
Published in Transactions on Machine Learning Research (11/2022)

Approximate Policy Iteration with Bisimulation Metrics

Mete Kemertas kemertas@cs.toronto.edu
Department of Computer Science, University of Toronto
Vector Institute

Allan Jepson jepson@cs.toronto.edu
Department of Computer Science, University of Toronto
Samsung AI Center, Toronto

Reviewed on OpenReview: https: // openreview. net/ forum? id= Ii7UeHc0mO

Abstract

Bisimulation metrics define a distance measure between states of a Markov decision process
(MDP) based on a comparison of reward sequences. Due to this property they provide
theoretical guarantees in value function approximation (VFA). In this work we first prove
that bisimulation and π-bisimulation metrics can be defined via a more general class of
Sinkhorn distances, which unifies various state similarity metrics used in recent work. Then
we describe an approximate policy iteration (API) procedure that uses a bisimulation-based
discretization of the state space for VFA and prove asymptotic performance bounds. Next,
we bound the difference between π-bisimulation metrics in terms of the change in the policies
themselves. Based on these results, we design an API(α) procedure that employs conserva-
tive policy updates and enjoys better performance bounds than the naive API approach. We
discuss how such API procedures map onto practical actor-critic methods that use bisimu-
lation metrics for state representation learning. Lastly, we validate our theoretical results
and investigate their practical implications via a controlled empirical analysis based on an
implementation of bisimulation-based API for finite MDPs.

1 Introduction

Reinforcement learning (RL) algorithms can be broadly grouped into two categories: (i) policy iteration (PI)
methods and (ii) policy search methods. The former alternate between learning the value function of the
current policy and improving the policy via greedy updates, while the latter directly optimize a performance
objective in a feasible set of policies. Learning the value function in large state spaces (e.g., continuous
spaces) can be intractable, so value function approximation (VFA) is typically employed for PI in practice.
Even with powerful function approximators (e.g., deep neural networks), efficient and generalizable VFA
remains an open research problem. State abstraction methods (Li et al., 2006) and state similarity metrics
(Lan et al., 2021) take a reductionist approach, aiming to exploit similarities between states to treat them
as one, e.g., via state aggregation (Singh et al., 1995; Bertsekas, 2019). In this work we study API via
bisimulation metrics with the goal of extending the theory surrounding them, bridging the gap between
theory and practice, and improving the stability of API algorithms that rely on them.

Bisimulation metrics measure the functional similarity of states by design, comparing only the extent to which
reward sequences differ in expectation (Ferns et al., 2004; 2011). Owing to this property, they provide error
bounds in VFA, while enabling more efficient state representations. Recent work has tackled challenges in
their estimation by introducing π-bisimulation (Castro, 2020), and employed them for simulated continuous
control by constraining the representation space of a neural state encoder (Zhang et al., 2021). Zhang et al.
(2021) showed that such constraints promote invariance to background distractors in visual environments,
thereby improving sample efficiency in learning. Despite attempts to characterize the trade-offs and con-

1

https://openreview.net/forum?id=Ii7UeHc0mO

Published in Transactions on Machine Learning Research (11/2022)

vergence properties of practical bisimulation-based RL algorithms (e.g., Kemertas & Aumentado-Armstrong
(2021)), PI via bisimulation is still poorly understood.

In this paper we first generalize the definition of bisimulation metrics via p-Wasserstein metrics and Sinkhorn
distances, and prove their existence for this more general family. This generalization adds theoretical jus-
tification to a prior practical modification (Zhang et al., 2021), lifts an assumption on theoretical results
concerning VFA via p-Wasserstein bisimulation metrics (Kemertas & Aumentado-Armstrong, 2021), connects
a recently proposed metric by Castro et al. (2021) to standard bisimulation metrics and allows for fast com-
putation. We then describe an API procedure, which approximates a π-bisimulation metric at each iteration,
and performs state aggregation under it before policy evaluation (PE) and approximate greedy improvement
(GI) steps. To make the procedure more efficient, we motivate the use of conservative policy updates, and
show that adopting such updates strikes a better trade-off between performance and computational com-
plexity than the naive version. We then conduct a thorough empirical analysis of our theoretical findings to
characterize trade-offs posed by various algorithm design choices in terms of asymptotic performance, rate
of performance improvement, representation capacity and wall-clock time.

2 Background

2.1 Setting

Consider a discounted Markov Decision Process (MDP) given by a tuple, ⟨S,A,P, R, γ⟩: the state and action
spaces, transition kernel, reward function and a discount factor γ ∈ [0, 1). For ease of analysis, we assume
that the state space S is compact1 as in Ferns et al. (2011). An agent selects an action, at ∈ A at each discrete
time-step according to a stationary policy π(at|st). The MDP transitions to the next state according to a
transition distribution P(st+1|st,at). The distribution over next states when actions are selected according
to policy π is denoted Pπ(st+1|st). With an abuse of notation, we write π(st),P(st,at) and Pπ(st) for
these conditional distributions when appropriate. The agent collects a scalar reward rt = R(st,at) from the
environment, which is computed via a bounded reward function, R : S × A → [0, 1]. The reward range is
selected to simplify analysis, although our theoretical results can be extended to arbitrary bounded reward
ranges with ease. The expected immediate reward from choosing an action according to policy π in state s
is denoted by Rπ(s) = Ea∼π(s)[R(s,a)]. The agent’s discounted return in a given episode is G =

∑
t≥0 γ

trt.
We denote by B(X) the set of real-valued bounded functions over X and write V π ∈ B(S) for the value
function of a policy π, i.e., the fixed point of the Bellman operator Tπ : B(S)→ B(S), given by the shorthand
notation TπV = Rπ + γPπV . Similarly, V ∗ denotes the optimal value function, or the fixed-point of the
Bellman optimality operator T : B(S) → B(S), where TV = supπ∈Π TπV , the supremum taken over the
set of stationary policies Π. For a given function f , ∥f∥∞ denotes the supremum (uniform) norm, i.e.,
supx∈dom(f) |f(x)|. We write ∥f∥pp,µ = Ex∼µ[|f(x)|p] for a distribution µ supported on dom(f).

Here, we are interested in state similarity (pseudo) metrics2 d : S × S → [0,∞) to be used to directly ag-
gregate S or constrain representations of its elements to save space and memory, and to promote efficient
learning (e.g., via distraction invariance). In particular, given a state similarity metric d and a threshold 2ϵ,
one can derive a state abstraction function Φ : S → S̃ that satisfies:

Φ(si) = Φ(sj)⇒ d(si, sj) ≤ 2ϵ. (1)

This abstraction Φ maps a ground MDP ⟨S,A,P, R, γ⟩ to its abstract version ⟨S̃,A, P̃, R̃, γ⟩, where P̃ and
R̃ are defined as per-partition weighted averages. In particular, let BΦ(s) = {z ∈ S | Φ(s) = Φ(z)} be the
set of states that are in the same partition as s. Given an arbitrary non-negative measure ξ that assigns

1All finite discrete spaces are compact. A continuous space is compact if and only if it is totally bounded and complete.
2For brevity, we drop “pseudo” in the following.

2

Published in Transactions on Machine Learning Research (11/2022)

positive measure ξ(BΦ(s)) > 0 to all partitions BΦ(s), we write (Li et al., 2006; Ferns et al., 2011):

R̃(Φ(s),a) := 1
ξ(BΦ(s))

∫
z∈BΦ(s)

R(z,a)dξ(z),

P̃(Φ(s′)|Φ(s),a) := 1
ξ(BΦ(s))

∫
z∈BΦ(s)

P(BΦ(s′)|z,a)dξ(z).
(2)

Next, we discuss bisimulation metrics, which provide guarantees in approximating value functions over the
ground MDP using value functions over abstract MDPs derived via (1). Further background and references
on state aggregation methods are provided in Appendix B.

2.2 Bisimulation Metrics for Continuous MDPs

To provide VFA guarantees, Ferns et al. (2011) defined the following bisimulation metric for continuous
MDPs as a weighted sum of the difference between immediate rewards obtained from respective states and a
future-looking recursive term based on the 1-Wasserstein distance (see (8) with p = 1, λ = 0 for a definition).

Definition 2.1 (Bisimulation metric for continuous MDPs, Thm. 3.12 of (Ferns et al., 2011)). Let met(S)
be the set of bounded pseudo-metrics over a compact S. Given cR ∈ [0,∞) and cT ∈ (0, 1), the following
mapping F : met(S)→ met(S) has a unique fixed-point d∼ called the bisimulation metric:

F(d)(si, sj) = max
a∈A

cR|R(si,a)−R(sj ,a)|+ cTW1(d)(P(si,a),P(sj ,a)). (3)

The existence proof applies to compact state spaces via the Banach fixed-point theorem (Ferns et al., 2011).
A special case of this metric for finite MDPs was also outlined previously by Ferns et al. (2004). Ferns
et al. (2011) showed that this formulation ensures a connection to optimal value functions. In particular,
whenever cT ≥ γ, V ∗ is c−1

R -Lipschitz under the bisimulation metric, i.e., cR|V ∗(si)− V ∗(sj)| ≤ d∼(si, sj).
The Lipschitz continuity of V ∗ with respect to d∼ results in the VFA guarantee that given a state abstraction
Φ derived via d∼ as in (1), whenever cT ∈ [γ, 1):

∥V ∗ − Ṽ ∗
Φ∥∞ ≤ 2ϵ

cR(1− γ) , (4)

where Ṽ ∗
Φ(s) = Ṽ ∗(Φ(s)). In words, whenever the bisimulation metric places as much weight on future

distances as the value function places on future rewards, ϵ-aggregation3 under the bisimulation metric yields
an abstract MDP, which has an optimal value function that is close to that of the ground MDP (Ferns et al.,
2011). Thus, given knowledge of the bisimulation metric, one can reduce an MDP with a possibly continuous
state space to a finite MDP, which can be solved easily via regular (exact) PI, and have confidence that the
solution is approximately optimal with worst-case error given as a linear function of the aggregation radius
ϵ, which determines the granularity of the partitioning. Given that exact PI for finite MDPs converges
in O

(
|S||A|
1−γ log(1

1−γ)
)

steps (Scherrer, 2013), if substantial reductions in the size of the state space are

possible (e.g., due to the presence of distractors) such that |S| ≫ |S̃|, one can pre-compute bisimulation-
based abstractions to find a near-optimal policy much more quickly. However, computing the metric itself
exactly can be costly; for example, fixed-point iteration requires O

(
log(E)

log(cT) |S|
5|A| log |S|

)
steps in the worst-

case to find an approximate bisimulation metric d̂ such that ∥d̂− d∼∥∞ ≤ E (Ferns et al., 2006). Assuming
that Φ can be computed at a low cost, a naive combination of bisimulation-based partitioning followed
by PI over the reduced MDP yields a complexity of O

(
log(E)

log(cT) |S|
5|A| log |S|+ |S̃||A|

1−γ log(1
1−γ)

)
, which need

not be superior to directly applying PI on a finite ground MDP. Further, fixed-point iteration cannot be
used trivially over continuous state spaces so that function approximation needs to be adopted. Hence, fast
approximations of bisimulation metrics are necessary in practice to amortize the cost of metric learning and
enable usage in continuous MDPs or large finite MDPs. Indeed, in Sec. 3.1 we consider fast approximation
of Wasserstein distances, which is a major bottleneck that prior work attempted to overcome or circumvent
via assumptions (Ferns et al., 2006; Castro, 2020; Zhang et al., 2021; Castro et al., 2021).

3An ϵ-aggreagated state space is any partitioning of S that permits a maximum partition radius of ϵ under a metric d.

3

Published in Transactions on Machine Learning Research (11/2022)

2.3 π-bisimulation Metrics

While bisimulation metrics are useful for approximating V ∗ of a large MDP, they can be difficult to compute
for large (e.g., continuous) action spaces due to the max operation in (3). Secondly, the max operator is
inherently pessimistic in assigning a notion of similarity to states. Castro (2020) highlighted these issues
and proposed π-bisimulation metrics to address them.
Definition 2.2 (π-bisimulation metric (Castro, 2020)). Given a fixed policy π, the following mapping
F : met(S)→ met(S) has a unique fixed-point d∼

π called the π-bisimulation metric:4

Fπ(d)(si, sj) := cR|Rπ(si)−Rπ(sj)|+ cTW1(d)(Pπ(si),Pπ(sj)). (5)

An approach to learning d∼
π via stochastic approximation with replay buffer samples was presented; the

approach reduces the complexity of metric learning by a factor of |A| for finite MDPs. Castro (2020) also
showed that the value function V π of a policy is similarly 1-Lipschitz under the π-bisimulation metric when
cR = 1, i.e., |V π(si)− V π(sj)| ≤ d∼

π (si, sj). Recently, Kemertas & Aumentado-Armstrong (2021) assumed
that Fπ has a unique fixed-point if defined via an arbitrary p-Wasserstein metric with p ≥ 1 instead of the
1-Wasserstein metric specifically. Then, given an abstraction Φ derived via d∼

π , for any cT ∈ [γ, 1) and p ≥ 1,

∥V π − Ṽ πΦ ∥∞ ≤ 2ϵ
cR(1− γ) , (6)

where Ṽ π = R̃π + γP̃πṼ π. Similarly to (2), R̃π and P̃π were defined as per-partition weighted averages
of Rπ and Pπ respectively (Kemertas & Aumentado-Armstrong, 2021). In the next section, we use (6) to
construct API algorithms with performance bounds.

3 Theoretical Analysis

In this section, we first prove that bisimulation metrics can be defined via a more general class of statistical
distances including p-Wasserstein metrics and Sinkhorn distances (Cuturi, 2013), which can be used to
compute upper bounds on the 1-Wasserstein metric at improved complexity. Based on these results, we
will derive a feasible API procedure with bounded error to optimality. The procedure performs alternating
updates to a sequence of policies πk and approximations of corresponding sequence of metrics d∼

πk
. Unlike

Zhang et al. (2021), we do not assume a continuously improving policy to argue for convergence. Rather,
we leave the possibility of policy oscillation open (unlike exact PI, approximate PI is not guaranteed to
converge (Bertsekas & Tsitsiklis, 1996)), but provide asymptotic bounds on optimality. Next we show that
restricting the size of policy updates renders such procedures more stable, making a case for the use of
conservative policy updates in the context of bisimulation. To further this point, we outline an API(α)
algorithm that bounds the policy update size, and consequently enjoys better performance bounds than the
naive API algorithm. We conclude the section by discussing the connections between our theoretical setting
and practical algorithms used for larger-scale problems. All proofs are relegated to the Appendix for space.

3.1 On the Use of Optimal Transport for Bisimulation Metrics

In prior theoretical results, bisimulation metrics were defined via the 1-Wasserstein metric (i.e., the Kan-
torovich metric) (Ferns et al., 2004; 2011; Castro, 2020). p-Wasserstein distance computation between a pair
of distributions over a finite space S has worst-case complexity O(|S|3 log |S|) (Orlin, 1988). This makes the
usage of the 1-Wasserstein metric a major obstacle for practical use since for a single fixed-point update it
is computed |S|2|A| and |S|2 times for (3) and (5) respectively. To circumvent this problem in empirical
studies, Castro (2020) assumed deterministic dynamics.5 Similarly, Zhang et al. (2021) assumed the dy-
namics can be modelled as Gaussians over a latent space and successfully used a 2-Wasserstein metric to
exploit the closed-form of the W2 distance between Gaussians (Olkin & Pukelsheim, 1982), albeit without

4Castro (2020) originally defined the metric with cR = 1 and cT = γ.
5The Wasserstein distance between two delta distributions is simply the distance between the two points (Villani, 2008).

4

Published in Transactions on Machine Learning Research (11/2022)

theoretical justification. Here, we show that p-Wasserstein distances can indeed be used safely and thereby
lift the assumption made by Kemertas & Aumentado-Armstrong (2021) to prove (6) for arbitrary p ≥ 1.

We further show that Sinkhorn distances, which bound Wasserstein distances above via entropic regulariza-
tion, can also be used. The practical advantages of using Sinkhorn distances are three-fold: (i) owing to
a strictly convex optimization objective, the Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967) can be
used to compute them in O(|S|2 log |S|) time (Altschuler et al., 2017; Dvurechensky et al., 2018), (ii) un-
like standard Wasserstein distance solvers this computation can be massively parallelized on GPUs (Cuturi,
2013), and (iii) between fixed-point iterations of Fπ one can easily save Sinkhorn potentials to warm-start the
Sinkhorn-Knopp algorithm at an overall memory cost of O(|S|3). Now, we define primal and dual Sinkhorn
distances with p ≥ 1 in preparation of a generalized definition of bisimulation metrics.
Definition 3.1 ((p, ζ)- and (p, λ)-Sinkhorn distances). Let d : X × X → [0,∞) be a distance function and
Ω the set of all joint distributions over X ×X with marginals µ1, µ2 ∈ Pp(X), where Pp(X) denotes the set
of probability measures with bounded moments of order p on X . Given the product of marginals µ1 ⊗ µ2
(Genevay et al., 2016) and p ≥ 1, ζ ≥ 0, we call the following primal form (p, ζ)-Sinkhorn distances:

W ζ
p (d)(µ1, µ2) = min

ω∈Ω(ζ)
∥d∥p,ω, where Ω(ζ) = {ω ∈ Ω | DKL(ω || µ1 ⊗ µ2) ≤ 1

ζ
}. (7)

The dual form is given by the Lagrangian of (7) with λ ≥ 0:

Wλ
p (d)(µ1, µ2) = ∥d∥p,ω∗ , where ω∗ = arg min

ω∈Ω
∥d∥pp,ω − λH(ω), (8)

where H denotes Shannon entropy. To each ζ and pair of distributions (µ1, µ2) corresponds a λ such
that Wλ

p (d)(µ1, µ2) = W ζ
p (d)(µ1, µ2) (Cuturi, 2013). While λ = 0 recovers p-Wasserstein distances as a

special case where ζ is sufficiently small, λ > 0 renders the objective of the dual form strictly convex.
Consequently, when computing Wλ

p (d)(µ1, µ2) one can use the Sinkhorn-Knopp algorithm, which converges
in fewer iterations for higher λ (Cuturi, 2013), albeit at the expense of weaker upper bounds on Wp(d)(µ1, µ2).

Lemma 3.2 (A (p, ζ)-Sinkhorn distance bound). Given metrics d and d′, for all p ≥ 1 and ζ ≥ 0,∣∣W ζ
p (d)(µ1, µ2)−W ζ

p (d′)(µ1, µ2)
∣∣ ≤ ∥d− d′∥∞. (9)

Theorem 3.3 ((p, ζ)-Sinkhorn bisimulation metrics). Let cT ∈ [0, 1), cR ∈ [0,∞), p ≥ 1 and ζ ≥ 0. The
mappings F ,Fπ : met(S)→ met(S) each have unique fixed-points:

F(d)(si, sj) := max
a∈A

cR|R(si,a)−R(sj ,a)|+ cTW
ζ
p (d)(P(si,a),P(sj ,a)), (10)

Fπ(d)(si, sj) := cR|Rπ(si)−Rπ(sj)|+ cTW
ζ
p (d)(Pπ(si),Pπ(sj)). (11)

Whenever cT ≥ γ, (4) and (6) hold for all p ≥ 1 and ζ ≥ 0 for fixed-points d∼ and d∼
π respectively.

The existence and uniqueness proof follows from Lemma 3.2 and the Banach fixed-point theorem. We note
the following relationship between bisimulation metrics that use different values (p, ζ).
Remark 3.4. Given metrics d∼

1 and d∼
2 defined via (p1, ζ1) and (p2, ζ2), (p1, ζ1) ⪯ (p2, ζ2)⇒ d∼

1 ≤ d∼
2 .

That is, ϵ-aggregation of S under d∼
2 is finer-grained than under d∼

1 . Thus any speedups obtained via p > 1
or λ > 0 come at the expense of possibly less efficient discretizations (larger |S̃|), although one still enjoys
the same VFA bounds given in (4) and (6) for the same ϵ. Interestingly, we recover MICo (Castro et al.,
2021) as a special case of (p, ζ)-Sinkhorn bisimulation metrics; when p = 1 and ζ →∞, the optimal transport
plan ω∗ → µ1 ⊗ µ2 and the (p, ζ)-Sinkhorn distance becomes the expected distance over µ1 ⊗ µ2. This was
precisely the distance used by MICo to replace the costly 1-Wasserstein distance.6 Hence, the more general
form (10-11) with ζ ≥ 0 establishes a continuum of metrics that spans bisimulation metrics and MICo at
its two extremes. Similarly to Cuturi (2013), we provide theoretical results for the primal Sinkhorn distance
W ζ
p (d), but for empirical analysis in Sec. 4 we use the dual distance Wλ

p (d) with a fixed λ rather than
optimize the dual variable λ for a fixed ζ. In particular, we investigate the quality of metrics with varying
p and λ, and how their differences may influence API algorithms that rely on said metrics for VFA.

6This distance measure is also known as the Łukaszyk-Karmowski distance (Łukaszyk, 2004; Castro et al., 2021).

5

Published in Transactions on Machine Learning Research (11/2022)

3.2 Approximate Policy Iteration with π-bisimulation

Now that we can approximate bisimulation metrics more efficiently using Sinkhorn distances, we introduce
a feasible API procedure with π-bisimulation metrics. Using (6), we will derive error bounds on optimality.
We write GreedyImprovement(V, δ) to indicate an approximate greedy update with respect to a function
V ∈ B(S), which yields a policy πg over S such that ∥Tπg

V − TV ∥∞ ≤ δ.
Theorem 3.5 (API with π-bisimulation). Let cR = 1, cT = γ and {πk}k∈N be a sequence of policies generated
with the following updates per step, where d0 = 0 ∈ met(S), and ϵ ≥ 0 and n ∈ N+ are algorithm parameters.
Let cn = γn/(1− γ), and consider for any p ≥ 1 and ζ ≥ 0:

d̂πk
← F (n)

πk
(d0) (12)

S̃,Φk ← HardAggregation(S, d̂πk
, ϵ) (13)

Ṽ πk ← PolicyEvaluation(S̃, πk) (14)

πk+1 ← GreedyImprovement(Ṽ πk

Φk
, δ), (15)

and Ṽ πk

Φk
∈ B(S) is the composition of Ṽ πk and Φk. If the sequence {πk}k∈N converges to a policy π, we have

∥V π − V ∗∥∞ ≤
δ

1− γ + 2γ(2ϵ+ cn)
(1− γ)2 . (16)

Otherwise, it has the following limiting bound,

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
δ

(1− γ)2 + 2γ(2ϵ+ cn)
(1− γ)3 . (17)

Here HardAggregation yields a partitioning S̃ of S under d̂πk
with partition radius at most ϵ (see Appendix

D.2 for pseudocode of an implementation for finite S). As ϵ → 0, policy evaluation becomes increasingly
accurate. The number of metric learning updates n also provides a trade-off between run-time and policy
performance guarantees. Larger n implies more accurate approximations of d∼

πk
due to (12). This translates

to a better bound on the worst-case error on V ∗ due to the cn term in (16-17). Note that metric learning
errors, as well as errors due to stochastic approximation of Rπ or inexact environment dynamics can be
absorbed in ϵ; see Lemma A.9 in Appendix A for a decomposition of error terms.

For ease of analysis, this procedure naively learns the approximate metric d̂πk
from scratch after each policy

update (see (12)). In practice, we may wish to warm-start metric learning with updates d̂πk
← F (n)

πk (d̂πk−1)
to approximate d∼

πk
in fewer iterations n, or we may be learning a parametrized metric via gradient descent

as in the DBC algorithm (Zhang et al., 2021). To understand the tradeoff of such metric updates, we next
derive a bound on how much the π-bisimulation metric changes when the underlying policy is changed.
Lemma 3.6 (Comparing π-bisimulation metrics of different policies). Let π, π′ be a pair of policies and
d∼
π , d

∼
π′ corresponding π-bisimulation metrics given by p ∈ [1,∞) and λ = 0. The difference between d∼

π and
d∼
π′ is bounded by D∞

TV (π, π′) = sups∈S DTV(π(s), π′(s)), the worst-case total variation distance of π and π′:

∥d∼
π − d∼

π′∥∞ ≤
2cR

(1− cT)2D
∞
TV (π, π′)

1
p . (18)

Here, (18) guarantees that small policy updates lead to small changes in the π-bisimulation metric.
Thus, we conjecture that restricting the policy update size should keep the metric learning objec-
tive stable and result in a better performance guarantee when warm-starting is used for faster metric
learning. Indeed, inspired by Scherrer (2014), we write an API(α) procedure, which constrains pol-
icy updates such that D∞

TV(πk+1, πk) ≤ α, ∀k ∈ N. Given such updates, we are guaranteed to have
∥d∼
πk
− d∼

πk−1
∥∞ ≤ 2cRα

1
p /(1− cT)2 by (18), which can be leveraged to ensure that warm-starting metric

learning updates provides a better asymptotic bound than (17) under some conditions. Before that, we
pause for another lemma, which generalizes Propositions 2.4.3 and 2.4.4 of Bertsekas (2018a).

6

Published in Transactions on Machine Learning Research (11/2022)

Lemma 3.7 (Generalized API(α) bounds). Let V ∈ B(S) and policies π, π′, πg satisfy the following:

∥V π − V ∥∞ ≤ δPE

∥Tπg
V − TV ∥∞ ≤ δGI

π′ = απg + (1− α)π,

where α ∈ [0, 1]. Then,

∥V π
′
− V ∗∥∞ ≤ (1− α+ αγ)∥V π − V ∗∥∞ + α

δGI + 2γδPE

1− γ . (19)

Next, consider an API(α) algorithm that generates a sequence of policies {πk}k∈N via functions
{Vk}k∈N with policy evaluation error ∥V πk − Vk∥∞ ≤ δPE,k, approximate greedy updates with error
∥Tπg,k

Vk − TVk∥∞ ≤ δGI,k and policy updates πk+1 ← απg,k + (1− α)πk. For any α ∈ (0, 1],

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
lim supk→∞ δGI,k + 2γδPE,k

(1− γ)2 . (20)

For α = 1, (19) recovers Proposition 2.4.4 of Bertsekas (2018a) as a special case. (20) follows by setting
π′ = πk+1, π = πk in (19) and taking a limit superior on both sides; it proves that the same asymptotic
bound as Proposition 2.4.3 of Bertsekas (2018a) holds for API(α) with arbitrary α ∈ (0, 1]. Furthermore, it
makes explicit that the oscillation amplitude due to PE and GI errors is modulated by α.
Theorem 3.8 (API(α) with π-bisimulation). Under the same conventions as Thm. 3.5, let
n > log(1−γ

1+γ)/ log(γ) and cn = (1 + γ)cn. Given α =
(
α(1 − cn)(1 − γ)/2

)p for some α ∈ (0, 1], λ = 0
and any p ∈ [1,∞):

d̂πk
← F (n)

πk
(d̂πk−1) (21)

S̃,Φk ← HardAggregation(S, d̂πk
, ϵ) (22)

Ṽ πk ← PolicyEvaluation(S̃, πk) (23)

πg ← GreedyImprovement(Ṽ πk

Φk
, δ) (24)

πk+1 ← (1− α)πk + απg. (25)

The sequence {πk}k∈N has the following limiting bound,

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
δ

(1− γ)2 + 2γ(2ϵ+ αcn)
(1− γ)3 . (26)

As expected, by exploiting the induced stability of the sequence {d̂πk
}k∈N via a small α, we obtain a better

asymptotic bound for the same n as compared to Thm. 3.5 (since α ≤ 1). The trade-off here is that setting
α too small can slow down policy improvement and require more policy updates to attain the asymptotic
bound. In particular, the number of steps k necessary to attain a fixed worst-case error bound scales as 1/α
due to the contraction rate 1 − α + αγ seen in (19). Note that α = 0 would amount to no policy update
and is therefore ruled out by assumption: α ∈ (0, 1]. We omit the convergence case here, although it may be
possible to obtain a bound that scales similarly to (16) by following Proposition 2.4.5 of Bertsekas (2018a).7

The bounds here are expressed in terms of the sup-norm for simplicity and represent the worst case. However
stronger bounds in terms of Lp norms can be derived following prior work, e.g., Munos (2003); Farahmand
et al. (2010). Indeed, as noted by Bertsekas (2011), the limiting bounds in (17) and (26) can be conservative
and quickly attained in practice. Nevertheless, they provide insight about co-learning bisimulation metrics
and policies when one does not assume a continuously improving policy. In Section 4, we validate this point
empirically with an implementation of the procedures described in Thms. 3.5 and 3.8.

7Bertsekas & Tsitsiklis (1996) note that convergence is quite uncommon unless approximation errors are extremely small.

7

Published in Transactions on Machine Learning Research (11/2022)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)

API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

10 1

100

101

|d
(s

,s
′)

V
(s

,s
′)|

 (l
og

-s
ca

le
)

max
s, s′ S × S

|d (s, s′) V (s, s′)|

API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

20

40

60

80

100

120

140

Nu
m

be
r o

f p
ar

tit
io

ns

Number of partitions |S| under k

API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

100

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)

API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

10 1

100

|d
(s

,s
′)

V
(s

,s
′)|

 (l
og

-s
ca

le
)

max
s, s′ S × S

|d (s, s′) V (s, s′)|

API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

20

40

60

80

100

120

Nu
m

be
r o

f p
ar

tit
io

ns

Number of partitions |S| under k

API(20)
API(2 2)
API(2 4)
API(2 6)

Figure 1: Ablation of α for the algorithm analyzed in Thm. 3.8 for two MDPs (top and bottom rows). (Left)
While the algorithm reaches a similar performance range for all α, we observe more oscillatory behavior for
higher values of α, which aligns with the ordering of asymptotic worst-case performance (limit superior)
predicted by (26). The trade-off of reduced rate of improvement is also seen clearly. (Middle) The metric
learned by lower α better approximates the value difference ∆V π(s, s′) = |V π(s)− V π(s′)| both in terms of
final error and variance in the limit. (Right) All α < 1 shown here converge to a (near-)optimal partitioning
of S with |S̃| = m, but α = 1 is unable to find the optimal partitioning and has Φk oscillating for both MDPs.

3.3 Bridging Theory and Practice for Co-learning Policies and Bisimulation Metrics

Recall that Zhang et al. (2021) incorporated π-bisimulation metrics into the Soft actor-critic (SAC) algorithm
(Haarnoja et al., 2018) via an auxiliary loss, which encourages the neural state representations ϕ(s) used
by critic and (optionally) actor networks to respect an approximation d̂π of d∼

π computed with replay buffer
samples and learned dynamics, i.e., ∥ϕ(si)− ϕ(sj)∥ ≈ d̂π(si, sj). Such latent representations were shown to
promote distraction invariance for continuous control tasks, which in turn improves sample efficiency and
performance under heavy distraction over various representation learning baselines (Zhang et al., 2021), as
well as the vanilla SAC algorithm (Kemertas & Aumentado-Armstrong, 2021). Similarly, MICo learned (in
a value-based framework) a state encoder that respects another metric defined via Ex1∼µ1,x2∼µ2 [d(x1, x2)]
instead of W1(d)(µ1, µ2) for fast computation (Castro et al., 2021), which we connected to (1, ζ)-Sinkhorn
distances in Sec. 3.1 by taking a limit ζ →∞. Here, we describe how the algorithm given in Thm. 3.8 maps
onto actor-critic approaches used in applications.

The n-step fixed-point update given in (21) is feasible for sufficiently small finite S, but not for large or
continuous S. Thus DBC computes the fixed-point target for a batch of states in a continuous setting, where
d̂πk

(si, sj) := ∥ϕk(si)− ϕk(sj)∥ and a sequence of n fixed-point updates is replaced by a gradient update
ϕk+1 ← ϕk + w∇J(ϕk) with step-size w for a loss,

J(ϕk) = 1
2E
[(
d̂πk

(si, sj)− |Rπ(si)−Rπ(sj)| − γW2(d̂πk
)(P̂π(si), P̂π(sj))

)2
]
,

where the expectation is estimated with replay buffer samples and P̂ is a latent Gaussian model over ϕ space.

For VFA, we use a HardAggregation operation which explicitly computes S̃ and an aggregation function
Φ as in (22). For finite MDPs, Φ is represented as an |S̃| × |S| matrix with one-hot encoded columns,
so that (23) is performed via value iteration over R̃π and P̃π easily with matrix operations. The use of

8

Published in Transactions on Machine Learning Research (11/2022)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)

API (Thm. 3.5)
API(20)
API(2 6)
API(k), k = max(2 6, k 0.8)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)

API (Thm. 3.5)
API(20)
API(2 6)
API(k), k = max(2 6, k 0.8)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)

API (Thm. 3.5)
API(20)
API(2 6)
API(k), k = max(2 6, k 0.8)

Figure 2: Comparing ∥V ∗ − V πk∥∞ using API, API(α) and API(αk) on the first MDP with n ∈ [28, 7, 1]
(left-to-right). See text.

(22-23) enables theoretical analysis via (6). On the other hand, practical approaches for continuous MDPs
such as DBC learn a neural critic of the form Vθ(ϕ(s)) with SGD, where ϕ(s) is trained to respect the
bisimulation metric as described above. Hence, by construction we have Ṽ π(Φ(si)) = Ṽ π(Φ(sj)) whenever
Φ(si) = Φ(sj) such that d̂π(si, sj) ≤ 2ϵ. In contrast, in actor-critic based continuous control one softly
promotes Vθ(ϕ(si)) ≈ Vθ(ϕ(sj)) for small d̂π = ∥ϕ(si)− ϕ(sj)∥ via an architectural constraint on the critic.

Lastly, the operation GreedyImprovement(Ṽ πk

Φk
, δ) in (24) can be viewed as a combination of an exact update

π̃g ← GreedyImprovement(Ṽ πk , 0) in the finite space S̃ followed by a lifting of this quantized policy to a
policy πg over a possibly continuous S with some error δ ≥ 0. For practical continuous control, one noisily
updates the parameters ψ of an actor network πψ with SGD to maximize values predicted by the bisimulation-
constrained critic Vθ◦ϕ. Computing an α-mixture of policies as in (25) is trivial for finite MDPs as it amounts
to a simple interpolation of probability vectors over the action space. However, iterative mixing of neural
policies as in (25) over continuous MDPs is non-trivial. Hence, we focus on finite MDPs in the next section
for a controlled empirical analysis of the theoretical results presented here.

4 Empirical Analysis

In this section, we conduct experiments to empirically investigate the practical implications of the theoretical
results in Sec. 3. To this end, we consider a discounted problem involving |S| states and m equivalence classes
(ECs) denoted Bi where i ∈ [1, . . . ,m] and each EC contains the same number of states |S|/m. At each step,
an agent decides between two actions a0 and a1: taking a0 in Bi transitions the agent to Bi+1, while a1
transitions the agent to B1 (both with probability 1). Only when the agent takes a0 in Bm does it obtain
a reward of 1 and taking a0 keeps the agent in Bm then. Hence, the agent is required to take a0 at least
m times consecutively to collect rewards after taking a1 once. When constructing P, we sample uniformly
from the (|S|/m−1)-simplex to determine the transition probabilities to states in each EC. Therefore, each
random seed generates an MDP with a different P, but they all map to the same reduced MDP. We also
consider a second MDP with dense rewards inspired by Example 6.4 of Bertsekas & Tsitsiklis (1996). This
time, the agent stays in the same EC if it takes a1 rather than being transitioned to B1. Once the agent
reaches Bm, it stays there forever regardless of which action it takes. Rewards for when the agent takes a0
are defined recursively as r0 = e, ri+1 = γri + e, where we set e = 1−γ

1−γm so that R ∈ [0, 1]. We also consider
a third class of MDPs in Appendix F and obtain similar results to those presented here.

In the experiments outlined here, we choose |S| = 200, m = 20 and γ = 0.9. Unless otherwise stated, we use
use p = λ = 1 and n = ⌈log(1−γ

1+γ)/ log(γ)⌉ as in Thm. 3.8 (n = 28 for γ = 0.9). However, metric learning can
be terminated early at a given step k if ∥F (i+1)

πk (d)−F (i)
πk (d)∥∞ ≤ 10−3. To simulate noisy greedy updates, we

perturb action probabilities of the ground-truth greedy policy with Gaussian noise and renormalize to form
a distribution. A heuristic search of the noise variance ensures ∥Tπg

V − TV ∥∞ ∈ [0.05, 0.1] so that δ ≤ 0.1.
In all cases, we initialize π0 to be the maximum-entropy policy. Our source code will be open-sourced for
reproducibility. We base our Sinkhorn-Knopp implementation on the Python Optimal Transport package
(Flamary et al., 2021). All figures present results over 10 seeds with shaded areas showing standard error.

9

Published in Transactions on Machine Learning Research (11/2022)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)
= 2 2

= 2 1

= 20

= 21

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

10 2

10 1

100

101

|d
(s

,s
′)

V
(s

,s
′)|

 (l
og

-s
ca

le
)

max
s, s′ S × S

|d (s, s′) V (s, s′)|

= 2 2

= 2 1

= 20

= 21

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f p
ar

tit
io

ns

Number of partitions |S| under k

= 2 2

= 2 1

= 20

= 21

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)

p = 1.00
p = 1.25
p = 1.50
p = 1.75
p = 2.00 (DBC)

100 101 102 103

API steps (k) (log-scale)

10 1

100

101

|d
(s

,s
′)

V
(s

,s
′)|

 (l
og

-s
ca

le
)

max
s, s′ S × S

|d (s, s′) V (s, s′)|

p = 1.00
p = 1.25
p = 1.50
p = 1.75
p = 2.00 (DBC)

100 101 102 103

API steps (k) (log-scale)

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f p
ar

tit
io

ns

Number of partitions |S| under k

p = 1.00
p = 1.25
p = 1.50
p = 1.75
p = 2.00 (DBC)

Figure 3: Similar to Fig. 1, but varying λ for p = 1 and ϵ = 0.1 (top), and p for λ = 0.1 and ϵ = 0.25
(bottom) on the first MDP. See text.

API, API(α) and API(αk). We begin our analysis by testing the algorithm in Thm. 3.8 with varying α.
The results shown in Fig. 1 confirm the key insights that emerged from the analysis in Sec. 3.2: (i) lower α
makes progress more slowly, but is more stable and has better asymptotic worst-case performance, (ii) lower
α better exploits warm-starting of metric learning to learn a higher quality metric, which in turn better
approximates the value difference ∆V π(s, s′) = |V π(s) − V π(s′)| (recall that the true metric d∼

π satisfies
|V π(s)−V π(s′)| ≤ d∼

π (s, s′) for cR = 1, see also Appendix E), (iii) a higher quality metric makes for a better
partitioning based on it so that all settings with α < 1 recover the m = 20 ECs of the MDPs, while α = 1
does not. Note that we use ϵ = 0.1 for the first MDP and ϵ = 0.04 for the second.

Next, we compare the algorithm in Thm. 3.8 to its naive version described in Thm. 3.5 for various settings
of the number of fixed-point iterations n. We add a new variant called API(αk) to the comparison based on
the observation that we can leverage the high rate of improvement of a high α in early phases of learning
and the improved stability of low α in the limit by scheduling αk to decay gradually to a limiting α. Indeed,
given αk → α the same asymptotic bound in (26) holds. In Fig. 2, we show that the naive algorithm
behaves similarly to API(1.0) for n large enough. However, for smaller n the naive algorithm fails (cf. (16-
17)), while the warm-start algorithm succeeds. Secondly, Fig. 2 shows that given a decay schedule such as
αk = max(2−6, k−0.8), we are able to obtain a better trade-off in terms of rate of improvement and stability
than either of API(1.0) and API(2−6). We note that lower n does not seem to compromise the warm-start
algorithm stability, but only slightly slows down policy improvement in terms of time-steps k for a good
trade-off on wall-clock time (as fixed-point updates Fπ comprise the main bottleneck on run-time). Lastly,
we repeated the same experiment with γ = 0.99 and did not observe any qualitative differences.

(p, λ)-Sinkhorn distances. Here, our main goal is to investigate the results provided by Thm. 3.3 and
Remark 3.4 in Sec. 3.1. As noted in Sec. 3.1, we use the dual Sinkhorn distance with a fixed λ > 0 for
ease of computation and omit the optimization of the dual variable λ for a fixed ζ. However, we note the
monotonic relationship between λ and ζ. In Fig. 3, we ablate λ and p to show how they influence learning for
an API(α) algorithm. We use the API(αk) variant described above with αk = max(0.01, k−0.8) as it strikes
a better trade-off between rate of improvement and asymptotic stability than the fixed-α variant. Recall
that all settings of (p, ζ) enjoy the same bound (6) as stated in Thm. 3.3, and consequently their usage
in API also yields the same asymptotic performance in Thm. 3.8. In the left-most column of Fig. 3, we
observe near-identical behavior in terms of optimality error ∥V ∗−V πk∥∞ not just asymptotically, but for all
k regardless of the choice of (p, λ), i.e., learning dynamics are almost identical. However, the quality of the

10

Published in Transactions on Machine Learning Research (11/2022)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Normalized Mutual Information
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Normalized Mutual Information
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Normalized Mutual Information
= 2 2

= 20

= 22

= (MICo)

Figure 4: Varying λ with unperturbed, lightly perturbed and heavily perturbed P (left-to-right) when
ϵ-aggregation is replaced by 30-medioids partitioning. (Top) Performance gap between different λ settings
widens with more stochastic P. (Bottom) Quality of the learned metric as measured by normalized mutual
information (NMI) of labels found by m-medioids with ground-truth EC labels of the unperturbed MDP.

metric decreases with increasing p and λ in terms of its ability to approximate the value difference between
a pair of states (see Remark 3.4). As a result, given a fixed ϵ one obtains a less efficient discretization (finer-
grained partitioning) of the state space. The output of bisimulation-based RL algorithms is not only a policy
optimized to solve a certain task, but also an efficient state encoder (or aggregator) that ignores functionally-
irrelevant aspects of the environment state; the experiments here show that while all of these metrics (when
learned with the same number of fixed-point iterations) follow a nearly identical policy optimization path,
the choice of (p, λ) defines a trade-off between time and space complexity for hard-aggregation with Φ, and
possibly time complexity and encoder quality for representation learning with state encoders ϕ.

Aggregation on a space budget. In Figs. 1 and 3, we observe that the algorithm often computes a fine-
grained partitioning (|S̃| close to |S| = 200) early on given a fixed ϵ. We inquire whether this costly phase is
necessary to find the optimal policy in π-bisimulation-based API. Secondly, we also observed finer-grained
partitioning with increasing λ. We thus inquire whether the metric learned by MICo (λ→∞) still captures
the same geometric information about the state space but only on a different scale, or it actually loses
information about state similarities due to a weaker upper bound on ∆V π. To investigate these questions,
we test a variant of the algorithm; we replace ϵ-aggregation as in (22) with partitioning around medioids
(PAM) with a fixed number of 30 partitions (Kaufman & Rousseeuw, 1990). Thirdly, in Appendix C, we
identify a potential shortcoming of the Sinkhorn distance: guided by information-theoretic intuition, we
find that the Sinkhorn distance tends to compute a weaker upper bound on the Wasserstein distance when
the distributions being compared have higher entropy. We thus consider MDPs with varying degrees of
stochasticity in P: in particular, we perturb each transition matrix P(·,a) from the first MDP, which is
deterministic, by mixing it with randomly sampled transition matrices (each row sampled uniformly from
the (|S|−1)-simplex) with mixture weights 0.05 and 0.5. Conclusions from Fig. 4 are threefold. (i) The
algorithm makes similar progress towards solving the task given a partition budget 50% above m, i.e., it does
not strictly require too many partitions early on to make progress later. (ii) We confirm that metrics with
smaller λ yield a more informative partitioning, and observe correlation between the quality of the metric
and performance. In other words, if representation capacity allocated to Φ and Ṽ πΦ is constrained, lower λ
produces better results at the expense of some added computation time (more Sinkhorn-Knopp iterations).
(iii) The Sinkhorn distance offers a better complexity-performance trade-off for more deterministic MDPs.

11

Published in Transactions on Machine Learning Research (11/2022)

200 400 600 800 1000
API steps (k)

100

101

tim
e

(s
) (

lo
g-

sc
al

e)

Wall-clock time per step
API(20)
API(2 2)
API(2 4)
API(2 6)

200 400 600 800 1000
API steps (k)

100

101

tim
e

(s
) (

lo
g-

sc
al

e)

Wall-clock time per step
= 2 2

= 20

= 22

= (MICo)

Figure 5: Better runtime with lower α (Left) and higher λ with decaying αk as before (Right) on an
NVIDIA GeForce GTX 1080 GPU.

Runtime measurements. In Sec. 3.1, we discussed how one can warm-start the Sinkhorn-Knopp al-
gorithm with Sinkhorn potentials of previous metrics at some memory cost (see Appendix D.1 for de-
tails). A second advantage involves the use of conservative policy updates. Intuitively, when πk, Pπk

and
the ground metric d̂πk

do not change much over time-steps k, the Sinkhorn potentials corresponding to
Wλ
p (d̂πk

)(Pπk
(s),Pπk

(s′)) should not either. In light of Lemma 3.6, we suspect that with conservative policy
updates, the initial guess provided to the Sinkhorn-Knopp algorithm might be closer to the true solution
when conservative policy updates are employed, which may result in faster convergence. In Fig. 5, we mea-
sure the wall-clock time per iteration of the API(α) algorithm to validate this hypothesis. Secondly, we noted
in Sec. 3.1 that greater λ requires fewer steps for Sinkhorn-Knopp to converge; this is also demonstrated
in Fig. 5. However, the cost of a small λ is eventually amortized by the warm-start strategy as the metric
converges (after ≈ 300 steps). Note that for λ→∞, we have a closed-form for finite spaces (Cuturi, 2013):

lim
λ→∞

Wλ
1 (d)(µ1, µ2) = lim

ζ→∞
W ζ

1 (d)(µ1, µ2) = µT1 Dµ2,

where D is a distance matrix with Dij = d(xi, xj), and µ1 and µ2 are probability vectors. Hence, in this case
one bypasses Sinkhorn-Knopp entirely. The computation of the metric Wλ

1 (d)(Pπ(s),Pπ(s′)) for all state
pairs can be easily parallelized for finite MDPs; all pairwise distances can be computed as PπDPTπ so that
the case λ→∞ can be taken as a best-case run-time benchmark for our implementation.

5 Conclusion

In this work, we analyzed the use of bisimulation metrics in approximate policy iteration to bridge the
gap between theory and practice. We first generalized bisimulation metrics to (p, ζ)-Sinkhorn distances
where p ≥ 1 and ζ ≥ 0. The p-Wasserstein generalization confirmed the theoretical results on VFA of
Kemertas & Aumentado-Armstrong (2021) given in (6) and added theoretical justification to the use of 2-
Wasserstein metrics for fast computation as in Zhang et al. (2021). Sinkhorn distances enabled GPU-based
fast approximation of upper bounds on p-Wasserstein bisimulation metrics with better time complexity
than prior work (Ferns et al., 2004), and established a theoretical formalism for a more general family of
metrics encompassing standard bisimulation metrics and MICo (Castro et al., 2021). We further conducted
a theoretical analysis of API procedures that use a bisimulation-based discretization of the state space for
VFA. The analysis indicated that conservative updates may benefit such procedures since a rapidly changing
policy makes for a rapidly changing metric learning objective. Indeed, we showed that conservative updates
enable warm-starting of metric learning iterations with significantly better speedup-performance trade-offs.
To validate our theoretical findings and investigate trade-offs, we implemented the theoretically-grounded
API(α) algorithm, which mimics the actor-critic based applications of bisimulation-like metrics for continuous
control (Zhang et al., 2021; Kemertas & Aumentado-Armstrong, 2021; Castro et al., 2021). We provided
an ablation analysis of algorithm parameters, and also showed empirically that decaying policy update sizes
may strike better trade-offs between asymptotic performance, stability and rate of improvement. Further,
in our controlled setting we showed that metric learning speedups are gained by a trade-off in the quality of
the learned metric and space complexity of corresponding state abstractions. Whenever VFA capacity (as

12

Published in Transactions on Machine Learning Research (11/2022)

measured here by the number of allowed partitions) is sufficient, the policy performance for the task at hand
remains unaffected by the use of weaker metrics; however, capacity limitations may result in performance
degradation as was shown in Fig. 4. Furthermore, we presented evidence that the Sinkhorn distance may
offer a better trade-off under more deterministic transitions. While we focused on theoretical analysis in this
work and limited our empirical analysis to finite MDPs, future work may consider practical approaches to
implementing bisimulation-based actor-critic algorithms with conservative policy updates, and sample-based
approximation of the Sinkhorn distance between continuous distributions for continuous control.

Acknowledgements. We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References
David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate state ab-

straction. In International Conference on Machine Learning, pp. 2915–2923. PMLR, 2016.

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation algorithms
for optimal transport via sinkhorn iteration. Advances in neural information processing systems, 30, 2017.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning.
Advances in neural information processing systems, 21, 2008.

John S Baras and Vivek S Borkar. A learning algorithm for markov decision processes with adaptive state
aggregation. In Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187),
volume 4, pp. 3351–3356. IEEE, 2000.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific, Belmont, MA, 1996.

Dimitri Bertsekas. Abstract dynamic programming. Athena Scientific, 2018a.

Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of Control
Theory and Applications, 9(3):310–335, 2011.

Dimitri P Bertsekas. Feature-based aggregation and deep reinforcement learning: A survey and some new
implementations. IEEE/CAA Journal of Automatica Sinica, 6(1):1–31, 2018b.

Dimitri P. Bertsekas. Feature-based aggregation and deep reinforcement learning: a survey and some new
implementations. IEEE CAA J. Autom. Sinica, 6(1):1–31, 2019. doi: 10.1109/JAS.2018.7511249. URL
https://doi.org/10.1109/JAS.2018.7511249.

D.P. Bertsekas and D.A. Castanon. Adaptive aggregation methods for infinite horizon dynamic programming.
IEEE Transactions on Automatic Control, 34(6):589–598, 1989. doi: 10.1109/9.24227.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic Markov decision
processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 10069–10076,
2020.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. MICo: Improved represen-
tations via sampling-based state similarity for Markov decision processes. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.
URL https://openreview.net/forum?id=wFp6kmQELgu.

Guanting Chen, Johann Demetrio Gaebler, Matt Peng, Chunlin Sun, and Yinyu Ye. An adaptive state
aggregation algorithm for markov decision processes. arXiv preprint arXiv:2107.11053, 2021.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

13

https://doi.org/10.1109/JAS.2018.7511249
https://openreview.net/forum?id=wFp6kmQELgu

Published in Transactions on Machine Learning Research (11/2022)

Thomas Dean and Robert Givan. Model minimization in markov decision processes. In AAAI, pp. 106–111,
1997.

Thomas Dean, Robert Givan, and Sonia Leach. Model reduction techniques for computing approximately
optimal solutions for markov decision processes. In Proceedings of the Thirteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’97, pp. 124–131, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc. ISBN 1558604855.

Yaqi Duan, Tracy Ke, and Mengdi Wang. State aggregation learning from markov transition data. Advances
in Neural Information Processing Systems, 32, 2019.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport: Com-
plexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In International conference
on machine learning, pp. 1367–1376. PMLR, 2018.

Amir-massoud Farahmand, Rémi Munos, and Csaba Szepesvári. Error propagation for approximate policy
and value iteration. In Proceedings of the 23rd International Conference on Neural Information Processing
Systems - Volume 1, NIPS’10, pp. 568–576, Red Hook, NY, USA, 2010. Curran Associates Inc.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision processes. In Pro-
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp. 162–169, Arlington,
Virginia, USA, 2004. AUAI Press. ISBN 0974903906.

Norm Ferns, Pablo Samuel Castro, Doina Precup, and Prakash Panangaden. Methods for computing
state similarity in markov decision processes. In Proceedings of the Twenty-Second Conference on Un-
certainty in Artificial Intelligence, UAI’06, pp. 174–181, Arlington, Virginia, USA, 2006. AUAI Press.
ISBN 0974903922.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous Markov decision
processes. SIAM J. Comput., 40(6):1662–1714, December 2011. ISSN 0097-5397. doi: 10.1137/10080484X.
URL https://doi.org/10.1137/10080484X.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python optimal trans-
port. J. Mach. Learn. Res., 22(78):1–8, 2021.

Bennett L Fox. Discretizing dynamic programs. Journal of Optimization Theory and Applications, 11(3):
228–234, 1973.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-scale
optimal transport. Advances in neural information processing systems, 29, 2016.

Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International
Statistical Review, 70(3):419–435, 2002. doi: https://doi.org/10.1111/j.1751-5823.2002.tb00178.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in markov
decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pp. 1861–1870. PMLR, 2018.

Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in monte carlo tree search. Proceedings
of the AAAI Conference on Artificial Intelligence, 28(1), Jun. 2014. doi: 10.1609/aaai.v28i1.9066. URL
https://ojs.aaai.org/index.php/AAAI/article/view/9066.

Nicholas K Jong and Peter Stone. State abstraction discovery from irrelevant state variables. In IJCAI,
volume 8, pp. 752–757, 2005.

14

https://doi.org/10.1137/10080484X
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x
https://ojs.aaai.org/index.php/AAAI/article/view/9066

Published in Transactions on Machine Learning Research (11/2022)

Leonard Kaufman and Peter J Rousseeuw. Partitioning around medoids (program pam). Finding groups in
data: an introduction to cluster analysis, 344:68–125, 1990.

Mete Kemertas and Tristan T Aumentado-Armstrong. Towards robust bisimulation metric learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Charline Le Lan, Marc G. Bellemare, and Pablo Samuel Castro. Metrics and continuity in reinforcement
learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, pp. 8261–8269. AAAI
Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/17005.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
MDPs. ISAIM, 4:5, 2006.

Szymon Łukaszyk. A new concept of probability metric and its applications in approximation of scattered
data sets. Computational mechanics, 33(4):299–304, 2004.

Andrew Kachites McCallum. Reinforcement learning with selective perception and hidden state. University
of Rochester, 1996.

Roy Mendelssohn. An iterative aggregation procedure for markov decision processes. Operations Research,
30(1):62–73, 1982.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pp. 560–567, 2003.

Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with given dispersion
matrices. Linear Algebra and its Applications, 48:257–263, 1982.

James Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proceedings of the Twentieth
annual ACM symposium on Theory of Computing, pp. 377–387, 1988.

Ronald Ortner. Adaptive aggregation for reinforcement learning in average reward markov decision processes.
Annals of Operations Research, 208(1):321–336, 2013.

Bruno Scherrer. Improved and generalized upper bounds on the complexity of policy iteration. Advances in
Neural Information Processing Systems, 26, 2013.

Bruno Scherrer. Approximate policy iteration schemes: a comparison. In International Conference on
Machine Learning, pp. 1314–1322. PMLR, 2014.

Sean R Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization for episodic reinforce-
ment learning in metric spaces. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 3(3):1–44, 2019.

Satinder Singh, Tommi Jaakkola, and Michael Jordan. Reinforcement learning with soft state aggre-
gation. In G. Tesauro, D. Touretzky, and T. Leen (eds.), Advances in Neural Information Process-
ing Systems, volume 7. MIT Press, 1995. URL https://proceedings.neurips.cc/paper/1994/file/
287e03db1d99e0ec2edb90d079e142f3-Paper.pdf.

Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American
Mathematical Monthly, 74(4):402–405, 1967.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–348, 1967.

John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic programming.
Machine Learning, 22(1):59–94, 1996.

Benjamin Van Roy. Performance loss bounds for approximate value iteration with state aggregation. Math-
ematics of Operations Research, 31(2):234–244, 2006.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

15

https://ojs.aaai.org/index.php/AAAI/article/view/17005
https://proceedings.neurips.cc/paper/1994/file/287e03db1d99e0ec2edb90d079e142f3-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/287e03db1d99e0ec2edb90d079e142f3-Paper.pdf

Published in Transactions on Machine Learning Research (11/2022)

Ward Whitt. Approximations of dynamic programs, i. Mathematics of Operations Research, 3(3):231–243,
1978.

Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in deep
embedding learning. In Proceedings of the IEEE international conference on computer vision, pp. 2840–
2848, 2017.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant
representations for reinforcement learning without reconstruction. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=-2FCwDKRREu.

16

https://openreview.net/forum?id=-2FCwDKRREu

Published in Transactions on Machine Learning Research (11/2022)

A Proofs and Additional Results

Lemma 3.2 (A (p, ζ)-Sinkhorn distance bound). Given metrics d and d′, for all p ≥ 1 and ζ ≥ 0,∣∣W ζ
p (d)(µ1, µ2)−W ζ

p (d′)(µ1, µ2)
∣∣ ≤ ∥d− d′∥∞. (9)

Proof. Let Ω(ζ) = {ω ∈ Ω | DKL(ω || µ1 ⊗ µ2) ≤ ζ−1}.

W ζ
p (d)(µ1, µ2)−W ζ

p (d′)(µ1, µ2)
= min
ω∈Ω(ζ)

∥d∥p,ω −W ζ
p (d′)(µ1, µ2)

= min
ω∈Ω(ζ)

∥d− d′ + d′∥p,ω −W ζ
p (d′)(µ1, µ2)

≤ min
ω∈Ω(ζ)

(∥d− d′∥p,ω + ∥d′∥p,ω)−W ζ
p (d′)(µ1, µ2) (since triangle inequality holds for all ω ∈ Ω(ζ))

≤ min
ω∈Ω(ζ)

(∥d− d′∥∞ + ∥d′∥p,ω)−W ζ
p (d′)(µ1, µ2) (since ∥·∥p,ω ≤ ∥·∥∞)

= ∥d− d′∥∞ + min
ω∈Ω(ζ)

∥d′∥p,ω −W ζ
p (d′)(µ1, µ2)

= ∥d− d′∥∞. ■

Lemma A.1 (Triangle inequality for W ζ
p (d)). Consider three probability measures µ1, µ2, µ3 ∈ Pp(X).

W ζ
p (d)(µ1, µ3) ≤W ζ

p (d)(µ1, µ2) +W ζ
p (d)(µ2, µ3). (27)

Proof. For this proof, we use the Gluing Lemma (see Chapter 1 of Villani (2008)) and Lemma 1 of Cuturi
(2013). Note that triangle inequality readily holds for Wp(d) (Villani, 2008) and W ζ

1 (d) (Cuturi, 2013).

Let random variables (X1, X2) be the optimal coupling of (µ1, µ2) and (Z2, Z3) the optimal cou-
pling of (µ2, µ3). By the Gluing Lemma, there exist random variables (X ′

1, X
′
2, X

′
3) such that

ω∗
12 = law(X ′

1, X
′
2) = law(X1, X2) and ω∗

23 = law(X ′
2, X

′
3) = law(Z2, Z3), where ω∗

12, ω
∗
23 ∈ Ω(ζ). Further-

more, by Lemma 1 of Cuturi (2013), (X ′
1, X

′
3) is a coupling of (µ1, µ3) such that ω13 = law(X ′

1, X
′
3) ∈ Ω(ζ).

That is, ω13 also satisfies the entropic constraint given by ζ and is therefore feasible.

W ζ
p (d)(µ1, µ3) ≤

(
E[d(X ′

1, X
′
3)p]
) 1

p (since the coupling (X ′
1, X

′
3) is not necessarily optimal for (µ1, µ3))

≤
(
E
[(
d(X ′

1, X
′
2) + d(X ′

2, X
′
3)
)p]) 1

p (by triangle inequality since d is a pseudo-metric)

≤
(
E[d(X ′

1, X
′
2)p]
) 1

p +
(
E[d(X ′

2, X
′
3)p]
) 1

p (by the Minkowski inequality)

= W ζ
p (d)(µ1, µ2) +W ζ

p (d)(µ2, µ3),

where the equality in the final step holds since the couplings (X ′
1, X

′
2) and (X ′

2, X
′
3) are optimal with respect

to (µ1, µ2) and (µ2, µ3) respectively by construction. ■

Corollary A.2 (Approximate metrics and approximate distributions). Consider distributions
µ1, µ1, µ2, µ2 ∈ Pp(X) and a pair of metrics d, d′. Due to Lemma 3.2 and Lemma A.1,

|W ζ
p (d)(µ1, µ2)−W ζ

p (d′)(µ1, µ2)| ≤W ζ
p (d)(µ1, µ1) +W ζ

p (d)(µ2, µ2) + ∥d− d′∥∞. (28)

17

Published in Transactions on Machine Learning Research (11/2022)

Proof.

|W ζ
p (d)(µ1, µ2)−W ζ

p (d′)(µ1, µ2)|

=
∣∣∣W ζ

p (d)(µ1, µ2)−W ζ
p (d)(µ1, µ2) +W ζ

p (d)(µ1, µ2)−W ζ
p (d′)(µ1, µ2)

∣∣∣
≤
∣∣∣W ζ

p (d)(µ1, µ2)−W ζ
p (d)(µ1, µ2)

∣∣∣+
∣∣∣W ζ

p (d)(µ1, µ2)−W ζ
p (d′)(µ1, µ2)

∣∣∣ (triangle inequality)

≤
∣∣∣W ζ

p (d)(µ1, µ2)−W ζ
p (d)(µ1, µ2)

∣∣∣+ ∥d− d′∥∞ (by Lemma 3.2)

≤
∣∣∣W ζ

p (d)(µ1, µ1) +W ζ
p (d)(µ1, µ2) +W ζ

p (d)(µ2, µ2)−W ζ
p (d)(µ1, µ2)

∣∣∣+ ∥d− d′∥∞ (by Lemma A.1)

= W ζ
p (d)(µ1, µ1) +W ζ

p (d)(µ2, µ2) + ∥d− d′∥∞. ■

Theorem 3.3 ((p, ζ)-Sinkhorn bisimulation metrics). Let cT ∈ [0, 1), cR ∈ [0,∞), p ≥ 1 and ζ ≥ 0. The
mappings F ,Fπ : met(S)→ met(S) each have unique fixed-points:

F(d)(si, sj) := max
a∈A

cR|R(si,a)−R(sj ,a)|+ cTW
ζ
p (d)(P(si,a),P(sj ,a)), (10)

Fπ(d)(si, sj) := cR|Rπ(si)−Rπ(sj)|+ cTW
ζ
p (d)(Pπ(si),Pπ(sj)). (11)

Whenever cT ≥ γ, (4) and (6) hold for all p ≥ 1 and ζ ≥ 0 for fixed-points d∼ and d∼
π respectively.

Proof. Similarly to the proofs of Thm. 3.12 of Ferns et al. (2011) and Remark 1 of Kemertas & Aumentado-
Armstrong (2021), it suffices to show that above fixed-point updates are contraction mappings. Then, we
invoke the Banach fixed-point theorem to show the existence of a unique metric. Intuitively, applying the
operator F on different metrics d, d′ ∈ met(S) should bring the metrics closer under the supremum (uniform)
norm, such that limn→∞ F (n)(d) = limn→∞ F (n)(d′), i.e., they converge to the same unique metric. Here,
compactness of S implies that met(S) is complete such that the Banach fixed-point theorem can be applied
(Ferns et al., 2011). Due to Lemma 3.2,

Fπ(d)(si, sj)−Fπ(d′)(si, sj) = cT (Wp(d)(Pπ(si),Pπ(sj))−Wp(d′)(Pπ(si),Pπ(sj)))
≤ cT ∥d− d′∥∞, ∀(si, sj) ∈ S × S.

Taking a supremum on the LHS over S × S, we obtain ∥Fπ(d)−Fπ(d′)∥∞ ≤ cT ∥d− d′∥∞, i.e., Fπ is a
cT -contraction with respect to the sup-norm. Then, Fπ has a unique fixed-point due to the Banach-fixed
point theorem. The same result readily applies to F as well.

We now prove (6) for Fπ. First, note that by definition of the primal Sinkhorn distance in (7), we have for
any p, d, µ1, µ2

ζ1 ≤ ζ2 ⇒ Ω(ζ2) ⊆ Ω(ζ1)⇒W ζ1
p (d)(µ1, µ2) ≤W ζ2

p (d)(µ1, µ2).

Then, given fixed-point metrics d1 and d2 given by (p, ζ1) and (p, ζ2), we have ζ1 ≤ ζ2 ⇒ d1 ≤ d2.
More generally, we have (p1, ζ1) ⪯ (p2, ζ2)⇒ d1 ≤ d2 as noted in Remark 3.4 since
p1 ≤ p2 ⇒Wp1(d)(µ1, µ2) ≤Wp2(d)(µ1, µ2) (Villani, 2008). But from Castro (2020) and Kemertas
& Aumentado-Armstrong (2021) we have for any π, cR|V π(s)− V π(s′)| ≤ d∼

π (s, s′) for the special
case when p = 1 and ζ is sufficiently small so that the constraint is satisfied for all ω ∈ Ω and
W ζ
p (d)(µ1, µ2) = Wp(d)(µ1, µ2). Then, we have (p1, ζ1) ⪯ (p2, ζ2)⇒ cR|V π(s)− V π(s′)| ≤ d1 ≤ d2 so

that all metrics defined by (p, ζ) provide an upper bound on cR|V π(s)− V π(s′)|. The result (6) follows
immediately from Lipschitz continuity of Vπ with respect to d∼

π (see proof of Lemma 8 by Kemertas &
Aumentado-Armstrong (2021)), which is true of all metrics given by (p, ζ); hence (6) holds for all (p, ζ).
The same logic applies to F and V ∗ due to Ferns et al. (2011), so we skip the proof of (4) for brevity. ■

Definition A.3 (Total variation distance (Gibbs & Su, 2002)). The total variation distance between a pair
of distributions µ1, µ2 over a measurable space X is given by the following:

DTV(µ1, µ2) = sup
A⊂X

|µ1(A)− µ2(A)| (29)

= 1
2 max
f∈F

∣∣∣∣∫
X
f(x)(µ1(x)− µ2(x))dx

∣∣∣∣ (30)

18

Published in Transactions on Machine Learning Research (11/2022)

where F = {f : X → R | ∥f∥∞ ≤ 1}. For discrete distributions, DTV(µ1, µ2) = 1
2∥µ1 − µ2∥1.

Corollary A.4 (Total variation distance to a mixture distribution). Given distributions µ1, µ2 over a mea-
surable space X and a scalar α ∈ [0, 1]:

DTV(µ1, (1− α)µ1 + αµ2) = αDTV(µ1, µ2) (31)

Proof. Follows immediately from (30). ■

Lemma A.5 (Total variation distance between policies vs. transition distributions). Consider a pair of
policies π, π′ and the policy-dependent transition distributions Pπ(s),Pπ′(s),

DTV(Pπ(s),Pπ′(s)) ≤ DTV(π(s), π′(s)). (32)

Proof. Let F = {f : S → R | ∥f∥∞ ≤ 1} and G = {g : A → R | ∥g∥∞ ≤ 1}. Using Definition A.3 of the
total variation distance,

DTV(Pπ(s),Pπ′(s))

= 1
2 max
f∈F

∣∣∣∣∫
S
f(s′)(Pπ(s′|s)− Pπ(s′|s))ds′

∣∣∣∣
= 1

2 max
f∈F

∣∣∣∣∫
S
f(s′)

∫
A
P(s′|s,a)

(
π(a|s)− π′(a|s)

)
dads′

∣∣∣∣
= 1

2 max
f∈F

∣∣∣∣ ∫
A

(
π(a|s)− π′(a|s)

)∫
S
f(s′)P(s′|s,a)ds′da

∣∣∣∣ (by Fubini’s theorem)

= 1
2

∣∣∣∣ ∫
A

(
π(a|s)− π′(a|s)

)∫
S
f∗(s′)P(s′|s,a)ds′︸ ︷︷ ︸

=f̃(s,a)

da

∣∣∣∣
≤ 1

2

∣∣∣∣ ∫
A

(
π(a|s)− π′(a|s)

)
max
s∈S

f̃(s,a)︸ ︷︷ ︸
=g̃(a)

da

∣∣∣∣
≤ 1

2 max
g∈G

∣∣∣∣ ∫
A

(
π(a|s)− π′(a|s)

)
g(a)da

∣∣∣∣
= DTV(π(s), π′(s)),

where we used the fact that ∥f̃∥∞ ≤ 1 and ∥g̃∥∞ ≤ 1. ■

Lemma A.6 (Total variation distance between policies vs. immediate reward difference). Consider a pair
of policies π, π′ and the policy-dependent reward functions Rπ, Rπ′ ,

|Rπ(s)−Rπ′(s)| ≤ DTV(π(s), π′(s)). (33)

Proof.

|Rπ(s)−Rπ′(s)| =
∣∣∣∣∫

A
(π(a|s)− π′(a|s))R(s,a)da

∣∣∣∣
= 1

2

∣∣∣∣∫
A

(π(a|s)− π′(a|s)) 2R(s,a)da

∣∣∣∣
= 1

2

∣∣∣∣∫
A

(π(a|s)− π′(a|s)) (2R(s,a)− 1)da

∣∣∣∣ (since π and π′ both integrate to 1)

≤ DTV

(
π(s), π′(s)

)
,

where the last inequality is due to Definition A.3 and the fact that ∥2R− 1∥∞ ≤ 1 given R ∈ [0, 1]. ■

19

Published in Transactions on Machine Learning Research (11/2022)

Lemma A.7 (Wasserstein distance of transition distributions under different policies). Given a pair of
policies π, π′ and the policy-dependent transition distributions Pπ(s),Pπ′(s),

Wp(dπ)(Pπ(s),Pπ′(s)) ≤ cR
1− cT

DTV(π(s), π′(s))
1
p , ∀s ∈ S. (34)

Proof. First, recall from (6.11) of (Villani, 2008) that the 1-Wasserstein distance under the indicator function
1[x ̸= x′] is equal to the total variation distance. Then,

W1(1[x ̸= x′])(µ1, µ2) = min
ω∈Ω
∥1[x ̸= x′]∥1,ω = DTV(µ1, µ2)

= min
ω∈Ω
∥1[x ̸= x′]p∥1,ω, ∀p ∈ [1,∞) (since 1[x ̸= x′] = 1[x ̸= x′]p)

= min
ω∈Ω
∥1[x ̸= x′]∥pp,ω, ∀p ∈ [1,∞)

= W p
p (1[x ̸= x′])(µ1, µ2), ∀p ∈ [1,∞),

which implies for all p ∈ [1,∞),

Wp(1[x ̸= x′])(µ1, µ2) = DTV(µ1, µ2)
1
p . (35)

Next, note by Lemma 1 of Kemertas & Aumentado-Armstrong (2021), all bisimulation metrics are bounded
above by cR/(1− cT) for R ∈ [0, 1].

Wp(dπ)(Pπ(s),Pπ′(s))

= cR
1− cT

Wp(
dπ(1− cT)

cR
)(Pπ(s),Pπ′(s))

≤ cR
1− cT

Wp(1[s ̸= s′])(Pπ(s),Pπ′(s))

= cR
1− cT

DTV(Pπ(s),Pπ′(s))
1
p (due to (35))

≤ cR
1− cT

DTV(π(s), π′(s))
1
p (by Lemma A.5) ■

Lemma 3.6 (Comparing π-bisimulation metrics of different policies). Let π, π′ be a pair of policies and
d∼
π , d

∼
π′ corresponding π-bisimulation metrics given by p ∈ [1,∞) and λ = 0. The difference between d∼

π and
d∼
π′ is bounded by D∞

TV (π, π′) = sups∈S DTV(π(s), π′(s)), the worst-case total variation distance of π and π′:

∥d∼
π − d∼

π′∥∞ ≤
2cR

(1− cT)2D
∞
TV (π, π′)

1
p . (18)

Proof. ∣∣∣dπ(si, sj)− dπ′(si, sj)
∣∣∣

=
∣∣∣cR(|Rπ(si)−Rπ(sj)| − |Rπ′(si)−Rπ′(sj)|

)
+ cT

(
Wp(dπ)(Pπ(si),Pπ(sj))−Wp(dπ′)(Pπ′(si),Pπ′(sj))

)∣∣∣
≤ cR

∣∣∣|Rπ(si)−Rπ(sj)| − |Rπ′(si)−Rπ′(sj)|
∣∣∣︸ ︷︷ ︸

1

+ cT

∣∣∣Wp(dπ)(Pπ(si),Pπ(sj))−Wp(dπ′)(Pπ′(si),Pπ′(sj))
∣∣∣︸ ︷︷ ︸

2

20

Published in Transactions on Machine Learning Research (11/2022)

1 ≤ |Rπ(si)−Rπ′(si)|+ |Rπ(sj)−Rπ′(sj)|

≤ DTV

(
π(si), π′(si)

)
+DTV

(
π(sj), π′(sj)

)
(by Lemma A.6)

≤ 2D∞
TV(π, π′).

2 ≤Wp(dπ)(Pπ(si),Pπ′(si)) +Wp(dπ)(Pπ(sj)),Pπ′(sj)) + ∥dπ − dπ′∥∞ (due to Corollary A.2)

≤ cR
1− cT

(
DTV

(
π(si), π′(si)

) 1
p +DTV

(
π(sj), π′(sj)

) 1
p

)
+ cT ∥dπ − dπ′∥∞ (due to Lemma A.7)

≤ 2cR
1− cT

D∞
TV(π, π′)

1
p + cT ∥dπ − dπ′∥∞

Combining 1 and 2 , and rearranging:∣∣∣dπ(si, sj)− dπ′(si, sj)
∣∣∣

≤ 2cRD∞
TV(π, π′) + 2cT cR

1− cT
D∞

TV(π, π′)
1
p + cT ∥dπ − dπ′∥∞

≤ 2cRD∞
TV(π, π′)

1
p + 2cT cR

1− cT
D∞

TV(π, π′)
1
p + cT ∥dπ − dπ′∥∞ † (since DTV ∈ [0, 1])

≤ 2cR
1− cT

D∞
TV(π, π′)

1
p + cT ∥dπ − dπ′∥∞

Taking a supremum over S × S on the LHS and rearranging,

∥dπ − dπ′∥∞ ≤
2cR

(1− cT)2D
∞
TV(π, π′)

1
p . ■

Note that step † serves only to simplify the final expression, but yields a loose bound for p > 1. Omitting †
one obtains a better bound:

∥dπ − dπ′∥∞ ≤
2cR

(1− cT)

(
D∞

TV(π, π′) + cT
1− cT

D∞
TV(π, π′)

1
p

)
.

As cT → 1 the second term dominates so that the loose bound tightens. Since cT is typically set to γ and is
close to 1 in practice, we use the simpler bound for convenience.

From Thm. 3.3 and the proof of Lemma 8 of Kemertas & Aumentado-Armstrong (2021), we have the
following bound on approximation error for V π given an approximation of the π-bisimulation metric.
Lemma A.8 (Approximating V π under metric learning error (Kemertas & Aumentado-Armstrong, 2021)).
Let d̂π be an approximation of d∼

π such that ∥d∼
π − d̂π∥∞ ≤ E. If state abstraction function Φ is computed

such that Φ(si) = Φ(sj)⇒ d̂π(si, sj) ≤ 2ϵ, the following holds:

∥V π − Ṽ πΦ ∥∞ ≤
2ϵ+ E

cR(1− γ) . (36)

The following extends Thm. 4 of Kemertas & Aumentado-Armstrong (2021) to (p, ζ)-Sinkhorn distances.
Lemma A.9 (Decomposition of error sources in VFA for (p, ζ)-Sinkhorn bisimulation metrics). Consider a
bounded approximate reward function R̂ and dynamics model P̂ supported on a closed subset of S. For any
p ≥ 1 and ζ ≥ 0, there exists a unique metric d

π,P̂ such that

d
π,P̂(si, sj) = cR|R̂π(si)− R̂π(si)|+ cTW

ζ
p (d

π,P̂)(P̂π(si), P̂π(sj)).

21

Published in Transactions on Machine Learning Research (11/2022)

Furthermore, aggregation via a learned approximation d̂π of d
π,P̂ yields the following bound for any p ≥ 1:

∥V π − Ṽ πΦ ∥∞ ≤
1

cR(1− γ)

(
2 ϵ+ Em + 2cR

1− cT
ER + 2cT

1− cT
EP

)
. (37)

where Em := ∥d̂π − dπ,P̂∥∞ is the metric learning error, ER := ∥R̂π − Rπ∥∞ is the reward approximation
error, and EP := sups∈S W

ζ
p (dπ)(Pπ(s), P̂π(s)) is the state transition model error.

Proof. Here, we use the following shorthand notation for the π-bisimulation distance between a pair of states:

dπ(si, sj) = cR|Riπ −Rjπ|+ cTW
ζ
p (dπ)(Piπ,Pjπ).

First, note that the existence of d
π,P̂ follows from Thm. 3 of Kemertas & Aumentado-Armstrong (2021) and

Lemma 3.2. Next, we apply the triangle inequality to the error on the true metric dπ:

∥dπ − d̂π∥∞

≤ ∥dπ − dπ,P̂∥∞ + ∥d̂π − dπ,P̂∥∞ (triangle inequality)

= ∥dπ − dπ,P̂∥∞︸ ︷︷ ︸
1

+Em (by definition of Em)

Expanding 1 :

∥dπ − dπ,P̂∥∞

= sup
i,j

{∣∣∣cR(|Riπ −Rjπ| − |R̂iπ − R̂jπ|)+ cT

(
W ζ
p (dπ)(Piπ,Pjπ)−W ζ

p (d
π,P̂)(P̂iπ, P̂jπ)

)∣∣∣}
≤ sup

i,j

{∣∣∣cR(|Riπ − R̂iπ|+ |Rjπ − R̂jπ|)+ cT

(
W ζ
p (dπ)(Piπ,Pjπ)−W ζ

p (d
π,P̂)(P̂iπ, P̂jπ)

)∣∣∣}
≤ 2cRER + cT sup

i,j

∣∣∣(W ζ
p (dπ)(Piπ,Pjπ)−W ζ

p (d
π,P̂)(P̂iπ, P̂jπ)

)∣∣∣ (by definition of ER)

≤ 2cRER + cT sup
i,j

(
W ζ
p (dπ)(Piπ, P̂iπ) +W ζ

p (dπ)(Pjπ, P̂jπ) + ∥dπ − dπ,P̂∥∞

)
(by Corollary A.2)

≤ 2cRER + 2cTEP + cT ∥dπ − dπ,P̂∥∞. (by definition of EP)

Rearranging,

∥dπ − dπ,P̂∥∞ ≤
2cR

1− cT
ER + 2cT

1− cT
EP .

Plugging 1 back in,

∥dπ − d̂π∥∞ ≤ Em + 2cR
1− cT

ER + 2cT
1− cT

EP .

The result follows from Lemma A.8. ■

Now, we rephrase API bounds from Bertsekas (2018a) before proving Thm. 3.5.
Lemma A.10 (Propositions 2.4.3 and 2.4.5 of (Bertsekas, 2018a)). Consider an API algorithm that gener-
ates policies {πk}k∈N and functions {Vk}k∈N in B(S) with policy evaluation error ∥Vk − V πk∥∞ ≤ δPE and
approximate greedy updates with error ∥Tπk+1Vk − TVk∥∞ ≤ δGI. If the sequence converges to a policy π,

∥V π − V ∗∥∞ ≤
δGI + 2γδPE

1− γ .

Otherwise, the sequence {πk}k∈N has the limiting bound,

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
δGI + 2γδPE

(1− γ)2 .

22

Published in Transactions on Machine Learning Research (11/2022)

Theorem 3.5 (API with π-bisimulation). Let cR = 1, cT = γ and {πk}k∈N be a sequence of policies generated
with the following updates per step, where d0 = 0 ∈ met(S), and ϵ ≥ 0 and n ∈ N+ are algorithm parameters.
Let cn = γn/(1− γ), and consider for any p ≥ 1 and ζ ≥ 0:

d̂πk
← F (n)

πk
(d0) (12)

S̃,Φk ← HardAggregation(S, d̂πk
, ϵ) (13)

Ṽ πk ← PolicyEvaluation(S̃, πk) (14)

πk+1 ← GreedyImprovement(Ṽ πk

Φk
, δ), (15)

and Ṽ πk

Φk
∈ B(S) is the composition of Ṽ πk and Φk. If the sequence {πk}k∈N converges to a policy π, we have

∥V π − V ∗∥∞ ≤
δ

1− γ + 2γ(2ϵ+ cn)
(1− γ)2 . (16)

Otherwise, it has the following limiting bound,

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
δ

(1− γ)2 + 2γ(2ϵ+ cn)
(1− γ)3 . (17)

Proof. First, we observe that,

∥d̂πk
− dπk

∥∞

= ∥F (n)
πk

(d0)− dπk
∥∞

≤ cnT
1− cT

∥Fπk
(d0)− d0∥∞ (by the Banach fixed-point theorem and Thm. 3.3)

= cn∥Fπk
(d0)∥∞ (since d0 = 0)

= cn sup
i,j
|Rπ(si)−Rπ(sj)| (since d0 = 0⇒Wp(d0) = 0)

≤ cn,∀k ∈ N. (since R ∈ [0, 1])

Then, by Lemma A.8,

∥V πk − Ṽ πk

Φk
∥∞ ≤

2ϵ+ cn
1− γ ,∀k ∈ N.

The result follows from Lemma A.10 with δGI = δ and δPE = 2ϵ+cn

1−γ . ■

To prove Thm. 3.8, we write an analogue of Lemma A.10 that does not assume a fixed bound on PE error, but
a sequence of policy evaluation errors δPE,k and greedy improvement errors δGI,k that have finite limiting
bounds. The following is a slight variation of Lemma A.10, which is stronger as it considers asymptotic
bounds on said errors rather than the maximum error over all k.
Lemma A.11 (A stronger API bound (Bertsekas, 2018a)). Consider an API algorithm that generates
policies {πk}k∈N and functions {Vk}k∈N in B(S) with policy evaluation error ∥Vk − V πk∥∞ ≤ δPE,k and
approximate greedy updates with error ∥Tπk+1Vk − TVk∥∞ ≤ δGI,k. The sequence {πk}k∈N has the limiting
bound,

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
lim supk→∞ δGI,k + 2γδPE,k

(1− γ)2 .

Proof. From Prop. 2.4.4 of (Bertsekas, 2018a), given ∥Vk − V πk∥∞ ≤ δPE,k and ∥Tπk+1Vk − TVk∥∞ ≤ δGI,k,

∥V πk+1 − V ∗∥∞ ≤ γ∥V πk − V ∗∥∞ + δGI,k + 2γδPE,k

1− γ . (38)

The result follows by simply taking a lim supk→∞ on both sides. ■

23

Published in Transactions on Machine Learning Research (11/2022)

Lemma 3.7 (Generalized API(α) bounds). Let V ∈ B(S) and policies π, π′, πg satisfy the following:

∥V π − V ∥∞ ≤ δPE

∥TπgV − TV ∥∞ ≤ δGI

π′ = απg + (1− α)π,

where α ∈ [0, 1]. Then,

∥V π
′
− V ∗∥∞ ≤ (1− α+ αγ)∥V π − V ∗∥∞ + α

δGI + 2γδPE

1− γ . (19)

Next, consider an API(α) algorithm that generates a sequence of policies {πk}k∈N via functions
{Vk}k∈N with policy evaluation error ∥V πk − Vk∥∞ ≤ δPE,k, approximate greedy updates with error
∥Tπg,k

Vk − TVk∥∞ ≤ δGI,k and policy updates πk+1 ← απg,k + (1− α)πk. For any α ∈ (0, 1],

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
lim supk→∞ δGI,k + 2γδPE,k

(1− γ)2 . (20)

Proof. Let e = δGI + 2γδPE. First, we note that Tπ′V = αTπg
V + (1 − α)TπV for all V ∈ B(S), and prove

the following:

sup
s∈S
{V π(s)− V π

′
(s)} ≤ αe

1− γ . (39)

V π − V π
′

= TπV
π − Tπ′V π

′

= TπV
π − αTπg

V π
′
− (1− α)TπV π

′

= α(TπV π − Tπg
V π

′
) + (1− α)(TπV π − TπV π

′
)

≤ α(TπV π − Tπg
V π

′
) + (1− α)γ sup

s∈S
{V π(s)− V π

′
(s)}

= α(TπV π − TπV + TπV − TπgV
π′

) + (1− α)γ sup
s∈S
{V π(s)− V π

′
(s)}

≤ α(γδPE + TπV − Tπg
V π

′
) + (1− α)γ sup

s∈S
{V π(s)− V π

′
(s)}

≤ α(γδPE + TV − TπgV
π′

) + (1− α)γ sup
s∈S
{V π(s)− V π

′
(s)} (since TV ≥ TπV for all π.)

= α(γδPE + TV − Tπg
V + Tπg

V − Tπg
V π

′
) + (1− α)γ sup

s∈S
{V π(s)− V π

′
(s)}

≤ α(γδPE + δGI + TπgV − TπgV
π′

) + (1− α)γ sup
s∈S
{V π(s)− V π

′
(s)}

= α(γδPE + δGI + Tπg
V − Tπg

V π + Tπg
V π − Tπg

V π
′
) + (1− α)γ sup

s∈S
{V π(s)− V π

′
(s)}

≤ α(2γδPE + δGI + Tπg
V π − Tπg

V π
′
) + (1− α)γ sup

s∈S
{V π(s)− V π

′
(s)}

= α(e+ Tπg
V π − Tπg

V π
′
) + (1− α)γ sup

s∈S
{V π(s)− V π

′
(s)}

≤ α(e+ γ sup
s∈S
{V π(s)− V π

′
(s)}) + (1− α)γ sup

s∈S
{V π(s)− V π

′
(s)}

= αe+ γ sup
s∈S
{V π(s)− V π

′
(s)}.

24

Published in Transactions on Machine Learning Research (11/2022)

By taking a supremum on the LHS and rearranging, we obtain (39). Now, we prove (19).

V ∗ − V π
′

= TV ∗ − Tπ′V π
′

= TV ∗ − αTπg
V π

′
− (1− α)TπV π

′

= α (TV ∗ − Tπg
V π

′
)︸ ︷︷ ︸

1

+(1− α) (TV ∗ − TπV π
′
)︸ ︷︷ ︸

2

.

1 = TV ∗ − Tπg
V π + Tπg

V π − Tπg
V π

′

≤ TV ∗ − TπgV
π + γ sup

s∈S
{V π(s)− V π

′
(s)}

≤ TV ∗ − Tπg
V π + γαe

1− γ (due to (39))

= TV ∗ − Tπg
V + Tπg

V − Tπg
V π + γαe

1− γ
≤ TV ∗ − TπgV + γδPE + γαe

1− γ
= TV ∗ − TV π + TV π − Tπg

V + γδPE + γαe

1− γ
≤ γ∥V ∗ − V π∥∞ + TV π − Tπg

V + γδPE + γαe

1− γ
= γ∥V ∗ − V π∥∞ + TV π − TV + TV − TπgV + γδPE + γαe

1− γ
≤ γ∥V ∗ − V π∥∞ + 2γδPE + δGI + γαe

1− γ
= γ∥V ∗ − V π∥∞ + e+ γαe

1− γ .

2 = V ∗ − V π + V π − TπV π
′

≤ ∥V ∗ − V π∥∞ + V π − TπV π
′

= ∥V ∗ − V π∥∞ + TπV
π − TπV π

′

≤ ∥V ∗ − V π∥∞ + γ sup
s∈S
{V π(s)− V π

′
(s)}

≤ ∥V ∗ − V π∥∞ + γαe

1− γ . (due to (39))

Combining the upper bounds of 1 and 2 ,

V ∗ − V π
′
≤ α

(
γ∥V ∗ − V π∥∞ + e+ γαe

1− γ

)
+ (1− α)

(
∥V ∗ − V π∥∞ + γαe

1− γ

)
= (1− α+ αγ)∥V ∗ − V π∥∞ + α

(
e+ γe

1− γ

)
= (1− α+ αγ)∥V ∗ − V π∥∞ + αe

1− γ ,

which is equivalent to (19). Setting π′ = πk+1 and π = πk, and taking a lim sup on both sides of (19):

lim sup
k→∞

∥V πk+1 − V ∗∥∞ ≤ lim sup
k→∞

(1− α+ αγ)∥V πk − V ∗∥∞ + α
lim supk→∞ δGI,k + 2γδPE,k

1− γ

⇒ α(1− γ) lim sup
k→∞

∥V πk − V ∗∥∞ ≤ α
lim supk→∞ δGI,k + 2γδPE,k

1− γ

⇒ lim sup
k→∞

∥V πk − V ∗∥∞ ≤
lim supk→∞ δGI,k + 2γδPE,k

(1− γ)2 . ■

25

Published in Transactions on Machine Learning Research (11/2022)

Theorem 3.8 (API(α) with π-bisimulation). Under the same conventions as Thm. 3.5, let
n > log(1−γ

1+γ)/ log(γ) and cn = (1 + γ)cn. Given α =
(
α(1 − cn)(1 − γ)/2

)p for some α ∈ (0, 1], λ = 0
and any p ∈ [1,∞):

d̂πk
← F (n)

πk
(d̂πk−1) (21)

S̃,Φk ← HardAggregation(S, d̂πk
, ϵ) (22)

Ṽ πk ← PolicyEvaluation(S̃, πk) (23)

πg ← GreedyImprovement(Ṽ πk

Φk
, δ) (24)

πk+1 ← (1− α)πk + απg. (25)

The sequence {πk}k∈N has the following limiting bound,

lim sup
k→∞

∥V πk − V ∗∥∞ ≤
δ

(1− γ)2 + 2γ(2ϵ+ αcn)
(1− γ)3 . (26)

Proof. First, note that by Corollary A.4, we have D∞
TV(πk+1, πk) ≤ α. Now, we define the sequence of metric

learning errors {Ek}k∈N,

Ek = ∥d̂πk
− dπk

∥∞

= ∥F (n)
πk

(d̂πk−1)− dπk
∥∞

≤ cn∥Fπk
(d̂πk−1)− d̂πk−1∥∞ (by the Banach fixed-point theorem)

≤ cn
(
∥Fπk

(d̂πk−1)− dπk−1∥∞ + ∥d̂πk−1 − dπk−1∥∞

)
= cn

(
∥Fπk

(d̂πk−1)− dπk−1∥∞︸ ︷︷ ︸
1

+Ek−1

)

Using shorthand notation dπ = cR|Riπ −Rjπ|+ cTWp(dπ)(Piπ,Pjπ) for the π-bisimulation distance between a
pair of states (si, sj), and noting cR = 1 by given,

1 = sup
i,j

∣∣∣|Riπk
−Rjπk

| − |Riπk−1
− Rjπk−1

|+ cT

(
Wp(d̂πk−1)(Piπk

,Pjπk
)−Wp(dπk−1)(Piπk−1

,Pjπk−1
)
)∣∣∣

≤ sup
i,j

∣∣∣|Riπk
−Riπk−1

|+ |Rjπk
− Rjπk−1

|+ cT

(
Wp(d̂πk−1)(Piπk

,Pjπk
)−Wp(dπk−1)(Piπk−1

,Pjπk−1
)
)∣∣∣

≤ 2D∞
TV(πk, πk−1) + cT sup

i,j

∣∣∣Wp(d̂πk−1)(Piπk
,Pjπk

)−Wp(dπk−1)(Piπk−1
,Pjπk−1

)
∣∣∣ (by Lemma A.6)

≤ 2α+ cT sup
i,j

∣∣∣Wp(d̂πk−1)(Piπk
,Pjπk

)−Wp(dπk−1)(Piπk−1
,Pjπk−1

)
∣∣∣ (since D∞

TV(πk, πk−1) ≤ α)

≤ 2α+ cT

(
Wp(dπk−1)(Piπk−1

,Piπk
) +Wp(dπk−1)(Pjπk−1

,Pjπk
) + ∥d̂πk−1 − dπk−1∥∞

)
(by Cor. A.2)

≤ 2α+ 2cT
1− cT

D∞
TV(πk, πk−1)

1
p + cT ∥d̂πk−1 − dπk−1∥∞ (by Lemma A.7)

≤ 2α
1
p + 2cTα

1
p

1− cT
+ cT ∥d̂πk−1 − dπk−1∥∞ (since α ∈ [0, 1] and D∞

TV(πk, πk−1) ≤ α)

≤ 2α
1
p

1− cT
+ cTEk−1

26

Published in Transactions on Machine Learning Research (11/2022)

Plugging 1 back in,

Ek ≤ cn

(
2α

1
p

1− cT
+ (1 + cT)Ek−1

)

= 2α
1
p cn

1− cT
+ cnEk−1

If cn = (1 + cT)cn < 1, i.e., n > log(1−cT

1+cT
)/ log(cT), we take a limit superior to obtain:

lim sup
k→∞

Ek ≤
2α

1
p cn

(1− cn)(1− cT)
= αcn,

where we have defined α = 2α
1
p

(1−cn)(1−cT) . By Lemma A.8, we have,

lim sup
k→∞

∥V πk − Ṽ πk

Φk
∥∞ ≤

2ϵ+ αcn
1− γ .

Then, (26) holds due to (20) of Lemma 3.7 with δGI,k ≤ δ, ∀k and δPE,k = ∥V πk − Ṽ πk

Φk
∥∞. ■

B Background: State Aggregation Methods

The idea of reducing a large-scale dynamic programming problem into a smaller one via abstractions (or
partitions) has a rich history going back many decades (Fox, 1973; Whitt, 1978; Mendelssohn, 1982; Bertsekas
& Castanon, 1989; Singh et al., 1995; Dean & Givan, 1997; Dean et al., 1997). Broadly, state aggregation
approaches in RL can be grouped into two categories: pre-specified and adaptive. Often, pre-specified
approaches either compute an aggregation based on transition probabilities and reward functions as in
bisimulation (Givan et al., 2003) or assume a priori knowledge about the environment (e.g., the optimal
value function). For instance, given some known function f : S ×A → R, instead of (1) we may write:

Φ(si) = Φ(sj)⇒ |f(si,a)− f(sj ,a)| ≤ η,∀a ∈ A, (40)

which results in η-abstractions of Abel et al. (2016). When f = Q∗ and η = 0, the resulting abstraction
is called a “Q∗-irrelevance abstraction” under the unifying framework of Li et al. (2006). McCallum (1996)
introduced the Utile Distinction Test (in the context of partially observable MDPs), which aggregates states
that have the same optimal action and the same state-action value for said action. Hostetler et al. (2014)
investigated a similar, more general abstraction in the context of Monte Carlo Tree Search to reduce the
stochastic branching factor of large MDPs. Jong & Stone (2005) devised an abstraction discovery approach
based on statistical hypothesis testing and policy relevance, illustrated its utility in knowledge transfer to
different domains and discussed its connections to hierarchical RL (i.e., temporal abstraction). Duan et al.
(2019) developed a soft aggregation algorithm based on the spectral decomposition of a simulation-based
empirical transition matrix. Bertsekas (2018b) recently surveyed feature-based aggregation methods (for an
early example, see Tsitsiklis & Van Roy (1996)) and discussed their use in API. Van Roy (2006) analyzed
approximate value iteration (AVI) under state aggregation. In general, whenever VFA is done via piece-wise
constant function approximators, state aggregation is implicit among states that are assigned the same value.

More closely related to this work, adaptive approaches simultaneously improve a policy and learn an efficient
abstraction that changes as the algorithm runs. A notable early example is the work of Bertsekas & Castanon
(1989), which adaptively aggregates states to minimize the variation in Bellman residuals per partition. Baras
& Borkar (2000) developed a simulation-based actor-critic approach that alternates between frequent updates
to a linear approximation of the value function and infrequent updates to abstractions based on a clustering in
the range of estimated values. Ortner (2013) developed an online aggregation algorithm based on the UCRL
algorithm of Auer et al. (2008) and provided a regret analysis. The approach of Sinclair et al. (2019) was

27

Published in Transactions on Machine Learning Research (11/2022)

similarly motivated, but focused on Q-learning. Chen et al. (2021) recently proposed an aggregation-based
AVI algorithm that combines infrequent Bellman updates over the ground space with frequent updates over
a reduced space that is computed via value-based aggregation. Differently, our approach does not require
any value iteration updates in the ground space, which may be continuous.

C Sharpness of the Sinkhorn Distance as a Wasserstein Distance Upper Bound

The Sinkhorn distance forms an upper bound on the Wasserstein distance due to an entropy-constraint
imposed on the cost minimization problem. Guided by information-theoretic intuition, we perform empirical
tests to investigate the quality of this upper bound as a function of the underlying marginal distributions
(µ1, µ2). First, we highlight the intuition with the following lemma.
Lemma C.1 (A condition for equality of Wp and W ζ

p). Let H(µ) denote the Shannon entropy of a random
variable with law µ. Under the same conventions as (7),

ζ−1 ≥ min(H(µ1),H(µ2))⇒W ζ
p (d)(µ1, µ2) = Wp(d)(µ1, µ2). (41)

Proof. Consider a joint distribution ω with marginals µ1 and µ2. Recall the following information-theoretic
inequalities (Cover, 1999):

H(ω) ≤ H(µ1) +H(µ2) (42)
H(ω) ≥ H(µ1). (43)

By symmetry of (43),

max(H(µ1),H(µ2)) ≤ H(ω) ≤ H(µ1) +H(µ2) (44)
⇒ max(H(µ1),H(µ2)) ≤ H(ω) ≤ max(H(µ1),H(µ2)) + min(H(µ1),H(µ2)). (45)

That is, the range of allowed entropy values for a joint distribution ω with marginals µ1 and µ2 is determined
by the minimum entropy of the two distributions. For example, suppose µ1(xi) = 1 for some xi in a finite
space and 0 elsewhere, so that H(µ1) = 0. The feasible set of transport plans between µ1 and µ2 collapses to
a single joint distribution that moves all the probability mass at xi to match the distribution of µ2. Indeed,
in this case we have H(ω) = H(µ1) +H(µ2) = H(µ2) with equality for both the lower and upper bounds
shown in (45).

Now, consider the relative entropy-constrained set of joints Ω(ζ) from (7):

DKL(ω || µ1 ⊗ µ2) ≤ ζ−1

⇒ −H(ω) +H(µ1) +H(µ2) ≤ ζ−1

⇒ H(ω) ≥ H(µ1) +H(µ2)− ζ−1

⇒ H(ω) ≥ max(H(µ1),H(µ2)) + min(H(µ1),H(µ2))− ζ−1.

Given the information-theoretic lower bound in (45) that readily applies to all ω ∈ Ω, we conclude that
whenever ζ−1 ≥ min(H(µ1),H(µ2)) we have Ω = Ω(ζ), which implies equality between Wp and W ζ

p . ■

As discussed in the proof above, the range of allowed entropy values H(ω) shrinks with smaller minimum
entropy min(H(µ1),H(µ2)). Consequently, as min(H(µ1),H(µ2))→ 0 we have Ω(ζ) → Ω for all ζ due to
(41). We suspect that the converse may be true; that with increasing min(H(µ1),H(µ2)) the feasible set
Ω(ζ) might be a smaller subset of Ω, which would imply that the quality of the Sinkhorn distance as a
Wasserstein distance upper bound degrades. We perform empirical tests to compare the Wλ

1 distance to a
stronger upper bound on the 1-Wasserstein distance computed via a smaller λ′ = 0.02 < λ. We randomly
sample probability vectors µ1, µ2 from the 31-simplex and ensure H(µ1) ≤ H(µ2) where H(µ1) takes values
within 0.01 of those shown on the x-axis of Fig. 6. Similarly, µ2 is sampled to evenly cover the range
of allowed values H(µ2) ∈ [H(µ1), 5). To construct distance matrices, we sample 32 points uniformly on
mX ∈ {2, 8, 32} dimensional spheres with radii 0.5 and take pairwise Euclidean distances. As seen in the

28

Published in Transactions on Machine Learning Research (11/2022)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0.0

0.1

0.2

0.3

0.4

0.5

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= 0.1, ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0

1

2

3

4

5

6

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= 1.0, ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0

1

2

3

4

5

6

7

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= , ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0.00

0.05

0.10

0.15

0.20

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= 0.1, ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= 1.0, ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= , ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= 0.1, ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= 1.0, ′ = 0.02)

0.0 1.0 2.0 3.0 4.0
min((1), (2))

0.00

0.05

0.10

0.15

0.20

(W
1

W
′ 1
)/W

′ 1

Marginal Entropy vs. Relative Error (= , ′ = 0.02)

Figure 6: Measurements of relative error against minimum marginal entropy with varying λ ∈ {0.1, 1,∞}
(left-to-right) and ambient space dimensionality mX ∈ {2, 8, 32} (top-to-bottom). Each individual box
corresponds to 1000 pairs of (µ1, µ2) with 20 and 50 samples of probability vectors µ1 and µ2.

bottom-left corner of all plots, we have strict equality Wλ
1 = Wλ′

1 for all settings with H(µ1) = 0 as predicted
by (41). Furthermore, we observe a monotonic relationship betweenH(µ1) and the expected quality of weaker
metrics Wλ

1 across all settings of λ and mX , the latter of which controls the distribution of distance values.8

D Implementation Details

D.1 Warm-starting Sinkhorn distance computation

Recall from Cuturi (2013) that by Sinkhorn’s Theorem (Sinkhorn, 1967) the unique optimal transport plan
ω∗ for the entropy-regularized problem for a finite space with ℓ elements can be written in matrix form as
diag(u)Kdiag(v), where u,v ∈ Rℓ+ and Kij = e−λd(xi,xj). Then, one iteratively updates vectors u and v in
alternation so as to satisfy the marginal constraints on row and column sums. The standard implementation
of this algorithm in the Python Optimal Transport package (Flamary et al., 2021) initializes u and v to
be 1ℓ/ℓ. In our case, the sequence of Sinkhorn problems being solved follow a structure: (i) for each of n
fixed-point updates Fπ(d̂π) we compute W ζ

p (d̂π)(Pπ(si),Pπ(sj)) for all state pairs (si, sj), and (ii) after n
updates, we update the policy π. Since Fπ is contractive, the consecutive metrics approach one another
as we apply the mapping Fπ. Thus, the solutions shall also approach one another considering Lemma 3.2.

8The distribution of pairwise distances for uniformly sampled points on a unit n-sphere approximately follows N (
√

2, 1
2n

)
(Wu et al., 2017). In our case, the distribution becomes increasingly concentrated around

√
2/2 with increasing mX .

29

Published in Transactions on Machine Learning Research (11/2022)

Algorithm 1 ϵ-aggregation for finite S

Require: Distance matrix D ∈ R|S|2

+ , aggregation threshold ϵ ≥ 0
num_neighbours← Σj1[Dij ≤ ϵ]
partitions← []
assigned← zeros(|S|)
while

∑
i assigned[i] < |S| do

m← arg maxi(num_neighbours) ▷ Greedily select medioid index.
assigned[m]← 1
members← argwherej(Dmj ≤ ϵ and not assigned[j])
partition← [m] + members ▷ List concatenation.
assigned[members]← 1 ▷ All new members of the partition marked assigned.
num_neighbours[partition]← −∞ ▷ Assigned elements should not be selected as medioids.
partitions← partitions + [partition] ▷ Append partition to partitions.

end while

|S̃| ← length(partitions)
Φ← zeros(|S| × |S̃|)
for j in [1, . . . , |S̃|] do

for i in partitions[j] do
Φij ← 1

end for
end for
return Φ ∈ {0, 1}|S|×|S̃|

A similar observation can be made about small policy updates, which likely change the fixed-point metric
only slightly (e.g., see Lemma 3.6). Inspired by Ferns et al. (2006), we exploit this structure by saving the
final vectors uij and vij for all state pairs (si, sj) and initializing each run of the Sinkhorn-Knopp algorithm
with the most recently saved (uij ,vij) for the corresponding pair of states. This results in up to an order of
magnitude improvement in wall-clock time as shown in Fig 5.

D.2 An algorithm for hard aggregation for finite S

In Algorithm 1, we provide the simple greedy algorithm that we used for partitioning a finite space S given
a pairwise distance matrix and a threshold ϵ. The algorithm counts for each state the number ϵ-close states
and greedily assigns partition medioids based on this simple heuristic. Each partition contains a medioid and
its ϵ-neighbours which have not been previously assigned to another partition. While the algorithm itself is
not necessarily optimal, we showed empirically in Figs. 1 and 3 that with a good enough metric it recovers
the ground-truth partitions and is therefore sufficient for our purposes.

E Bisimulation Distance vs. Absolute Value Difference

In Figs. 1 and 3, we measured maxs,s′

∣∣∣d̂π(s, s′)− |V π(s)− V π(s′)|
∣∣∣ over time-steps k as a proxy for VFA

capabilities of the running bisimulation metric. While the true π-bisimulation metric d∼
π provably satisfies

∆V π(s, s′) = |V π(s)− V π(s′)| ≤ d∼
π (s, s′), we only approximate it with n fixed-point updates after each

policy update. As such, d̂π may under-estimate ∆V π(s, s′) especially early in training since we initialize
d0 = 0. In Fig. 7, we show box plots of d̂π(s, s′) − ∆V π(s, s′) over time to investigate this behavior. In
particular, we run the API(αk) algorithm on the first MDP with λ ∈ {0.25, 2.0,∞}, n ∈ {1, 5}, ϵ = 0.1 and
αk = max(0.01, k−0.8). We only run the algorithm for 200 steps here since the metric stabilizes by then. We
observe that for n = 1, the approximate metric d̂π starts to over-estimate ∆V π(s, s′) within the first 30 steps
as the metric approaches the fixed-point metric d∼

π . In contrast, when n = 5 a single API step is sufficient
for d̂π to exceed ∆V π(s, s′). As expected, we find a weaker upper bound on ∆V π(s, s′) with increasing λ.

30

Published in Transactions on Machine Learning Research (11/2022)

Figure 7: Approximate bisimulation distance vs. the absolute value difference over time for n = 1 (Top)
and n = 5 (Bottom) with varying λ ∈ {0.25, 2.0,∞} (left-to-right).

Figure 8: Value functions for the first and second MDPs from Sec. 4 (Left, Middle) and a randomly gener-
ated MDP from Appendix F (Right) after 1000 steps of training with λ =∞ and 30-medioids partitioning.

F An Additional Class of MDPs

In this section, we repeat some of the main experiments in Sec. 4 for a new class of randomly generated
MDPs. As before, we have m = 20 equivalence classes (ECs) and 200 states. Each equivalence class Bi is
assigned an optimal action aj ∈ A where |A| = 10 and j = i % 10. If the agent takes the optimal action in
Bi, the MDP transitions to Bi+1 with probability 1 − pi, where pi ∼ U(0, 0.25), except in Bm the agent
stays in Bm with probability 1− pm. With probability pi, the agent transitions to a randomly selected EC
other than Bi and Bi+1. Taking any of the non-optimal |A|−1 actions transition the agent back to B1 from
any Bi with probability 1. As before, transition probabilities from a state si to a given EC are sampled
uniformly from the (|S|/m − 1)-simplex. The agent collects a unit reward only when it takes the optimal
action in Bm.

In Fig. 8, we illustrate the value functions corresponding to the MDPs analyzed in Sec. 4 and the MDP
discussed here; the approach here with randomly sampled transitions results in irregular step sizes between
ECs for V ∗, although value equivalence is preserved within each EC. The task is rendered more difficult
since many states in different ECs have similar values and the importance of more precise metrics for VFA
is highlighted. Indeed, we observe that π significantly underperforms the optimal policy in this case and the
bisimulation-based approximation Ṽ πΦ of V π has high error particularly for ECs with a small value difference.

31

Published in Transactions on Machine Learning Research (11/2022)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)

API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NM
I

Normalized Mutual Information
API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

0

20

40

60

80

Nu
m

be
r o

f p
ar

tit
io

ns

Number of partitions |S| under k

API(20)
API(2 2)
API(2 4)
API(2 6)

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NM
I

Normalized Mutual Information
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f p
ar

tit
io

ns

Number of partitions |S| under k

= 2 2

= 20

= 22

= (MICo)

Figure 9: Ablations of α (Top) and λ (Bottom) for the third class of MDPs introduced in Appendix F.

100 101 102 103

API steps (k) (log-scale)

100

101

V
*

V
 (l

og
-s

ca
le

)

max
s S

V * (s) V k(s)
= 2 2

= 20

= 22

= (MICo)

100 101 102 103

API steps (k) (log-scale)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NM
I

Normalized Mutual Information
= 2 2

= 20

= 22

= (MICo)

Figure 10: Ablation of λ for the new class of MDPs in the limited representation capacity setting, where
Algorithm 1 is replaced with 30-medioids partitioning.

In Fig. 9, we ablate α and λ for this new class of MDPs and observe similar results to Sec. 4. Namely, we
note better asymptotic performance but slowed down progress with smaller α. While the setting λ does not
influence performance, lower λ produces better metrics and a more efficient partitioning. Lastly, in Fig. 10,
we repeat the experiment shown in Fig. 4 where the number of allowed partitions is limited to 30. We again
obtain qualitatively similar results with lower λ producing a higher quality metric and a better policy.

32

	Introduction
	Background
	Setting
	Bisimulation Metrics for Continuous MDPs
	-bisimulation Metrics

	Theoretical Analysis
	On the Use of Optimal Transport for Bisimulation Metrics
	Approximate Policy Iteration with -bisimulation
	Bridging Theory and Practice for Co-learning Policies and Bisimulation Metrics

	Empirical Analysis
	Conclusion
	Proofs and Additional Results
	Background: State Aggregation Methods
	Sharpness of the Sinkhorn Distance as a Wasserstein Distance Upper Bound
	Implementation Details
	Warm-starting Sinkhorn distance computation
	An algorithm for hard aggregation for finite S

	Bisimulation Distance vs. Absolute Value Difference
	An Additional Class of MDPs

