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ABSTRACT

Clustering is a widely used and powerful machine learning technique, but its ef-
fectiveness is often limited by the need to specify the number of clusters, k, or by
relying on thresholds that implicitly determine k. We introduce k∗means, a novel
clustering algorithm that eliminates the need to set k or any other parameters. In-
stead, it uses the minimum description length principle to automatically determine
the optimal number of clusters, k∗, by splitting and merging clusters while also
optimising the standard k-means objective. We prove that k∗means is guaranteed
to converge and demonstrate experimentally that it significantly outperforms exist-
ing methods in scenarios where k is unknown. We also show that it is accurate in
estimating k, and that empirically its runtime is competitive with existing methods,
and scales well with dataset size.

1 INTRODUCTION

Clustering is a fundamental task in machine learning. As well as allowing data visualisation and
exploration, it is used for several more specific functions in the context of machine learning systems,
such as representation learning Liu et al. (2023a); Niu et al. (2024), federated learning Ma et al. (2023),
exploration in reinforcement learning Wagner & Harmeling (2024), anomaly detection Markovitz
et al. (2020), and has found widespread application in the natural sciences Xu et al. (2025); Kisi et al.
(2025); Meyer et al. (2025); Hebdon et al. (2025). It has also been interwoven with deep learning
feature extraction in the areas of deep clustering Caron et al. (2018); Mahon & Lukasiewicz (2021);
Miklautz et al. (2024); Liu et al. (2023b); Vo et al. (2024) and deep graph clustering Mo et al. (2024);
Fini et al. (2023). Clustering can produce meaningful and interpretable partitions of data, even in the
absence of information often required by other machine learning methods, such as annotated labels.

However, almost all existing clustering algorithms still require some user-set parameters, which
limits their applicability to cases where the user can choose appropriate values. Two common classes
of clustering algorithms are centroid-based and density-based. The former, typified by k-means,
work by finding the optimal location for cluster centre-points (centroids), and then assigning points
to nearby centres. These algorithms generally require the user to specify the number of clusters.
Density-based algorithms aim to locate clusters where the density of points is high. They also require
some threshold(s) to determine what constitutes a high-density region and where to separate them.

In this paper, we design a clustering algorithm that eliminates the need for setting the number of
clusters, tunable thresholds, or any other parameters. Our algorithm, k∗means, extends k-means by
automatically determining the optimal number of clusters, k, using the minimum description length
(MDL) principle. The MDL principle states that the optimum data representation is that containing
the fewest bits. It has been shown to be effective in a number of applied tasks, including complexity
quantification Mahon & Lukasiewicz (2024b); Mahon (2024; 2025) and temporal segmentation
Mahon & Lapata (2024; 2025). k∗means uses MDL by optimising the information-theoretic
objective of minimising the description length of the data under the model. Specifically, this is
quantified as the number of bits required to represent the cluster centroids, and the cluster labels of
each point, which we refer to as the index cost, along with the number of bits needed to represent the
displacement of each point from its centroid, termed the residual cost. Too many clusters creates a
prohibitively high index cost, while too few creates a prohibitively high residual cost, so the objective
guides the model towards a reasonable value of k. We optimise this objective by including in the
model two subclusters of every cluster. The “assign” and “update” steps of k-means are applied to the
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subclusters in the same way as to the main clusters, and the algorithm has the option to split a cluster
into its two subclusters, or to merge two clusters together, if it will reduce the description length.

Despite its simplicity, k-means remains the most widely used clustering algorithm, because it is fast,
provably guaranteed to converge, has just one easily interpretable parameter, and achieves accuracy
competitive with more complicated methods. We aim to maintain these advantages with k∗means.
We provide a proof that k∗means is also guaranteed to converge. Additionally, our experiments
show that k∗means largely maintains the speed and accuracy advantages of k-means. It is as fast or
faster than most other k-agnostic clustering methods, scales well with dataset size, and is close to or
on par with the accuracy of k-means, even when k-means has an oracle for the true value of k. We
also show in synthetic experiments that it can successfully identify k more accurately than existing
methods. Our contributions are summarised as follows:

• We introduce k∗means, an entirely parameter-free clustering algorithm;
• We give a formal proof that k∗means will convergence in finite time;
• We design synthetic data experiments to test whether k∗means can infer the true value of
k, and show that it can with much higher accuracy than existing methods;

• We show experimentally that, with respect to standard clustering metrics, it is more accurate
than all existing methods that do not require setting k, and is as fast as or faster than the
majority of these methods.

The remainder of this paper is organised as follows. Section 2 discusses related work, Section 3
describes the algorithm of k∗means in detail, Section 4 presents experimental results, and finally
Section 5 concludes and summarises.

2 RELATED WORK

Two well-known centroid-based clustering algorithms are k-means, MacQueen (1967); Lloyd (1982)
and Gaussian mixture models (GMMs) Dempster et al. (1977). The former partition data into k clus-
ters by iteratively assigning points to the nearest centroid and updating centroids until convergence,
and the latter which fit a multivariate normal model via expectation maximization. A number of more
complex clustering algorithms are also in widespread use.

Spectral Clustering Ng et al. (2001) transforms data using eigenvectors of a similarity matrix before
applying a clustering algorithm such as k-means. Mean Shift Comaniciu & Meer (2002) discovers
clusters by iteratively shifting points toward areas of higher density until convergence. It does not
require setting k, but does require a bandwidth parameter. Affinity Propagation Frey & Dueck (2007)
identifies exemplars among data points and forms clusters by exchanging messages between pairs of
samples until convergence. Like mean shift, it does not require specifying the number of clusters k,
but instead relies on a preference parameter and a damping factor. A common drawback of both mean
shift and affinity propagation is their quadratic space complexity, which limits scalability. Divisive
hierarchical clustering continues to bifurcate clusters with k-means, k = 2, until a stopping criterion.

DBSCAN Ester et al. (1996) identifies dense regions as clusters by grouping points with many
neighbours, while marking sparse points as noise. OPTICS Ankerst et al. (1999) extends DBSCAN
by ordering points based on reachability distance, allowing it to identify clusters with varying densities.
HDBSCAN Campello et al. (2013) further builds on DBSCAN by introducing a hierarchical clustering
framework that extracts flat clusters based on stability. Although DBSCAN and its variants do not
require specifying the number of clusters, they rely on other parameters—such as eps and min-pts,
which specify the neighbourhood size and the number of points required to form a ‘dense region’.
OPTICS avoids setting eps by computing reachability distances over a range of values, but in its
place introduces a steepness parameter to define cluster boundaries (where the reachability value
decreases faster than this steepness). Tuning these parameters can yield a wide range of values for
the number of predicted clusters (see Appendix A). Thus, without knowledge about the number of
clusters or parameter values, DBSCAN and its derivatives can be difficult to apply effectively.

X-Means Pelleg & Moore (2000) extends k-means by automatically determining the optimal number
of clusters using the Bayesian information criterion (BIC) Schwarz (1978). Our method is similar
to X-Means in two respects: firstly, in that it selects k using an agnostic criterion from probabil-
ity/information theory and secondly in that it considers bifurcating each centroid as the means by
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Table 1: Common clustering algorithms and their required parameters
Algorithm Required Parameters
K-means Number of clusters (k)
Gaussian Mixture Models (GMM) Number of components (k); Covariance type
Spectral Clustering Number of clusters (k); Affinity type
Mean Shift Bandwidth parameter (kernel width)
Affinity Propagation Preference parameter; Damping factor
DBSCAN Neighborhood radius (eps); Minimum points (minpts)
HDBSCAN Minimum cluster size; Minimum samples; Cluster selection eps

X-Means Maximum number of clusters; Minimum number of clusters
Divisive Hierarchical Clustering Stopping criterion
k∗means —

which to explore different values of k. However, there are some important differences between the two
methods. Our method uses MDL as the criterion, whereas X-Means uses BIC. Secondly, our method
does not require the maxK parameter. It can, in principle, return any value of k (although this would
have to be bounded by N ). Thirdly, X-Means operates in two steps, returning a set of possible models
by iteratively using local BIC on each cluster to determine whether it should split, and then using
global BIC to select the best model from this set. This means it needs to run k-means to convergence
multiple times, once for each model. k∗means, in contrast, returns the best model in one stage, by
only splitting when it reduces the MDL, and keeping a pre-initialised pair of sub-centroids for each
cluster, which are updated one step at a time while k is being optimised. This means k∗means only
needs to run k-means to convergence once. Ishioka (2000) uses a very similar method to X-means,
keeping a stack of clusters during training, and sequentially running k-means with k=2 on each.
Again, this is much less efficient than k∗means, which does not need to run multiple models to
convergence. Also similar is Ronen et al. (2022), which splits and merges stochastically during
deep clustering. k-splits, Mohammadi et al. (2022), is a recent algorithm which performs divisive
hierarchical clustering until the inter-centroid distance exceeds a threshold. Clustering applications
often deal with unknown k by training many k-means models with varying values of k, and selecting
that with the lowest BIC Zhang & Li (2014); Lancaster & Camarata (2019); Salmanpour et al. (2022).
Selecting by silhouette score, or the elbow method is also a common approach Alam (2023). Our
experiments (Section 4) find that this is not only much slower than k∗means, as it requires running
many models to convergence, but also less accurate, often severely overestimating k. A summary of
the clustering algorithms discussed in this section and their parameters is presented in Table 1.

3 THE K∗MEANS ALGORITHM

In the exposition and accompanying algorithms of this Section, we use the following notation:
X = {x1, . . . , xN} ⊂ Rm is the data to be clustered, K is the number of clusters, µ ∈ RK×N is the
matrix of mean vectors, C is the partition, µs ∈ RK×2×N is the tensor of sub-centroids, and Cs is
the length K array of binary partitions of each cluster. Indexing notation follows Python-style.

3.1 QUANTIFYING DESCRIPTION LENGTH

The Minimum Description Length (MDL) principle states that the best representation of the data is
the one that can be specified exactly using the fewest number of bits. In k∗means, we quantify a bit
cost for the various components of a clustering model and how they change over training. This allows
k∗means to directly minimise the description length in a single procedure that simultaneously finds
the optimal number of clusters, k∗, and fits a k-means model with k∗ clusters. The bitcost of a data
point x under a clustering model has two parts, the cost of specifying which cluster it belongs to,
which we call the index cost, and the cost of specifying its displacement from that cluster‘s centroid,
which we call the residual cost. The former requires selecting an element of {0, . . . ,K − 1}, thus
taking logK bits. The latter can be approximated, by the Kraft-McMillan inequality, as − log p(x|c),

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

noend 1 K*-means Algorithm
1: procedure K*-MEANS(X)
2: best_cost←∞
3: unimproved_count← 0
4: µ← 1

n

∑n
i=1 xi ▷ where the xis are the constituents of X , i.e. X = {x1, . . . , xn} ⊂ Rm

5: C ← [X] ▷ Python-style notation for an array with a single element, X
6: µs ← [INITSUBCENTROIDS(X)] ▷ sub-centroids are initialised using k++means
7: Cs ← [{x ∈ X : ∥x− µs1∥ < ∥x− µs2∥} , {x ∈ X : ∥x− µs2∥ < ∥x− µs1∥}]
8: while true do
9: µ,C, µs, Cs ← KMEANSSTEP(X,µ,C, µs, Cs) ▷ One assign + update step for both main

centroids/clusters and subcentroids/subclusters.
10: µ,C, µs, Cs, did_split← MAYBESPLIT(X,µ,C, µs, Cs)
11: if ¬did_split then
12: µ,C, µs, Cs ← KMEANSSTEP(X,µ,C, µs, Cs)
13: µ,C, µs, Cs ← MAYBEMERGE(X,µ,C, µs, Cs)

14: cost← MDLCOST(X,µ,C)
15: if cost < best_cost then
16: best_cost← cost
17: unimproved_count← 0
18: else
19: unimproved_count← unimproved_count + 1

20: if unimproved_count = patience then
21: break
22: return µ,C

23: procedure MDLCOST(X,µ,C)
24: d← the dimensionality of X
25: floatprecision← − log of the minimum distance between any values in X

26: floatcost← max(X)−min(X)
floatprecision

27: modelcost← |C|d× floatcost
28: idxcost← |X| log(|C|)
29: c← the sum of the squared distances of every point in X from its assigned centroid
30: residualcost← |X|d log(2π)+c

2
31: return modelcost+ idxcost+ residualcost

where c is the centroid of x’s assigned cluster. We model the cluster distribution as a multivariate
normal distribution with unit variance

p(x|c) = 1

(2π)d/2
exp

(
−1

2
(x− c)T (x− c)

)
⇐⇒ − log p(x|c) = d log 2π + ||x− c||2

2
.

The total cost of the data under the model is the sum of this cost for all data points, plus the cost of
the model itself, which for k clusters, d dimensions and floating point precision m, is kdm bits. (The
precision m is chosen from the data as the smallest value that allows perfect representation.) This is
the quantity minimised by k∗means. Formally, let X be the data to be clustered, Π(X) be the set of
all partitions of X , and |P | be the number of subsets in a partition. The optimal partition P ∗ is

P ∗ = argmin
P∈Π(X)

|P |dm+ |X| log |P |+ 1

2

∑
S∈P

Q(S) , (1)

where Q computes the total sum of squares: Q(X) = |X|VarX and then k∗ = |P ∗|. (Full derivation
is provided in Appendix B).

3.2 MINIMISING DESCRIPTION LENGTH

In this section, we describe the algorithm by which k∗means efficiently optimises Equation (1). For
a more formal exposition, see Algorithm 1. In all algorithm defintions we use Python-style indexing
notation. The familiar Lloyd’s algorithm for k-means alternates between two steps: assign, which
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assigns each point to its nearest centroid, and update, which updates the centroids of each cluster
to the mean of all of its assigned points. As well as the centroids and clusters, k∗means keeps
track of subcentroids and subclusters. Subclusters consist of a partition of each cluster into two, and
subcentroids are the means of all points in each subcluster. These are updated during the update
and assign steps in just the same way as the main clusters and centroids. Essentially, each cluster
has a mini version of k-means happening inside it during training.

k∗means introduces two additional steps, maybe-split and maybe-merge, to the stan-
dard assign-update procedure. After the assign and update steps, the algorithm calls
maybe-split, which uses the subclusters and subcentroids to determine whether any cluster
should be split. If no clusters are split, it proceeds with maybe-merge. In the case of a split, each
constituent subcluster is promoted to a full cluster, and a new set of subclusters and subcentroids is
initialised within each of them, following the k++-means initialisation method Arthur & Vassilvitskii
(2006). If two clusters are merged, their subclusters are discarded, and the clusters themselves are
demoted to become two subclusters inside a new cluster that is their union. k∗means is initialised
with just a single cluster containing all data points (and its two sub-clusters), and then cycles between
assign, update, maybe-split and maybe-merge until the assignments remain unchanged
for a full cycle. (In practice, for speed, we terminate if the cost has improved by < 2 in the past
5 cycles. These are not core parameters of the algorithm, and can easily be omitted, in which the
runtime is ∼30% longer.) In this way, it simultaneously optimises k and the standard k-means
objective, with respect to Equation (1).

Maybe-Split Step This method (Algorithm 2) checks whether each cluster should be split into two.
A naive approach would involve computing Equation (1) for the current parameters and again with
the given cluster replaced with its two subclusters, splitting if the latter is smaller. However, we can
perform a faster, equivalent check by simply measuring the difference in cost. If there are currently k
clusters, splitting would increase the index cost of each point by log(k + 1)− log(k) ≈ 1/(k + 1).
It would also decrease the residual cost by Q(S) − (Q(S1) + Q(S2)), where S is the original
cluster and S1, S2 are its subclusters. To determine whether a split is beneficial, we compute
Q(S)− (Q(S1) +Q(S2)) for every cluster. If any value exceeds 2N/(k + 1), the cluster with the
largest difference is split.

Maybe-Merge Step This method (Algorithm 3) checks whether a pair of clusters should be
merged. To avoid the time taken to compare every pair, we compare only the closest pair of centroids.
Analogously to maybe-split, the potential change from merging is 1

2 (Q(S)−(Q(S1)+Q(S2)))−
N/k, where S1 and S2 are the two clusters with the closest centroids, and S = S1 ∪ S2. If this value
is positive, then S1 and S2 are merged, and become the new subclusters inside the new cluster S.

Formal Proofs We prove in Appendix C that k∗means is guaranteed to converge in finite time.
This is an extension of the proof of convergence for k-means, and uses the fact that all four of the
steps at each cycle–assign, update, maybe-split, and maybe-merge–can only decrease
the cost function in (1). In Appendix D we also prove a lower bound on performance of k∗means.
We show that all k centroids will be within ϵ of their true values, with probability at least p, as long as

d >

√
1 + ϵ2 − (ϵ2/2− 1)e−ϵ2/2

1− e−ϵ2/2 − k
√
p

+ ϵ .

4 EXPERIMENTAL EVALUATION

We evaluate our clustering algorithm with three sets of experiments. Firstly, we use synthetic data
where we control the true number of clusters and test whether the algorithm can correctly identify
this true number. Secondly, we measure performance on labelled data, and compare the predicted
cluster labels to the true class labels using supervised clustering metrics. Thirdly, we examine the
runtime as a function of dataset size, and show that it scales well compared to existing methods.

4.1 SYNTHETIC DATA

For a range of values of k, we first use Bridson sampling to sample k centroids in R2 near the
origin with a minimum inter-point distance of d. Then we sample 1000/k points from a multivariate
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noend 2 Maybe-Split Procedure
1: procedure MAYBESPLIT(X,µ,C, µs, Cs)
2: best_costchange← MDLCOST(X,µ,C)
3: split_at← −1
4: for i ∈ {0, . . . , |µ|} do
5: subc1, subc2← Cs[i]
6: submu1, submu2← µs[i]
7: costchange = +

∑
x∈submu1(x − subc1)2 +∑

x∈submu2(x−subc2)2−
∑

x∈C[i](x−µ[i])2+ |X|/(|µ|+
1)

8: if costchange < best_costchange then
9: best_costchange← costchange

10: split_at← i

11: if best_costchange < 0 then
12: µ← SPLIT(µ, µs, split_at)
13: C ← SPLIT(C,Cs, split_at)
14: new ← INITSUBCENTROIDS(µs[split_at])
15: µs ← µs[: split_at] + new + µs[split_at :]
16: return µ,C, µs, Cs, split_at ≥ 0

17: procedure SPLIT(A,As, split_at)
18: A← A[: split_at] +As[split_at] +A[split_at :]

noend 3 Maybe-Merge Proce-
dure

1: procedure MAYBE-
MERGE(X,µ,C, µs, Cs)

2: i1, i2 ← the indices of the
closest pair of centroids

3: Z ← C[i1] ∪ C[i2]
4: mmerged ← 1

|Z|
∑

x∈Z x

5: mainQ ←
∑

z∈Z(z −
mmerged)

2

6: subcQ ←
∑

x∈C[i1]
(x −

µ[i1])
2 +

∑
x∈C[i2]

(x− µ[i2])
2

7: costchange ← mainQ −
subcQ−N/|µ|

8: if costchange < 0 then
9: C ← C with C[i1] re-

placed with Z and C[i2] removed
10: µ ← µ with µ[i1] re-

placed with mmerged and µ[i2] re-
moved

11: return µ,C

Figure 1: Synthetic data of standard, multivariate Normal clusters, with varying degrees of separation.
Left: weak separation, inter-centroid distance constrained to ≥ 2, k∗means is 9% accurate in
inferring k and baselines are ≤4.4%. Middle: inter-centroid distance constrained to ≥ 3, k∗means
is 25% accurate in inferring k and baselines are ≤16%. Right: strong separation, inter-centroid
distance constrained to ≥ 5, k∗means is 99% accurate in inferring k and baselines are ≤57%.

normal distribution, with unit variance, centred at each centroid. Examples of this synthetic data
with varying d are shown in Figure 1. We then run k∗means, and comparison methods, on these
1,000 points and compare the number of clusters it finds to k. We repeat this 10 times each for each
(k, d) ∈ {1, . . . , 50} × {2, 3, 4, 5}. For each value of d, there are 10 examples each of 50 different
values of k. We compute the accuracy, i.e fraction of these 500 examples with perfectly correct
prediction of k, and also the mean squared error (MSE) from the predicted k to the true k.

Table 2 presents the results. As can be seen, k∗means consistently outperforms the baseline
algorithms in inferring the value of k. Unsurprisingly, its performance improves as the distance
between centroids increases, and notably, the accuracy gap between k∗means and the baselines
also widens under these conditions. k∗means reaches near perfect accuracy in the highly separable
setting, c.f. the next highest of HDBSCAN at 58%. Appendix E shows the same experiment with
variances that differs by cluster. Figure 1 contains visualisations of the predictions of k∗means.

4.2 LABELLED DATASETS

We evaluate k∗means on six datasets spanning multiple modalities. MNIST and USPS both consist
of handwritten digit images from 0–9, Imagenette Howard & Gugger (2019) is a subset of ImageNet
with ten image classes, Speech Commands consists of short spoken words for command recognition
in 36 classes, 20 NewsGroups is a dataset of text documents across twenty topics, and MSRVTT

6
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Table 2: Performance predicting number of clusters in synthetic data for varying degrees of cluster
separation. k∗means performs consistently the best, with near perfect accuracy when d = 5.

mse acc

k∗means dbscan hdbscan xmeans k-elb k∗means dbscan hdbscan xmeans k-elb

synthetic d=2 306.35 126.10 414.73 721.54 266.0 9.00 4.40 4.00 3.80 7.80
synthetic d=3 81.70 252.41 116.35 681.97 296.0 25.40 5.40 7.80 16.00 13.40
synthetic d=4 1.94 244.28 28.34 630.13 274.0 68.00 7.60 21.40 22.20 20.10
synthetic d=5 0.00 238.18 12.83 623.99 274.0 99.80 6.60 57.60 25.40 20.90

consists of video clips paired with natural language captions in 20 categories. For all datasets,
we dimensionally reduce with UMAP McInnes et al. (2018) (min-dist=0, n-neighbours=10). For
ImageNet we first apply CLIP Radford et al. (2021) and for 20 Newsgroups we first take features
from Llama-3.1 Touvron et al. (2023) (mean across all tokens). For MSRVTT, we first take CLIP
features of both the video and text (mean across all frames and tokens). As well as tracking the
predicted number of classes, we assess partition quality by comparing to the ground truth partition
arising from the class labels using three metrics: clustering accuracy (ACC), adjusted rand index
(ARI), and normalised mutual information (NMI), as defined, in Mahon & Lukasiewicz (2024a).

As baselines for clustering with unknown k, we compare to the following: affinity propaga-
tion (damping factor = 0.5), mean shift (bandwidth = median of pairwise distances), DBSCAN
(eps=0.5, min-samples = 5), HDBSCAN (eps=0.5, min-samples = 5), OPTICS, (ξ = 0.05,
min-samples=5), XMeans (kmax=

√
dataset size), divisive hierarchical clustering (DivHier) us-

ing silhouette score as stopping criterion for splitting, and the elbow-method with k-means up to
k = 200, computed using the public kneed library1. These methods are all described in Section 2
(see also Table 1). For XMeans, in the absence of any guidance on selecting kmax, we select it in
this way because it is the value at which the information content is roughly equal between the index
cost and the residual cost. All other parameter values are the sci-kit learn2 defaults.

Our results are summarised in Table 3. k∗means consistently outperforms all other methods that do
not require setting k. Meanshift and DBSCAN tend to underestimate k, while affinity propagation,
HDBSCAN, XMeans, and OPTICS tend to overestimate it, often by a factor of 10 or more. k∗means,
on average, slightly underestimates k, but is much closer than existing methods. It is also much more
accurate with respect to the clustering metrics, on some datasets (MNIST, USPS) even performing on
par with k-means and GMM, which have the true value of k specified.

Occasionally (20-NG, MSRVTT), one of the existing methods gets a high NMI score. However, we
observe that they also vastly overpredict k in these cases, which means that there are very different
numbers of classes in the true and predicted partitions. This can cause NMI to give unreliable results
as the entropy in the latter is then unnaturally high. For existing methods, it is quite likely that one
could obtain better results by manually tuning the parameters. We find that it is possible to get almost
any value of k by such tuning (see Appendix A), but the focus of the present paper is on cases in
which the user does not know the true value of k. In other words, they do not have a ground truth
against which to tune these parameters, and instead have to use the defaults. Table 3 shows that
k∗means is a much better choice in such cases.

Comparison to Sweeping k A common approach when clustering with unknown k is to train k-
means models with multiple values of k, compute some external model-selection criterion, commonly
the Bayesian information criterion Schwarz (1978) for each, and select whichever k gives the lowest
BIC Wessman et al. (2012); Zhang & Li (2014); Lancaster & Camarata (2019); Salmanpour et al.
(2022). Table 4 shows the performance of this common approach compared to k∗means. As we are
simulating the scenario in which there is no knowledge of k, we sweep in increments of 10% up to
the dataset size. Sweeping plus BIC selection tends to favour very high values of k, generally 4-5x
the number of annotated classes. It is also between 10 and 50x slower than k∗means.

Runtime Analysis The runtimes from Table 3 already give an indication of the speed of k∗means
compared with existing methods. To examine this further, and in particular how it depends on dataset
size, we use subsets of varying size from the largest of the datasets from Table 3: Speech Commands

1https://pypi.org/project/kneed/
2https://scikit-learn.org/stable/
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Table 3: Accuracy on labelled datasets, using supervised metrics. Both with respect to predicting the number
of clusters, k, and the accuracy with respect to the class labels, (ACC, NMI and ARI), k∗means significantly
outperforms all existing models that do not know the true number of clusters. As an upper-bound, we include
results from two standard clustering models that do know k, k-means and GMM. k∗means performs very close
or even equivalent to these upper bounds, despite not having k or any other parameter, specified. ’-1’ indicates
the algorithm still had not converged after 10hrs.

ACC ARI NMI k
Num

Outliers Runtime (s)

affinity -1.00 -1.00 -1.00 -1.00 0 36000+
meanshift 77.23 63.42 80.28 7.00 0 463.39
DBSCAN 68.75 54.84 77.66 6.00 1 2.95
HDBSCAN 79.73 84.84 70.70 1214.00 11190 46.24 (0.79)

MNIST
domain = images

n classes = 10 xmeans 40.89 (4.75) 34.77 (4.70) 64.74 (2.25) 118.80 (23.59) 0 16.40 (6.41)
elbow 87.24 (7.0176) 80.06 (8.3068) 85.37 (2.9301) 10.60 (1.1738) 0.00 (0.0000) 210.18 (12.0703)
DPMM 55.37 (0.4706) 44.97 (0.5174) 73.29 (0.1056) 35.20 (0.6325) 0.00 (0.0000) 53.99 (0.7465)
DivHier -1.00 -1.00 -1.00 -1.00 0 36000+
k∗means 91.26 (3.56) 84.99 (2.97) 87.44 (1.14) 10.90 (0.32) 0 3.38 (0.39)
kmeans 84.12 (8.13) 79.64 (6.92) 85.31 (2.73) 10.00 0 0.09 (0.05)
GMM 86.29 (7.05) 82.61 (6.89) 87.41 (2.74) 10.00 0 0.78 (0.26)

affinity 61.29 49.37 75.94 25.00 0 148.15
meanshift 74.55 63.88 78.03 6.00 0 27.93
DBSCAN 80.46 71.00 83.51 7.00 0 0.13
HDBSCAN 77.49 82.16 79.09 108.00 829 0.80 (0.01)
xmeans 55.12 (5.03) 46.09 (4.23) 73.27 (1.71) 41.00 (8.12) 0 1.00 (0.43)
elbow 79.81 (7.8221) 71.20 (8.8348) 82.96 (3.8259) 7.00 (0.8165) 0.00 (0.0000) 11.43 (0.4058)
CRP 19.58 (0.4476) 6.54 (0.7680) 15.94 (1.3542) 13.60 (1.7127) 0.00 (0.0000) 298.26 (41.8577)
DPMM 88.59 (0.0594) 79.12 (0.0251) 86.76 (0.0182) 12.00 (0.0000) 0.00 (0.0000) 2.68 (0.3649)
DivHier 88.11 (0.0000) 80.27 (0.0000) 86.13 (0.0000) 8.00 (0.0000) 0.00 (0.0000) 31.79 (2.3307)
k∗means 88.68 (0.00) 81.57 (0.00) 87.14 (0.00) 8.00 (0.00) 0 0.80 (0.26)
kmeans 79.72 (8.15) 78.68 (6.66) 86.41 (2.12) 10.00 0 0.03 (0.03)
GMM 81.72 (6.76) 80.27 (5.68) 86.84 (1.82) 10.00 0 0.11 (0.01)

affinity 41.49 27.73 57.58 46.00 0 233.19
meanshift 55.98 36.05 58.67 6.00 0 103.31
DBSCAN 26.09 3.70 22.00 3.00 1 0.22
HDBSCAN 51.62 46.01 55.52 402.00 4193 1.09 (0.02)

Imagenet
(subset)

domain = images
n classes = 10 xmeans 39.21 (3.19) 25.53 (3.03) 55.92 (0.88) 70.00 (8.54) 0 2.76 (0.68)

elbow 70.14 (3.9311) 51.53 (3.4313) 62.68 (2.1283) 7.90 (0.8756) 0.00 (0.0000) 23.85 (7.1662)
CRP 11.27 (0.1030) 0.00 (0.0072) 0.16 (0.0294) 12.40 (1.9551) 0.00 (0.0000) 397.00 (47.4286)
DPMM 70.37 (1.4710) 55.45 (1.3848) 64.07 (0.9699) 15.20 (0.7888) 0.00 (0.0000) 40.71 (1.3952)
DivHier 58.08 (0.0000) 38.26 (0.0000) 59.82 (0.0000) 5.00 (0.0000) 0.00 (0.0000) 317.69 (10.5432)
k∗means 66.18 (1.55) 46.42 (1.45) 60.20 (0.86) 6.40 (0.70) 0 0.94 (0.34)
kmeans 69.79 (5.18) 55.08 (4.65) 64.16 (2.81) 10.00 0 0.05 (0.04)
GMM 66.85 (6.11) 53.97 (5.44) 64.01 (2.76) 10.00 0 0.30 (0.09)

affinity -1.00 -1.00 -1.00 -1.00 0 36000+
meanshift 52.08 17.89 59.53 16.00 0 1205.21
DBSCAN 50.60 10.52 61.59 20.00 0 2.22
HDBSCAN 65.35 67.68 67.12 2453.00 24170 53.98 (7.86)

Speech
Commands

domain = audio
n classes = 36 xmeans 26.32 (7.78) 14.33 (8.22) 47.70 (18.56) 190.10 (161.25) 0 16.00 (13.01)

elbow 62.59 (8.0219) 40.20 (8.7028) 66.34 (4.6024) 21.00 (4.5704) 0.00 (0.0000) 395.99 (25.0698)
DPMM 62.64 (0.3104) 46.56 (0.4448) 70.13 (0.0886) 66.90 (0.7379) 0.00 (0.0000) 66.11 (0.3408)
CRP 11.53 (0.8678) 4.13 (0.6360) 12.86 (0.2315) 30.30 (3.0569) 0.00 (0.0000) 6991.60 (871.0678)
DivHier -1.00 -1.00 -1.00 -1.00 0 36000+
k∗means 68.73 (1.57) 48.43 (2.49) 70.22 (0.67) 26.50 (0.97) 0 20.98 (5.22)
kmeans 71.08 (1.72) 57.78 (1.67) 72.67 (0.47) 36.00 0 0.30 (0.06)
GMM 71.04 (1.27) 56.12 (1.63) 72.90 (0.42) 36.00 0 6.46 (0.89)

affinity 40.36 23.94 48.27 75.00 0 597.33
meanshift 21.50 9.19 30.45 9.00 0 275.23
DBSCAN 16.40 1.98 18.59 12.00 0 0.40
HDBSCAN 30.08 24.05 47.72 664.00 6153 3.27 (0.03)

20 NG
domain = text
n classes = 20 xmeans 30.01 (10.66) 15.48 (8.18) 37.78 (19.83) 107.60 (56.16) 0 4.78 (2.51)

elbow 40.45 (7.1649) 23.53 (7.6900) 43.66 (5.8133) 10.67 (4.1633) 0.00 (0.0000) 99.08 (44.8268)
DPMM 49.75 (0.5689) 31.17 (0.8372) 50.63 (0.1245) 45.00 (1.0000) 0.00 (0.0000) 36.14 (0.7786)
CRP 7.90 (0.0968) -0.00 (0.0067) 0.19 (0.0252) 12.00 (2.0000) 0.00 (0.0000) 1657.05 (233.9947)
DivHier 18.02 (0.0000) 5.55 (0.0000) 20.03 (0.0000) 2.00 (0.0000) 0.00 (0.0000) 6.90 (0.6898)
k∗means 42.33 (1.14) 26.08 (0.44) 46.61 (0.67) 11.20 (0.42) 0 2.46 (0.96)
kmeans 46.73 (1.47) 33.68 (0.53) 50.42 (0.48) 20.00 0 0.07 (0.06)
GMM 47.03 (1.22) 33.71 (0.78) 50.68 (0.50) 20.00 0 0.86 (0.19)

affinity 36.60 18.12 40.75 46.00 0.00 31.09
meanshift 41.30 12.82 35.96 15.00 0.00 25.09
DBSCAN 37.65 11.51 39.23 27.00 0.00 0.05
HDBSCAN 18.40 5.90 45.39 321.00 1275.00 0.26 (0.73)

MSRVTT
domain = video & text

n classes = 20 TODO
elbow 44.44 (1.7576) 20.26 (1.7683) 37.74 (1.5068) 12.20 (1.2293) 0.00 (0.0000) 7.65 (0.3514)
DPMM 45.51 (0.8336) 26.30 (1.1535) 44.91 (0.8652) 25.60 (1.0750) 0.00 (0.0000) 8.48 (1.5417)
CRP 10.66 (1.2531) 0.61 (0.2564) 3.07 (0.1236) 18.00 (3.4641) 0.00 (0.0000) 582.05 (73.6062)
DivHier 27.14 (0.0000) 3.28 (0.0000) 13.57 (0.0000) 2.00 (0.0000) 0.00 (0.0000) 1.12 (0.2435)
k∗means 44.10 (136.25) 25.75 (65.28) 38.16 (33.06) 18.10 (87.56) 0.00 2.57 (40.59)
kmeans 40.07 (108.95) 25.35 (128.11) 38.43 (62.75) 20.00 0.00 0.04 (1.01)
GMM 41.41 (193.57) 25.28 (101.87) 38.44 (49.71) 20.00 0.00 0.31 (9.16)

which has 99,000 data points. Figure 2 shows the runtime of k∗means, compared to the fastest
baselines, on subsets of size 1, 000, 2, 000, . . . , 99, 000. The fastest at all sizes is k-means, which
remains well under 1s even for 99,000 samples. The next is DBSCAN, rising to ∼3s, then the GMM
∼5s, and k∗means ∼8s.
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Table 4: Comparison of k∗means with the common approach of sweeping k and selecting with BIC.
k∗means is consistently faster and more accurate.

ACC ARI NMI NC Runtime (s)

MNIST sweepkm 12.86 8.17 56.01 25.00 148.15
k∗means 91.26 (3.56) 84.99 (2.97) 87.44 (1.14) 10.90 (0.32) 3.38 (0.39)

USPS sweepkm 32.36 (0.81) 21.77 (0.77) 65.20 (0.40) 68.40 (3.10) 11.21 (0.73)
k∗means 88.68 (0.00) 81.57 (0.00) 87.14 (0.00) 8.00 (0.00) 0.80 (0.26)

ImageNet (subset) sweepkm 8.16 (0.26) 1.18 (0.05) 7.62 (0.05) 83.20 (4.13) 19.54 (0.23)
k∗means 66.18 (1.55) 46.42 (1.45) 60.20 (0.86) 6.40 (0.70) 0.94 (0.34)

Speech Commands sweepm 32.19 (1.27) 20.10 (0.90) 62.29 (0.30) 239.50 (12.12) 951.58 (11.31)
k∗means 68.73 (1.57) 48.43 (2.49) 70.22 (0.67) 26.50 (0.97) 20.98 (5.22)

20 NG sweepkm 32.75 (0.54) 17.44 (0.54) 46.84 (0.17) 107.30 (5.83) 36.61 (1.28)
k∗means 42.33 (1.14) 26.08 (0.44) 46.61 (0.67) 11.20 (0.42) 2.46 (0.96)

MSRVTT sweepkm 27.50 (89.64) 12.24 (53.57) 41.36 (18.64) 91.60 (464.76) 7.33 (20.57)
k∗means 44.10 (136.25) 25.75 (65.28) 38.16 (33.06) 18.10 (87.56) 2.57 (40.59)

Figure 2: Windowed averages of runtime as a function of dataset size. Each point represents the
mean runtime of 10 randomly sampled subsets from the Speech Commands dataset of the given size.

HDBSCAN is efficient for small samples, faster than k∗means and GMM, but increases much faster,
and by 99,000 samples its runtime is 6x that of k∗means. XMeans is the most erratic, by far the
slowest for small sample sizes, but increasing very little or even decreasing, and ending up close to
k∗means. The reason for the surprising decrease could be that XMeans predicts fewer clusters for
larger datasets. It could also be related to the optimised C-Engine that the public XMeans code makes
use of3. Note that Figure 2 shows only the fastest five algorithms. Mean-shift, affinity propagation
and OPTICS are all substantially slower and would be off the chart if included.

5 CONCLUSION

This paper presented a new clustering algorithm, k∗means, which can be applied in the absence
of knowing k and does not require setting any other parameters such as thresholds. We prove that
k∗means is guaranteed to converge, and we show empirically on synthetic data that it can more
accurately infer k than comparison methods, and with near-perfect accuracy for sufficiently separated
centroids. We then test it on six labelled datasets spanning image, text, audio and video domains,
and show that it is significantly more accurate than existing methods in terms of standard clustering
metrics. We also compare it to the standard practice of sweeping k in k-means and selecting with a
model selection criterion. Finally, we demonstrate how its runtime scales with dataset size, and show
that it is faster, and scales better than the majority of existing methods. k∗means can be useful in
cases where the user has large uncertainty as to the appropriate value of k.

3https://pyclustering.github.io
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Figure 3: Values of k (number of clusters) found on MNIST for different values of the DBSCAN pa-
rameters, min-pts (x-axis) and eps (y-axis). We sweep min-pts from 1–40, and eps from 0.03
to 1.5 in 5% increments.

A DEPENDENCE OF k ON DBSCAN PARAMETERS

Although DBSCAN does not explicitly require setting k, its two key parameters,eps and min-pts,
essentially determine a value for k indirectly. As can be seen in Figure 3 the different values for
k found by DBSCAN for different values of eps and min-pts range from 6 to over 4,000. In general,
smaller eps and smaller min-pts produces more clusters. The number of annotated classes is 10.

B DERIVATION OF MDL CLUSTERING OBJECTIVE

The objective to derive is that from Section 3.1:

P ∗ = argmin
P∈Π(X)

|P |dm+ |X| log |P |+ 1

2

∑
S∈P

Q(S) .

The first two terms are direct expressions of the cost to specify the centroids (each costs dm bits
and there are |P | of them), and the cluster labels (each costs log |P | bits and there are |X| of them.
The third term arises from the expression for the negative log-probability, and the fact that we can
drop additive constants in the argmin. Let c(P, x) be the centroid of the cluster x belongs to under
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partition P . Then

argmin
P∈Π(X)

|P |dm+ |X| log |P |+
∑
x∈X

d log 2π + ||x− c(P, x)||2

2
=

argmin
P∈Π(X)

|P |dm+ |X| log |P |+ 1

2

∑
x∈X

||x− c(P, x)||2 =

argmin
P∈Π(X)

|P |dm+ |X| log |P |+ 1

2

∑
S∈P

∑
x∈S

||x− c(P, x)||2 =

argmin
P∈Π(X)

|P |dm+ |X| log |P |+ 1

2

∑
S∈P

Q(S) .

C PROOF OF CONVERGENCE

The k∗means algorithm is guaranteed to converge. We now provide a proof of this fact.

Lemma 1. At each assign step (which is the same step as vanilla k-means), the MDL cost either
decreases or remains the same, and it remains the same only if no points are reassigned.

Proof. As defined in Section 3.1, there are two components to the MDL cost: the index cost,
consisting of the bits to specify the cluster membership of each point, and the residual cost, consisting
of the bits corresponding to the displacement of each from its cluster centre. The former depends
only on the number of points N and the number of clusters k, and is unaffected by re-assignment.
The latter is proportional to the sum of squared distances of each point to its assigned centre. By
definition of reassignment, if a point is reassigned, then it is closer to its new centroid than its old
centroid. Thus, every reassignment does not affect the first two summands of the cost and strictly
reduces the third.

Lemma 2. At each update step (which is the same step as vanilla k-means), the MDL cost either
decreases or remains the same, and it remains the same only if no centroids are updated.

Proof. As with the assign step, the update step does not change k or N and so does not affect the
index cost. The latter can be written as the sum across clusters of the sum of all points in that cluster
from the centroid. When the centroids are updated, they are updated to the mean of all points of
points in the cluster, which is the unique minimiser of the sum of squared distances. As well as a
standard statistical fact, this can be seen by observing that the SS(x) =

∑m
i=1(x−xi)

2 is a u-shaped
function of x, so achieves its global minimum when

SS′(x) = 0 ⇐⇒

2

m∑
i=1

x− xi = 2mx− 2

m∑
i=1

xi = 0 ⇐⇒

x =
1

m

m∑
i=1

xi .

This holds for the reassignment of each cluster, and so for the whole reassignment step.

Theorem 3. The k∗means algorithm is guaranteed to converge in finite time.

Proof. By Lemmas 1 and 2, the MDL cost strictly decreases at each step at which points are
reassigned and centroids updated. The other two steps, maybe-split and maybe-merge, include
explicit steps that the MDL cost decreases before being performed, so also are guaranteed to strictly
decrease the MDL cost. Together, this means the algorithm will never revisit an assignment during
training. Moreover, there are a finite number of assignments, equal to the number of partitions of
N data points, which is given by the N + 1th Bell number Graham et al. (1994), BN+1. Therefore
k∗means cannot run for more than a finite number, namely BN+1, steps.
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Remark 4. This is an extension of the standard proof of convergence of k-means. Like for k-means,
this proof establishes a theoretical worst-case run time which is exponential but then, in practice, the
algorithm converges quickly. It is known that k-means is NP-hard Drineas et al. (2004), and that it
can, in theory, run in exponential time even in 2 dimensions Vattani (2009). As k∗means subsumes
k-means, the same is true of it. However, also like k-means, practical runtime is very good. Practical
empirical runtimes are studied in detail in Section 4.

D THEORETICAL GUARANTEE OF PERFORMANCE FOR EQUALLY-SIZED
SPHERICAL MULTIVARIATE NORMAL CLUSTERS

Given that k∗means subsumes the familiar Lloyd‘s algorithm for k-means, and given the difficulty
reasoning about the behaviour of Lloyd‘s algorithm itself, we instead prove a guarantee of perfor-
mance with respect to the k++ means initialisation. This is a similar approach to that taken by
Ostrovsky et al. (2013).

We will prove that, if the data comes from k equally-sized multivariate Normal distributions, with the
same isotropic variance, separated by at least d, then the initialisation (which follows k++ means
and selects new points in proportion to the square of their distance from previous points) produces
centroids that are all with ϵ of their true values, with probability at least a. To simplify notation, we
will assume all clusters have variance 1, but this generalises to any value as the initialisations are
made with respect to relative distances and so are invariant to rescaling.

As k∗means proceeds iteratively, we first analyse the single case of splitting a dataset into two,
assuming it contains some number of true clusters k which may be greater than 2. The first point
is chosen randomly. The probability of it falling within ϵ of whatever cluster it is in, is therefore
erf(ϵ/

√
2). For the second point, the probability can be expressed as a ratio. The numerator, A,

is the integral of the squared distance from the first point times the probability density, integrated
over all ϵ-balls around the means of the other clusters. The denominator, B, is the expected value
of the squared distance of a new point from the first point. We are interested in a lower bound on
the probability of approximately correct cluster centroids, therefore we consider the worst case for
the location of the first point, which is that it is a distance ϵ from its centroid, and a distance d− ϵ
from every other centroid (the latter being a lower bound via the triangle inequality). WLOG we can
assume the selected point is at the origin of R2, so the squared distance of a possible second point is
equal to its squared norm.

Let X ∼ N (µx, I) in R2, where µx is the true centroid of X , and let Z = X − µx ∼ N (0, I).

We are interested in the conditional expectation:
E[∥X∥2 | ∥X − µx∥ < ε] = E[∥Z + µx∥2 | ∥Z∥ < ε] (2)

Now expand the squared norm:

∥Z + µx∥2 = ∥Z∥2 + 2Z⊤µx + ∥µx∥2

Take conditional expectation:

E[∥Z + µx∥2 | ∥Z∥ < ε] = E[∥Z∥2 | ∥Z∥ < ε] + 2E[Z⊤µx | ∥Z∥ < ε] + ∥µx∥2

The middle term vanishes, because it is an integral of an odd function about 0. The third term ||µx||2
is lower-bounded by (d− ϵ)2, due to the triangle inequality and the assumption that the first sampled
point is at the origin. To calculate the first term, note that ||Z||2 is the sum of the squares of 2
Normally distributed variables, so has a Chi-squared distribution with 2 degrees of freedom. The

r = ||Z||2, then the pdf is re
−r2

2 . Then, we have

E[∥Z∥2 | ∥Z∥ < ε] =

∫ ϵ

0
r2(re

−r2

2 )dx∫ ϵ

0
re

−r2

2 dx
.

Substituting u = r2/2, so that du = r dr gives∫ ϵ2/2

0
2ue−udu∫ ϵ2/2

0
re−u
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The numerator becomes

[−(u+ 1)e−u]ϵ
/2
0 = 1 + (ϵ2/2− 1)e−ϵ2/2

The denominator becomes

[−e−u]
ϵ2/2
0 = −eϵ

2/2 + e0 = 1− eϵ
2/2 .

So the lower bound on the conditional expectation (2) becomes

1 + (ϵ2/2− 1)e−ϵ2/2

1− eϵ2/2
+ (d− ϵ)2 .

As we are going to renormalise anyway, we instead use the unnormalised expectation

1 + (ϵ2/2− 1)e−ϵ2/2 + (1− e−ϵ2/2(d− ϵ)2 . (3)

To find the probability of the new centroid being within ϵ of its true centroid, we use this total
unnormalised expectation across all k − 1 other clusters, and normalised by the total unnormalised
expectation of the squared distance. The latter contains two terms. This first is for each of the other
k − 1 clusters, which can be computed using the same argument as above, except using the limit ∞
instead of ϵ, giving 1 + (d − ϵ)2. The second is for the same cluster as the first point, which can
be computed in the same way except now the distance to the centroid is ϵ rather than d− ϵ, giving
1 + ϵ2. Putting this together, we get

(k − 1)
(
1 + (ϵ2/2− 1)e−ϵ2/2 + (1− e−ϵ2/2)(d− ϵ)2

)
(k − 1)(1 + (d− ϵ)2) + 1 + ϵ2

=

(k − 1)
(
1 + (ϵ2/2− 1)e−ϵ2/2 + (1− e−ϵ2/2)(d− ϵ)2

)
(k − 1)(d− ϵ)2 + k + ϵ2

.

As expected, this expression approaches 0 as ϵ approaches 0. Claim this is an increasing function of
k. Show that the derivative wrt k is always positive:

((k − 1)(d− ϵ)2 + k + ϵ2)
(
1 + (ϵ2/2− 1)e−ϵ2/2 + (1− e−ϵ2/2)(d− ϵ)2

)
− (k − 1)

(
1 + (ϵ2/2− 1)e−ϵ2/2 + (1− e−ϵ2/2)(d− ϵ)2

)
((d− ϵ)2 + 1)

((k − 1)(d− ϵ)2 + k + ϵ2)
2 > 0

⇐⇒
((k − 1)(d− ϵ)2 + k + ϵ2 − (k − 1)((d− ϵ)2 + 1) > 0

⇐⇒
k + ϵ2 − (k − 1) > 0

⇐⇒
1 + ϵ2 > 0 .

Thus, as a lower bound, we can consider k = 2. We want to determine what value of d will ensure
this lower bound is greater than a:

1 + (ϵ2/2− 1)e−ϵ2/2 + (1− e−ϵ2/2)(d− ϵ)2

(d− ϵ)2 + 2 + ϵ2
> a

1 + (ϵ2/2− 1)e−ϵ2/2 + (1− e−ϵ2/2)(d− ϵ)2 > a(d− ϵ)2 + 2 + ϵ2

(1− e−ϵ2/2)(d− ϵ)2 − a(d− ϵ)2 > 2 + ϵ2 − (1 + (ϵ2/2− 1)e−ϵ2/2)

(d− ϵ)2 >
1 + ϵ2 − (ϵ2/2− 1)e−ϵ2/2

1− e−ϵ2/2 − a

d >

√
1 + ϵ2 − (ϵ2/2− 1)e−ϵ2/2

1− e−ϵ2/2 − a
+ ϵ (4)
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Figure 4: Clusters predicted by k∗means for the UMAP representations on the Speech Commands
dataset, by k∗means (left) and XMeans (right). k∗means predicts 33 classes and XMeans pre-
dicts 315, vs. 36 in the annotations.

We want, with probability p, to get all initialised centroids with ϵ of their true value, which requires
repeating this successfully k times. The initialisations at each iteration are independent. Thus, we
need

(ak > p

a > k
√
p .

Subbing into (4), we conclude that all initialised centroids will be within ϵ of their true values, with
probability at least p, as long as

d >

√
1 + ϵ2 − (ϵ2/2− 1)e−ϵ2/2

1− e−ϵ2/2 − k
√
p

+ ϵ . (5)

Plugging in some numbers, p = 0.32, k = 4, ϵ = 2.0, we get

d >

√
1 + 4− (2− 1)e−2

1− e−2 − 0.7
+ 2

=

√
4.865

0.865− 4
√
0.32

+ 2.0 = 8.50 .

Thus, we conclude that, with probability at least 0.32, all centroids will be within 2 of their true
values, as long as the centroids are separated by a distance of at lest 8.5.

This proof assumes the parent centroid becomes one of the child centroids, but in practice it is
initialised and updated via Lloyd, which would be significanly more accurate, so this is a loose bound.

E EXTENDED EXPERIMENTAL RESULTS

Dataset MSE (k*-means) MSE (DBSCAN) MSE (HDBSCAN) MSE (X-means) ACC (k*-means) ACC (DBSCAN) ACC (HDBSCAN) ACC (X-means)
synthetic s=2 283.44 43.19 232.47 735.91 9.60 7.00 2.60 2.40
synthetic s=3 65.11 41.11 144.05 703.73 32.60 3.60 4.80 8.80
synthetic s=4 1.83 27.12 104.96 669.22 71.20 5.40 12.00 17.00
synthetic s=5 0.19 24.58 76.98 644.44 82.40 4.80 22.40 19.80

Table 5: Clustering performance on synthetic data where the variance differs by cluster. Variance for
each cluster is sampled from a Normal distribution with mean 1 and variance 1 (thresholded at 1e-4
to prevent negative values).
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