53.8
1.0 41.7 92.5 91.6 47.7 52.8

Table 14: Influence of the reallocation coeffi-
cient α1 and α2 on LLaVA-NeXT-7B and cir-
cular MAS structure.

α1 α2 CHAIR↓ POPE↑ AMBER↑ MMHal- Hall
Bench↑ Bench↑

0.0 0.2 43.2 89.6 89.1 47.2 47.6
0.0 0.3 42.8 90.0 89.3 47.4 48.2
0.0 0.4 43.0 89.8 89.0 47.1 47.8
0.1 0.2 41.3 93.1 92.6 50.7 55.3
0.1 0.3 41.2 93.3 92.7 51.1 55.7
0.1 0.4 41.8 92.9 92.4 50.5 54.9
0.2 0.2 42.9 90.6 89.2 47.3 48.1
0.2 0.3 43.1 89.8 88.5 46.9 48.0
0.2 0.4 42.9 89.6 88.9 46.5 47.7

swers regarding object detection in the first turn, subsequent turns still accurately identify the per-
ceptual target through visual flow information. Furthermore, as illustrated in Examples (c) and (d),
misunderstandings of visual information in images lead to erroneous semantic outputs in early agent
turns; however, such errors are not propagated throughout the multi-agent procedure via the visual
flow, thus suppressing the snowballing of visual hallucinations.

E LIMITATIONS

Although we conduct experiments on a total of ten models with different sizes, which verifies the
robustness of compatibility of our proposed method, more experiments are still recommended. For
example, the results on smaller size VLMs, e.g., 3B, and also larger baselines, e.g., 72B, could
provide further evidence. Besides, the inclusion of more series of baselines, such as InternVL se-
ries (Chen et al., 2024b;a; Zhu et al., 2025), Llama 3 (Grattafiori et al., 2024), Ovis series (Lu et al.,
2024; 2025), and MiniMCP (Hu et al., 2024), is also beneficial. Furthermore, more effective and
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Table 15: Efficiency comparison between our ViF and the base models on LLaVA-NeXT-7B and
the circular MAS architecture, which are evaluated with different image resolutions. We employ
the original-resolution samples from the CHAIR benchmark and conduct bilinear interpolation to
downsample them to 1/2, 1/4, and 1/8 of the initial resolution.

Base Agent 1/8 Resolution 1/4 Resolution 1/2 Resolution Original Resolution
Latency↓ FLOPs↓ Latency↓ FLOPs↓ Latency↓ FLOPs↓ Latency↓ FLOPs↓

Baseline 1.90 103.5 2.27 120.8 2.69 133.6 3.16 157.3
+Ours 2.17 112.2 2.57 130.0 3.01 143.8 3.47 168.5

Why does the woman have both 
of her hands in the air? Answer 

it and give the rationale.

Is there a toothbrush in the 
image?

Agent Turn 1: There is a cat on the sink, faucets, a 
tissue holder, and a mirror. But there is no toothbrush. 
So the answer is no.
...
Agent Turn 2: There are some small pink and green 
brush-shaped objects, typically found in toothbrush 
cups beside sinks. So the answer is yes.
...
Agent Turn 3: Those upright, rod-like objects matched 
the shape and position of toothbrushes perfectly. So the 
answer is yes.

Agent Turn 1: The woman stands on a basketball court 
with a hoop in front of her, but there is no basketball. 
She is dressed gorgeously and swinging her arms,  she 
is likely dancing in the court.
...
Agent Turn 2: She shot a basketball because raising 
both hands is crucial for generating power and accuracy 
in a jump shot or set shot. 
...
Agent Turn 3: She just shot the basketball because she 
is in the basketball context and the movements of her 
arms indicate a shoot. 

Are all of the cats the same 
color?

Agent Turn 1: There are many cats and they are in 
different colors. 
...
Agent Turn 2: One is orange, two are grey, and two are 
mixed ones, so they are not the same colors.
...
Agent Turn 3: It is confirmed that their coats are 
diverse, so the answer is no.

Do the persons live in this 
house? Answer it and give the 

rationale.

Agent Turn 1: These people were dressed with great 
refinement, and the man on the right holds a sword in 
his hand, possibly a knight of noble birth. The decor of 
the room was exceptionally lavish, perfectly matching 
their attire. So they are likely live in the house.
...
Agent Turn 2: The corridor was arranged with great 
luxury and solemnity. And these people walked straight 
ahead, with general clothing, as if they were on a tour or 
being led, rather than moving about in a familiar house. 
So the people probably don’t live here.
...
Agent Turn 3: Based on the way these people are 
dressed and also their behavior and demeanor, they are 
more like tourists. So they don’t live here.

Example (a) Example (b)

Example (c)

Example (d)

Figure 12: Case study of the results of ViF based on LLaVA-NeXT-7B across MM-Vet and POPE
benchmarks. For clarity, we choose the linear structure and the agent turn is set to 3.

complementary combinations of our ViF with other hallucination mitigation strategies, as well as
more optimal vision token selection, warrant further exploration.
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(a) LLaVA-v1.5-7B
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(b) LLaVA-v1.6-7B
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(c) LLaVA-NeXT-7B
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(d) LLaVA-OV-7B∗
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(e) Qwen2-VL∗
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(f) Qwen2.5-VL∗

Figure 13: Layer-wise attention allocation of six models in different agent turns, and ∗ denotes that
using Key-Norm to replace the attention score.
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Table 16: Results of six VLMs when dropping different selected subsets of vision token in the
shallow, middle, and deep layers.

Shallow Layers Middle Layers Deep Layers
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

w/o Dropping 83.0
(a) Random 49.1 41.3 36.1 28.7 77.3 64.1 60.2 56.2 81.6 81.1 80.6 80.2

LLaVA- (b) Inactive 53.3 44.6 38.9 29.7 82.7 78.9 80.1 76.7 82.8 81.9 82.1 81.7
v1.5-7B (c) Rise 40.1 33.1 27.5 18.4 76.4 62.0 54.5 50.8 81.0 79.3 79.8 80.0

(d) Fall 40.0 36.4 28.2 19.9 75.2 62.5 55.6 50.0 82.4 81.6 81.4 80.6
(e) Unimodal 39.6 35.9 27.9 22.4 51.3 43.1 35.0 22.6 81.6 81.3 80.5 80.9

w/o Dropping 83.3
(a) Random 49.9 42.2 37.2 28.0 77.0 63.6 60.1 58.1 81.8 81.1 80.7 80.9

LLaVA- (b) Inactive 52.1 43.8 39.6 30.5 83.6 82.4 78.6 76.1 82.9 83.1 82.7 82.6
v1.6-7B (c) Rise 39.2 33.8 28.2 18.5 78.9 61.6 54.7 51.2 81.4 80.8 80.4 80.1

(d) Fall 39.6 36.6 28.7 20.2 75.8 62.9 57.5 50.3 82.5 82.4 81.0 81.2
(e) Unimodal 40.9 36.4 28.0 20.9 46.0 42.9 33.9 23.4 82.4 81.6 80.6 80.1

w/o Dropping 85.2
(a) Random 51.8 44.5 38.4 30.5 78.9 66.1 62.7 59.0 84.4 83.2 82.9 82.6

LLaVA- (b) Inactive 55.1 46.2 41.8 32.5 84.3 82.9 81.5 78.3 85.0 84.6 84.3 84.6
NeXT-7B (c) Rise 41.9 35.6 29.6 20.8 79.4 64.2 56.4 52.3 83.6 82.7 81.8 81.6

(d) Fall 41.6 38.8 30.7 22.5 78.3 64.8 58.5 52.9 84.1 82.8 82.0 82.4
(e) Unimodal 42.1 37.6 30.0 22.8 52.9 44.5 36.6 25.3 84.4 83.0 82.3 81.8

w/o Dropping 87.6
(a) Random 52.7 45.1 41.4 33.2 82.4 72.5 66.8 63.7 87.5 86.6 86.2 86.5

LLaVA- (b) Inactive 58.8 46.5 44.9 36.4 83.6 80.2 74.4 67.8 87.7 87.3 87.2 87.0
OneVision-7B (c) Rise 44.7 39.5 31.1 22.4 81.2 65.4 62.4 55.5 87.1 86.8 86.7 86.5

(d) Fall 45.2 42.1 33.9 24.8 82.6 66.1 59.6 53.6 87.2 86.7 86.6 86.4
(e) Unimodal 44.6 41.7 33.8 26.1 53.0 46.2 39.7 27.5 86.8 86.3 86.5 85.7

w/o Dropping 85.9
(a) Random 53.2 44.7 39.8 31.2 79.3 67.1 62.6 59.0 84.8 84.0 83.5 83.0

Qwen2- (b) Inactive 55.5 46.5 42.0 33.5 86.4 83.1 83.2 78.4 85.6 85.4 85.2 85.7
VL-7B (c) Rise 43.2 36.7 29.8 21.2 80.0 64.2 56.5 53.9 85.2 84.8 84.1 83.7

(d) Fall 43.0 40.1 31.6 23.4 78.9 65.5 60.0 52.8 84.4 84.2 84.6 83.9
(e) Unimodal 44.2 39.0 31.0 23.5 53.8 46.0 37.1 25.7 84.5 84.0 83.9 83.4

w/o Dropping 85.6
(a) Random 51.5 44.8 39.2 31.2 80.0 66.3 63.9 59.5 84.4 83.9 83.6 83.4

Qwen2.5 (b) Inactive 56.5 46.3 41.9 33.2 83.7 82.2 80.9 78.2 84.8 84.6 84.7 84.5
VL-7B (c) Rise 42.4 36.6 30.4 20.9 80.3 63.6 55.7 52.5 84.9 83.3 83.2 83.1

(d) Fall 42.7 38.8 31.0 23.0 80.0 64.2 59.0 54.3 84.8 83.9 83.3 82.8
(e) Unimodal 42.1 38.1 30.4 23.1 54.0 44.7 37.0 26.0 85.0 84.8 83.6 83.4
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(c) LLaVA-NeXT-7B
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(d) LLaVA-OV-7B
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(f) Qwen2.5-VL-7B

Figure 14: Proportion of vision tokens subsets of six models in different agent turns.
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Prompt for Evaluating the Severity of Hallucination h

You are a strict visual hallucination judge for vision-language models.

Your job is to evaluate the level of visual hallucination, given:
- 1. The user instruction and corresponding visual inputs.
- 2. The full generated output from the model.
- 3. The ground-truth of the instruction.

You must detect hallucinations and rate their severity on a 0 to 100 scale.

Definitions:
- A "visual hallucination" is: a class of hallucination phenomena in which a vision

-language model, conditioned on real visual inputs, generates visual details
in tasks that are inconsistent with, incorrect about, or entirely fabricated
beyond the given visual content, thereby making its outputs unfaithful to the
visual evidence. We care about hallucinations in both facts and reasoning.

Your tasks:
- 1. Decide whether the generated output contains visual hallucinations. (combining

visual inputs and ground-truth for verification)
- 2. If yes, briefly explain why they are hallucinations.
- 3. Output a SEVERITY score from 0-100 (integer).

Severity guidelines (0-100):
- 0: No hallucination. Fully consistent with references and context.
- 1-20: Very minor issues, local details, or small inaccuracies that do not change

the main conclusion.
- 21-40: Clear but localized hallucinations. The main conclusion is still mostly

correct.
- 41-60: Important hallucinations that significantly affect part of the answer or

core reasoning.
- 61-80: Severe hallucinations. The answer is largely incorrect or misleading.
- 81-100: Extreme hallucinations. The answer is almost entirely fabricated or

contradicts the references.

Output format:
- You MUST output a single valid JSON object with these fields:
- "explanation": short natural language explanation (1-3 sentences, can be empty if

there is no hallucination)
- "severity": integer in [0, 100]

Be concise but precise in your explanation. Do NOT include any text outside the JSON.
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