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ABSTRACT

Bayesian optimization (BO) is a popular framework for optimizing black-box
functions, leveraging probabilistic models such as Gaussian processes. However,
conventional BO assumes static query costs, which limits its applicability to real-
world problems with dynamic cost structures, such as geological surveys or bi-
ological sequence design, where query costs vary based on previous actions. To
address this, we propose a cost-constrained nonmyopic BO algorithm that incor-
porates dynamic cost models. Our method employs a neural network policy for
variational optimization over multi-step lookahead horizons to plan ahead in dy-
namic cost environments. Empirically, we benchmark our method on synthetic
functions exhibiting a variety of dynamic cost structures. Furthermore, we apply
our method to a real-world application in protein sequence design using a large
language model-based policy, demonstrating its scalability and effectiveness in
handling multi-step planning in a large and complex query space. Our nonmyopic
BO algorithm consistently outperforms its myopic counterparts in both synthetic
and real-world settings, achieving significant improvements in both efficiency and
solution quality.

1 INTRODUCTION

Bayesian optimization (BO) (Kushner, 1962; 1964; Shahriari et al., 2016; Frazier, 2018; Garnett,
2022) is a powerful tool for optimizing black-box functions by employing a probabilistic surrogate
model, typically a Gaussian process, together with an acquisition function, to balance exploration
and exploitation of the unknown objective function. In conventional BO, query costs are typically
assumed to be static. The assumption of static query costs can be an obstacle to applying BO in
practical applications where query costs may vary dynamically on a per-iteration basis (Aglietti
et al., 2021; Lee et al., 2021; Folch et al., 2022; 2024). For instance, in geological surveys, the
cost of querying a location varies based on its proximity to the previous query due to transportation
expenses (Bordas et al., 2020). Another example is biological sequence design, where editing one
token at a time incurs a low cost, but moving beyond the edit distance of one token becomes pro-
hibitively expensive (Belanger et al., 2019). These environments exhibit a dynamic cost structure,
where the query cost at a given location might depend on the last query or even the entire query
history. Incorporating these cost structures into the decision-making process can greatly improve
the quality of the solution returned by BO algorithms. These cost structures dynamically constrain
the effective input space where the decision-making algorithm can move, requiring the agent to plan
its decision by looking multiple steps into the future.

Nonmyopic BO incorporates lookahead steps to make more informed decisions at the current
timestep (González et al., 2016; Astudillo et al., 2021; Yue & Kontar, 2020; Jiang et al., 2020a).
One potential approach to solve nonmyopic BO in a dynamic cost environment is to view it as a
Markov Decision Process (MDP) (Garcia & Rachelson, 2013; Puterman, 2014). MDPs are com-
monly used to model sequential decision-making problems. In the context of nonmyopic BO in a
dynamic cost environment, where we aim to determine the optimal next action in a sample-efficient
manner, MDP frames the decision process as a cost-constrained model-based reinforcement learning
(CMBRL) problem, where the queried inputs are states and actions influence the transitions between
consecutive states. Traditional CMBRL approaches, which rely on world models to simulate the en-
vironment (Janner et al., 2019; Wang & Ba, 2020; Hafner et al., 2021; Hamed et al., 2024), are not
directly applicable for nonmyopic BO settings.
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On one hand, CMBRL is inadequate to handle various requirements in many nonmyopic BO ap-
plications under dynamic cost settings. Indeed, CMBRL algorithms often struggle with handling
large, complex, and semantically rich action spaces as they implement policy with a simple feed-
forward neural network that can typically handle a small, discrete action space (Janner et al., 2019;
Wang & Ba, 2020; Hafner et al., 2021). In the above example of biological sequences, using a
simple model is often inadequate if we want to incorporate domain knowledge during policy op-
timization. This is especially important when dealing with high-dimensional and complex action
spaces, like editing sequences, where each action has rich semantic meaning and can significantly
impact the outcomes (Stolze et al., 2015). Recent literature has demonstrated that using pre-trained
Large Language Models (LLMs) that encode vast quantities of domain-specific knowledge as the
policy offers an exciting approach to exploit the semantic structures in various real-world action
spaces (Palo et al., 2023; Zhuang et al., 2024; Hazra et al., 2024). Unfortunately, existing RL frame-
works designed to work with LLMs are primarily focused on myopic policies in contextual bandit
settings (Ouyang et al., 2024). Recent popular frameworks (von Werra et al., 2020; Hu et al., 2024;
Zheng et al., 2024; Harper et al., 2019) mainly focus on techniques for single-turn reinforcement
learning. Hence, these existing frameworks can not be directly applied in a nonmyopic BO setting.
On the other hand, these methods are unnecessarily complex for various applications in nonmyopic
BO. For example, in biological sequence design, a biologist edits specific amino acids in the ini-
tial sequence. The transition between consecutive states is determined by these edits, making the
process deterministic. Thus, this application does not require a stochastic transition model.

Another limitation of CMBRL is its difficulty in managing reward uncertainties (Ez-zizi et al., 2023).
In nonmyopic BO, handling uncertainty is essential (Treven et al., 2024; Sun et al., 2024) for effec-
tively balancing exploitation and exploration (Zangirolami & Borrotti, 2024). Typically, CMBRL
algorithms utilize neural reward models which tend to be poorly calibrated (Minderer et al., 2021;
Zhao et al., 2024), resulting in overconfident or underconfident reward estimation and potentially
leading to suboptimal actions (Sun et al., 2024). To mitigate the limits of exploration in CMBRL
and hence the probability of selecting suboptimal actions, recent research emphasizes accounting
for reward uncertainties rather than relying solely on average values (Lötjens et al., 2019; Luis
et al., 2023; Ez-zizi et al., 2023). This approach enables the use of various acquisition functions
to model aleatoric and epistemic uncertainty, allowing policies to better adapt to dynamic or noisy
environments, such as biological sequence wet-lab testing, where even minor changes or errors can
significantly alter the final results (Caraus et al., 2015).

To address these challenges, we propose a cost-constrained nonmyopic BO algorithm. Our ap-
proach reduces the exponential complexity associated with optimizing multiple parameters while
maintaining strong exploration capabilities through a computationally efficient, Bayesian reward
model. Additionally, this method can be applied across diverse domains, from sequence design to
natural language processing, where multiple interactions are required before a final decision is made.
Our contributions are summarized as follows.

• We formulate the problem of nonmyopic BO in dynamic cost settings with various cost mod-
els inspired by real-world scenarios, such as ones in biological sequence design or geological
surveys.

• We propose a novel approach to addressing the nonmyopic BO problem by employing a neu-
ral network policy to variationally optimize all decision variables. Our method demonstrates
scalability up to a look-ahead horizon of 20 steps, significantly surpassing the state-of-the-art
techniques, which typically only extend to four steps within a similar computational budget.
Additionally, with an appropriately designed policy network, our method effectively handles
a semantically richer action space compared to existing BO methods.

• We extensively benchmark our method against baselines across nine synthetic functions rang-
ing from 2D to 8D, with varying noise levels and requiring 10 to 20 planning steps to find the
global optimum. Utilizing a recurrent neural network policy, our approach consistently out-
performs traditional acquisition functions. Furthermore, we apply our method to the problem
of constrained protein sequence design, where traditional BO is not directly applicable. To
facilitate this, we develop an open-source, scalable framework that enhances the efficiency of
policy optimization for LLM-based policies within a complex dynamic cost environment. By
employing LLaMa-3.2-based policy (Meta, 2024), our method demonstrates superior perfor-
mance compared to its myopic counterpart, thereby validating its effectiveness.
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Figure 1: Illustration comparing myopic and nonmyopic decision-making in Bayesian optimization.
The top row depicts the receptive field, representing the region of influence for decisions, which
varies based on the lookahead horizon. In the myopic setting (left), the receptive field is small,
focusing on short-term gain, as indicated by the narrow shaded region. In contrast, the nonmyopic
approach (right) accounts for a larger receptive field, favoring long-term gain.

2 RELATED WORK

Nonmyopic Bayesian Optimization in the Dynamic Cost Setting Nonmyopic BO has been ex-
tensively explored in prior works (Osborne, 2010; González et al., 2016; Wu & Frazier, 2019; Jiang
et al., 2020a; Lee et al., 2020; 2021; Astudillo et al., 2021; Folch et al., 2022; Belakaria et al., 2023;
Jiang et al., 2020b). These studies focus on converting a nested, multi-step planning problem into
a single, high-dimensional optimization problem that can be solved efficiently with quasi-Monte
Carlo sampling and gradient-based optimization. The advantage of having a lookahead mechanism
is enlarging the receptive field—the area the decision maker can see prior to making a decision (Fig-
ure 1). This approach has gained traction in cost-aware and budget-constrained BO (Astudillo et al.,
2021; Lee et al., 2021), where nonmyopic planning is crucial. However, a notable challenge with
this methodology is its limited scalability when extending the lookahead horizon, primarily due to
the exponential increase in the number of decision variables. Our approach introduces a novel com-
bination of Thompson sampling (Thompson, 1933) with the extensive generalization capabilities
of a variational network, significantly enhancing the computational efficiency of nonmyopic BO.
Utilizing neural networks for variational inference and optimization is not a new concept (Kingma
& Welling, 2014; Amos, 2023). For instance, Deep Adaptive Design (Foster et al., 2021; Ivanova
et al., 2021) is a parallel line of research from the Bayesian optimal experimental design literature,
which has a related but distinct objective to reduce the uncertainty of model parameters as opposed
to the global optimization objective in BO. The authors concentrate on reducing the computational
demands during deployment and determining the most informative experimental designs by up-
front offline optimization of a neural network to amortize the design cost. Our approach diverges
by aligning more closely with the principles of online Bayesian optimization. Here, the primary
objective extends beyond mere information acquisition to encompass the pursuit of global optimiza-
tion. Our approach, which employs adaptive decision-making through online policy optimization,
could be more robust than offline methods, particularly when the approximation of the reward func-
tion changes significantly between queries. This robustness arises because the online policy is up-
dated at each BO step while the offline methods rely on transferring knowledge from learned offline
data (Nguyen-Tang & Arora, 2024). The distinctive feature of our study is implementing a path-
wise, Thompson sampling-based nonmyopic acquisition function, which significantly reduces the
computational cost of the iterative posterior sampling approach in (Jiang et al., 2020b).

Variational Policy Optimization in Complex Action Spaces In many real-world applications,
decision-makers must take actions that are complex and subject to semantic constraints. Recent
RL research has addressed environments with such actions, which are challenging due to two main
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reasons: (i) the large number of potential actions (Hubert et al., 2021; Zhang et al., 2024), and (ii)
the complex semantics (Carta et al., 2023) underlying each action, making them difficult to capture.
Recent studies have shown that modern LLMs can effectively model semantic actions and be fine-
tuned with feedback from the environment (Zhu et al., 2024; Zhang et al., 2024; Zhuang et al., 2024;
Hazra et al., 2024). Several papers demonstrate that using LLMs as policy models in reinforcement
learning leads to better outcomes (Palo et al., 2023; Zhuang et al., 2024; Hazra et al., 2024). In
the field of NLP, a chatbot such as ChatGPT can be viewed as a decision-making process where
the underlying LLM must understand user questions or requests to provide appropriate responses.
These actions are complex and semantically rich, as even a single word can alter the meaning of
a sentence. Consequently, RL methods like proximal policy optimization (Schulman et al., 2017)
have been applied to refine the abilities of language models.

Multi-turn Training Framework for LLMs Multi-turn conversations have been shown to be
more effective for managing entire dialogues (Zhou et al., 2024). This approach can be viewed as a
nonmyopic RL method that trains LLMs to achieve better conversational outcomes. Unfortunately,
current RL training frameworks for LLMs, such as TRL (von Werra et al., 2020), OpenRLHF (Hu
et al., 2024), LlamaFactory (Zheng et al., 2024), and Nemo (Harper et al., 2019), primarily focus on
single-turn conversations. As a result, they are not suited for multi-turn conversation training. When
using these frameworks, multi-turn conversations must be divided into individual single turns, which
limits the LLM’s ability to manage the overall outcome of a conversation effectively.

3 METHOD

In this paper, our objective is maximizing an unknown black-box function f∗ : X → Y ⊆ R. The
decision-maker can make up to T queries x1:T = [x1, . . . , xT ] and observe y1:T = [y1, . . . , yT ].
The output yt ∈ R is observed by evaluating the corresponding query xt ∈ X = Rd with the
homoscedatic noise model yt = f∗(xt) + ϵt, where ϵt ∼ N (0, σ2). Given a prior distribution over
parameters p(θ), we can sample a probabilistic surrogate model fθ of the blackbox function f∗ by
θ ∼ p(θ). The posterior distribution of the function conditioned on the history until timestep t is
pt(θ) = p(θ|Dt) = p(θ|x1, y1, ..., xt, yt). After T queries, the goal is to select an action a ∈ A to
minimize the Hℓ,c,A-entropy of f : a = arg infa∈A{EpT (f)[ℓ(f, a)] + λc(x1:T , a)}. The decision-
maker utilizes an acquisition function to make decisions on choosing actions. In this paper, we
concentrate on an acquisition function based on decision-theoretic entropy and mutual information,
which is known as H-Entropy Search (HES) (Neiswanger et al., 2022). Many common acquisition
functions, such as Knowledge Gradient (Frazier et al., 2009) and Expected Improvement (Mockus,
1989), can be thought of as a specific case of HES. While HES can tackle various tasks such as
top-K or min-max, this study is limited to global optimization of f∗ due to resource constraints.
Future research will explore these additional tasks. Thus, the action set A is set to X , and the
loss function is defined as ℓ(f∗, a) = −f∗(a). Following Russo & Van Roy (2016); Kandasamy
et al. (2018), the Bayesian cumulative regret at timestep T is E

[∑T
t=1(f

∗(a∗)− f∗(at))
]
, where

the integration is over randomness from the environment, queries and final actions. For a prior
probability distribution p(f) on functions, along with a dataset Dt = D0 ∪{(xi, yi)}ti=1 containing
observed function evaluations up to t ∈ [T ], we define the entropy of posterior Hℓ,c,A and the
expected Hℓ,c,A-information gain (EHIG) at step t with loss function ℓ, cost function c, action set
A, and Lagrange multiplier λ, and lookahead horizon L as follows (DeGroot, 1962; Neiswanger
et al., 2022):

Hℓ,c,A[f |Dt] = inf
a∈A

{Ept(f)[ℓ(f, a)] + λc(x1:t, a)}

EHIGt(x1:L) = Hℓ,c,A[f |Dt]− Ept(y1:L|x1:L) [Hℓ,c,A[f |Dt+L]]

To minimize the Hℓ,c,A-entropy of f , the optimal query xt+1 ∈ X at each step t must be selected to
maximize the expected information gain or reduce uncertainty, as measured by the Hℓ,c,A-entropy.
This process involves the decision maker choosing the next query xt+1 = x∗

1 by optimizing for the
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expected reduction in uncertainty as follows.

x∗
1:L = arg sup

x1:L∈XL

EHIGt(x1:L) = arg sup
x1:L∈XL

[
−Ept(y1:L|x1:L)[Hℓ,c,A[f |Dt+L]]

]
= arg inf

x1:L∈XL

[
Ept(y1:L|x1:L)[ inf

a∈A
{Ept+L(f)[ℓ(f, a)] + λc(x1:t, x1:L, a)}]

] (1)

3.1 BAYESIAN OPTIMIZATION IN DYNAMIC COST SETTINGS

To deal with practical scenarios where the costs of queries change dynamically, we relax the fixed
query cost assumption by defining the cost of querying xt as c(x<t, xt), where c is an application-
specific cost function provided to the decision-maker. The total cost to execute T queries, x1:T , is
given by

∑T
t=1 c(x<t, xt). We define two primary cost structures: (i) Markovian cost, depending

only on the previous query, and (ii) non-Markovian cost, depending on the entire query history.
The Markovian cost is incurred based on the location of departure xt−1 and the destination xt. It
also depends on the p-norm between xt and xt−1. The relationship between distance and cost in
practice can be nonlinear: for example, traveling within a ball of radius of r might be free, but
beyond that, the traveling cost grows at a rate of k. The observed cost might be perturbed by a
random noise ϵ. These ideas are summarized in the following cost model: cMarkov(xt−1, xt) =
max(k(||xt−xt−1||p−r), 0)+ϵ. Euclidean cost (p = 2, r = 0), Manhattan cost (p = 1, r = 0), and
r-spotlight cost (k = ∞) are some commonly used instances. Euclidean cost is found in applications
such as ground surveys since the traveling cost depends on the distance between departure and
arrival locations (Bordas et al., 2020). Spotlight cost is found in biological sequence design, where
editing more than one token is impossible in one experiment (Belanger et al., 2019). In case of
non-Markovian cost, the query cost could depend on the entire query history. For example, the
traveler in the ground survey application might participate in a mileage point program, where they
get a discount d if their total traveling distance is beyond a certain constant m. This cost model
is represented as cnon-Markov(x<t, xt) = cMarkov(xt−1, xt) − dI[

∑t−1
i=1 cMarkov(xi, xi+1) > m]. In

general, the cost model can be learned from the data provided by the application or designed by
the decision-maker. Under a budget constraint commonly found in practice, dynamic costs require
efficient nonmyopic planning; otherwise, the next decision may incur a large cost or fail to move
beyond local optima.

3.2 POLICY NETWORK OPTIMIZATION IN NONMYOPIC BAYESIAN OPTIMIZATION

As the lookahead horizon L increases, the dimension of both optimization and integration increases,
making the problem challenging. Below, we apply variational optimization and pathwise sampling
to keep the optimization of the above acquisition tractable.

Variational Optimization In nonmyopic BO, the number of decision variables is proportional to
the number of Monte Carlo samples, which depends on both the number of paths, p, and the horizon
length, T . In the best-case scenario, where the number of Monte Carlo samples grows linearly with
the horizon, the policy complexity is O(T ). However, in the worst case, the number of samples
grows exponentially, increasing the policy complexity to O(kT ), where k is the number of sam-
ples per step. To address this challenge, we use a variational network to reduce the growth rate
of decision parameters with respect to the lookahead horizon from exponential to constant. Varia-
tional optimization has been well studied and applied in various contexts, such as policy gradient
methods (Schulman et al., 2017), VAEs (Kingma & Welling, 2014), and variational design of ex-
periments (Foster et al., 2019). However, to the best of our knowledge, this approach has not yet
been applied in the nonmyopic BO setting to reduce optimization complexity with respect to the
lookahead horizon.

From equation 1, we observe that for each lookahead step l ∈ [L], the optimal decision vari-
able, x∗

t+l+1, is determined by the previous decision variables and corresponding observations,
(x1:t+l, y1:t+l). This dependency can be modeled using a recurrent neural network (RNN) pa-
rameterized by ξ ∈ Ξ, which takes the history as input to predict the optimal next query:
ξ : (x1:t, y1:t) 7→ x∗

t+1. The corresponding posterior predictive yt+1 can then be computed by
yt+1 ∼ pt(x

∗
t+1). Using pathwise sampling, this computation becomes yt+1 = f(x∗

t+1), where
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f ∼ pt(f). Thus, we can maintain gradients for optimizing x∗
t+1 = ξ∗(x1:t, y1:t) across the looka-

head steps by applying the chain rule:

∂EHIGt(x1:L)

∂ξ
=

∂EHIGt(x1:L)

∂xt+L

∂xt+L

∂ξ
+

∂EHIGt(x1:L)

∂yt+L

∂yt+L

∂xt+L

∂xt+L

∂ξ
.

We can rewrite equation equation 1 as:

ξ∗ = arg inf
ξ∈Ξ

[
Ept(y1:L|x1:L,ξ)[ inf

a∈A

{
Ept+L(f)[ℓ(f, a)] + λc(x1:t, x1:L, a)

}
]

]
. (2)

In practical applications, X and A can be discrete sets. For example, in drug design, molecules
can be represented as strings, which can be modeled using NLP techniques by tokenizing them
into discrete tokens. The final action in this case might involve deciding whether to accept or re-
ject the designed sequence for wet lab testing. Our method can be extended to handle such discrete
cases. One approach is reparameterization by using the reparameterization trick (Kingma & Welling,
2014) or a neural encoder to convert discrete variables into continuous-like ones for simple scenar-
ios, while keeping the rest of the optimization process unchanged. Alternatively, the REINFORCE
algorithm (Williams, 1992) can be used to address more complex cases. This algorithm employs the
log-derivative trick (Mohamed et al., 2020) to efficiently estimate the optimization gradient as:

∂EHIGt(x1:L)

∂ξ
= − 1

L

L∑
l=1

EHIGt(x1:l+1)∇ξ log pt(xl+1|x1:l, ξ).

In our experiments, the variational network is trained using imagined data points. Specifically,
when optimizing step t + 1, we use the previously observed data points (x1:t, y1:t) to generate
imagined lookahead data points (xt+1:t+L, yt+1:t+L) through an autoregressive process: xt+l+1 =
ξt(x1:t+l, y1:t+l) and yt+l+1 ∼ pt+l(x1:t+l). These imagined data points are then used to compute
the optimization objective and find the optimal ξt+1.

Pathwise Sampling When the surrogate model is a Gaussian Process (GP), the Monte Carlo
method is employed to evaluate the posterior predictive distribution. In prior works, this
is done via iterative sampling of the following factorized distribution: p(y1:T |x1:T , D0) =∏T

t=1 p(yt|xt, x<t, y<t, D0). The posterior predictive distribution at the t-th step, denoted as
p(yt|xt, x<t, y<t, D0), can be approximated by generating k samples of yt from the GP model.
In general, the value of k varies depending on the specific problem. At iteration t, suppose that we
always sample k samples from the posterior predictive distribution. The number of yt is kt. This
number quickly explodes exponentially with the length of the lookahead horizon (Figure 2). The GP
posterior predictive sampling process involves computing the square root of the covariance matrix,
which is typically done via Cholesky decomposition. The complexity of this process is proved as
O(n3) for exact GP or O(m3) for approximate GP where n is the total number of samples in the
train dataset and m < n is the number of inducing samples (Quiñonero-Candela & Rasmussen,
2005; Wilson et al., 2020). This evidence shows that the complexity for sampling posterior predic-
tive distribution at step t-th is at least O(ktm3). One variant of this procedure that can reduce the
complexity is limiting the number of sampling samples for posterior predictive approximation at
further lookahead steps. For instance, at each step t > 1, we can set kt>1 = max(k1/2

t, 1), where
k1 is the predefined number of samples at the first lookahead step. In these cases, we can observe
that ∃τ : ∀t > τ,

∏T
t=1 kt = K, where K is a constant. Subsequently, the complexity at step t-th

can be reduced to O(
∏T

t=1 ktm
3) = O(Km3) = O(m3).

To mitigate the high complexity of above sampling process, we employ the following factorization:
p(y1:T |x1:T , D0) =

∫
p(y1:T |x1:T , f)p(f |D0) df =

∫
p(f |D0)

∏T
t=1 p(yt|xt, f) df . The function

f is drawn from the prior distribution and path-wise updated via Matheron’s rule. For h path, each
consists of T steps, the sampling can be done with complexity O(h × T ). We can approximate
the integral arbitrarily well with higher h. The gain comes from the fact that we do not need to
iteratively compute K−1

m,m as in fantasization. If we did, the complexity, with the same number of
samples, would be O(h × (T − 1)3). This can be done in linear complexity w.r.t. to the number
of samples. The complexity of sampling a posterior f̂ from p(f |D0) can be considered as O(C),
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Figure 2: Posterior predictive sampling (left) and Pathwise sampling (right)

where C is a constant because the number of samples in D0 is unchanged. Then, computing yt
for approximate posterior predictive p(yt|xt, f̂) can be done by yt = f̂(xt), which has complexity
of O(1). Using the same technique as limiting the number of sampling samples, the complexity
approximating posterior predictive at any lookahead step is O(K). Thus, the total complexity at
each step t-th is O(C +K). Figure 2 (right) visualizes the concept of this method.

4 EXPERIMENTS

In this section, we aim to comprehensively evaluate the performance and robustness of our pro-
posed method. Our experiments are designed to achieve several key goals: first, to demonstrate the
algorithm ability to efficiently optimize within environments where query costs vary dynamically;
second, to benchmark its performance against established baselines across a range of synthetic and
real-world scenarios; and third, to highlight the practical advantages of our approach in terms of both
solution quality and computational efficiency. By conducting these experiments, we hope to show
that our method can outperform traditional myopic BO techniques and scale effectively to complex,
high-dimensional problems.

We compare our method with the following baselines implemented in BoTorch (Balandat et al.,
2020). All acquisition function values are estimated via the quasi-Monte Carlo method with the
Sobol sequence in BoTorch. We experiment with 4 cost functions: Euclidean, Manhattan, r-
spotlight, and non-Markovian cost. We use Sample Average Approximation with a base sample
as a variance reduction technique that significantly improves the stability of optimization. To en-
hance the likelihood of convergence, we perform all optimizations using 64 restarts. The lookahead
horizon is set to 20 for our method and Multistep Tree. Each experiment is repeated with three
random seeds, and all experiments are conducted on an A100 GPU and 80GB of memory.

• Simple Regret (SR) (Zhao et al., 2023) measures the regret or loss in performance between the
updated model and the model that would have resulted if the optimal sample had been selected
for annotation during the active learning process instead.

• Expected Improvement (EI) (Mockus, 1989) is used to evaluate the usefulness of candidate
samples by estimating the expected gain in the performance of a model.

• Probability of Improvement (PI) (Kushner, 1964) calculates the probability of a candidate
sample improving the performance of a model compared to the current best sample.

• Upper Confidence Bound (UCB) (Srinivas et al., 2010) balances exploration and exploitation
by selecting candidate samples with high uncertainty and high potential for improvement based
on the upper confidence bound of their predicted performance.

• Knowledge Gradient (KG) (Frazier et al., 2009) quantifies the expected improvement in the
objective function value that would result from evaluating a specific point. It considers the un-
certainty of the model predictions and the potential benefit of obtaining additional information
about the objective function.

• Multistep Tree (MSL) (Jiang et al., 2020b), which can look up to four steps ahead, is con-
strained by computational costs. We reimplement this acquisition function using Pathwise
sampling, enabling a lookahead horizon of up to 20 steps.

4.1 SYNTHETIC FUNCTIONS

We evaluate the performance of our method on nine synthetic functions for global optimization in
continuous vector spaces. The 2-dimensional functions, with their initial data points and maximum

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

BO steps, include Ackley (50 samples, 100 steps), Alpine (100 samples, 50 steps), HolderTable
(100 samples, 50 steps), Levy (100 samples, 50 steps), Styblinski-Tang (50 samples, 50 steps), and
SynGP (25 samples, 50 steps). The SynGP function is generated from a 2D Gaussian Process with
a Radial Basis Function kernel, characterized by a length scale of

√
0.25 and a signal variance of

1. High-dimensional functions include Ackley4D (4D, 100 samples, 100 steps), Hartmann (6D,
500 samples, 100 steps), and Cosine8 (8D, 200 samples, 100 steps). The variation in the number
of initial samples and optimization steps reflects the relative complexity of each function. Detailed
descriptions of these functions are available in (Bingham, Accessed 2024).
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Figure 3: Visualization of queries across BO iterations with setting of σ = 0.0 and r-spotlight cost.
The yellow points indicate the starting positions, while the green points represent the final actions.
Our method reaches the global optimum, whereas the others tend to be trapped in local optima.

The input of all functions is normalized in a hypercube [0, 1]d, and the output is normalized to the
range −3 to 3. Hence, the global maximization of each function is at 3, and the instantaneous regret
of action a is 3 − f∗(a). The outputs of all functions are observed with three levels of noise: 0%,
1%, and 5%. A Gaussian process with standard Matern kernel is used as the surrogate model. The
variational neural network comprises a two-layer encoder, a Gated Recurrent Unit, and a three-layer
decoder with exponential linear unit activation functions with 64 hidden dimensions. The network
is optimized with Adam optimizer with a learning rate at 10−3. During inference, we add a small
noise sampled from von Mises–Fisher distribution (Fisher, 1953) to the predicted query to enhance
the exploration and facilitate acquisition function optimization restart without increasing the number
of parameters. Our implementation is available at [omitted for double-blind review].

Figure 3 illustrates that myopic algorithms often converge to local maxima, likely due to their short-
sightedness and inability to account for long-term effects, leading to suboptimal solutions that seem
beneficial in the short term. In contrast, our proposed method adopts a more foresighted approach,
anticipating and considering future outcomes, enabling it to move toward the global maximum. This
highlights the inherent advantage of nonmyopic algorithms over myopic ones in pursuing global
optimal solutions. The MSL method, with our improvements, can achieve a lookahead of up to 20
steps, yielding outcomes similar to our method. However, without the variational network, MSL
optimizes directly on decision variables, which limits its applicability to real-world scenarios, as
demonstrated in the next section.

We compare the final observed values between the baseline methods and our proposed at the highest
noise level σ = 0.05 and four cost functions (Figure 4). Our nonmyopic method consistently out-
performs the myopic baselines on synthetic functions. The higher values achieved by our method
indicate greater predictive accuracy, demonstrating its superior effectiveness. These results sug-
gest that the anticipatory capabilities of our method offer a significant advantage, emphasizing the
importance of considering future outcomes in algorithmic decision-making. This finding further
highlights the need for developing and using nonmyopic algorithms, especially for tasks involving
complex, multistep predictions or decisions.
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Figure 4: Final observed value at σ = 0.05. Starting from noon, counter-clockwise: Ackley, Ack-
ley4D, Alpine, Cosine8, Hartmann, HolderTable, Levy, StyblinskiTang, SynGP. We observe that our
method consistently achieves the global optimum across various types of cost structures.

4.2 DISCRETE OPTIMIZATION OF PROTEIN SEQUENCE’S FLUORESCENCE LEVEL

In this experiment, we apply our method to optimize protein sequences (Elnaggar et al., 2023).
Given a protein sequence, the decision maker must decide whether to edit the current sequence. If
editing is chosen, the next step is to determine the position to be edited and select the new amino
acid. We conduct a sequence of T = 12 edits to maximize the fluorescence level obtained from a
wet lab experiment, given by the black-box oracle f∗ : X → R, which is expensive to query. We
assume that f∗ has a parametric linear functional form on the feature space ϕ(x): y = fθ∗(x) =
g(x)+α(ϕ(x)⊤θ∗+ϵ), where θ∗ ∼ p(θ) = N (µ,Σ), ϵ ∼ N (0, σ), g(·) is a synthetic function, and
α is a scaling hyperparameter. In other words, we select a Gaussian prior for the model parameters
and assume a homoscedastic noise observational model.

To build the black-box oracle, we use the ProteinEA Fluorescence dataset (ProteinEA, 2024), which
contains 21,445 training samples. We experiment with various featurization functions ϕ(·), includ-
ing Llama2 7B (Touvron et al., 2023), Llama3 8B (Meta, 2024), Mistral 7B (Jiang et al., 2023),
Gemma 7B (GemmaTeam, 2024), ESM-2 650M, ESM-2 3B (Lin et al., 2022), and Llama-Molist-
Protein 7B (Fang et al., 2024). Figure 15 shows validation results of the parametric black-box oracle
with varying training sample sizes. Gemma 7B achieves the highest validation R2 for predicting
fluorescence, so we use it as the feature function.

Next, we construct our semi-synthetic protein space using a sequence from the ProteinEA Fluores-
cence. Specifically, we select a single sequence from the validation set, which consists of 237 amino
acids across 20 types. In this experiment, the protein designer can edit only one amino acid at a
time across a maximum of 12 fixed positions and is limited to 2 possible amino acid types for each
position. Under this setting, the protein space X contains |X | = 4096 possible proteins. We then
compute the fluorescence values for these proteins using the previously constructed oracle. Our goal
is to edit a starting protein so that can become the protein with the highest fluorescence, defined as
xmax = argmaxxi∈X Eθ∗∼p(θ)fθ∗(xi). The starting protein, x0, is chosen as the one with an edit
distance of 12 from the protein with maximal fluorescence. Because each edit position can only
accommodate 2 different tokens in this setup, there is only one possible starting protein. We choose
α = 0.2 and g(x) = −0.005(d− 0.5)(d− 5)(d− 8)(d− 13.4), where d = dedit(x, x0) represents
the edit distance between the starting protein and a given protein x. Figure 5 (left) visualizes the
distribution of protein fluorescence values across the sequence of edits.

We employ a Bayesian linear regression model as the surrogate to guide the optimization pro-
cess, starting with x0. At each step t ∈ [T ], Bayes’ rule is used to compute the posterior dis-
tribution pt(θ), with hyperparameters (e.g., σ) estimated via maximum marginal log-likelihood.
The next candidate mutation is then acquired by optimizing the variational network as follows:
ξt = argmaxξ Epξ(x1:L|x0),pt(θ)

[
fθ(xL)− λ

∑L−1
l=0 c(xl, xl+1)

]
. This process seeks to maximize

fluorescence while minimizing cost. The next mutation and its fluorescence value are computed by
xt+1 ∼ pξt(xt) and fθ∗(xt+1), respectively, and the observed dataset is updated accordingly. The
optimization then proceeds to the next iteration, and this process can be performed in batches. In
this experiment, we use Llama-3.2 3B as the variational network.

9
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Figure 5: Distribution of fluorescence across edit distance (left). Observed fluorescence levels across
BO steps (middle). Regret across BO steps (right).

We set the maximal BO steps to T = 16 and the maximum lookahead steps to L = 12. Before
starting the optimization process, we performed supervised fine-tuning of Llama-3.2 using random
mutation data. In each BO iteration, we optimize the network with a maximum of 768 gradient steps
and perform 64 restarts to select the next query (i.e., the next mutated protein sequence). To improve
the efficiency of the optimization process, we adapted the Proximal Policy Optimization method
commonly used in NLP, applying our modifications. Specifically, we separated the lookahead rollout
process, using vLLM (Kwon et al., 2023) to infer the variational network more efficiently. After
each gradient step, we transfer the network weights to vLLM for the next rollout, ensuring that the
upcoming sequences are generated using the latest parameters (θ). To prevent model collapse, the
loss function incorporates a KL-divergence term. To handle the constrained cost while generating
each lookahead sequence, we attempt to regenerate lookahead sequences 32 times. If it fails, we
apply random mutations to the latest sequence, with a 50% chance of no editing. More details about
our experiments can be found in Appendix F.

We benchmarked our method against myopic approaches, including SR, EI, PI, UCB, and KG, and
conducted experiments using three random seeds. As shown in Figure 5, the myopic methods are
trapped and unable to escape local minima, yielding a fluorescence score of approximately 1.5. In
contrast, our nonmyopic method, capable of looking ahead 12 steps, was able to anticipate the global
maximum region and tolerate lower intermediate values, ultimately reaching a fluorescence level of
around 2.7. Figure 5 (middle) shows the observed fluorescence levels, while the (right) side presents
the regret (3− fθ∗(a)) across BO iterations.

5 DISCUSSION, LIMITATIONS, FUTURE WORK AND SOCIAL IMPACTS

We have addressed the limitations of traditional myopic BO methods in dynamic cost environments
by proposing a nonmyopic approach based on a decision-theoretic generalization of mutual informa-
tion. Our method incorporates dynamic costs and downstream utility in multistep settings, leading
to more informed decision-making under uncertainty. By utilizing a variational network, we achieve
scalability in planning multiple steps ahead. Experimental results demonstrate the superior perfor-
mance of our approach compared to baseline methods, showcasing its potential for various real-
world applications. Our work contributes to advancing nonmyopic BO and its practical applicability
in dynamic cost scenarios.

While our method offers a significant advancement in nonmyopic Bayesian optimization, it does
have certain limitations. Specifically, it requires a well-defined cost model upfront, which can be
challenging when costs are uncertain or change dynamically. Furthermore, the performance of our
approach is heavily dependent on the accuracy of the underlying Gaussian Process model and the
variational network. If these models do not accurately capture the complexities of the underlying
black-box function or the cost dynamics, the optimization strategy could underperform.

While our method does not have direct negative social impacts, its misuse or misapplication in spe-
cific contexts could raise concerns. For example, if the technique is used in a personalized education
setting, it could potentially exacerbate educational inequalities if resources are disproportionately
allocated based on the dynamic cost of educating different groups of students. Additionally, there
might be ethical implications in healthcare or precision medicine if the dynamic cost leads to bias
against certain patient groups due to higher treatment costs. Therefore, it is critical to carefully
consider these factors and ensure fair and equitable use of this method across different applications.
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Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Andreas Krause, and Florian Dörfler. Efficient
exploration in continuous-time model-based reinforcement learning. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY,
USA, 2024. Curran Associates Inc.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. TRL: Transformer Reinforce-
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A NOTATION

Table 1 summarizes all the notations used in our paper.

B COST STRUCTURE TAXONOMIES

We survey the prior literature on the topic broadly and come up with a taxonomy based on two factors
of the cost function: uncertainty and variability. In terms of uncertainty, costs can be classified as
known or unknown prior to making a decision. When the cost is unknown, it can be viewed as
a random variable that can be modeled probabilistically. In terms of variability, the cost structure
can be categorized into dynamic costs, which vary based on the query history, and static costs,
which remain fixed for a particular query over time. We note that when the cost is static, the BO
community also studies two variations of this structure: heterogeneous cost and homogeneous cost.
Homogeneous cost is the setting where the cost of all queries is the same, whereas heterogeneous
cost is the setting where the cost of a query is a function of the query itself. Using this taxonomy,
we classify the literature into four categories as shown in Table 2.

To further illustrate the distinction between cost structures, we visualize the uncertainty and variabil-
ity of these structures as probabilistic graphical diagrams (Figure 6). In these diagrams, f represents
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Table 1: Notation

Symbol Description
f∗ Black-box function
p(f) Prior distribution over the black-box function
θ Random variable representing the parameters of the black-box function in the

parametric form
θ∗ Optimal parameters of the black-box function in the parametric form
X Input domain
Y Output domain
ϕ(·) ϕ : X → Rd, given d-dimensional feature function
ξ Parameters of the variational network
Dt Dt = {(xi, yi)}ti=1 Dataset acquired
pt(·) The posterior distribution conditioned on the data up to and including timestep t
c(·, ..., ·) c : X k → R, cost function depending on k-step history of query
[T ] {1, ..., T}
Hℓ,A The decision-theoretic entropy (DeGroot, 1962) corresponding to a loss function ℓ

and an action set A
L Lookahead horizon
T Number of interactions with the environment

Table 2: Comparison of cost types based on uncertainty and variability.

Known cost Unknown cost
Static cost Do not vary based on the

previous queries and pre-
dictable costs, easy to bud-
get over time.

Do not vary based on the previous queries,
but the actual amount is not fully known
due to external factors.

Related literature: (Wu
& Frazier, 2019; Nyikosa
et al., 2018; Lam et al.,
2016)

Related literature: (Astudillo et al., 2021;
Lee et al., 2021; Snoek et al., 2012; Luong
et al., 2021)

Dynamic cost Varies based on the previous
queries, but can be quanti-
fied or predicted.

Varies based on the previous queries, and
is difficult to predict precisely.

Related literature: Ours Related literature: To the best of our
knowledge, we have not yet encountered
related work in this category, and we plan
to work on this setting in our future direc-
tion.

the target black-box function, x denotes the input query, y is the output value, and c is the cost
incurred by querying x. On the left — the dynamic-cost structure — the cost of querying x3 can
depend on x1 and x2. On the right — the static-known cost structure — the cost of querying x3 is
independent of other queries.

Our problem setting focuses on optimizing within a known and dynamic cost setting, which is an im-
portant cost structure in many practical applications as we motivated earlier. Previous literature has
developed methods for complementary-but-distinct cost settings, and we believe that those methods
are not suitable for our study as elaborated in the following.

The papers “Multi-step budgeted Bayesian optimization with unknown evaluation costs” (Astudillo
et al., 2021), “A nonmyopic approach to cost-constrained Bayesian optimization” (Lee et al., 2021),
and “Adaptive cost-aware Bayesian optimization” (Luong et al., 2021) address cost structures char-
acterized by unknown, heterogeneous costs. For instance, in the hyperparameter optimization (HPO)
problem studied in these papers, the cost of evaluating a hyperparameter set (i.e., training the target
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Figure 6: Visualization of known-dynamic and unknow-static cost structures

model with that set) is unknown but static for a particular model and a set of hyperparameters and
does not depend on previously chosen sets.

The paper “Bayesian optimization over iterative learners with structured responses: A budget-aware
planning approach” (Snoek et al., 2012) also incorporates an unknown, heterogeneous cost structure.
The key distinction from the previously mentioned works is the inclusion of an additional cost factor:
the number of training epochs for evaluating a hyperparameter set. In this context, for a given
location x (a set of hyperparameters) and a specific number of training epochs, the cost is unknown
but fixed, as it does not depend on prior queries (previously chosen sets of hyperparameters) or prior
choices of training epochs.

Finally, the papers “Practical two-step lookahead Bayesian optimization” (Wu & Frazier, 2019),
“Bayesian optimization for dynamic problems” (Nyikosa et al., 2018), and “Bayesian optimization
with a finite budget: An approximate dynamic programming approach” (Lam et al., 2016) focus on
Bayesian optimization without accounting for cost structures. These works implicitly assume that
all locations in the search space have the same, constant, and known cost. This implies that the cost
is either zero or any fixed constant and, therefore, not subject to optimization.

Based on the above explaination, the settings in those works are fundamentally different from ours.
Regarding the nonmyopic methods presented in the papers (Astudillo et al., 2021; Lee et al., 2021;
Snoek et al., 2012; Wu & Frazier, 2019), these approaches extend the Expected Improvement acqui-
sition function to address nonmyopic optimization challenges. While they provide valuable insights,
these methods directly optimize free variables in a multi-step tree, which introduces an exponential
increase in the number of optimization variables as the lookahead horizon grows. In our context,
incorporating their lookahead mechanisms would amount to combining a multi-step tree structure
with a dynamic cost function, an approach that is already benchmarked above. The optimization ob-
jectives of these lookahead methods, once adapted, align with Equation 1. Our planning algorithm
distinguishes itself from the literature by integrating a policy neural network, which is one of our
contributions.

C ABLATION STUDIES

C.1 NOISE LEVELS

We provide a detailed comparison of our methods and baselines on nine synthetic functions with all
cost functions and three noise levels in Figure 7. In this figure, our method demonstrates outstanding
performance across all cost structures and noise levels.

C.2 NUMBER OF INITIAL SAMPLES

We investigated the effect of varying the number of initial samples on the optimization process.
Specifically, we evaluated three additional levels of initial samples across three environments: Ack-
ley, Alpine, and SynGP (Figure 8). Our results indicate that with fewer initial points, the GP sur-
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Figure 7: Final observed value. Starting from noon, counter-clockwise: Ackley, Ackley4D, Alpine,
Cosine8, Hartmann, HolderTable, Levy, StyblinskiTang, SynGP. We observe that our method con-
sistently achieves the global optimum across various types of cost structures and noise levels

rogate model struggles to accurately approximate the ground-truth function, thereby increasing the
likelihood of suboptimal outcomes across both myopic and nonmyopic methods.

Figure 8: Comparison of performance between our methods and baselines with different number of
initial samples. The yellow points indicate the starting positions, while the green points represent
the final actions. From top to bottom, the Ackley function is evaluated with 15, 25, 35, and 50 initial
samples; the Alpine function with 25, 50, 75, and 100 initial samples; and the SynGP function with
5, 10, and 15 initial samples. With a small number of initial samples, all methods tend to fail to find
the global optimum due to poor surrogate models.

C.3 DIFFERENT KERNELS FOR GP SURROGATE MODEL

To assess the influence of the surrogate model kernel on performance, we evaluated different kernel
functions, including the Radial Basis Function (RBF) kernel and the Matérn kernel with ν = 1.5,
on three functions: Ackley, Alpine, and SynGP. Figure 9 visualizes the ablation results. This abla-
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tion demonstrates that with any well-fitted kernel, the nonmyopic approach can achieve the global
optimum.

Figure 9: Comparison of performance between our methods and baselines with different kernels
for the surrogate model. The yellow points indicate the starting positions, while the green points
represent the final actions. The performance of our method is not affected by the choice of kernel for
the surrogate model as long as the surrogate model can approximate the target function effectively.

In our synthetic experiments, we do not include an ablation study on Bayesian linear regression
model as it is unsuitable for accurately approximating the non-linear target functions. To demon-
strate this limitation, we compared the posterior surface generated by Bayesian linear regression with
those of other kernel-based methods, as shown in Figure 10. These results confirmed its inadequacy,
leading us to exclude it from our ablation study.

Figure 10: Comparison of posterior surfaces of different kernels on Ackley, Alpine, and SynGP
function. Using Bayesian linear regression (the third column) resulted in wrong approximation of
the ground truth functions.

C.4 DIFFERENT LOOKAHEAD STEPS

We included experimental results on the ablation of the number of lookahead steps in Figure 11.
These results illustrate the relationship between the number of lookahead steps and the robustness of
the optimization, providing insights into how the performance of our approach varies with different
horizon lengths. Specifically, with a smaller lookahead horizon, the probability of being trapped by
local optima increases, leading to suboptimal optimization in all nonmyopic methods.
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Figure 11: Comparison of our method and nonmyopic baseline at 5, 10, 15, and 20 lookahead
steps. The yellow points indicate the starting positions, while the green points represent the final
actions. With fewer lookahead steps, nonmyopic methods tend to fail to find the global optimum,
demonstrating the benefit of having a longer lookahead horizon.

D ABLATION STUDY ON MYOPIC METHOD

Regarding using the UCB acquisition function, the level of optimism can be controlled by the β
hyperparameter. A smaller β prioritizes exploitation, while a larger β prioritizes exploration. With
sufficiently large β, the standard deviation term dominates the mean term, leading to decisions driven
by the most uncertain areas. To further illustrate the impact of large β, we conducted additional
experiments with β values ranging from 0.1 to 1000 on nine synthetic functions. In Figure 12 we
highlight the behavior of UCB when increasing β.

We also provide the value of the final action, normalized to range from -1 to 1, where -1 represents
the worst outcome and 1 is the best in Table 3, 4, and 5. These empirical results further illustrate that
the large β value can encourage the decision maker to make queries that highly prioritize exploration.
As illustrated in the above figure and table, such exploration are typically myopic and unplanned, and
consequently, the decision maker typically misses the global optima or overexplore the un-promising
region. We also want to note that in our experiment, no single β outperformed others in all settings:
for example, β = 10 works well for Ackley, but does not work for other functions. Indeed, choosing
the value of β for UCB before running the online experiment is nontrivial in practice.

Table 3: Comparison of final action value of our method with lookahead 20 steps and UCB with
various β (part 1)

Ours UCB (β = 0.1) UCB (β = 0.5) UCB (β = 1) UCB (β = 2)

Ackley 0.97±0.03 0.7±0.4 0.4±0.41 0.4±0.41 0.4±0.41
Ackley4D 0.97±0.02 0.68±0.44 0.68±0.44 0.67±0.43 0.68±0.44
Alpine 0.99±0.0 -0.01±0.01 -0.01±0.01 -0.01±0.01 -0.01±0.01
Cosine8 0.93±0.01 0.96±0.01 0.97±0.01 0.96±0.02 0.97±0.02
Hartmann 0.96±0.03 0.95±0.02 0.94±0.04 0.95±0.03 0.95±0.03
HolderTable 0.05±0.08 -0.49±0.01 -0.5±0.01 -0.49±0.01 -0.49±0.01
Levy 0.95±0.0 0.87±0.0 0.87±0.0 0.87±0.0 0.87±0.0
StyblinskiTang 1.0±0.0 0.91±0.0 0.91±0.0 0.91±0.0 0.91±0.0
SynGP 0.63±0.25 0.45±0.01 0.45±0.01 0.45±0.01 0.45±0.01

E REAL EXPERIMENTS ON CONTINUOUS SPACE

To demonstrate the applicability of our methods in real-life continuous environments, we conducted
additional experiments on human travel optimization in a 2D continuous domain. Specifically, we
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Figure 12: Visualization of queries across BO iterations with the setting of σ = 0.0 and r-spotlight
cost. The yellow points indicate the starting positions, while the green points represent the final
actions. With appropriate β, the UCB can achieve the global optimum as ours.
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Table 4: Comparison of final action value of our method with lookahead 20 steps and UCB with
various β (part 2)

UCB (β = 5) UCB (β = 10) UCB (β = 20) UCB (β = 50)

Ackley 0.7±0.43 1.0±0.01 0.71±0.35 0.55±0.65
Ackley4D 0.98±0.01 0.98±0.01 0.87±0.17 0.99±0.01
Alpine -0.01±0.01 -0.01±0.01 0.15±0.24 0.73±0.36
Cosine8 0.96±0.03 0.97±0.02 0.97±0.04 0.88±0.04
Hartmann 0.97±0.02 0.96±0.03 0.97±0.03 0.94±0.03
HolderTable -0.49±0.01 -0.28±0.32 -0.03±0.34 0.81±0.6
Levy 0.87±0.0 0.87±0.0 0.87±0.0 0.87±0.0
StyblinskiTang 0.91±0.0 0.91±0.0 0.91±0.0 0.91±0.0
SynGP 0.45±0.01 0.45±0.01 0.45±0.01 0.45±0.01

Table 5: Comparison of final action value of our method with lookahead 20 steps and UCB with
various β (part 3)

UCB (β = 100) UCB (β = 200) UCB (β = 500) UCB (β = 1000)

Ackley 0.45±0.41 -0.34±0.38 -0.12±0.13 0.06±0.5
Ackley4D 0.47±0.33 -0.72±0.06 -0.33±0.3 -0.6±0.24
Alpine 0.92±0.09 0.15±0.46 -0.43±0.48 -0.2±0.66
Cosine8 0.71±0.06 0.62±0.07 0.13±0.18 -0.18±0.1
Hartmann 0.95±0.03 0.81±0.12 -0.02±0.61 -0.52±0.43
HolderTable 0.9±0.81 0.76±0.23 0.27±1.1 -0.41±0.32
Levy 0.86±0.01 0.93±0.05 0.82±0.12 0.84±0.06
StyblinskiTang 0.94±0.04 0.93±0.1 0.96±0.06 0.92±0.07
SynGP 0.45±0.01 0.22±0.32 0.61±0.53 0.5±0.53

utilized an image from NASA’s Earth Observatory1, which is a 2016 grayscale image of night lights
in Georgia and South Carolina states, with a resolution of 1000 × 1000 pixels. To facilitate the
optimization of the GP surrogate model and avoid numerical issues due to image noise, we applied a
stack blur with a radius of 40 to the image. The pixel values, ranging from 0 to 255, were normalized
to a range of −3 to 3. The image width and height were normalized to a range of 0 to 1. We apply
our methods and baselines with spotlight cost (r = 0.1) and Euclidean cost. Figures 13 and 14
show the results of our methods and baselines on spotlight and Euclidean cost, respectively. In this
environment, nonmyopic methods demonstrated their advantage in lookahead capability. Notably,
our method showed its effectiveness in directly reaching the global optimum, rather than querying
around sub-optimal locations before approaching the global optimum as MSL.

Figure 13: Visualization of different methods on NASA night light images in the case of spotlight
cost.

F DETAILS OF PROTEIN SEQUENCE DESIGN EXPERIMENT

F.1 ORACLE GOODNESS OF FIT

We present the goodness of fit for various featurization functions in Figure 15. The R2 metric is
used to evaluate the performance of embedding protein sequences.

1https://earthobservatory.nasa.gov/features/NightLights
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Figure 14: Visualization of different methods on NASA night light images in the case of Euclidean
cost.

Figure 15: Goodness of fit on the test set as a function of training data

F.2 MODELING PROTEIN DESIGN AS A CHAT CONVERSATION

We employ the instruction-finetuned Llama-3.2 3B2 model as our variational network. To leverage
the model’s conversational capabilities, we frame the protein design process as a dialogue. Specifi-
cally, we prompt the model to generate the next protein sequences. The prompts we used are outlined
below.

System prompt:

You are a helpful assistant who works in a protein engineering lab.
We are trying to edit a given protein by a sequence of 1-step protein
editing, known as mutation. You need to use your knowledge to help me
propose suitable protein editing. Going from an initial protein to an
optimal one can take many steps.

First prompt:

Edit 1 amino acid in the below protein sequence to create a new
protein with higher fluorescence. The amino acid must be in set {D, E}.
Protein sequence: {starting_protein}

Feedback prompt:

Fluorescence level of the above protein: {fluorescence_level}

2https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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Based on the above protein sequence and its fluorescence value, edit
1 amino acid to achieve higher fluorescence. You must only return the
modified protein sequence and nothing else.
Modified protein sequence:

F.3 SUPERVISED FINE-TUNING PROCESS

Before initiating the BO process, we perform supervised fine-tuning (SFT) on the variational net-
work to familiarize it with the protein design task. We generate a dataset for SFT training consisting
of 100 dialogues, each containing L rounds corresponding to the number of lookahead steps. The
proteins in each dialogue are created by either randomly mutating or retaining the previous protein.
The fine-tuning hyperparameters are provided below.

• Learning rate: 10−4

• Epochs: 3.3
• Batch size: 4
• Learning rate warmup ratio: 0.1
• Learning rate scheduling: Cosine
• LoRA α: 32
• LoRA r: 16
• LoRA dropout: 0.1
• LoRA target modules: q proj, v proj

F.4 NONMYOPIC BO AS MULTI-TURN PPO FINETUNING

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is typically used to fine-tune language
models for single-turn conversations, where the model responds once to a prompt without consid-
ering future turns. However, our approach requires the model to think ahead and generate multiple
future queries (in this case, protein sequences) over several turns. To address this, we modify exist-
ing PPO frameworks to handle multiturn conversations, allowing the model to generate and optimize
future sequences during training. We also use vLLM (Kwon et al., 2023), a system designed to im-
prove the speed and efficiency of inference (i.e., generating outputs from the model). However,
vLLM is built for inference only and cannot be used directly for training. To overcome this, af-
ter each step of updating the model during training (called a gradient step), we transfer the updated
model’s weights (parameters) to the vLLM system. This allows us to use vLLM for faster generation
of outputs, leading to more efficient training.

In the PPO training process, we calculate a final reward for each dialogue using a function ℓ. This
function varies depending on the acquisition method being used (e.g., expected improvement or
simple regret). Once the reward is computed, it is adjusted, or “discounted,” for each individual turn
in the dialogue. This means that actions taken earlier in the conversation get less reward compared
to later actions. We then use this discounted reward as feedback to update the model during PPO
training. By doing this, we extend the single-turn PPO framework, which normally handles one
response at a time, to work for our multiturn conversation data. The hyperparameters used for fine-
tuning PPO are provided below.

• Learning rate: 10−4

• Epochs: 64
• Batch size: 1
• Learning rate warmup ratio: 0.1
• Learning rate scheduling: Cosine
• LoRA α: 256
• LoRA r: 128
• LoRA dropout: 0.1
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• LoRA target modules: q proj, v proj
• Maximal rollout retry: 32
• Discount reward factor: 0.95

G ABLATION STUDY ON PROTEIN DESIGN EXPERIMENTS

G.1 VARYING PROTEIN SPACE

We ablate three different starting proteins and two different synthetic functions g(x) to construct
protein spaces. Visualizations of these protein spaces are presented in Figure 16.

Table 6: Protein space constraints

No. Starting protein Allowed positions Allowed
AAs

1

SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEG
DATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQ
CFSRFPDHMKQHDFFKSAMPEGYVQERTIFSKDD
GNYKTRAEVKFEGDELVNRIELKGIDFKEEENILG
HKLEENYNSHNVYIMADDQKNGIKVNFKIRHNIE
DDSVQLADHYQQNTPIGDEPVLLPDDHYLSTQSA
LSKDDNEDRDEMVLLEFVTAAGITHGMDELYK

116, 131, 132, 141,
154, 171, 172, 189,
196, 209, 212, 215

E, D

2

SKPEELFTPVVGILVELDPDVNGHKFSVSGEGEPD
ATYGKLTLKFICTTGKLGVGWGTLVTTLSYGVQC
FSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDG
NYKTRAEVKFEPDTLVNRIELKGIVFKEDGNTLG
HKLEYNYNSHNVYIMADEQKNGIKVNFKIRHNIE
DGSVQLADHYQQNTPIPDGPVLLPDNHYLSTQSA
LSKDPNEKRDHMVLLEFVTAAGITHGMDELYK

2, 8, 11, 18, 33,
52, 54, 56, 114, 158,
187, 190

G, P

g1(x) = −0.005(d− 0.5)(d− 5)(d− 8)(d− 13.4)

g2(x) = −e−0.7·
√
0.5·d2 − e0.5·cos(0.4πd) + e+ 0.3
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Figure 16: Ablation of protein spaces with a different starting protein (SP) and a different synthetic
function

G.2 RESULTS OF DIFFERENT PROTEIN SPACES

We present the results of additional experiments on protein design with the same starting protein with
g2 (Figure 17), and with a different starting protein with g1 (Figure 18). These figures demonstrate
that our proposed nonmyopic method outperforms other myopic baselines in
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Figure 17: Caption

Figure 18: Caption

H VISUALIZATION OF PROTEIN EDITING RESULT

We visualized the designed proteins with the first starting protein and g1. We use ESMFold (Lin
et al., 2022) to fold the designed proteins and PyMol (Schrödinger, LLC, 2015) to visualize them.
The visualizations are presented in Table 7.
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Table 7: Visualization of designed proteins

Protein Visualization
Starting protein:

SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDATY
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPDHM
KQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEG
DELVNRIELKGIDFKEEENILGHKLEENYNSHNVYIMAD
DQKNGIKVNFKIRHNIEDDSVQLADHYQQNTPIGDEPVL
LPDDHYLSTQSALSKDDNEDRDEMVLLEFVTAAGITHG
MDELYK

Our - Optimal:
SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDATY
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPDHM
KQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEG
DDLVNRIELKGIDFKEDDNILGHKLEDNYNSHNVYIMA
DEQKNGIKVNFKIRHNIEEESVQLADHYQQNTPIGDDPV
LLPDEHYLSTQSALSKDENEERDDMVLLEFVTAAGITHG
MDELYK

SR:

SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDATY
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPDHM
KQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEG
DELVNRIELKGIDFKEEDNILGHKLEENYNSHNVYIMAD
DQKNGIKVNFKIRHNIEDDSVQLADHYQQNTPIGDDPVL
LPDDHYLSTQSALSKDDNEDRDEMVLLEFVTAAGITHG
MDELYK

EI, PI, UCB:
SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDATY
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPDHM
KQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEG
DELVNRIELKGIDFKEDENILGHKLEENYNSHNVYIMAD
DQKNGIKVNFKIRHNIEDDSVQLADHYQQNTPIGDEPVL
LPDDHYLSTQSALSKDENEDRDEMVLLEFVTAAGITHG
MDELYK

KG:

SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDATY
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPDHM
KQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEG
DELVNRIELKGIDFKEEENILGHKLEENYNSHNVYIMAD
DQKNGIKVNFKIRHNIEDDSVQLADHYQQNTPIGDEPVL
LPDDHYLSTQSALSKDDNEERDEMVLLEFVTAAGITHG
MDELYK
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